JP6460159B2 - Rotor and motor - Google Patents

Rotor and motor Download PDF

Info

Publication number
JP6460159B2
JP6460159B2 JP2017122269A JP2017122269A JP6460159B2 JP 6460159 B2 JP6460159 B2 JP 6460159B2 JP 2017122269 A JP2017122269 A JP 2017122269A JP 2017122269 A JP2017122269 A JP 2017122269A JP 6460159 B2 JP6460159 B2 JP 6460159B2
Authority
JP
Japan
Prior art keywords
magnet
claw
shaped magnetic
magnetic pole
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017122269A
Other languages
Japanese (ja)
Other versions
JP2017163845A (en
Inventor
智恵 森田
智恵 森田
洋次 山田
洋次 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of JP2017163845A publication Critical patent/JP2017163845A/en
Application granted granted Critical
Publication of JP6460159B2 publication Critical patent/JP6460159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ロータ及びモータに関するものである。   The present invention relates to a rotor and a motor.

モータに使用されるロータとしては、周方向に複数の爪状磁極をそれぞれ有して組み合わされるロータコアを備え、それらの間に界磁磁石を配置して各爪状磁極を交互に異なる磁極に機能させる所謂永久磁石界磁のランデル型構造のロータがある(例えば、特許文献1参照)。   The rotor used in the motor has a rotor core that has a plurality of claw-shaped magnetic poles in the circumferential direction and is combined, and field magnets are arranged between them to function each claw-shaped magnetic pole as a different magnetic pole alternately There is a so-called permanent magnet field rundel-type rotor (see, for example, Patent Document 1).

実開平5−43749号公報Japanese Utility Model Publication No. 5-43749

ところで、上記のようなモータにおいては、爪状磁極の背面において隙間ができてしまうと、その隙間から磁束が漏れてしまう虞がある。
本発明は、上記課題を解決するためになされたものであって、その目的は、漏れ磁束を抑えた構造を実現することができるロータ及びモータを提供することにある。
By the way, in the motor as described above, if a gap is formed on the back surface of the claw-shaped magnetic pole, the magnetic flux may leak from the gap.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a rotor and a motor capable of realizing a structure in which leakage magnetic flux is suppressed.

上記課題を解決するロータは、略円盤状の第1コアベースの外周部に、等間隔に複数の第1爪状磁極が径方向外側に突出されるとともに軸方向に延出形成された第1ロータコアと、略円盤状の第2コアベースの外周部に、等間隔に複数の第2爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、前記各第2爪状磁極がそれぞれ対応する前記第1ロータコアの各第1爪状磁極間に配置された第2ロータコアと、前記第1コアベースと第2コアベースとの軸方向の間に配置され、前記軸方向に磁化されることで、前記第1爪状磁極を第1の磁極として機能させ、前記第2爪状磁極を第2の磁極として機能させる界磁磁石と、前記第1爪状磁極の背面に配置された第1背面磁石部、及び前記第2爪状磁極の背面に配置された第2背面磁石部を有し、前記界磁磁石の外周を取り囲む環状をなす極異方性磁石と、を備え、前記極異方性磁石は、前記第1背面磁石部からその隣の前記第2背面磁石部に至るまでの間で前記界磁磁石側に湾曲する極異方配向を有しており、前記極異方性磁石の内周面は、前記第1コアベースの外周面及び前記第2コアベースの外周面に当接している。
上記課題を解決するロータは、略円盤状の第1コアベースの外周部に、等間隔に複数の第1爪状磁極が径方向外側に突出されるとともに軸方向に延出形成された第1ロータコアと、略円盤状の第2コアベースの外周部に、等間隔に複数の第2爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、前記各第2爪状磁極がそれぞれ対応する前記第1ロータコアの各第1爪状磁極間に配置された第2ロータコアと、前記第1コアベースと第2コアベースとの軸方向の間に配置され、前記軸方向に磁化されることで、前記第1爪状磁極を第1の磁極として機能させ、前記第2爪状磁極を第2の磁極として機能させる界磁磁石と、前記第1爪状磁極の背面に配置された第1背面磁石部、及び前記第2爪状磁極の背面に配置された第2背面磁石部を有し、前記界磁磁石の外周を取り囲む環状をなす極異方性磁石と、を備え、前記極異方性磁石は、前記第1背面磁石部からその隣の前記第2背面磁石部に至るまでの間で前記界磁磁石側に湾曲する極異方配向を有しており、前記極異方性磁石の内周面は、前記界磁磁石の外周面に当接している。
A rotor that solves the above-described problem is a first disk in which a plurality of first claw-shaped magnetic poles protrude radially outward and extend in the axial direction at equal intervals on the outer periphery of a substantially disk-shaped first core base. A plurality of second claw-shaped magnetic poles project radially outward and extend in the axial direction on the outer periphery of the rotor core and the substantially disc-shaped second core base, and extend in the axial direction. Are arranged between the first rotor core disposed between the first claw-shaped magnetic poles of the corresponding first rotor core and the axial direction between the first core base and the second core base, and are magnetized in the axial direction. Thus, a field magnet that causes the first claw-shaped magnetic pole to function as the first magnetic pole and the second claw-shaped magnetic pole to function as the second magnetic pole is disposed on the back surface of the first claw-shaped magnetic pole. And a second back surface disposed on the back surface of the second claw-shaped magnetic pole. A polar anisotropic magnet having a stone portion and surrounding an outer periphery of the field magnet, wherein the polar anisotropic magnet is adjacent to the second back magnet portion from the first back magnet portion. Until the field magnet side is curved, and the inner peripheral surface of the polar anisotropic magnet is the outer peripheral surface of the first core base and the second core base. It is in contact with the outer peripheral surface of .
A rotor that solves the above-described problem is a first disk in which a plurality of first claw-shaped magnetic poles protrude radially outward and extend in the axial direction at equal intervals on the outer periphery of a substantially disk-shaped first core base. A plurality of second claw-shaped magnetic poles project radially outward and extend in the axial direction on the outer periphery of the rotor core and the substantially disc-shaped second core base, and extend in the axial direction. Are arranged between the first rotor core disposed between the first claw-shaped magnetic poles of the corresponding first rotor core and the axial direction between the first core base and the second core base, and are magnetized in the axial direction. Thus, a field magnet that causes the first claw-shaped magnetic pole to function as the first magnetic pole and the second claw-shaped magnetic pole to function as the second magnetic pole is disposed on the back surface of the first claw-shaped magnetic pole. And a second back surface disposed on the back surface of the second claw-shaped magnetic pole. A polar anisotropic magnet having a stone portion and surrounding an outer periphery of the field magnet, wherein the polar anisotropic magnet is adjacent to the second back magnet portion from the first back magnet portion. Until the field magnet side is bent, and the inner circumferential surface of the polar anisotropic magnet is in contact with the outer circumferential surface of the field magnet.

上記記載のロータにおいて、前記極異方性磁石は、前記第1爪状磁極と前記第2爪状磁極との周方向の間に配置された極間磁石部を備えている。
上記記載のロータにおいて、前記極間磁石部は、前記第1背面磁石部及び前記第2背面磁石部よりも径方向外側に延出されている。
In the above-described rotor, the polar anisotropic magnet includes an inter-pole magnet portion disposed between the first claw-shaped magnetic pole and the second claw-shaped magnetic pole in the circumferential direction.
In the rotor described above, the interpole magnet portion extends radially outward from the first back magnet portion and the second back magnet portion.

上記記載のロータにおいて、前記第1背面磁石部と前記第2背面磁石部とは、軸方向に互いにずれて配置されている。
上記記載のロータにおいて、前記第1爪状磁極及び前記第1背面磁石部と、前記第2爪状磁極及び前記第2背面磁石部とは、周方向において交互に配置されている。
In the rotor described above, the first back magnet part and the second back magnet part are arranged so as to be shifted from each other in the axial direction.
In the rotor described above, the first claw-shaped magnetic pole and the first back magnet part, and the second claw-shaped magnetic pole and the second back magnet part are alternately arranged in the circumferential direction.

上記記載のロータにおいて、前記極異方性磁石は、円環状に一体成形されている。
上記課題を解決するモータは、上記記載のロータを備えている。
In the rotor described above, the polar anisotropic magnet is integrally formed in an annular shape.
A motor that solves the above problem includes the rotor described above.

従って、上記記載の発明によれば、漏れ磁束を抑えた構造を実現することができるロータ及びモータを提供することができる。   Therefore, according to the above-described invention, it is possible to provide a rotor and a motor that can realize a structure in which leakage magnetic flux is suppressed.

実施形態におけるモータの断面図。Sectional drawing of the motor in embodiment. 同上におけるロータの斜視図。The perspective view of the rotor in the same as the above. 同上におけるロータの断面図。Sectional drawing of the rotor in the same as the above. 同上における補助磁石の斜視図。The perspective view of the auxiliary magnet in the same as the above. 第2実施形態における補助磁石の斜視図。The perspective view of the auxiliary magnet in 2nd Embodiment. 同上における補助磁石を構成する周方向分割部の斜視図。The perspective view of the circumferential direction division part which comprises the auxiliary magnet in the same as the above. 別例における補助磁石の斜視図。The perspective view of the auxiliary magnet in another example. 同上における補助磁石を構成する周方向分割部の斜視図。The perspective view of the circumferential direction division part which comprises the auxiliary magnet in the same as the above. 別例における補助磁石の斜視図。The perspective view of the auxiliary magnet in another example. 別例における補助磁石の斜視図。The perspective view of the auxiliary magnet in another example. 第3実施形態における補助磁石の平面図。The top view of the auxiliary magnet in 3rd Embodiment. 別例における補助磁石の平面図。The top view of the auxiliary magnet in another example. 別例における補助磁石の平面図。The top view of the auxiliary magnet in another example. 別例における補助磁石の平面図。The top view of the auxiliary magnet in another example. (a)は別例における補助磁石の平面図、(b)は別例における補助磁石の斜視図。(A) is a top view of the auxiliary magnet in another example, (b) is a perspective view of the auxiliary magnet in another example. 第4実施形態における補助磁石の斜視図。The perspective view of the auxiliary magnet in 4th Embodiment. 別例における補助磁石の斜視図。The perspective view of the auxiliary magnet in another example.

(第1実施形態)
以下、本発明を具体化した第1実施形態を図面に従って説明する。
図1に示すように、モータ1のモータケース2は、有底筒状に形成された筒状ハウジング3と、該筒状ハウジング3のフロント側(図1中、左側)の開口部を閉塞するフロントエンドプレート4とを有している。また、筒状ハウジング3のリア側(図1中、右側)の端部には、回路基板等の電源回路を収容した回路収容ボックス5が取り付けられている。筒状ハウジング3の内周面にはステータ6が固定されている。ステータ6は、径方向内側に延びる複数のティースを有する電機子コア7と、電機子コア7のティースに巻装されたセグメントコンダクタ(SC)巻線8とを有する。モータ1のロータ11は回転軸12を有し、ステータ6の内側に配置されている。回転軸12は非磁性体の金属シャフトであって、筒状ハウジング3の底部3a及びフロントエンドプレート4に支持された軸受13,14により回転可能に支持されている。
(First embodiment)
A first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a motor case 2 of a motor 1 closes a cylindrical housing 3 formed in a bottomed cylindrical shape and an opening on the front side (left side in FIG. 1) of the cylindrical housing 3. And a front end plate 4. A circuit housing box 5 that houses a power supply circuit such as a circuit board is attached to an end of the cylindrical housing 3 on the rear side (right side in FIG. 1). A stator 6 is fixed to the inner peripheral surface of the cylindrical housing 3. The stator 6 includes an armature core 7 having a plurality of teeth extending radially inward, and a segment conductor (SC) winding 8 wound around the teeth of the armature core 7. The rotor 11 of the motor 1 has a rotating shaft 12 and is disposed inside the stator 6. The rotating shaft 12 is a non-magnetic metal shaft, and is rotatably supported by bearings 13 and 14 supported by the bottom 3 a of the cylindrical housing 3 and the front end plate 4.

ロータ11は、図2及び図3に示すように、第1及び第2ロータコア21,22と、環状磁石23(図4参照)と、補助磁石24とを備える。尚、図3及び図4中の実線で示す矢印は各磁石23,24の磁化方向(S極からN極向き)を示している。   As shown in FIGS. 2 and 3, the rotor 11 includes first and second rotor cores 21 and 22, an annular magnet 23 (see FIG. 4), and an auxiliary magnet 24. 3 and 4 indicate the magnetization directions of the magnets 23 and 24 (from the S pole to the N pole).

図2及び図3に示すように、第1ロータコア21は、略円盤状の第1コアベース21aの外周部に、等間隔に複数(本実施形態では5つ)の第1爪状磁極21bが径方向外側に突出されるとともに軸方向に延出形成されている。第1爪状磁極21bの周方向端面21c,21dは径方向に延びる(軸方向から見て径方向に対して傾斜していない)平坦面とされ、第1爪状磁極21bは軸直交方向断面が扇形状とされている。各第1爪状磁極21bの周方向の角度、即ち前記周方向端面21c,21d間の角度は、周方向に隣り合う第1爪状磁極21b同士の隙間の角度より小さく設定されている。   As shown in FIGS. 2 and 3, the first rotor core 21 has a plurality of (five in the present embodiment) first claw-shaped magnetic poles 21 b at equal intervals on the outer periphery of the substantially disk-shaped first core base 21 a. It protrudes radially outward and extends in the axial direction. The circumferential end surfaces 21c and 21d of the first claw-shaped magnetic pole 21b are flat surfaces extending in the radial direction (not inclined with respect to the radial direction when viewed from the axial direction), and the first claw-shaped magnetic pole 21b has a cross section perpendicular to the axis. Has a fan shape. The circumferential angle of each first claw-shaped magnetic pole 21b, that is, the angle between the circumferential end faces 21c and 21d is set smaller than the angle of the gap between the first claw-shaped magnetic poles 21b adjacent in the circumferential direction.

第2ロータコア22は、図2及び図3に示すように、第1ロータコア21と同形状であって、略円盤状の第2コアベース22aの外周部に、等間隔に複数の第2爪状磁極22bが径方向外側に突出されるとともに軸方向に延出形成されている。第2爪状磁極22bの周方向端面22c,22dは径方向に延びる平坦面とされ、第2爪状磁極22bは軸直交方向断面が扇形状とされている。各第2爪状磁極22bの周方向の角度、即ち前記周方向端面22c,22d間の角度は、周方向に隣り合う第2爪状磁極22b同士の隙間の角度より小さく設定されている。そして、第2ロータコア22は、前記各第2爪状磁極22bがそれぞれ対応する各第1爪状磁極21b間に配置されるようにして、第1コアベース21aと第2コアベース22aとの軸方向の間に環状磁石23(図4参照)が配置(挟持)されるようにして第1ロータコア21に対して組み付けられる。このとき、第1爪状磁極21bの一方の周方向端面21cと第2爪状磁極22bの他方の周方向端面22dとが軸方向に沿って平行をなすように形成されるため、各端面21c,22d間の間隙が軸方向に沿って略直線状をなすように形成されることとなる。また、第1爪状磁極21bの他方の周方向端面21dと第2爪状磁極22bの一方の周方向端面22cとが軸方向に沿って平行をなすように形成されるため、各端面21d,22c間の間隙が軸方向に沿って略直線状をなすように形成されることとなる。   As shown in FIGS. 2 and 3, the second rotor core 22 has the same shape as the first rotor core 21, and has a plurality of second claw-like shapes on the outer periphery of the substantially disk-shaped second core base 22a at equal intervals. The magnetic pole 22b protrudes radially outward and extends in the axial direction. The circumferential end surfaces 22c and 22d of the second claw-shaped magnetic pole 22b are flat surfaces extending in the radial direction, and the second claw-shaped magnetic pole 22b has a fan-shaped cross section in the direction perpendicular to the axis. The circumferential angle of each second claw-shaped magnetic pole 22b, that is, the angle between the circumferential end faces 22c and 22d is set smaller than the angle of the gap between the second claw-shaped magnetic poles 22b adjacent in the circumferential direction. The second rotor core 22 is arranged between the first core base 21a and the second core base 22a such that the second claw-shaped magnetic poles 22b are disposed between the corresponding first claw-shaped magnetic poles 21b. The annular magnet 23 (see FIG. 4) is arranged (clamped) between the directions, and is assembled to the first rotor core 21. At this time, since one circumferential end face 21c of the first claw-shaped magnetic pole 21b and the other circumferential end face 22d of the second claw-shaped magnetic pole 22b are formed in parallel along the axial direction, each end face 21c is formed. , 22d is formed so as to be substantially linear along the axial direction. Further, since the other circumferential end face 21d of the first claw-shaped magnetic pole 21b and one circumferential end face 22c of the second claw-shaped magnetic pole 22b are formed so as to be parallel along the axial direction, each end face 21d, The gap between 22c is formed so as to be substantially linear along the axial direction.

図3に示すように、環状磁石23は、その外径が第1及び第2コアベース21a,22aの外径と同じに設定され、第1爪状磁極21bを第1の磁極(本実施形態ではN極)として機能させ、第2爪状磁極22bを第2の磁極(本実施形態ではS極)として機能させるように、軸方向に磁化されている。従って、本実施形態のロータ11は、界磁磁石としての環状磁石23を用いた所謂ランデル型構造のロータである。ロータ11は、N極となる第1爪状磁極21bと、S極となる第2爪状磁極22bとが周方向に交互に配置されており、磁極数が10極(極対数が5個)となる。ここで、極対数が3以上の奇数であるため、ロータコア単位で見ると同極の爪状磁極同士が周方向180°対向位置とならないため、磁気振動に対して安定する形状となる。   As shown in FIG. 3, the outer diameter of the annular magnet 23 is set to be the same as the outer diameter of the first and second core bases 21a and 22a, and the first claw-shaped magnetic pole 21b is used as the first magnetic pole (this embodiment). The second claw-shaped magnetic pole 22b is magnetized in the axial direction so as to function as a second magnetic pole (S pole in the present embodiment). Therefore, the rotor 11 of the present embodiment is a so-called Landel type rotor using the annular magnet 23 as a field magnet. In the rotor 11, first claw-shaped magnetic poles 21b that are N poles and second claw-shaped magnetic poles 22b that are S poles are alternately arranged in the circumferential direction, and the number of magnetic poles is 10 poles (the number of pole pairs is 5). It becomes. Here, since the number of pole pairs is an odd number of 3 or more, the claw-like magnetic poles having the same polarity do not face each other at 180 ° in the circumferential direction when viewed in the rotor core unit, so that the shape is stable against magnetic vibration.

図4に示すように、補助磁石24は、周方向において分割された複数の周方向分割部25,26を備え、これら周方向分割部25,26を周方向に連続して隣接させて構成される。周方向分割部25,26は、第1爪状磁極21bに取着される第1周方向分割部25と、第2爪状磁極22bに取着される第2周方向分割部26とを備える。   As shown in FIG. 4, the auxiliary magnet 24 includes a plurality of circumferentially divided portions 25 and 26 that are divided in the circumferential direction, and the circumferentially divided portions 25 and 26 are continuously adjacent to each other in the circumferential direction. The The circumferential division portions 25 and 26 include a first circumferential division portion 25 attached to the first claw-shaped magnetic pole 21b and a second circumferential division portion 26 attached to the second claw-shaped magnetic pole 22b. .

各第1爪状磁極21bに取着される第1周方向分割部25は、図4に示すように軸方向視でコ字状をなすように形成され、第1背面磁石部25aと、第1極間磁石部25bとを備える。   As shown in FIG. 4, the first circumferential dividing portion 25 attached to each first claw-shaped magnetic pole 21 b is formed to have a U-shape when viewed in the axial direction, and the first back magnet portion 25 a And a one-pole magnet portion 25b.

第1背面磁石部25aは、図2〜図4に示すように前記第1爪状磁極21bの背面21e(径方向内側の面)と第2コアベース22aの外周面22fとの間に配置されている。第1背面磁石部25aは、その軸直交方向断面が扇形状とされ、第1爪状磁極21bの背面21eに当接する側が第1爪状磁極21bと同極のN極に、第2コアベース22aの外周面22fに当接する側が同第2コアベース22aと同極のS極となるように磁化されている。また、第1背面磁石部25aは、例えばフェライト磁石で構成することができる。   As shown in FIGS. 2 to 4, the first back magnet portion 25a is disposed between the back surface 21e (radially inner surface) of the first claw-shaped magnetic pole 21b and the outer peripheral surface 22f of the second core base 22a. ing. The first back magnet portion 25a has a fan-shaped cross section in the direction perpendicular to the axis, and the second core base has a side that abuts on the back surface 21e of the first claw-shaped magnetic pole 21b with the N pole having the same polarity as the first claw-shaped magnetic pole 21b. Magnetization is performed so that the side of 22a that comes into contact with the outer peripheral surface 22f becomes the S pole having the same polarity as the second core base 22a. Moreover, the 1st back magnet part 25a can be comprised with a ferrite magnet, for example.

第1極間磁石部25bは、図2及び図4に示すように前記第1背面磁石部25aの周方向両側から径方向外側に延出するとともに、前記第1爪状磁極21bの周方向両側に位置するように前記第1背面磁石部25aと一体形成されている。また、第1爪状磁極21bの周方向両側の第1極間磁石部25bは、前記第1爪状磁極21b及び前記第2爪状磁極22bの周方向間の隙間の半分の周方向厚み(長さ)を有するように構成されている。   As shown in FIGS. 2 and 4, the first inter-pole magnet portion 25b extends radially outward from both circumferential sides of the first back magnet portion 25a and both circumferential sides of the first claw-shaped magnetic pole 21b. The first back magnet part 25a is formed integrally with the first back magnet part 25a. Further, the first inter-pole magnet portions 25b on both sides in the circumferential direction of the first claw-shaped magnetic pole 21b have a circumferential thickness that is half the gap between the first claw-shaped magnetic pole 21b and the second claw-shaped magnetic pole 22b in the circumferential direction ( Length).

また、各第2爪状磁極22bに取着される第2周方向分割部26は、図4に示すように前記第1爪状磁極21b側の第1周方向分割部25と同様に軸方向視でコ字状をなすように形成され、第2背面磁石部26aと、第2極間磁石部26bとを備える。   Moreover, the 2nd circumferential direction division | segmentation part 26 attached to each 2nd nail | claw-shaped magnetic pole 22b is axial direction similarly to the 1st circumferential direction division | segmentation part 25 by the side of the said 1st nail | claw-shaped magnetic pole 21b, as shown in FIG. It is formed to have a U-shape when viewed, and includes a second back magnet part 26a and a second inter-pole magnet part 26b.

第2背面磁石部26aは、図2〜図4に示すように前記第2爪状磁極22bの背面22e(径方向内側の面)と第1コアベース21aの外周面21fとの間に配置されている。第2背面磁石部26aは、その軸直交方向断面が扇形状とされ、第2爪状磁極22bの背面22eに当接する側がS極に、第1コアベース21aの外周面21fに当接する側がN極となるように磁化されている。また、第2背面磁石部26aは、第1背面磁石部25aと同様に例えばフェライト磁石で構成することができる。   As shown in FIGS. 2 to 4, the second back magnet part 26 a is disposed between the back surface 22 e (the radially inner surface) of the second claw-shaped magnetic pole 22 b and the outer peripheral surface 21 f of the first core base 21 a. ing. The second back magnet part 26a has a fan-shaped cross section in the direction perpendicular to the axis, the side contacting the back surface 22e of the second claw-shaped magnetic pole 22b is the S pole, and the side contacting the outer peripheral surface 21f of the first core base 21a is N Magnetized to be poles. Moreover, the 2nd back magnet part 26a can be comprised with a ferrite magnet, for example like the 1st back magnet part 25a.

ここで、第1背面磁石部25aと第2背面磁石部26aとは、環状磁石23が配置されるロータ11の軸方向位置で互いに軸方向に重なるように、言い換えると、ロータ11の両面から環状磁石23が配置される軸方向位置に達するまで配置されるように軸方向の長さが設定されている。   Here, the first back magnet portion 25a and the second back magnet portion 26a are arranged so as to overlap each other in the axial direction at the axial position of the rotor 11 where the annular magnet 23 is arranged, in other words, from both sides of the rotor 11. The axial length is set so that the magnet 23 is disposed until reaching the axial position where the magnet 23 is disposed.

第2極間磁石部26bは、第1極間磁石部25bと略同形状であって、前記第2背面磁石部26aの周方向両側から径方向外側に延出するとともに、前記第2爪状磁極22bの周方向両側に位置するように前記第2背面磁石部26aと一体形成されている。また、第2爪状磁極22bの周方向両側の第2極間磁石部26bは、前記第1爪状磁極21b及び前記第2爪状磁極22bの周方向間の隙間の半分の周方向厚み(長さ)を有するように構成されている。つまり、第1爪状磁極21bと第2爪状磁極22bの間の極間磁石は、第1周方向分割部25の第1極間磁石部25bと、第2周方向分割部26の第2極間磁石部26bとの2つを合わせて形成される。そして、図3に示すように、第1爪状磁極21bと第2爪状磁極22bとの周方向の略中央位置において、各周方向分割部25,26の各極間磁石部25b,26b同士が周方向において当接し環状を成す態様で配置されている。   The second interpole magnet portion 26b has substantially the same shape as the first interpole magnet portion 25b, and extends radially outward from both circumferential sides of the second back magnet portion 26a. The second back magnet part 26a is integrally formed so as to be located on both sides in the circumferential direction of the magnetic pole 22b. Further, the second inter-pole magnet portions 26b on both sides in the circumferential direction of the second claw-shaped magnetic pole 22b have a circumferential thickness (half the gap between the first claw-shaped magnetic pole 21b and the second claw-shaped magnetic pole 22b in the circumferential direction ( Length). That is, the interpole magnet between the first claw-shaped magnetic pole 21 b and the second claw-shaped magnetic pole 22 b is the first interpolar magnet portion 25 b of the first circumferential direction division portion 25 and the second of the second circumferential direction division portion 26. The two are formed together with the interpolar magnet portion 26b. As shown in FIG. 3, the interpolar magnet portions 25 b and 26 b of the circumferentially divided portions 25 and 26 are arranged at substantially the center position in the circumferential direction between the first claw-shaped magnetic pole 21 b and the second claw-shaped magnetic pole 22 b. Are arranged in an annular form in contact with each other in the circumferential direction.

上記のように構成されたモータ1は、回路収容ボックス5内の電源回路を介してセグメントコンダクタ(SC)巻線8に3相の駆動電流が供給されると、ステータ6でロータ11を回転させるための磁界が発生され、ロータ11が回転駆動される。   When the three-phase drive current is supplied to the segment conductor (SC) winding 8 via the power supply circuit in the circuit housing box 5, the motor 1 configured as described above rotates the rotor 11 with the stator 6. Is generated, and the rotor 11 is rotationally driven.

次に、上記のように構成されたモータ1の作用について説明する。
本実施形態のモータ1のロータ11は、各爪状磁極21b,22bの周方向間に配置される極間磁石部25b,26bと、第1及び第2爪状磁極21b,22bの背面に配置される背面磁石部25a,26aとが一体形成されてなる周方向分割部25,26を有する補助磁石24を備える。このように極間磁石部25b,26bと背面磁石部25a,26aでなる補助磁石24を備えることで、空隙からの漏れ磁束を抑えてロータの高出力化に寄与することができるようになっている。更に、補助磁石24の周方向分割部25,26は、各極間磁石部25b,26bと背面磁石部25a,26aとが一体形成されているため部品点数を抑えることができるようになっている。
Next, the operation of the motor 1 configured as described above will be described.
The rotor 11 of the motor 1 of the present embodiment is disposed on the back surfaces of the interpolar magnet portions 25b and 26b disposed between the claw-shaped magnetic poles 21b and 22b and the first and second claw-shaped magnetic poles 21b and 22b. Auxiliary magnet 24 having circumferentially divided portions 25 and 26 formed integrally with rear magnet portions 25a and 26a. Thus, by providing the auxiliary magnet 24 composed of the inter-pole magnet portions 25b and 26b and the back magnet portions 25a and 26a, it is possible to suppress the leakage magnetic flux from the air gap and contribute to higher output of the rotor. Yes. Further, the circumferentially divided portions 25 and 26 of the auxiliary magnet 24 are configured such that the interpolar magnet portions 25b and 26b and the back magnet portions 25a and 26a are integrally formed, so that the number of parts can be suppressed. .

次に、本実施形態の特徴的な効果を記載する。
(1)第1及び第2爪状磁極21b,22bとの周方向の間に配置される極間磁石部25b,26bと、第1及び第2爪状磁極21b,22bの背面に配置される背面磁石部25a,26aとが一体形成されて各爪状磁極21b,22bと径方向及び周方向に当接する補助磁石24を備える。このように、極間磁石部25b,26bと背面磁石部25a,26aとを一体形成してなる補助磁石24を設けることで、部品点数を抑えつつ漏れ磁束を抑えることができる。
Next, characteristic effects of the present embodiment will be described.
(1) The interpolar magnet portions 25b and 26b disposed between the first and second claw-shaped magnetic poles 21b and 22b and the back surfaces of the first and second claw-shaped magnetic poles 21b and 22b. The back magnet portions 25a and 26a are integrally formed and provided with auxiliary magnets 24 that come into contact with the claw-shaped magnetic poles 21b and 22b in the radial direction and the circumferential direction. Thus, by providing the auxiliary magnet 24 formed integrally with the inter-pole magnet portions 25b and 26b and the back magnet portions 25a and 26a, the leakage magnetic flux can be suppressed while suppressing the number of parts.

(2)補助磁石24は、界磁磁石としての環状磁石23によって第1及び第2の磁極として機能される各爪状磁極21b,22bと同一方向の磁化方向を有する。これにより、爪状磁極21b,22b外表面の磁束を高めることができる。   (2) The auxiliary magnet 24 has the same magnetization direction as the claw-shaped magnetic poles 21b and 22b functioning as the first and second magnetic poles by the annular magnet 23 as a field magnet. Thereby, the magnetic flux of the outer surfaces of the claw-shaped magnetic poles 21b and 22b can be increased.

(3)補助磁石24は、周方向において分割された複数の周方向分割部25,26を、周方向に連続して隣接させて構成され、各周方向分割部25,26は、それぞれ背面磁石部25a,26aと、極間磁石部25b,26bとを有する。このように、極間磁石部25b,26bと背面磁石部25a,26aとが一体化されることで、ロータ回転時に極間磁石部25b、26bが遠心力により脱けることを抑えることが可能となる。また、補助磁石24は、予め周方向に分割した周方向分割部25,26を隣接して円環状にするため、予め円環状の補助磁石24を一体成形する場合と比較して高精度の成形装置を用いることなく、周方向分割部25,26を成形することができる。   (3) The auxiliary magnet 24 includes a plurality of circumferentially divided portions 25 and 26 that are divided in the circumferential direction and are continuously adjacent to each other in the circumferential direction, and each of the circumferentially divided portions 25 and 26 is a back magnet. It has the parts 25a and 26a and the interpolar magnet parts 25b and 26b. As described above, the interpole magnet portions 25b and 26b and the back magnet portions 25a and 26a are integrated, so that it is possible to prevent the interpole magnet portions 25b and 26b from being detached due to centrifugal force when the rotor rotates. Become. Further, the auxiliary magnet 24 is formed with higher accuracy than the case where the annular auxiliary magnet 24 is integrally formed in advance because the circumferentially divided portions 25 and 26 divided in advance in the circumferential direction are adjacently formed into an annular shape. The circumferential direction division | segmentation parts 25 and 26 can be shape | molded, without using an apparatus.

(4)各周方向分割部25,26は、それぞれの極間磁石部25b,26bが他の周方向分割部25,26の極間磁石部25b,26bと隣接する。即ち、補助磁石24の周方向分割部25,26は、極間磁石部25b,26bで分割されることとなるため、周方向分割部25,26の背面磁石部25a,26aを爪状磁極で覆うことができる。これにより、極間磁石部25b,26bの離間を抑えることができる。   (4) As for each circumferential direction division | segmentation part 25 and 26, each interpole magnet part 25b, 26b adjoins the interpolar magnet part 25b, 26b of the other circumferential direction division | segmentation part 25,26. That is, since the circumferential division parts 25 and 26 of the auxiliary magnet 24 are divided by the inter-pole magnet parts 25b and 26b, the back magnet parts 25a and 26a of the circumferential division parts 25 and 26 are claw-shaped magnetic poles. Can be covered. Thereby, the separation | spacing of the interpole magnet parts 25b and 26b can be suppressed.

尚、上記第1実施形態は、以下のように変更してもよい。
・上記第1実施形態では、補助磁石の周方向分割部25,26を別体で構成したが、背面磁石部と極間磁石部とを環状で一体的に構成(一体成形)してもよい。例えば、図9に示すように、各爪状磁極21b,22bと当接する周方向分割部25,26を環状で一体的に構成してもよい。このような構成とすることで、より部品点数を抑えることができる。
In addition, you may change the said 1st Embodiment as follows.
-In above-mentioned 1st Embodiment, although the circumferential direction division | segmentation parts 25 and 26 of the auxiliary magnet were comprised separately, you may comprise a back magnet part and an interpolar magnet part integrally in a ring (integral molding). . For example, as shown in FIG. 9, the circumferentially divided portions 25 and 26 that come into contact with the claw-shaped magnetic poles 21b and 22b may be integrally formed in an annular shape. By setting it as such a structure, a number of parts can be suppressed more.

・上記第1実施形態では、特に言及していないが、図10に示すように、補助磁石の周方向分割部25,26をある特定の方向に磁束が向く異方性磁石(極異方性磁石)で構成してもよい。このような構成とすることで、異方性磁石によるある特定方向に向く強い磁束を、各爪状磁極に発生させるのに効果が高くなる。よって、ロータのトルク確保に効果が高い。   In the first embodiment, although not particularly mentioned, as shown in FIG. 10, an anisotropic magnet (polar anisotropy) in which the magnetic flux is directed to the circumferential direction dividing portions 25 and 26 of the auxiliary magnet in a specific direction. (Magnet). By adopting such a configuration, the effect of generating a strong magnetic flux directed to a specific direction by the anisotropic magnet in each claw-shaped magnetic pole is enhanced. Therefore, the effect of securing the torque of the rotor is high.

(第2実施形態)
次に、本発明を具体化した第2実施形態を図面に従って説明する。なお、本実施形態では、上記実施形態と比較して補助磁石の構成が異なるため、主にこの点について述べる。また、第1実施形態と同一部材について同一符号を付して説明の一部又は全部を割愛する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to the drawings. In addition, in this embodiment, since the structure of an auxiliary magnet differs compared with the said embodiment, this point is mainly described. Moreover, the same code | symbol is attached | subjected about the same member as 1st Embodiment, and part or all of description is omitted.

図5に示すように、補助磁石31は、極対数の個数(本実施形態では5個)で周方向略等角度に分割された複数の周方向分割部32を備え、これら周方向分割部32を周方向に連続して隣接させて構成される。また、補助磁石31は、焼結磁石やボンド磁石として成形することが可能であり、SmFeN系磁石、SmCo系磁石、フェライト磁石やネオジム磁石を採用することができる。   As shown in FIG. 5, the auxiliary magnet 31 includes a plurality of circumferentially divided portions 32 that are divided at substantially equal angles in the circumferential direction by the number of pole pairs (5 in the present embodiment), and these circumferentially divided portions 32. Are continuously adjacent in the circumferential direction. The auxiliary magnet 31 can be formed as a sintered magnet or a bonded magnet, and an SmFeN magnet, an SmCo magnet, a ferrite magnet, or a neodymium magnet can be used.

図6に示すように、周方向分割部32は、2つの極間磁石部32aと、この極間磁石部32aよりも周方向外側に位置する両側背面磁石部32bと、前記極間磁石部32a間に位置する中央背面磁石部32cとを備える。   As shown in FIG. 6, the circumferential dividing portion 32 includes two interpole magnet portions 32 a, both side back magnet portions 32 b positioned on the outer side in the circumferential direction than the interpole magnet portions 32 a, and the interpole magnet portion 32 a. And a central back magnet part 32c positioned therebetween.

極間磁石部32aは、前記第1爪状磁極21bと第2爪状磁極22bとの周方向間に位置するものであり、上記第1実施形態の周方向において当接する第1極間磁石部25bと第2極間磁石部26bとを一体形成した構成とされる。すなわち、極間磁石部32aは、前記第1爪状磁極21b及び前記第2爪状磁極22bの周方向間の隙間と同等の周方向厚み(長さ)を有するように構成されている。   The interpolar magnet portion 32a is located between the first claw-shaped magnetic pole 21b and the second claw-shaped magnetic pole 22b in the circumferential direction, and is in contact with the first interpolar magnet portion in the circumferential direction of the first embodiment. 25b and the second inter-pole magnet portion 26b are integrally formed. That is, the interpole magnet portion 32a is configured to have a circumferential thickness (length) equivalent to a clearance between the first claw-shaped magnetic pole 21b and the second claw-shaped magnetic pole 22b in the circumferential direction.

中央背面磁石部32cは、上記第1実施形態の第2背面補助磁石26aに相当し、第2爪状磁極22bの背面22eと第1コアベース21aの外周面21fとの間に配置されている。中央背面磁石部32cは、その軸直交方向断面が扇形状とされる。   The central back magnet portion 32c corresponds to the second back auxiliary magnet 26a of the first embodiment, and is disposed between the back surface 22e of the second claw-shaped magnetic pole 22b and the outer peripheral surface 21f of the first core base 21a. . The central back magnet portion 32c has a fan-shaped cross section in the direction perpendicular to the axis.

図5及び図6に示すように、両側背面磁石部32bは、上記第1実施形態の第1背面磁石部25aに相当し、前記第1爪状磁極21bの背面21eと第2コアベース22aの外周面22fとの間に配置されている。また、周方向分割部32の各両側背面磁石部32bは、前記第1爪状磁極21b又は前記第2爪状磁極22bの周方向幅の半分の周方向厚み(長さ)を有するように構成されている。なお、周方向において当接する両側背面磁石部32bを合わせて上記第1実施形態の第1背面磁石部25aに相当することとなる。そして、図5に示すように、第1爪状磁極21bの背面の周方向略中央位置において、周方向分割部32の両側背面磁石部32b同士が周方向において当接し環状を成す態様で配置されている。   As shown in FIGS. 5 and 6, the back magnet portions 32b on both sides correspond to the first back magnet portion 25a of the first embodiment, and the back surface 21e of the first claw-shaped magnetic pole 21b and the second core base 22a. It arrange | positions between 22 f of outer peripheral surfaces. Each of the back magnet portions 32b on both sides of the circumferential dividing portion 32 is configured to have a circumferential thickness (length) that is half the circumferential width of the first claw-shaped magnetic pole 21b or the second claw-shaped magnetic pole 22b. Has been. In addition, both the back magnet parts 32b which contact | abut in the circumferential direction will be corresponded to the 1st back magnet part 25a of the said 1st Embodiment. Then, as shown in FIG. 5, at the substantially central position in the circumferential direction on the back surface of the first claw-shaped magnetic pole 21 b, the both-side back magnet portions 32 b of the circumferential direction dividing portion 32 are arranged in an annular form in contact with each other in the circumferential direction. ing.

次に、本実施形態の作用を記載する。
本実施形態の補助磁石31は、周方向分割部32が極対数の個数で周方向等角度に分割される。このため、各周方向分割部32は第1ロータコアの爪状磁極か第2ロータコアの爪状磁極と径方向に当接し、各爪状磁極21b,22bで保持されることとなる。
Next, the operation of this embodiment will be described.
In the auxiliary magnet 31 according to the present embodiment, the circumferential direction dividing portion 32 is divided into equal numbers in the circumferential direction by the number of pole pairs. For this reason, each circumferential direction division | segmentation part 32 contact | abuts the claw-shaped magnetic pole of a 1st rotor core or the claw-shaped magnetic pole of a 2nd rotor core in radial direction, and will be hold | maintained by each claw-shaped magnetic pole 21b, 22b.

また、各周方向分割部32は、両側背面磁石部32b同士が周方向において隣接(当接)する。このため、隣接する両側背面磁石部32bが一体化される場合と比較して両側背面磁石部32b間において僅かに隙間が発生する虞があるが、両側背面磁石部32bは概ね径方向に磁化されるため、この隙間が磁気抵抗となることが抑えられる。   Further, in each circumferential direction dividing portion 32, both side back magnet portions 32b are adjacent (contacted) in the circumferential direction. For this reason, there is a possibility that a slight gap may occur between the back magnet portions 32b on both sides compared to the case where the adjacent back magnet portions 32b are integrated, but the back magnet portions 32b are magnetized in a generally radial direction. Therefore, this gap is suppressed from becoming a magnetic resistance.

次に、本実施形態の特徴的な効果を記載する。
(5)周方向分割部32は、極対数の個数で周方向等角度に分割されることで、各周方向分割部32は必然的に第1ロータコア21の爪状磁極21bか第2ロータコア22の爪状磁極22bで保持されることとなり、これによりロータ回転時にロータコア21,22から周方向分割部32(補助磁石31)が抜けることを抑えることができる。
Next, characteristic effects of the present embodiment will be described.
(5) The circumferential direction dividing parts 32 are divided into equal numbers in the circumferential direction by the number of pole pairs, so that each circumferential direction dividing part 32 inevitably has the claw-shaped magnetic pole 21b of the first rotor core 21 or the second rotor core 22. The claw-shaped magnetic poles 22b of the rotor cores 22b can prevent the circumferentially divided portions 32 (auxiliary magnets 31) from coming off from the rotor cores 21 and 22 when the rotor rotates.

(6)各周方向分割部32はそれぞれの両側背面磁石部32bが他の周方向分割部32の両側背面磁石部32bと隣接することで、分割位置が各爪状磁極21b,22bの背面である両側背面磁石部32bとなる。この両側背面磁石部32bは、概ね径方向に磁化されるものであるため、周方向分割部32間の分割位置が磁気抵抗となることを抑えることができる。これにより、モータの高出力化に寄与できる。   (6) Each of the circumferentially divided portions 32 has the both side back magnet portions 32b adjacent to the both side back magnet portions 32b of the other circumferentially divided portions 32, so that the dividing position is on the back surface of each claw-shaped magnetic pole 21b, 22b. It becomes a certain both-sides back magnet part 32b. Since the back magnet portions 32b on both sides are magnetized in the radial direction, it is possible to suppress the division position between the circumferential division portions 32 from becoming a magnetic resistance. Thereby, it can contribute to the high output of a motor.

尚、上記第2実施形態は、以下のように変更してもよい。
・上記第2実施形態では、特に言及していないが、例えば図7及び図8に示すように、界磁磁石としての環状磁石23を周方向分割部32(補助磁石35)と径方向において一体化してもよい。周方向分割部32個々と一体化させる場合、前記環状磁石23を周方向に分割した扇状磁石23aと周方向分割部32とを一体化させ、これらを周方向に環状に配置する構成とする。このような構成とすることで、補助磁石35は、径方向において前記環状磁石23と一体化されるため、部品点数を更に抑えることができる。また、ロータ回転時における極間磁石部32aの抜けをより確実に抑えることができる。
In addition, you may change the said 2nd Embodiment as follows.
In the second embodiment, although not particularly mentioned, for example, as shown in FIGS. 7 and 8, the annular magnet 23 as a field magnet is integrated with the circumferentially divided portion 32 (auxiliary magnet 35) in the radial direction. May be used. When integrating with each circumferential division | segmentation part 32, it is set as the structure which integrates the fan-shaped magnet 23a which divided | segmented the said annular magnet 23 in the circumferential direction, and the circumferential division | segmentation part 32, and arrange | positions these annularly in the circumferential direction. By setting it as such a structure, since the auxiliary magnet 35 is integrated with the said annular magnet 23 in radial direction, the number of parts can further be suppressed. In addition, it is possible to more reliably prevent the interpolar magnet portion 32a from coming off during rotor rotation.

(第3実施形態)
次に、本発明を具体化した第3実施形態を図面に従って説明する。なお、本実施形態では、上記実施形態と比較して補助磁石の構成が異なるため、主にこの点について述べる。また、第1実施形態又は第2実施形態と同一部材について同一符号を付し、説明の一部又は全部を割愛する。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to the drawings. In addition, in this embodiment, since the structure of an auxiliary magnet differs compared with the said embodiment, this point is mainly described. Moreover, the same code | symbol is attached | subjected about the same member as 1st Embodiment or 2nd Embodiment, and part or all of description is omitted.

図11に示すように、補助磁石41は、円環状に一体構成され、異方性磁石部42と、この異方性磁石部と磁気特性の異なる異性質部43とを有する。
異方性磁石部42は、極異方配向とされる極異方性磁石で構成される。異方性磁石部42は、環状を成し、背面磁石部42aと極間磁石部42bとを有する。
As shown in FIG. 11, the auxiliary magnet 41 is integrally formed in an annular shape, and includes an anisotropic magnet portion 42 and an isomer portion 43 having a magnetic characteristic different from that of the anisotropic magnet portion.
The anisotropic magnet part 42 is composed of a polar anisotropic magnet having polar anisotropic orientation. The anisotropic magnet part 42 has an annular shape and includes a back magnet part 42a and an interpolar magnet part 42b.

図11に示すように、背面磁石部42aは周方向略中央で径方向内側に凹状をなすスリット部42cを有する。本実施形態のスリット部42cは、異方性磁石部42の極中央(極の周方向中央)に形成される。また、スリット部42cは、その径方向長さが背面磁石部42aの径方向長さの半分以上を有するように形成される。   As shown in FIG. 11, the back magnet part 42 a has a slit part 42 c that is concave at the center in the circumferential direction and radially inward. The slit part 42c of the present embodiment is formed at the pole center (the center in the circumferential direction of the pole) of the anisotropic magnet part 42. Moreover, the slit part 42c is formed so that the radial direction length may be more than half of the radial direction length of the back magnet part 42a.

図11に示すように、前記スリット部42cには異方性磁石部42と磁気特性が異なることで異方性磁石部42と収縮率の異なる異性質部43が備えられる。この異性質部43としては本実施形態では例えば等方性磁石を採用することができる。   As shown in FIG. 11, the slit portion 42 c is provided with an isomer portion 43 having a different contraction rate from the anisotropic magnet portion 42 because the anisotropic magnet portion 42 has different magnetic characteristics. In this embodiment, for example, an isotropic magnet can be adopted as the isomer portion 43.

次に、本実施形態の作用を記載する。
本実施形態の補助磁石41は、略円環状の異方性磁石部42に加えて、この異方性磁石部42と磁気特性(収縮率)の異なる異性質部43を備える。ここで、焼成や焼結時において異方性磁石部42の磁化され易い結晶方位(磁化容易軸方向)と磁化困難な方位(磁化困難軸方向)とで収縮率が異なる。このため、円環状の補助磁石の一部に異方性磁石部を用いると、内部応力が蓄積されて補助磁石が割れる虞がある。そこで、前述のように収縮率の異なる異性質部43によって異方性磁石部42の磁化容易軸方向と磁化困難軸方向とで異なる収縮率の違いを吸収することが可能となっている。
Next, the operation of this embodiment will be described.
The auxiliary magnet 41 of the present embodiment includes an isomer portion 43 having a magnetic characteristic (shrinkage rate) different from that of the anisotropic magnet portion 42 in addition to the substantially annular anisotropic magnet portion 42. Here, at the time of firing or sintering, the shrinkage rate differs between the crystal orientation of the anisotropic magnet portion 42 that is easily magnetized (easy magnetization axis direction) and the orientation that is difficult to magnetize (hard magnetization axis direction). For this reason, when an anisotropic magnet part is used for a part of annular | circular shaped auxiliary | assistant magnet, internal stress accumulate | stores and there exists a possibility that an auxiliary | assistant magnet may be broken. Therefore, as described above, the isomer portions 43 having different shrinkage rates can absorb the difference in shrinkage rate that differs between the easy magnetization axis direction and the hard magnetization direction of the anisotropic magnet portion 42.

次に、本実施形態の特徴的な効果を記載する。
(7)補助磁石41は、円環状に一体構成されるものであり、異方性磁石部42と、この異方性磁石部と磁気特性の異なる異性質部とを有する。ここで、異方性磁石部42は、焼成や焼結時に、磁化され易い結晶方位(磁化容易軸方向)と磁化困難な方位(磁化困難軸方向)とで収縮率が異なる。このため、円環状の補助磁石41の一部に異方性磁石部42を用いると、内部応力が蓄積されて補助磁石41が割れる虞がある。このため、異方性磁石部42と磁気特性の異なる異性質部43を補助磁石41に備えることで、この異性質部43と異方性磁石部42とでの収縮率の差を利用して内部応力の集中を緩和させることができ、補助磁石41の割れを抑えることができる。
Next, characteristic effects of the present embodiment will be described.
(7) The auxiliary magnet 41 is integrally formed in an annular shape, and includes an anisotropic magnet portion 42 and an anisotropic portion having magnetic characteristics different from those of the anisotropic magnet portion. Here, the anisotropic magnet part 42 has different shrinkage ratios in the crystal orientation (magnetization easy axis direction) and the magnetization difficulty (magnetization axis direction) that are easily magnetized during firing and sintering. For this reason, when the anisotropic magnet part 42 is used for a part of the annular auxiliary magnet 41, internal stress may be accumulated and the auxiliary magnet 41 may be broken. For this reason, by providing the auxiliary magnet 41 with an isomer portion 43 having a magnetic characteristic different from that of the anisotropic magnet portion 42, the difference in shrinkage between the isomer portion 43 and the anisotropic magnet portion 42 is utilized. The concentration of internal stress can be alleviated and cracking of the auxiliary magnet 41 can be suppressed.

(8)補助磁石41の異性質部43として等方性磁石を採用することで、補助磁石41の内部応力を緩和させて割れの発生を抑えつつ、異性質部43を空隙とした場合と比較して発生する磁力(磁束密度)を高めることができる。   (8) By adopting an isotropic magnet as the isomer portion 43 of the auxiliary magnet 41, the internal stress of the auxiliary magnet 41 is relaxed to suppress the occurrence of cracks, and compared with the case where the isomer portion 43 is a gap. Thus, the magnetic force (magnetic flux density) generated can be increased.

(9)補助磁石41の異性質部43は、補助磁石41の径方向内側に設けられることで、径方向外側に空隙等の異性質部43を設けていないため径方向外側の形状変化を抑えることができる。   (9) Since the isomer portion 43 of the auxiliary magnet 41 is provided on the radially inner side of the auxiliary magnet 41, the isomer portion 43 such as a gap is not provided on the radially outer side, so that the shape change on the radially outer side is suppressed. be able to.

(10)異方性磁石部42は極異方性磁石で構成されるため、ラジアル配向の異方性磁石と比較して最大磁束密度を高くすることができる。
尚、上記第3実施形態は、以下のように変更してもよい。
(10) Since the anisotropic magnet portion 42 is composed of a polar anisotropic magnet, the maximum magnetic flux density can be increased as compared with a radially oriented anisotropic magnet.
In addition, you may change the said 3rd Embodiment as follows.

・上記第3実施形態では、スリット部42cの径方向長さを背面磁石部42aの径方向長さの半分以上の長さとし、異性質部43の径方向長さをスリット部42cと同様となるように構成したが、これに限らない。例えば図12に示すように、スリット部42c及び異性質部43の径方向長さを、背面磁石部42aの径方向長さの半分以下としてもよい。   In the third embodiment, the radial length of the slit portion 42c is set to be more than half the radial length of the back magnet portion 42a, and the radial length of the isomer portion 43 is the same as that of the slit portion 42c. However, the present invention is not limited to this. For example, as shown in FIG. 12, it is good also considering the radial direction length of the slit part 42c and the isomer part 43 as the half or less of the radial direction length of the back magnet part 42a.

・上記第3実施形態では、背面磁石部42aの周方向中央(極中央)に異性質部43を設ける構成としたが、図13に示すように極間磁石部42bに異性質部43を設ける構成を採用してもよい。   In the third embodiment, the isomer portion 43 is provided at the circumferential center (pole center) of the back magnet portion 42a. However, the isomer portion 43 is provided in the interpole magnet portion 42b as shown in FIG. A configuration may be adopted.

・上記第3実施形態では、背面磁石部42aと極間磁石部42bとを一体形成して異方性磁石部42を構成したが、これに限らない。例えば、図14に示すように背面磁石部42aと極間磁石部42bとを別体としてもよい。また、この場合、異方性磁石部42は、極異方性磁石ではなく、背面磁石部42aをラジアル配向の異方性磁石で構成し、極間磁石部42bを異性質部としての等方性磁石で構成してもよい。また、図14においては、極間磁石部42bの径方向内側に異性質部としての空隙45を形成している。   In the third embodiment, the anisotropic magnet portion 42 is configured by integrally forming the back magnet portion 42a and the interpolar magnet portion 42b. However, the present invention is not limited to this. For example, as shown in FIG. 14, the back magnet part 42a and the interpole magnet part 42b may be separated. Further, in this case, the anisotropic magnet portion 42 is not a polar anisotropic magnet, but the back magnet portion 42a is configured by a radially oriented anisotropic magnet, and the interpolar magnet portion 42b is an isomeric portion. You may comprise with a property magnet. In FIG. 14, a gap 45 as an isomer portion is formed on the radially inner side of the interpole magnet portion 42 b.

・上記第3実施形態では、異性質部43を等方性磁石で構成したが、図15(a)(b)に示すように、空隙46を異性質部として採用してもよい。このような構成とすることで、補助磁石の内部応力が空隙46により確実に緩和されて割れの発生をより抑えることができる。   In the third embodiment, the isomer portion 43 is formed of an isotropic magnet. However, as shown in FIGS. 15A and 15B, the air gap 46 may be adopted as the isomer portion. By setting it as such a structure, the internal stress of an auxiliary magnet is reliably relieved by the space | gap 46, and generation | occurrence | production of a crack can be suppressed more.

(第4実施形態)
次に、本発明を具体化した第3実施形態を図面に従って説明する。なお、第1実施形態と同一部材について同一符号を付して説明の一部又は全部を割愛する。
(Fourth embodiment)
Next, a third embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same member as 1st Embodiment, and part or all of description is omitted.

次に、本発明を具体化した第3実施形態を図面に従って説明する。なお、第1実施形態と同一部材について同一符号を付して説明の一部又は全部を割愛する。
図16に示すように、補助磁石51は、軸方向において分割された複数の軸方向分割部52〜54を備え、これら軸方向分割部52〜54を軸方向に連続して隣接させて構成される。軸方向分割部52〜54は、補助磁石51を軸方向において3分割したものであり、軸方向中央の中央分割部52と、この中央分割部52の軸方向両側に位置する両側分割部53,54とを有する。
Next, a third embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same member as 1st Embodiment, and part or all of description is omitted.
As shown in FIG. 16, the auxiliary magnet 51 includes a plurality of axially divided parts 52 to 54 that are divided in the axial direction, and the axially divided parts 52 to 54 are continuously adjacent to each other in the axial direction. The The axial division parts 52 to 54 are obtained by dividing the auxiliary magnet 51 into three parts in the axial direction, a central division part 52 at the center in the axial direction, and both side division parts 53 located on both sides in the axial direction of the central division part 52. 54.

各分割部52〜54は、極間磁石部52a,53a,54aと、背面磁石部52b,53b,54bとを有する。
図16に示すように、各両側分割部53,54は、1つの背面磁石部53b,54bと、この背面磁石部53b,54bの周方向両側において径方向外側に延出する極間磁石部53a,54aとが一体形成された周方向分割体55をそれぞれ極対数と同数個有する。
Each division part 52-54 has interpolar magnet part 52a, 53a, 54a and back magnet part 52b, 53b, 54b.
As shown in FIG. 16, each of the both-side split portions 53 and 54 includes one back magnet portion 53b and 54b, and an interpole magnet portion 53a extending radially outward on both circumferential sides of the back magnet portions 53b and 54b. , 54a are formed in the same number as the number of pole pairs.

図16に示すように、中央分割部52は、極数分の個数の極間磁石部52aと背面磁石部52bとが一体形成される。また、中央分割部52は、更に上記第1実施形態の界磁磁石としての環状磁石23を一体形成している。   As shown in FIG. 16, the central divided portion 52 is formed by integrally forming the inter-pole magnet portions 52 a and the back magnet portions 52 b corresponding to the number of poles. Further, the central division 52 further integrally forms the annular magnet 23 as the field magnet of the first embodiment.

次に、本実施形態の作用を記載する。
本実施形態の補助磁石51は、軸方向において分割された複数の軸方向分割部52〜54を、軸方向に連続して隣接させて構成される。軸方向分割部52〜54は、それぞれ背面磁石部52b,53b,54bと、極間磁石部52a,53a,54aとを有する。このような構成とすることで、補助磁石51を周方向に分割した場合と比較して周方向における隙間等の発生を抑え、軸方向分割部52〜54の極間磁石部52a,53a,54a及び背面磁石部52b,53b,54bが磁気抵抗となることを抑えることができる。
Next, the operation of this embodiment will be described.
The auxiliary magnet 51 of the present embodiment is configured by continuously adjoining a plurality of axial direction division parts 52 to 54 divided in the axial direction in the axial direction. The axial direction division parts 52-54 have the back magnet parts 52b, 53b, and 54b and the interpolar magnet parts 52a, 53a, and 54a, respectively. By adopting such a configuration, generation of gaps and the like in the circumferential direction is suppressed as compared with the case where the auxiliary magnet 51 is divided in the circumferential direction, and the interpolar magnet portions 52a, 53a, and 54a of the axially divided portions 52 to 54 are suppressed. And it can suppress that back magnet part 52b, 53b, 54b becomes a magnetic resistance.

次に、本実施形態の特徴的な効果を記載する。
(11)補助磁石51は、軸方向において分割された複数の軸方向分割部52〜54を、軸方向に連続して隣接させて構成され、軸方向分割部52〜54は、それぞれ背面磁石部52b,53b,54bと、前記極間磁石部52a,53a,54aとを有する。このように軸方向に分割することで、極間磁石部52a,53a,54a及び背面磁石部52b,53b,54bが磁気抵抗となることを抑えることができる。
Next, characteristic effects of the present embodiment will be described.
(11) The auxiliary magnet 51 includes a plurality of axially divided portions 52 to 54 that are divided in the axial direction and are continuously adjacent to each other in the axial direction. The axially divided portions 52 to 54 are respectively back magnet portions. 52b, 53b, 54b and the interpolar magnet portions 52a, 53a, 54a. Thus, by dividing | segmenting into an axial direction, it can suppress that the interpolar magnet parts 52a, 53a, 54a and the back magnet parts 52b, 53b, 54b become magnetic resistance.

(12)軸方向分割部52〜54は、その軸方向中央の軸方向分割部である中央分割部52が径方向において界磁磁石としての環状磁石23と一体化される。このように、環状磁石23と一体化されることで部品点数が抑えられる。   (12) The axially divided portions 52 to 54 are integrated with the annular magnet 23 as the field magnet in the radial direction in the centrally divided portion 52 that is the axially divided portion at the center in the axial direction. In this way, the number of parts is reduced by being integrated with the annular magnet 23.

なお、上記第4実施形態は、以下のように変更してもよい。
・上記第4実施形態では、補助磁石51を軸方向に3分割した軸方向分割部52〜54にて構成したが、これに限らない。例えば図17に示すように、軸方向において2分割された軸方向分割部56,57を、軸方向に連続して隣接させて補助磁石51を構成してもよい。具体的には、補助磁石51の軸方向分割部56,57は、極間磁石部56a,57aと背面磁石部56b,57bを有する。軸方向分割部56,57の極間磁石部56a,57aと背面磁石部56b,57bとは、それぞれの軸方向分割部56,57において円環状に一体形成される。このような構成とすることで、同一形状の軸方向分割部56,57となる。またこのような2分割の軸方向分割部56,57を金型成形する際に、金型の型抜きを容易とすることができる。金型も同様に1種類で前記軸方向分割部56,57を成形することができる。また、軸方向分割部56,57のそれぞれに第1実施形態の環状磁石23を軸方向に分割した分割体23bを一体形成してもよい。このように、環状磁石23と一体化されることで部品点数が抑えられる。
Note that the fourth embodiment may be modified as follows.
In the fourth embodiment, the auxiliary magnet 51 is configured by the axially divided portions 52 to 54 that are divided into three in the axial direction, but is not limited thereto. For example, as shown in FIG. 17, the auxiliary magnet 51 may be configured by axially dividing axially divided portions 56 and 57 that are divided into two in the axial direction and continuously adjacent to each other in the axial direction. Specifically, the axial direction division parts 56 and 57 of the auxiliary magnet 51 have interpolar magnet parts 56a and 57a and back magnet parts 56b and 57b. The interpolar magnet portions 56a and 57a and the back magnet portions 56b and 57b of the axial direction division portions 56 and 57 are integrally formed in an annular shape in the respective axial direction division portions 56 and 57. By setting it as such a structure, it becomes the axial direction division parts 56 and 57 of the same shape. Further, when such two divided axially divided portions 56 and 57 are molded, the mold can be easily removed. Similarly, the axially divided portions 56 and 57 can be formed of only one type of mold. Moreover, you may integrally form the division body 23b which divided | segmented the annular magnet 23 of 1st Embodiment to the axial direction in each of the axial direction division parts 56 and 57. As shown in FIG. In this way, the number of parts is reduced by being integrated with the annular magnet 23.

また、上記各実施形態は、以下のように変更してもよい。
・上記各実施形態では、界磁磁石として1つの環状磁石23を用いたが、複数に分割した永久磁石を回転軸12の周囲で第1及び第2コアベース21a,22aの軸方向間に配置する構成を採用してもよい。
Further, the above embodiments may be modified as follows.
In each of the above embodiments, one annular magnet 23 is used as a field magnet. However, a plurality of permanent magnets are arranged between the first and second core bases 21a and 22a around the rotation shaft 12. You may employ | adopt the structure to do.

・上記各実施形態では、特に言及していないが、第1及び第2ロータコア21,22と電機子コア7は、例えば磁性金属板材の積層や、磁性粉体の成形にて構成してもよい。
・上記各実施形態では、ステータ6のティースへの巻線の巻回方法について特に言及していないが、集中巻や分布巻を用いてもよい。
In each of the above embodiments, although not particularly mentioned, the first and second rotor cores 21 and 22 and the armature core 7 may be configured by, for example, lamination of magnetic metal plate materials or molding of magnetic powder. .
In each of the above embodiments, no particular reference is made to the winding method of the stator 6 on the teeth, but concentrated winding or distributed winding may be used.

以下、他の技術的思想を記載する。
(付記1)略円盤状の第1コアベースの外周部に、等間隔に複数の第1爪状磁極が径方向外側に突出されるとともに軸方向に延出形成された第1ロータコアと、略円盤状の第2コアベースの外周部に、等間隔に複数の第2爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、前記各第2爪状磁極がそれぞれ対応する前記第1ロータコアの各第1爪状磁極間に配置された第2ロータコアと、前記第1コアベースと第2コアベースとの軸方向の間に配置され、前記軸方向に磁化されることで、前記第1爪状磁極を第1の磁極として機能させ、前記第2爪状磁極を第2の磁極として機能させる界磁磁石と、前記第1爪状磁極と前記第2爪状磁極との周方向の間に配置されるとともに前記第1及び第2爪状磁極と同じ極となるように磁化された極間磁石部と、前記第1及び第2爪状磁極の背面に配置されるとともに前記第1及び第2の磁極と同極性が径方向外側となるように磁化された背面磁石部とが一体形成されて前記各爪状磁極と径方向及び周方向に当接する補助磁石と、を備えたロータ。
Other technical ideas will be described below.
(Supplementary Note 1) A first rotor core having a plurality of first claw-shaped magnetic poles projecting radially outward and extending in the axial direction on the outer periphery of a substantially disk-shaped first core base; A plurality of second claw-shaped magnetic poles project radially outward and extend in the axial direction on the outer periphery of the disc-shaped second core base, and each of the second claw-shaped magnetic poles corresponds to each other. The second rotor core disposed between the first claw-shaped magnetic poles of the first rotor core and the axial direction between the first core base and the second core base are magnetized in the axial direction. A field magnet that causes the first claw-shaped magnetic pole to function as a first magnetic pole and the second claw-shaped magnetic pole to function as a second magnetic pole; and the first claw-shaped magnetic pole and the second claw-shaped magnetic pole. The magnetic poles are arranged between the circumferential directions and have the same poles as the first and second claw-shaped magnetic poles. An interpole magnet portion that is arranged, and a back magnet portion that is disposed on the back surface of the first and second claw-shaped magnetic poles and is magnetized so that the same polarity as the first and second magnetic poles is radially outward. And an auxiliary magnet that is formed integrally with the claw-shaped magnetic poles and abuts in the radial and circumferential directions.

この構成では、第1爪状磁極と前記第2爪状磁極との周方向の間に配置されるとともに第1及び第2爪状磁極と同じ極となるように磁化された極間磁石部と、第1及び第2爪状磁極の背面に配置されるとともに前記第1及び第2の磁極と同極性が径方向外側となるように磁化された背面磁石部とが一体形成されて各爪状磁極と径方向及び周方向に当接する補助磁石とを備える。このように、極間磁石部と背面磁石部とを一体形成してなる補助磁石を設けることで、部品点数を抑えつつ漏れ磁束を抑えることができる。   In this configuration, an interpole magnet portion that is disposed between the first claw-shaped magnetic pole and the second claw-shaped magnetic pole and is magnetized so as to have the same pole as the first and second claw-shaped magnetic poles, Each of the claw-shaped magnets is integrally formed with a back magnet portion that is arranged on the back surfaces of the first and second claw-shaped magnetic poles and is magnetized so that the same polarity as the first and second magnetic poles is radially outward. And an auxiliary magnet that abuts in the radial direction and the circumferential direction. Thus, by providing the auxiliary magnet formed by integrally forming the interpole magnet portion and the back magnet portion, it is possible to suppress the leakage magnetic flux while suppressing the number of components.

(付記2)上記記載のロータにおいて、前記補助磁石は、前記界磁磁石によって第1及び第2の磁極として機能される前記各爪状磁極と同一方向の磁化方向を有する。
この構成では、補助磁石は、前記界磁磁石によって第1及び第2の磁極として機能される前記各爪状磁極と同一方向の磁化方向を有する。これにより、爪状磁極外表面の磁束を高めることができる。
(Appendix 2) In the rotor described above, the auxiliary magnet has a magnetization direction in the same direction as each of the claw-shaped magnetic poles functioning as first and second magnetic poles by the field magnet.
In this configuration, the auxiliary magnet has the same magnetization direction as each of the claw-shaped magnetic poles functioning as the first and second magnetic poles by the field magnet. Thereby, the magnetic flux on the outer surface of the claw-shaped magnetic pole can be increased.

(付記3)上記記載のロータにおいて、前記補助磁石は、周方向において分割された複数の周方向分割部を、周方向に連続して隣接させて構成され、前記各周方向分割部は、それぞれ前記背面磁石部と、前記極間磁石部とを有する。   (Supplementary Note 3) In the rotor described above, the auxiliary magnet is configured by continuously adjoining a plurality of circumferentially divided portions divided in the circumferential direction in the circumferential direction, and each of the circumferentially divided portions is respectively It has the back magnet part and the interpolar magnet part.

この構成では、補助磁石は、周方向において分割された複数の周方向分割部を、周方向に連続して隣接させて構成され、前記各周方向分割部は、それぞれ前記背面磁石部と、前記極間磁石部とを有する。このように、極間磁石部と背面磁石部とが一体化されることで、ロータ回転時に極間磁石部が遠心力により脱けることを抑えることが可能となる。また、補助磁石は、予め周方向に分割した周方向分割部を隣接して円環状にするため、予め円環状の補助磁石を成形する場合と比較して高精度の成形装置を用いることなく、周方向分割部を成形することができる。   In this configuration, the auxiliary magnet is configured such that a plurality of circumferentially divided portions divided in the circumferential direction are continuously adjacent to each other in the circumferential direction, and each of the circumferentially divided portions includes the back magnet portion, And an inter-pole magnet section. Thus, by integrating the interpole magnet portion and the back magnet portion, it is possible to prevent the interpole magnet portion from being detached by centrifugal force when the rotor rotates. In addition, the auxiliary magnet is preliminarily divided in the circumferential direction into an annular shape adjacent to the circumferentially divided portion, and therefore, without using a high-precision molding device as compared with the case of previously forming the annular auxiliary magnet, A circumferential division | segmentation part can be shape | molded.

(付記4)上記記載のロータにおいて、前記各周方向分割部は、それぞれの前記極間磁石部が他の周方向分割部の極間磁石部と隣接する。
この構成では、各周方向分割部は、それぞれの前記極間磁石部が他の周方向分割部の極間磁石部と隣接する。即ち、補助磁石の周方向分割部は、極間磁石部で分割されることとなるため、周方向分割部の背面磁石部を爪状磁極で覆うことができる。これにより、極間磁石部の離間を抑えることができる。
(Appendix 4) In the rotor described above, each of the circumferentially divided portions has each of the interpole magnet portions adjacent to the interpole magnet portion of another circumferentially divided portion.
In this structure, each circumferential direction division | segmentation part has each said interpole magnet part adjacent to the interpole magnet part of another circumferential direction division | segmentation part. That is, since the circumferentially divided portion of the auxiliary magnet is divided by the interpole magnet portion, the back magnet portion of the circumferentially divided portion can be covered with the claw-shaped magnetic poles. Thereby, separation of the interpolar magnet part can be suppressed.

(付記5)上記記載のロータにおいて、前記周方向分割部は、極対数の個数で周方向等角度に分割される。
この構成では、周方向分割部は、極対数の個数で周方向等角度に分割されることで、各周方向分割部は必然的に第1ロータコアの爪状磁極か第2ロータコアの爪状磁極で保持されることとなり、これによりロータ回転時にロータコアから周方向分割部(補助磁石)が抜けることを抑えることができる。
(Supplementary Note 5) In the rotor described above, the circumferentially divided portion is divided into equal angles in the circumferential direction by the number of pole pairs.
In this configuration, the circumferentially divided portion is divided into equal numbers in the circumferential direction by the number of pole pairs, so that each circumferentially divided portion inevitably has a claw-shaped magnetic pole of the first rotor core or a claw-shaped magnetic pole of the second rotor core. As a result, it is possible to prevent the circumferentially divided portion (auxiliary magnet) from coming off from the rotor core during rotor rotation.

(付記6)上記記載のロータにおいて、前記各周方向分割部は、それぞれの前記背面磁石部が他の周方向分割部の背面磁石部と隣接する。
この構成では、各周方向分割部はそれぞれの前記背面磁石部が他の周方向分割部の背面磁石部と隣接することで、分割位置が各爪状磁極の背面である背面磁石部となる。この背面磁石部は、概ね径方向に磁化されるものであるため、周方向分割部間の分割位置が磁気抵抗となることを抑えることができる。これにより、モータの高出力化に寄与できる。
(Appendix 6) In the rotor described above, each of the circumferentially divided portions has each of the backside magnet portions adjacent to the backside magnet portion of another circumferentially divided portion.
In this structure, each circumferential direction division | segmentation part becomes a back magnet part whose division | segmentation position is a back surface of each claw-shaped magnetic pole, when each said back surface magnet part adjoins the back surface magnet part of another circumferential direction division | segmentation part. Since this back magnet part is magnetized substantially in the radial direction, it is possible to suppress the division position between the circumferential division parts from becoming a magnetic resistance. Thereby, it can contribute to the high output of a motor.

(付記7)上記記載のロータにおいて、前記補助磁石は、径方向において前記界磁磁石と一体化される。
この構成では、補助磁石は、径方向において前記界磁磁石と一体化されるため、部品点数を更に抑えることができる。また、ロータ回転時における極間磁石部の抜けをより確実に抑えることができる。
(Appendix 7) In the rotor described above, the auxiliary magnet is integrated with the field magnet in the radial direction.
In this configuration, since the auxiliary magnet is integrated with the field magnet in the radial direction, the number of parts can be further suppressed. Further, it is possible to more reliably prevent the interpole magnet portion from coming off during the rotation of the rotor.

(付記8)上記記載のロータにおいて、前記補助磁石は、軸方向において分割された複数の軸方向分割部を、軸方向に連続して隣接させて構成され、前記軸方向分割部は、それぞれ前記背面磁石部と、前記極間磁石部とを有する。   (Supplementary note 8) In the rotor described above, the auxiliary magnet includes a plurality of axially divided portions that are divided in the axial direction and are continuously adjacent to each other in the axial direction. It has a back magnet part and the interpolar magnet part.

この構成では、補助磁石は、軸方向において分割された複数の軸方向分割部を、軸方向に連続して隣接させて構成され、前記軸方向分割部は、それぞれ前記背面磁石部と、前記極間磁石部とを有する。このように軸方向に分割することで、極間磁石部及び背面磁石部が磁気抵抗となることを抑えることができる。   In this configuration, the auxiliary magnet includes a plurality of axially divided portions that are divided in the axial direction and are continuously adjacent to each other in the axial direction. The axially divided portions include the back magnet portion and the pole, respectively. And a magnet portion. Thus, by dividing | segmenting into an axial direction, it can suppress that an interpolar magnet part and a back magnet part become a magnetic resistance.

(付記9)上記記載のロータにおいて、前記補助磁石は、軸方向において2分割された前記軸方向分割部を、軸方向に連続して隣接させて構成する。
この構成では、補助磁石は、軸方向において2分割された前記軸方向分割部を、軸方向に連続して隣接させて構成することで、各軸方向分割部を金型成形する際に、金型の型抜きを容易とすることができる。
(Supplementary Note 9) In the rotor described above, the auxiliary magnet includes the axially divided portions that are divided into two in the axial direction and are adjacent to each other in the axial direction.
In this configuration, the auxiliary magnet is configured such that the axially divided portions that are divided in two in the axial direction are continuously adjacent to each other in the axial direction, so that when each axially divided portion is molded, The mold can be easily removed.

(付記10)上記記載のロータにおいて、前記補助磁石は、軸方向において3分割された前記軸方向分割部を、軸方向に連続して隣接させて構成され、前記軸方向分割部は、その軸方向中央の軸方向分割部が径方向において前記界磁磁石と一体化される。   (Supplementary note 10) In the rotor according to the above, the auxiliary magnet is configured such that the axially divided portion divided in three in the axial direction is continuously adjacent in the axial direction, and the axially divided portion has a shaft thereof. An axial division at the center in the direction is integrated with the field magnet in the radial direction.

この構成では、補助磁石は、軸方向において3分割された前記軸方向分割部を、軸方向に連続して隣接させて構成され、前記軸方向分割部は、その軸方向中央の軸方向分割部が径方向において前記界磁磁石と一体化される。このように、界磁磁石と一体化されることで部品点数が抑えられる。   In this configuration, the auxiliary magnet is configured such that the axially divided portion divided in three in the axial direction is continuously adjacent in the axial direction, and the axially divided portion is an axially divided portion at the center in the axial direction. Is integrated with the field magnet in the radial direction. In this way, the number of parts can be reduced by being integrated with the field magnet.

・ところで、上記のようなモータにおいては、隣同士の爪状磁極の間に隙間ができてしまい、この隙間から磁束が漏れてしまう現状があった。また、例えば、爪状磁極の背面においても同様に隙間ができてしまうと、その隙間から磁束が漏れてしまう虞がある。そして漏れ磁束が増加すると、モータの出力が低下する要因にもなるため、何らかの対策が必要であるが、部品点数が増加しない構造としたい要望があった。   -By the way, in the above motors, there was a gap between adjacent claw-shaped magnetic poles, and magnetic flux leaked from this gap. Further, for example, if a gap is formed on the back surface of the claw-shaped magnetic pole, the magnetic flux may leak from the gap. If the leakage flux increases, it may cause a decrease in the output of the motor. Therefore, some countermeasure is required, but there is a demand for a structure that does not increase the number of parts.

以下の構成は、上記課題を解決するためになされたものであって、その目的は、漏れ磁束を抑えた構造を、部品点数を抑えて実現することができるロータ及びモータを提供することにある。   The following configuration has been made to solve the above-described problems, and an object thereof is to provide a rotor and a motor that can realize a structure in which leakage magnetic flux is suppressed with a reduced number of parts. .

・上記課題を解決するロータは、略円盤状の第1コアベースの外周部に、等間隔に複数の第1爪状磁極が径方向外側に突出されるとともに軸方向に延出形成された第1ロータコアと、略円盤状の第2コアベースの外周部に、等間隔に複数の第2爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、前記各第2爪状磁極がそれぞれ対応する前記第1ロータコアの各第1爪状磁極間に配置された第2ロータコアと、前記第1コアベースと第2コアベースとの軸方向の間に配置され、前記軸方向に磁化されることで、前記第1爪状磁極を第1の磁極として機能させ、前記第2爪状磁極を第2の磁極として機能させる界磁磁石と、前記第1爪状磁極と前記第2爪状磁極との周方向の間に配置されるとともに前記第1及び第2爪状磁極と同じ極となるように磁化された極間磁石部と、前記第1及び第2爪状磁極の背面に配置されるとともに前記第1及び第2の磁極と同極性が径方向外側となるように磁化された背面磁石部とが一体形成されて前記各爪状磁極と径方向及び周方向に当接する補助磁石と、を備え、前記補助磁石は、円環状に一体構成されるものであり、異方性磁石部と、この異方性磁石部と磁気特性の異なる異性質部とを有しており、前記補助磁石の異性質部は、前記補助磁石の前記背面磁石部における径方向内側に設けられている。   The rotor that solves the above-described problem is a first disk in which a plurality of first claw-shaped magnetic poles protrude radially outward and extend in the axial direction at equal intervals on the outer periphery of the substantially disk-shaped first core base. A plurality of second claw-shaped magnetic poles project radially outward and extend in the axial direction on the outer peripheral portion of one rotor core and a substantially disc-shaped second core base, and extend in the axial direction. A magnetic pole is disposed between the first claw-shaped magnetic poles of the corresponding first rotor core, and is disposed between the first core base and the second core base in the axial direction. By being magnetized, a field magnet that causes the first claw-shaped magnetic pole to function as a first magnetic pole and the second claw-shaped magnetic pole to function as a second magnetic pole, the first claw-shaped magnetic pole, and the second magnetic pole The first and second claw-shaped magnetic poles are disposed between the claw-shaped magnetic poles and the circumferential direction. An inter-pole magnet portion magnetized so as to be a bipolar pole, and disposed on the back surface of the first and second claw-shaped magnetic poles, and the same polarity as the first and second magnetic poles is radially outward. An auxiliary magnet that is formed integrally with a magnetized back magnet portion and abuts each of the claw-shaped magnetic poles in the radial direction and the circumferential direction. The auxiliary magnet has an isotropic magnet part and an isomer part having a magnetic characteristic different from that of the anisotropic magnet part, and the isomer part of the auxiliary magnet is provided radially inside the back magnet part of the auxiliary magnet. It has been.

・上記記載のロータにおいて、前記補助磁石の異性質部は、前記背面磁石部における極の周方向中央に設けられている。
・上記課題を解決するロータは、略円盤状の第1コアベースの外周部に、等間隔に複数の第1爪状磁極が径方向外側に突出されるとともに軸方向に延出形成された第1ロータコアと、略円盤状の第2コアベースの外周部に、等間隔に複数の第2爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、前記各第2爪状磁極がそれぞれ対応する前記第1ロータコアの各第1爪状磁極間に配置された第2ロータコアと、前記第1コアベースと第2コアベースとの軸方向の間に配置され、前記軸方向に磁化されることで、前記第1爪状磁極を第1の磁極として機能させ、前記第2爪状磁極を第2の磁極として機能させる界磁磁石と、前記第1及び第2爪状磁極の背面に配置されるとともに前記第1及び第2の磁極と同極性が径方向外側となるように磁化された背面磁石部と、該背面磁石部から径方向外側に延出して前記第1爪状磁極と前記第2爪状磁極との周方向の間に配置されるとともに前記第1及び第2爪状磁極と同じ極となるように磁化された極間磁石部とが一体形成されて前記各爪状磁極と径方向及び周方向に当接する補助磁石と、を備え、前記補助磁石は、円環状に一体構成されるものであり、異方性磁石部と、この異方性磁石部と磁気特性の異なる異性質部とを有しており、前記補助磁石の異性質部は、前記補助磁石の前記極間磁石部における径方向内側に設けられている。
In the rotor described above, the isomer portion of the auxiliary magnet is provided at the center in the circumferential direction of the pole in the back magnet portion.
The rotor that solves the above-described problem is a first disk in which a plurality of first claw-shaped magnetic poles protrude radially outward and extend in the axial direction at equal intervals on the outer periphery of the substantially disk-shaped first core base. A plurality of second claw-shaped magnetic poles project radially outward and extend in the axial direction on the outer peripheral portion of one rotor core and a substantially disc-shaped second core base, and extend in the axial direction. A magnetic pole is disposed between the first claw-shaped magnetic poles of the corresponding first rotor core, and is disposed between the first core base and the second core base in the axial direction. Magnetized to cause the first claw-shaped magnetic pole to function as a first magnetic pole and the second claw-shaped magnetic pole to function as a second magnetic pole; and the first and second claw-shaped magnetic poles The same polarity as the first and second magnetic poles is disposed on the back surface and radially outward A magnet that is magnetized in such a manner that it extends radially outward from the back magnet part and is disposed between the first claw-shaped magnetic pole and the second claw-shaped magnetic pole in the circumferential direction. And an auxiliary magnet that is integrally formed with an interpole magnet portion that is magnetized so as to have the same pole as the second claw-shaped magnetic pole, and that is in contact with each claw-shaped magnetic pole in the radial direction and the circumferential direction. Is integrally configured in an annular shape, and has an anisotropic magnet portion and an isomer portion having different magnetic characteristics from the anisotropic magnet portion, and the isomer portion of the auxiliary magnet is: It is provided on the radially inner side of the interpole magnet portion of the auxiliary magnet.

上記の各ロータの構成では、第1爪状磁極と前記第2爪状磁極との周方向の間に配置されるとともに第1及び第2爪状磁極と同じ極となるように磁化された極間磁石部と、第1及び第2爪状磁極の背面に配置されるとともに前記第1及び第2の磁極と同極性が径方向外側となるように磁化された背面磁石部とが一体形成されて各爪状磁極と径方向及び周方向に当接する補助磁石とを備える。このように、極間磁石部と背面磁石部とを一体形成してなる補助磁石を設けることで、部品点数を抑えつつ漏れ磁束を抑えることができる。   In the configuration of each of the rotors described above, a pole that is arranged between the first claw-shaped magnetic pole and the second claw-shaped magnetic pole and is magnetized so as to have the same pole as the first and second claw-shaped magnetic poles An intermediate magnet portion and a back magnet portion that is disposed on the back surfaces of the first and second claw-shaped magnetic poles and is magnetized so that the same polarity as the first and second magnetic poles is radially outward are formed integrally. Each claw-shaped magnetic pole and an auxiliary magnet that abuts in the radial and circumferential directions. Thus, by providing the auxiliary magnet formed by integrally forming the interpole magnet portion and the back magnet portion, it is possible to suppress the leakage magnetic flux while suppressing the number of components.

また、上記の各ロータの構成では、補助磁石は、円環状に一体構成されるものであり、異方性磁石部と、この異方性磁石部と磁気特性の異なる異性質部とを有する。ここで、異方性磁石部は、焼成や焼結時に、磁化され易い結晶方位(磁化容易軸方向)と磁化困難な方位(磁化困難軸方向)とで収縮率が異なる。このため、円環状の補助磁石の一部に異方性磁石部を用いると、内部応力が蓄積されて補助磁石が割れる虞がある。このため、異方性磁石部と磁気特性の異なる異性質部を補助磁石に備えることで、この異性質部と異方性磁石部とでの収縮率の差を利用して内部応力の集中を緩和させることができ、補助磁石の割れを抑えることができる。   Further, in the configuration of each rotor described above, the auxiliary magnet is integrally formed in an annular shape, and has an anisotropic magnet portion and an isomer portion having a magnetic characteristic different from that of the anisotropic magnet portion. Here, the shrinkage rate of the anisotropic magnet portion is different between a crystal orientation that is easily magnetized (easy magnetization axis direction) and a magnetization difficulty orientation (hard magnetization axis direction) during firing and sintering. For this reason, when an anisotropic magnet part is used for a part of annular | circular shaped auxiliary | assistant magnet, internal stress accumulate | stores and there exists a possibility that an auxiliary | assistant magnet may be broken. For this reason, by providing the auxiliary magnet with an isomer part having magnetic characteristics different from those of the anisotropic magnet part, the concentration of internal stress can be concentrated by utilizing the difference in shrinkage ratio between the isomer part and the anisotropic magnet part. It can be mitigated and cracking of the auxiliary magnet can be suppressed.

また、上記の各ロータの構成では、前記補助磁石の異性質部は、前記補助磁石の径方向内側に設けられることで、径方向外側に空隙等の異性質部を設けていないため径方向外側の形状変化を抑えることができる。   Further, in each rotor configuration described above, the isomer portion of the auxiliary magnet is provided on the radially inner side of the auxiliary magnet, so that no isomer portion such as a void is provided on the radially outer side, so that the radially outer portion is provided. The shape change can be suppressed.

・上記記載のロータにおいて、前記補助磁石の異性質部は、等方性磁石である。
この構成では、前記補助磁石の異性質部として等方性磁石を採用することで、補助磁石の内部応力を緩和させて割れの発生を抑えつつ、異性質部を空隙とした場合と比較して発生する磁力を高めることができる。
In the rotor described above, the isomer portion of the auxiliary magnet is an isotropic magnet.
In this configuration, by adopting an isotropic magnet as the isomer part of the auxiliary magnet, the internal stress of the auxiliary magnet is relaxed to suppress the occurrence of cracks, compared with the case where the isomer part is a void. The generated magnetic force can be increased.

・上記記載のロータにおいて、前記補助磁石の異性質部は、空隙である。
この構成では、前記補助磁石の異性質部は、空隙であるため、補助磁石の内部応力が空隙により確実に緩和されて割れの発生をより抑えることができる。
In the rotor described above, the isomer portion of the auxiliary magnet is a gap.
In this configuration, since the isomer portion of the auxiliary magnet is a gap, the internal stress of the auxiliary magnet is reliably relieved by the gap, and the occurrence of cracks can be further suppressed.

・上記記載のロータにおいて、前記異方性磁石部は極異方性磁石で構成される。
この構成では、前記異方性磁石部は極異方性磁石で構成されるため、ラジアル配向の異方性磁石と比較して最大磁束密度を高くすることができる。
-The above-mentioned rotor WHEREIN: The said anisotropic magnet part is comprised with a polar anisotropic magnet.
In this configuration, since the anisotropic magnet portion is composed of a polar anisotropic magnet, the maximum magnetic flux density can be increased as compared with a radially oriented anisotropic magnet.

・上記課題を解決するモータは、上記記載のロータを備えている。   -The motor which solves the above-mentioned subject is provided with the above-mentioned rotor.

10…モータ、11…ロータ、21…第1ロータコア、21a…第1コアベース、21b…第1爪状磁極、21e,22e…背面、22…第2ロータコア、22a…第2コアベース、22b…第2爪状磁極、23…環状磁石(界磁磁石)、24,31,35,41,51…補助磁石、25,26,32…周方向分割部、25a,26a,32b,42a,52b,53b,54b,56b,57b…背面磁石部、25b,26b,32a,42b,52a,53a,54a,56a,57a…極間磁石部、42…異方性磁石部、43…異性質部、45,46…空隙、52〜54,56,57…軸方向分割部。   DESCRIPTION OF SYMBOLS 10 ... Motor, 11 ... Rotor, 21 ... 1st rotor core, 21a ... 1st core base, 21b ... 1st claw-shaped magnetic pole, 21e, 22e ... Back surface, 22 ... 2nd rotor core, 22a ... 2nd core base, 22b ... 2nd claw-shaped magnetic pole, 23 ... annular magnet (field magnet), 24, 31, 35, 41, 51 ... auxiliary magnet, 25, 26, 32 ... circumferential direction division part, 25a, 26a, 32b, 42a, 52b, 53b, 54b, 56b, 57b ... back magnet part, 25b, 26b, 32a, 42b, 52a, 53a, 54a, 56a, 57a ... interpolar magnet part, 42 ... anisotropic magnet part, 43 ... isomer part, 45 , 46 ... gaps, 52 to 54, 56, 57 ... axially divided portions.

Claims (8)

略円盤状の第1コアベースの外周部に、等間隔に複数の第1爪状磁極が径方向外側に突出されるとともに軸方向に延出形成された第1ロータコアと、
略円盤状の第2コアベースの外周部に、等間隔に複数の第2爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、前記各第2爪状磁極がそれぞれ対応する前記第1ロータコアの各第1爪状磁極間に配置された第2ロータコアと、
前記第1コアベースと第2コアベースとの軸方向の間に配置され、前記軸方向に磁化されることで、前記第1爪状磁極を第1の磁極として機能させ、前記第2爪状磁極を第2の磁極として機能させる界磁磁石と、
前記第1爪状磁極の背面に配置された第1背面磁石部、及び前記第2爪状磁極の背面に配置された第2背面磁石部を有し、前記界磁磁石の外周を取り囲む環状をなす極異方性磁石と、
を備え、
前記極異方性磁石は、前記第1背面磁石部からその隣の前記第2背面磁石部に至るまでの間で前記界磁磁石側に湾曲する極異方配向を有しており、
前記極異方性磁石の内周面は、前記第1コアベースの外周面及び前記第2コアベースの外周面に当接していることを特徴とするロータ。
A first rotor core having a plurality of first claw-shaped magnetic poles protruding radially outward and extending in the axial direction at an outer peripheral portion of a substantially disc-shaped first core base;
A plurality of second claw-shaped magnetic poles project radially outward and extend in the axial direction on the outer periphery of the substantially disk-shaped second core base, and correspond to each of the second claw-shaped magnetic poles. A second rotor core disposed between the first claw-shaped magnetic poles of the first rotor core;
The first claw-shaped magnetic pole is arranged between the first core base and the second core base and is magnetized in the axial direction so that the first claw-shaped magnetic pole functions as the first magnetic pole, and the second claw-shaped A field magnet that causes the magnetic pole to function as a second magnetic pole;
An annular shape having a first back magnet portion disposed on the back surface of the first claw-shaped magnetic pole and a second back magnet portion disposed on the back surface of the second claw-shaped magnetic pole and surrounding an outer periphery of the field magnet. Polar anisotropic magnets,
With
The polar anisotropic magnet has a polar anisotropic orientation that curves to the field magnet side from the first back magnet part to the adjacent second back magnet part ,
An inner peripheral surface of the polar anisotropic magnet is in contact with an outer peripheral surface of the first core base and an outer peripheral surface of the second core base .
略円盤状の第1コアベースの外周部に、等間隔に複数の第1爪状磁極が径方向外側に突出されるとともに軸方向に延出形成された第1ロータコアと、A first rotor core having a plurality of first claw-shaped magnetic poles protruding radially outward and extending in the axial direction at an outer peripheral portion of a substantially disc-shaped first core base;
略円盤状の第2コアベースの外周部に、等間隔に複数の第2爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、前記各第2爪状磁極がそれぞれ対応する前記第1ロータコアの各第1爪状磁極間に配置された第2ロータコアと、A plurality of second claw-shaped magnetic poles project radially outward and extend in the axial direction on the outer periphery of the substantially disk-shaped second core base, and correspond to each of the second claw-shaped magnetic poles. A second rotor core disposed between the first claw-shaped magnetic poles of the first rotor core;
前記第1コアベースと第2コアベースとの軸方向の間に配置され、前記軸方向に磁化されることで、前記第1爪状磁極を第1の磁極として機能させ、前記第2爪状磁極を第2の磁極として機能させる界磁磁石と、The first claw-shaped magnetic pole is arranged between the first core base and the second core base and is magnetized in the axial direction so that the first claw-shaped magnetic pole functions as the first magnetic pole, and the second claw-shaped A field magnet that causes the magnetic pole to function as a second magnetic pole;
前記第1爪状磁極の背面に配置された第1背面磁石部、及び前記第2爪状磁極の背面に配置された第2背面磁石部を有し、前記界磁磁石の外周を取り囲む環状をなす極異方性磁石と、An annular shape having a first back magnet portion disposed on the back surface of the first claw-shaped magnetic pole and a second back magnet portion disposed on the back surface of the second claw-shaped magnetic pole and surrounding an outer periphery of the field magnet. Polar anisotropic magnets,
を備え、With
前記極異方性磁石は、前記第1背面磁石部からその隣の前記第2背面磁石部に至るまでの間で前記界磁磁石側に湾曲する極異方配向を有しており、The polar anisotropic magnet has a polar anisotropic orientation that curves to the field magnet side from the first back magnet part to the adjacent second back magnet part,
前記極異方性磁石の内周面は、前記界磁磁石の外周面に当接していることを特徴とするロータ。The rotor according to claim 1, wherein an inner peripheral surface of the polar anisotropic magnet is in contact with an outer peripheral surface of the field magnet.
請求項1又は2に記載のロータにおいて、
前記極異方性磁石は、前記第1爪状磁極と前記第2爪状磁極との周方向の間に配置された極間磁石部を備えていることを特徴とするロータ。
The rotor according to claim 1 or 2 ,
The polar anisotropic magnet includes an interpole magnet portion disposed between circumferential directions of the first claw-shaped magnetic pole and the second claw-shaped magnetic pole.
請求項に記載のロータにおいて、
前記極間磁石部は、前記第1背面磁石部及び前記第2背面磁石部よりも径方向外側に延出されていることを特徴とするロータ。
The rotor according to claim 3 , wherein
The rotor is characterized in that the interpolar magnet portion extends radially outward from the first back magnet portion and the second back magnet portion.
請求項1〜のいずれか1項に記載のロータにおいて、
前記第1背面磁石部と前記第2背面磁石部とは、軸方向に互いにずれて配置されていることを特徴とするロータ。
The rotor according to any one of claims 1 to 4 ,
The rotor, wherein the first back magnet part and the second back magnet part are arranged so as to be shifted from each other in the axial direction.
請求項1〜のいずれか1項に記載のロータにおいて、
前記第1爪状磁極及び前記第1背面磁石部と、前記第2爪状磁極及び前記第2背面磁石部とは、周方向において交互に配置されていることを特徴とするロータ。
The rotor according to any one of claims 1 to 5 ,
The rotor, wherein the first claw-shaped magnetic pole and the first back magnet part, and the second claw-shaped magnetic pole and the second back magnet part are alternately arranged in a circumferential direction.
請求項1〜のいずれか1項に記載のロータにおいて、
前記極異方性磁石は、円環状に一体成形されていることを特徴とするロータ。
The rotor according to any one of claims 1 to 6 ,
The polar anisotropic magnet is integrally formed in an annular shape.
請求項1〜のいずれか1項に記載のロータを備えたことを特徴とするモータ。 A motor comprising the rotor according to any one of claims 1 to 7 .
JP2017122269A 2012-03-01 2017-06-22 Rotor and motor Active JP6460159B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012045694 2012-03-01
JP2012045694 2012-03-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016054974A Division JP6167197B2 (en) 2012-03-01 2016-03-18 Rotor and motor

Publications (2)

Publication Number Publication Date
JP2017163845A JP2017163845A (en) 2017-09-14
JP6460159B2 true JP6460159B2 (en) 2019-01-30

Family

ID=49529396

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012181634A Active JP6001378B2 (en) 2011-10-31 2012-08-20 Rotor and motor
JP2016054974A Active JP6167197B2 (en) 2012-03-01 2016-03-18 Rotor and motor
JP2017122269A Active JP6460159B2 (en) 2012-03-01 2017-06-22 Rotor and motor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2012181634A Active JP6001378B2 (en) 2011-10-31 2012-08-20 Rotor and motor
JP2016054974A Active JP6167197B2 (en) 2012-03-01 2016-03-18 Rotor and motor

Country Status (1)

Country Link
JP (3) JP6001378B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149879A (en) * 2014-02-10 2015-08-20 アスモ株式会社 Rotor and motor
DE102014113744A1 (en) 2013-09-26 2015-03-26 Asmo Co., Ltd. Rotor and motor
JP6295161B2 (en) * 2014-03-06 2018-03-14 アスモ株式会社 Rotor and motor
JP6361467B2 (en) * 2014-04-14 2018-07-25 株式会社デンソー Rotor and motor
DE102015004554A1 (en) 2014-04-14 2015-10-15 Asmo Co., Ltd. Rotor and motor
JP6413601B2 (en) * 2014-10-15 2018-10-31 株式会社デンソー motor
JP6338245B2 (en) * 2014-05-20 2018-06-06 株式会社デンソー Multi-rundel motor
JP2016149919A (en) * 2015-02-09 2016-08-18 アスモ株式会社 Rotor and motor
JP6753699B2 (en) 2016-05-27 2020-09-09 ミネベアミツミ株式会社 Rolling bearing
JP2018113785A (en) * 2017-01-11 2018-07-19 株式会社東芝 Rotary electric machine, rotary electric machine system, and machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265102A (en) * 1990-03-15 1991-11-26 Tdk Corp Diametrical anisotropic cylindrical permanent magnet and manufacture thereof
JPH0543749U (en) * 1991-11-14 1993-06-11 アスモ株式会社 Rotor of rotating magnetic field type motor
JPH06165448A (en) * 1992-11-20 1994-06-10 Nippondenso Co Ltd Method of magnetizing field iron core fitted with claw
JP3429016B2 (en) * 1992-12-04 2003-07-22 株式会社デンソー Field core with claws and method of manufacturing the same
US5502424A (en) * 1995-03-07 1996-03-26 Nippondenso Co., Ltd. Method of magnetizing rotary machine field core unit
JPH10201152A (en) * 1997-01-17 1998-07-31 Mitsubishi Electric Corp Permanent-magnet rotor and its manufacture
JP2006074969A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Ac rotating electric machine
JP2007214393A (en) * 2006-02-10 2007-08-23 Mitsubishi Electric Corp Annular polar anisotropic plastic magnet and rotor used for motor
JP2008236844A (en) * 2007-03-19 2008-10-02 Hitachi Ltd Rotary electric machine and its manufacturing method and automobile equipped with rotary electric machine
US8033007B2 (en) * 2007-05-11 2011-10-11 Sntech, Inc. Method of making rotor of brushless motor
JP5739651B2 (en) * 2010-11-26 2015-06-24 アスモ株式会社 Rotor and motor

Also Published As

Publication number Publication date
JP6167197B2 (en) 2017-07-19
JP6001378B2 (en) 2016-10-05
JP2017163845A (en) 2017-09-14
JP2016106522A (en) 2016-06-16
JP2013212036A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP6460159B2 (en) Rotor and motor
KR100918893B1 (en) Axial air-gap electronic motor
JP5752273B2 (en) Electric motor
JP5774081B2 (en) Rotating electric machine
JP2015142484A (en) Surface magnet type rotary electric machine
JP2012120326A (en) Interior magnet rotor, motor, and method for assembling motor
JP2019509709A (en) Rotor for axial magnetic flux electromagnetic motor or generator having semi-embedded magnet and axial holding means
JP6001379B2 (en) Rotor and motor
JP5869306B2 (en) Rotor and motor
JP5944683B2 (en) Rotor and motor
JP5855903B2 (en) Rotor and motor
JP6295161B2 (en) Rotor and motor
JP2007116850A (en) Permanent-magnet rotating electric machine and cylindrical linear motor
JP2013169073A (en) Rotor and motor
JP2013201865A (en) Brushless motor
JP2013211982A (en) Rotor and motor
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP2017143663A (en) Embedded magnet type rotary machine
JP2016220492A (en) Rotor, rotary machine and manufacturing method for rotor
JP2016086524A (en) motor
JP2004350492A (en) Electrical machine of axial-flow structure type
JP5751903B2 (en) Magnet yoke and DC motor
JP6001380B2 (en) Rotor and motor
JP6380112B2 (en) Rotor and motor
JP5840919B2 (en) Rotor and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R151 Written notification of patent or utility model registration

Ref document number: 6460159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250