WO2016002253A1 - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
WO2016002253A1
WO2016002253A1 PCT/JP2015/055509 JP2015055509W WO2016002253A1 WO 2016002253 A1 WO2016002253 A1 WO 2016002253A1 JP 2015055509 W JP2015055509 W JP 2015055509W WO 2016002253 A1 WO2016002253 A1 WO 2016002253A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
flow path
cross
cooling
cooling channel
Prior art date
Application number
PCT/JP2015/055509
Other languages
French (fr)
Japanese (ja)
Inventor
道年 東
森 剛
盛幸 枦山
大穀 晃裕
知也 立花
秀哲 有田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/069087 priority Critical patent/WO2016002867A1/en
Priority to JP2016531435A priority patent/JP6173593B2/en
Publication of WO2016002253A1 publication Critical patent/WO2016002253A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotating electrical machine including a rotor having permanent magnets.
  • Rotating electrical machines for driving and generating electric vehicles or hybrid vehicles are required to be highly efficient and downsized. Therefore, in recent years, permanent magnet type rotating electrical machines are generally used as rotating electrical machines for electric vehicles or hybrid vehicles. In order to improve the rotational torque in a permanent magnet type rotating electrical machine, a permanent magnet having a large maximum energy product is desired. Therefore, there are many cases where neodymium magnets having a large maximum energy product are used as permanent magnets used in rotating electrical machines. In automobile applications, the rotating electrical machine may be disposed near the engine. The rotating electrical machine in this case is required to be driven at a high temperature.
  • a permanent magnet type rotating electrical machine when energized, it is caused by Joule loss caused by excitation of multiphase windings in the stator, iron loss caused by an alternating magnetic field, and eddy current loss caused by interlinkage magnetic flux to the magnet.
  • the rotating electrical machine generates heat. In order to suppress the self-heating of the rotating electrical machine, it is necessary to cool the rotating electrical machine.
  • a cooling flow path through which the refrigerant passes in the rotating shaft of the rotor is provided in order to cool the rotor.
  • the present invention has been made in order to solve the above-described problems, and can achieve uniform heat distribution in the direction of the central axis of the rotor without increasing the size of the rotating electrical machine.
  • a rotating electrical machine capable of suppressing magnetism is obtained.
  • a rotating electrical machine includes a stator core and a stator having a multi-layer winding wound around the stator core, and a rotor core disposed so as to face the stator core.
  • a rotor core rotatably supported, and the rotor core includes a permanent magnet, a first cooling flow path, a second cooling channel, and a second cooling passage arranged in order in the direction of the center axis of the rotor.
  • the cross-sectional area of the second cooling flow path that has the cooling flow path and the third cooling flow path and is perpendicular to the central axis direction of the rotor is the cross-sectional area of the first cooling flow path and the third cooling flow. It is characterized by being smaller than the cross-sectional area of the road.
  • the cross-sectional area of the second cooling channel perpendicular to the central axis direction of the rotor is greater than the cross-sectional area of the first cooling channel and the third cooling channel. Therefore, the flow rate of the refrigerant in the second cooling channel is increased, and the cooling effect at the central portion in the central axis direction of the rotor having a high temperature is improved as compared with the cooling effects at both ends in the central axial direction. Therefore, it is possible to change the cooling performance distribution from the both ends of the central axis direction where the temperature is relatively low to the central part where the temperature is high, and the heat distribution in the central axis direction of the rotor without increasing the size of the rotating electrical machine. Can be made uniform. In addition, the permanent magnet can be efficiently cooled and thermal demagnetization of the permanent magnet can be suppressed.
  • FIG. 1 is a side sectional view of an upper half surface of a rotating electrical machine 1 according to Embodiment 1 for carrying out the present invention.
  • the rotating electrical machine 1 includes an annular stator 31 and a rotor 40 that is disposed inside the stator 31 and is rotatable with respect to the stator 31.
  • the stator 31 includes a stator core 32 and a multiphase winding 33 wound around the stator core 32, and the outer periphery of the stator core 32 is fixed to the frame 10.
  • the stator core 32 is configured by laminating and integrating a plurality of magnetic steel plates formed in a predetermined shape in the central axis direction of the rotor 40. Further, the stator core 32 protrudes in a radial direction that is a direction perpendicular to the central axis of the rotor 40 from the cylindrical core back and the inner peripheral surface of the core back, and is arranged in 48 pieces at an equiangular pitch in the circumferential direction.
  • the teeth are provided. In FIG. 1, the teeth and the core back are omitted.
  • the stator has multiphase windings 33 wound around the teeth so that the number of teeth per phase per phase is 2, but the detailed winding distribution is omitted in FIG. Has been.
  • the rotor 40 includes a permanent magnet 42 (not shown) as a magnetomotive force generation source, a first rotor core 34, a second rotor core 35, a third rotor core 36, and a rotation shaft 38.
  • the rotor 40 is rotatably attached to the brackets 11 and 12 attached to both ends of the rotor 40 in the central axis direction via bearings 39 attached to both ends of the rotary shaft 38 in the central axis direction.
  • the first rotor core 34, the second rotor core 35, and the third rotor core 36 are fixed to the outer periphery of the rotating shaft 38. Further, the first rotor core 34, the second rotor core 35, and the third rotor core 36 are disposed so as to face the stator core 32.
  • a first cooling flow path 134 that is a flow path through which a refrigerant such as air or oil passes, a second cooling flow A channel 135 and a third cooling channel 136 are formed.
  • the bracket 11 is provided with a refrigerant inlet 13, and the bracket 12 is provided with a refrigerant outlet 14.
  • at least one of the refrigerant inlet 13 and the refrigerant outlet 14 is attached with a fan or a pump that is a power source for moving the refrigerant.
  • the fan or pump then passes through the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136 in order from the refrigerant inlet 13 to the refrigerant outlet 14 in FIG. Move the refrigerant in the direction of the arrow.
  • the fan or pump is not limited to the refrigerant inlet 13 and the refrigerant outlet 14, and may be attached to the outside of the rotating electrical machine to move the refrigerant to the refrigerant inlet 13 and the refrigerant outlet 14.
  • FIG. 2 is a perspective view of the rotor core according to the present embodiment.
  • the first rotor core 34, the second rotor core 35, and the third rotor core 36 are formed of a plurality of magnetic steel plates formed in a predetermined shape in the direction of the central axis of the rotor 40. Each is manufactured by being laminated and integrated.
  • Permanent magnets 42 (not shown) are arranged on the first rotor core 34, the second rotor core 35, and the third rotor core 36 at equiangular pitches in the circumferential direction that is the rotation direction of the rotor 40.
  • Permanent magnet insertion holes 41 are formed.
  • the hole 41-1 is formed adjacent to the permanent magnet 42 inserted through the permanent magnet insertion hole 41, and at a position that minimizes the width between the permanent magnet 42 and the outer periphery of the rotor core.
  • the permanent magnet 42 is not inserted into the hole 41-1, and leakage of magnetic flux between the permanent magnets 42 can be suppressed.
  • the first rotor core 34, the second rotor core 35, and the third rotor core 36 have a first cooling channel 134, a second channel through which a refrigerant such as air or oil passes, A cooling channel 135 and a third cooling channel 136 are respectively formed.
  • a refrigerant such as air or oil passes
  • a cooling channel 135 and a third cooling channel 136 are respectively formed.
  • the end plate provided at the central axial direction end of the rotor core is not shown.
  • the first cooling channel 134, the second cooling channel 135, and the third cooling channel 136 are provided between the permanent magnet insertion holes 41 at an equiangular pitch in the circumferential direction. However, it is not necessary to have an equiangular pitch with respect to the circumferential direction. The number of the first cooling channel 134, the second cooling channel 135, and the third cooling channel 136 does not need to match the number of the permanent magnet insertion holes 41.
  • FIG. 3 and 4 are cross-sectional views of the main part of the rotor according to the present embodiment.
  • FIG. 3 shows a cross-sectional shape of the first cooling flow path 134 of the first rotor core 34 and a cross-sectional shape of the third cooling flow path 136 of the third rotor core 36.
  • FIG. This is the cross-sectional shape of the second cooling flow path 135 of the rotor core 35.
  • the broken lines shown in FIG. 4 indicate the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136, and are compared with the cross-sectional shape of the second cooling flow path 135. For illustration.
  • the cross-sectional area perpendicular to the central axis direction of the rotor 40 in the second cooling flow path 135 is the center of the rotor 40 in the first cooling flow path 134 and the third cooling flow path 136. It is smaller than the cross-sectional area perpendicular to the axial direction. Then, the refrigerant flows from the first cooling channel 134 to the third cooling channel 136 via the second cooling channel 135. For this reason, the 1st cooling flow path 134, the 2nd cooling flow path 135, and the 3rd cooling flow path 136 have penetrated from the one end of the center axis direction of the rotor 40 to the other end.
  • first cooling channel 134, the second cooling channel 135, and the third cooling channel 136 are arranged side by side in the direction of the central axis of the rotor 40.
  • the first rotor core 34, the second rotor core 35, and the third rotor core 36 are also arranged in order in the central axis direction of the rotor 40.
  • FIG. 5 is a characteristic diagram of the thermal conductance of the rotor according to the present embodiment.
  • the horizontal axis in FIG. 5 represents the reduction rate ⁇ of the cross-sectional area of the cooling channel described later.
  • the vertical axis in FIG. 5 represents the thermal conductance [W / ° C.] of the rotor core described later.
  • a bar graph 51 and a bar graph 52 in FIG. 5 indicate the thermal conductance Ga of the first rotor core 34 and the thermal conductance Gb of the second rotor core 35, respectively.
  • 0, the sectional area Sb of the second cooling channel 135 is equal to the sectional area Sa of the first cooling channel 134.
  • ⁇ >0 the sectional area Sb of the second cooling channel 135 is , It is smaller than the cross-sectional area Sa of the first cooling flow path 134 (Sb ⁇ Sa).
  • the thermal conductance is defined as the ease of passing heat.
  • Thermal conductance is also the reciprocal of thermal resistance. For this reason, when the thermal conductance is large, heat is easily transmitted, so the temperature of the rotor core is lowered. On the other hand, if the thermal conductance is small, it is difficult for heat to be transmitted, so the temperature of the rotor core rises.
  • Equation (1) P is a pressure loss, ⁇ is a friction loss coefficient, L is a length of the cooling channel, De is an equivalent diameter that is a diameter when the cooling channel cross section is approximated by a circle, u is The flow velocity of the refrigerant, ⁇ is the density of the refrigerant, n is the number of parallel cooling channels, Re is the Reynolds number, d is the diameter of the cooling channel, ⁇ is the kinematic viscosity coefficient of the refrigerant, S is the cross-sectional area of the cooling channel, fw Represents the circumference of the cross section of the cooling channel.
  • the subscripts a, b, and c of the first cooling channel 134, the second cooling channel 135, and the third cooling channel 136 are omitted.
  • the pressure difference between the refrigerant inlet of the first cooling channel 134 and the refrigerant outlet of the third cooling channel 136 is constant.
  • the flow rate of the refrigerant in the first cooling channel 134 decreases due to an increase in pressure loss in the second cooling channel 135.
  • the average flow rate of the refrigerant in the entire rotor is reduced.
  • the relationship between the thermal conductance and the flow rate of the refrigerant is shown in the following equation.
  • G is the thermal conductance of the first, second or third rotor core 34, 35 or 36
  • A is the heat transfer area
  • h is the heat transfer coefficient
  • Nu is the Nusselt number
  • is the heat transfer Represents a rate.
  • the thermal conductance Ga of the first rotor core 34 decreases from the equation (2). Therefore, the cooling performance of the first rotor core 34 is lowered.
  • the thermal conductance Gb of the second rotor core 35 increases from the equation (2), and the cooling performance of the second rotor core 35 increases. improves. Therefore, the thermal conductance Gb of the second rotor core 35 is larger than the thermal conductance Ga of the first rotor core 34 (Ga ⁇ Gb).
  • the thermal conductance Gb of the second rotor core 35 decreases, and the cooling performance of the second rotor core 35 decreases.
  • the thermal conductance Gb of the second rotor core 35 is larger than the thermal conductance Ga of the first rotor core 34 (Ga ⁇ Gb). For this reason, the cooling performance of the second rotor core 35 is improved as compared with the cooling performance of the first rotor core 34.
  • the sectional area Sc of the third cooling channel 136 of the third rotor core 36 is equal to the sectional area Sa of the first cooling channel 134 of the first rotor core 34. Even if they are different from each other (Sa ⁇ Sc), if they are larger than the cross-sectional area Sb of the second cooling flow path 135 of the second rotor core 35 (Sb ⁇ Sc), as in the case of Sb ⁇ Sa described above.
  • the thermal conductance Gb of the second rotor core 35 becomes larger than the thermal conductance Gc of the third rotor core 36 (Gc ⁇ Gb). Therefore, the cooling performance of the second rotor core 35 is improved more than the cooling performance of the third rotor core 36.
  • FIG. 6 is a temperature characteristic diagram of the rotor according to the present embodiment.
  • the horizontal axis in FIG. 6 represents the reduction rate ⁇ of the cross-sectional area of the cooling channel.
  • the vertical axis in FIG. 6 represents the temperature [° C.] of the rotor core.
  • the bar graph 61 and the bar graph 62 in FIG. 6 have shown the temperature of the 1st rotor core 34, and the temperature of the 2nd rotor core 35, respectively.
  • a calculation formula for the temperature rise ⁇ T [° C.] of the first, second or third rotor core 34, 35 or 36 is shown below.
  • Q [W] represents the amount of heat.
  • exists such that the temperature of the first rotor core 34 is higher than the temperature of the second rotor core 35.
  • is further increased, the temperature of the second rotor core 35 is lower than the temperature of the first rotor core 34. This indicates that the cooling performance of the second rotor core 35 is improved as compared with the cooling performance of the first rotor core 34.
  • FIG. 7 is a diagram showing the cooling effect of the cooling flow path in the rotor according to the present embodiment.
  • FIG. 7 shows the results of analysis under conditions where heat is not transferred at both ends of the rotor core in the central axis direction.
  • the horizontal axis in FIG. 7 represents the reduction rate ⁇ of the cross-sectional area of the cooling channel.
  • [° C. where the maximum temperature of the first rotor core 34 is Tmax and the minimum temperature of the second rotor core 35 is Tmin. ] Represents the analysis value. From FIG. 7, as ⁇ increases from 0, ⁇ T decreases, and when ⁇ 0.05, ⁇ T becomes minimal.
  • the first rotor core 34, the second rotor core 35, and the third rotor core 36 penetrate in the direction of the central axis of the permanent magnet 42 and the rotor 40, and the rotor 40.
  • the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136, which are arranged side by side in the direction of the central axis of the rotor 40, are perpendicular to the direction of the central axis of the rotor 40.
  • the sectional area Sb of the second cooling channel 135 is smaller than the sectional area Sa of the first cooling channel 134 and the sectional area Sc of the third cooling channel 136, the refrigerant in the second cooling channel 135
  • the cooling effect at the central portion in the central axis direction of the rotor 40 having a high temperature is improved more than the cooling effect at both ends in the central axial direction.
  • the cross-sectional area Sb of the second cooling flow path 135 perpendicular to the central axis direction of the rotor 40 is larger than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Due to the small configuration, the rotating electrical machine 1 is not increased in size.
  • the cooling performance distribution can be changed from the both ends in the central axis direction where the heat dissipation characteristics are good and the temperature is relatively low to the central part in the central axis direction where the heat dissipation characteristics are poor and the temperature is high, and the rotating electrical machine 1 is increased in size.
  • the heat distribution in the central axis direction of the rotor 40 can be made uniform.
  • the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
  • the multiphase winding 33 is wound around the stator core 32 by the distributed winding method, but may be wound around the stator core 32 by the concentrated winding method. .
  • the number of poles and the number of slots are 8 poles and 48 slots, but are not limited to this, and may be 8 poles and 72 slots, for example.
  • FIG. FIG. 8 is a cross-sectional view of a rotor core according to Embodiment 2 for carrying out the present invention.
  • the cross-sectional shape of the second cooling flow path 135 has a quadrilateral shape, similar to the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136. And each two sides in the four corners of the quadrilateral shape are smoothly connected in an arc shape.
  • the cross-sectional shape of the first cooling flow path 134, the cross-sectional shape of the second cooling flow path 135, and the cross-sectional shape of the third cooling flow path 136 are between the permanent magnets 42 arranged in the circumferential direction of the rotor 40.
  • the reference line 44 is a line connecting the intermediate point 43 in the circumferential direction (a point on the outer periphery of the rotor 40 in FIG. 3) and a point perpendicular to the axis of the rotor 40 from the intermediate point 43, the reference line 44.
  • the long side direction is a quadrilateral shape formed in parallel.
  • the q-axis magnetic path 81 shown in FIG. 8 is a magnetic path through which the magnetic flux generated by the magnetic field generated by the q-axis current passes.
  • the direction of the q-axis magnetic path at the intermediate point 43 in the circumferential direction between the permanent magnets 42 is the reference. Along line 44. Therefore, the long side direction of the quadrilateral shape is along the q-axis magnetic path 81.
  • the q-axis magnetic path 81 is formed so as to pass between the permanent magnet 42 and the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136.
  • the increase in the magnetic resistance on the q-axis magnetic path 81 by the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136 can be prevented. Therefore, the q-axis inductance Lq, which is a proportional coefficient between the q-axis current and the magnetic flux generated by the q-axis current, is equivalent to the case where no cooling flow path is provided. Further, Lq increases as compared with the case where the cross-sectional shape of the second cooling flow path 135 is a conventional circular shape.
  • Lq is larger than the d-axis inductance Ld, which is a proportional coefficient between the d-axis current and the magnetic flux generated by the d-axis current (Lq> Ld).
  • Lq ⁇ Ld which is an index of saliency, increases. Therefore, the reluctance torque proportional to Lq ⁇ Ld is improved with respect to the cooling channel having the conventional circular cross-sectional shape.
  • the cross-sectional shapes of the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136 are in the circumferential direction between the permanent magnets 42 arranged in the circumferential direction of the rotor 40.
  • the reference line 44 is a line connecting the intermediate point 43 and the point perpendicular to the axis of the rotor 40 from the intermediate point 43
  • the reference line 44 and the long side direction are formed in a quadrilateral shape.
  • the long side direction of the quadrilateral shape is along the q-axis magnetic path 81, the reluctance torque proportional to Lq-Ld is improved with respect to the conventional cooling flow path having a circular cross-sectional shape.
  • the arrangement of the first cooling channel 134, the second cooling channel 135, and the third cooling channel 136 is not an equiangular pitch, or the first cooling channel 134, the second cooling channel 135 are arranged. Even when the number of the third cooling flow paths 136 is smaller than the number of poles of the rotor 40, the quadrilateral shape of the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136 is reduced. Since the long side direction is along the q-axis magnetic path 81, the reluctance torque is improved, and the size and weight can be reduced.
  • FIG. 9 is a cross-sectional view of second cooling flow path 135a in the rotor core according to Embodiment 3 for carrying out the present invention.
  • the cross-sectional shape of the second cooling flow path 135a is a quadrilateral slit shape divided into right and left along the reference line 44.
  • An iron core portion 45 parallel to the reference line 44 divides these slits 135a-1 and 135a-2 at the center.
  • the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 are not illustrated, the cross-sectional shape of the second cooling flow path 135a is a shape obtained by removing the core portion 45. is there. For this reason, the cross-sectional area of the second cooling flow path 135a is smaller than the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 by the cross-sectional area of the iron core portion 45. Yes.
  • the two sides are smoothly connected in an arc shape.
  • the long side direction of the quadrilateral shape in the slits 135a-1 and 135a-2 is along the q-axis magnetic path (not shown).
  • the cross-sectional shape of the second cooling flow path 135a is a quadrilateral shape divided into the left and right with respect to the reference line 44, and thus the fluid passing through the second cooling flow path 135a.
  • the area in contact with the molecules can be increased, and the cooling performance can be improved.
  • the second cooling flow path 135a is a quadrilateral shape divided to the left and right with respect to the reference line 44, the second cooling flow path is perpendicular to the central axis direction of the rotor 40.
  • the cross-sectional area Sb of 135a is smaller than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Therefore, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
  • the long side direction of the quadrilateral shape of the second cooling channel 135a is along the q-axis magnetic path (not shown). For this reason, as in the second embodiment, the reluctance torque is improved and the size and weight can be reduced.
  • the cross-sectional shape of the second cooling flow path 135a is not only a quadrilateral shape divided to the left and right with respect to the reference line 44, but also the cross-sectional shape of the first cooling flow path 134 and the third shape.
  • the cross-sectional shape of the cooling flow path 136 may be a quadrilateral shape that is divided to the left and right with respect to the reference line 44.
  • the cross-sectional area Sb of the second cooling flow path 135a perpendicular to the central axis direction of the rotor 40 is greater than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Needs to be smaller.
  • the cooling performance can be further enhanced.
  • the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1.
  • the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
  • FIG. 10 is a cross-sectional view of second cooling flow path 135b in the rotor core according to the fourth embodiment for carrying out the present invention.
  • the configuration of the rotating electrical machine 1 according to the present embodiment is different from that of the second embodiment in the following points.
  • the inner surface of the second cooling channel 135 b has a plurality of protrusions 46.
  • the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 are not shown in the drawing, the cross-sectional shape of the second cooling flow path 135b is a shape obtained by removing the plurality of protrusions 46.
  • the cross-sectional area of the second cooling flow path 135b is smaller than the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 by the plurality of protrusions 46.
  • each two sides are smoothly connected in an arc shape.
  • the long side direction of the quadrilateral shape is along a q-axis magnetic path (not shown).
  • the inner surface of the second cooling channel 135b has a plurality of protrusions 46, that is, a shape having a plurality of irregularities, and thus the heat radiation area of the inner surface of the second cooling channel 135b is reduced.
  • the cooling performance can be increased. Furthermore, since the fluid molecules are agitated by the uneven shape of each inner surface, the cooling performance can be enhanced.
  • the inner surface of the second cooling channel 135b has a plurality of protrusions 46, that is, a shape having a plurality of irregularities, the cross-sectional area Sb of the second cooling channel 135b perpendicular to the central axis direction of the rotor 40 is obtained. Is smaller than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Therefore, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
  • the long side direction of the quadrilateral shape of the second cooling channel 135b is along the q-axis magnetic path (not shown). For this reason, as in the second embodiment, the reluctance torque is improved and the size and weight can be reduced.
  • the inner surface of the second cooling channel 135b has not only a plurality of protrusions 46, that is, a shape having a plurality of irregularities, but also the cross-sectional shape of the first cooling channel 134 and the third cooling channel 136.
  • the inner surface may have a plurality of protrusions 46, that is, a shape having a plurality of irregularities.
  • the cross-sectional area Sb of the second cooling flow path 135b perpendicular to the central axis direction of the rotor 40 is greater than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Needs to be smaller.
  • the cooling performance can be further enhanced.
  • the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1.
  • the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
  • the second cooling channel 135b is similar to the third embodiment.
  • the cross-sectional shape may be a quadrilateral shape divided to the left and right with respect to the reference line 44. Even with such a configuration, it is possible to increase the area in contact with the fluid molecules passing through the second cooling flow path 135b, and the cooling performance can be improved.
  • the inner surface of the second cooling channel 135b has a plurality of protrusions 46, that is, a shape having a plurality of irregularities, and the cross-sectional shape of the second cooling channel 135b is divided into left and right with respect to the reference line 44. Therefore, the sectional area Sb of the second cooling channel 135b perpendicular to the central axis direction of the rotor 40 is equal to the sectional area Sa of the first cooling channel 134 and the third cooling channel. It is smaller than the cross-sectional area Sc of the flow path 136. Therefore, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
  • the third embodiment In addition to the fact that the cross-sectional shape of the first cooling channel 134 and the inner surface of the third cooling channel 136 have a plurality of protrusions 46, that is, a shape having a plurality of irregularities, the third embodiment.
  • the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 may be quadrilateral shapes divided on the left and right with respect to the reference line 44.
  • the cross-sectional area Sb of the second cooling flow path 135b perpendicular to the central axis direction of the rotor 40 is greater than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136.
  • the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
  • FIG. 11 is a perspective view of a rotor according to Embodiment 5 for carrying out the present invention.
  • the rotor 40 includes a fourth rotor core 63 and a fifth rotor instead of the first rotor core 34, the second rotor core 35, and the third rotor core 36 of the first embodiment.
  • An iron core 64 and a sixth rotor iron core 65 are provided.
  • FIG. 12 is a cross-sectional side view of the main part of the rotor core according to the present embodiment.
  • the configuration of the rotating electrical machine 1 according to the present embodiment is different from that of the first embodiment in the points described below.
  • the fifth cooling channel 164 of the fifth rotor core 64 is inclined with respect to the central axis direction of the rotor 40 toward the outer peripheral side from the upstream side to the downstream side of the refrigerant.
  • the fourth cooling flow path 163 of the fourth rotor core 63 and the sixth cooling flow path 165 of the sixth rotor core 65 are formed substantially parallel to the central axis direction of the rotor 40. .
  • the fourth cooling channel 163 and the sixth cooling channel 165 are connected to each other at the upstream end and the downstream end of the refrigerant in the fifth cooling channel 164, respectively.
  • the radial position of the sixth cooling channel 165 is on the outer peripheral side with respect to the radial position of the fourth cooling channel 163. Therefore, the radial position on the sixth rotor core 65 side in the fifth cooling channel 164 is on the outer peripheral side than the radial position on the fourth rotor core 63 side in the fifth cooling channel 164. . That is, the radial position of the downstream end in the direction in which the refrigerant flows in the fifth cooling channel is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows.
  • the cross-sectional area of the fifth cooling channel 164 is smaller than the cross-sectional area of the fourth cooling channel 163 and the cross-sectional area of the sixth cooling channel 165.
  • the centrifugal force is different between the upstream end and the downstream end of the refrigerant in the fifth cooling channel 164. .
  • the refrigerant passing through the fifth cooling channel 164 is agitated due to the difference in centrifugal force between the upstream end and the downstream end, and the number of heat exchanges between the refrigerant molecules and the heat transfer surface in the fifth cooling channel 164. Will increase. As a result, heat transfer between the fifth rotor core 64 and the refrigerant is improved.
  • the radial position of the downstream end in the direction in which the refrigerant flows in the fifth cooling channel 164 is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows.
  • the refrigerant molecules passing through the fifth cooling channel 164 are agitated due to the difference in centrifugal force between the upstream end and the downstream end, and the number of times of contact with the heat transfer surface increases.
  • the cooling performance of the fifth rotor core 64 can be improved as compared with the first embodiment.
  • the cross-sectional area of the fifth cooling channel 164 is smaller than the cross-sectional area of the fourth cooling channel 163 and the sixth cooling channel 165. Therefore, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
  • FIG. 13 is a side cross-sectional view that constitutes a main part of a rotor core according to Embodiment 6 for carrying out the present invention.
  • the configuration of the rotating electrical machine 1 according to the present embodiment is different from that of the fifth embodiment in the following points.
  • the fourth cooling flow path 163 of the fourth rotor core 63 and the sixth cooling flow path 165 of the sixth rotor core 65 move toward the outer peripheral side from the upstream side to the downstream side of the refrigerant. It is inclined with respect to the central axis direction.
  • the fourth cooling channel 163 and the sixth cooling channel 165 are connected at the upstream end and the downstream end of the refrigerant in the fifth cooling channel 164 of the fifth rotor core 64.
  • the radial position at the downstream end in the direction in which the refrigerant flows in the fourth cooling flow path 163 is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows in the fourth cooling flow path 163.
  • the radial position at the downstream end in the direction in which the refrigerant flows in the sixth cooling flow path 165 is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows in the sixth cooling flow path 165.
  • the cross-sectional area of the fifth cooling channel 164 is smaller than the cross-sectional area of the fourth cooling channel 163 and the cross-sectional area of the sixth cooling channel 165.
  • the radial position at the downstream end in the direction in which the refrigerant flows in the fourth cooling flow path 163 is the radial position at the upstream end in the direction in which the refrigerant flows in the fourth cooling flow path 163. It is on the outer peripheral side.
  • the radial position at the downstream end in the direction in which the refrigerant flows in the sixth cooling flow path 165 is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows in the sixth cooling flow path 165.
  • the refrigerant molecules passing through the fourth cooling channel 163 and the sixth cooling channel 165 are agitated due to the difference in centrifugal force between the upstream end and the downstream end, and the number of times of contact with the heat transfer surface increases.
  • the cooling performance of the fourth rotor core 63 and the sixth rotor core 65 that is, the cooling performance at both ends in the central axis direction of the rotor 40 can be improved as compared with the fifth embodiment.
  • the cross-sectional area of the fifth cooling channel 164 is smaller than the cross-sectional area of the fourth cooling channel 163 and the sixth cooling channel 165. Therefore, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
  • the fourth cooling channel 163, the fifth cooling channel 164, and the sixth cooling channel 165 of the fifth and sixth embodiments have the same cross-sectional shape as the first cooling channel 134 of the third embodiment. Or the cross-sectional shapes of the second cooling channel 135a and the third cooling channel 136. Further, the cross-sectional shapes of the fourth cooling channel 163, the fifth cooling channel 164, and the sixth cooling channel 165 of the fifth and sixth embodiments are the same as those of the first cooling channel 134 of the fourth embodiment. Or the cross-sectional shapes of the second cooling channel 135b and the third cooling channel 136.

Abstract

Provided is a dynamo-electric machine with which it is possible to evenly distribute heat in the central axial direction of a rotor and suppress thermal demagnetization of a permanent magnet without increasing the size of the dynamo-electric machine. The dynamo-electric machine (1) is characterized in that: provided are a stator (31) having a stator core (32) and a multilayer winding (33) wound around the stator core (32), and a rotor (40) having a rotor core disposed facing the stator core (32), the rotor (40) being supported so as to be capable of rotating relative to the stator (31); the rotor core has a permanent magnet (42) as well as a first cooling flow path (134), a second cooling flow path (135), and a third cooling flow path (136) that pass through in the central axial direction of the rotor (40) and are lined up in the stated order in the central axial direction of the rotor (40); and the cross-sectional area of the second cooling flow path (135) that is perpendicular to the central axial direction of the rotor (40) is less than the cross-sectional area of the first cooling flow path (134) and the cross-sectional area of the third cooling flow path (136).

Description

回転電機Rotating electric machine
 本発明は、永久磁石を有する回転子を備えた回転電機に関する。 The present invention relates to a rotating electrical machine including a rotor having permanent magnets.
 電気自動車またはハイブリッド自動車の駆動用および発電用の回転電機では、高効率化および小型化が要求されている。そのため近年では、電気自動車用またはハイブリッド自動車用の回転電機として、永久磁石式の回転電機が一般的に用いられている。また、永久磁石式の回転電機において回転トルクを向上させるためには、大きな最大エネルギー積をもつ永久磁石が志向されている。そのため、回転電機に用いられる永久磁石として、大きな最大エネルギー積をもつネオジム磁石が用いられる事例が多い。また自動車用途において、回転電機がエンジンの近くに配設される場合がある。この場合における回転電機では、高温下での駆動が要求される。さらに、永久磁石式の回転電機が通電されると、固定子における多相巻線の励磁によって発生するジュール損、交番磁界によって発生する鉄損および磁石への鎖交磁束によって発生する渦電流損によって、回転電機が自己発熱する。回転電機の自己発熱を抑制するためには、回転電機の冷却が必要となる。 Rotating electrical machines for driving and generating electric vehicles or hybrid vehicles are required to be highly efficient and downsized. Therefore, in recent years, permanent magnet type rotating electrical machines are generally used as rotating electrical machines for electric vehicles or hybrid vehicles. In order to improve the rotational torque in a permanent magnet type rotating electrical machine, a permanent magnet having a large maximum energy product is desired. Therefore, there are many cases where neodymium magnets having a large maximum energy product are used as permanent magnets used in rotating electrical machines. In automobile applications, the rotating electrical machine may be disposed near the engine. The rotating electrical machine in this case is required to be driven at a high temperature. Furthermore, when a permanent magnet type rotating electrical machine is energized, it is caused by Joule loss caused by excitation of multiphase windings in the stator, iron loss caused by an alternating magnetic field, and eddy current loss caused by interlinkage magnetic flux to the magnet. The rotating electrical machine generates heat. In order to suppress the self-heating of the rotating electrical machine, it is necessary to cool the rotating electrical machine.
 その冷却方法として、例えば特許文献1の回転電機においては、回転子を冷却するために、回転子の回転軸内に冷媒が通る冷却流路が設けられている。 As the cooling method, for example, in the rotating electric machine of Patent Document 1, a cooling flow path through which the refrigerant passes in the rotating shaft of the rotor is provided in order to cool the rotor.
 また、特許文献2の回転電機においては、回転子の中心軸から径方向に沿った流路が、回転子鉄心に形成されている。 Further, in the rotating electrical machine of Patent Document 2, a flow path along the radial direction from the central axis of the rotor is formed in the rotor core.
 さらに、特許文献3の回転電機においては、回転子鉄心における冷却流路の内周面に複数の突起が形成されている。 Furthermore, in the rotating electrical machine of Patent Document 3, a plurality of protrusions are formed on the inner peripheral surface of the cooling flow path in the rotor core.
特開2009-081953JP2009-081953 特開2011-097725JP2011-097725 特開2012-165600JP2012-165600
 特許文献1における冷却流路を用いた構成では、回転子鉄心の中心軸方向中央部が積極的に冷却される。しかし、回転軸内の冷却流路に十分な冷媒量を通すためには、冷却流路の断面積を大きくする必要があり、回転軸が大型化するという課題があった。 In the configuration using the cooling flow path in Patent Document 1, the central portion in the central axis direction of the rotor core is actively cooled. However, in order to pass a sufficient amount of refrigerant through the cooling flow path in the rotating shaft, it is necessary to increase the cross-sectional area of the cooling flow path, and there is a problem that the rotating shaft is enlarged.
 また、特許文献2の構成では、回転子の中心軸方向中央部の冷却性能が向上する。しかし、回転子の径方向に冷却流路を設けているため、回転子鉄心の中心軸方向長さが増加し、回転子が中心軸方向に大型化するという課題があった。 Also, with the configuration of Patent Document 2, the cooling performance of the central portion in the central axis direction of the rotor is improved. However, since the cooling flow path is provided in the radial direction of the rotor, the length of the rotor core in the central axis direction increases, and there is a problem that the rotor is enlarged in the central axis direction.
 さらに、特許文献3の構成では、冷却流路の内周面に複数の突起により冷却面積が増加するため、回転子が大型化せずに、回転子の冷却性能が向上する。しかし、冷却流路における回転子の中心軸に垂直な断面形状が、回転子の中心軸方向において同じ形状である。このため、回転子の中心軸方向端部の冷却性能に対して、中心軸方向中央部の冷却性能が同一となる。よって、回転子の中心軸方向端部と中心軸方向中央部との温度差が平坦化されず、回転子の中心軸方向における熱分布が均一化されないという課題があった。 Furthermore, in the configuration of Patent Document 3, since the cooling area is increased by a plurality of protrusions on the inner peripheral surface of the cooling flow path, the rotor cooling performance is improved without increasing the size of the rotor. However, the cross-sectional shape perpendicular to the central axis of the rotor in the cooling channel is the same shape in the direction of the central axis of the rotor. For this reason, the cooling performance of the central portion in the central axis direction is the same as that of the end portion in the central axial direction of the rotor. Therefore, there is a problem that the temperature difference between the end portion in the central axis direction of the rotor and the central portion in the central axis direction is not flattened, and the heat distribution in the central axis direction of the rotor is not uniformed.
 本発明は、上記のような課題を解決するためになされたもので、回転電機を大型化せずに、回転子の中心軸方向における熱分布を均一化することができ、永久磁石の熱減磁を抑制できる回転電機を得るものである。 The present invention has been made in order to solve the above-described problems, and can achieve uniform heat distribution in the direction of the central axis of the rotor without increasing the size of the rotating electrical machine. A rotating electrical machine capable of suppressing magnetism is obtained.
 本発明に係る回転電機は、固定子鉄心およびこの固定子鉄心に巻回された多層巻線を有する固定子と、固定子鉄心に対向させて配置された回転子鉄心を有し固定子に対し回転自在に支持された回転子とを備え、回転子鉄心は、永久磁石と、回転子の中心軸方向に貫通し回転子の中心軸方向に順に並んで第1の冷却流路、第2の冷却流路および第3の冷却流路とを有し、回転子の中心軸方向に垂直な第2の冷却流路の断面積は、第1の冷却流路の断面積および第3の冷却流路の断面積よりも小さいことを特徴とする。 A rotating electrical machine according to the present invention includes a stator core and a stator having a multi-layer winding wound around the stator core, and a rotor core disposed so as to face the stator core. A rotor core rotatably supported, and the rotor core includes a permanent magnet, a first cooling flow path, a second cooling channel, and a second cooling passage arranged in order in the direction of the center axis of the rotor. The cross-sectional area of the second cooling flow path that has the cooling flow path and the third cooling flow path and is perpendicular to the central axis direction of the rotor is the cross-sectional area of the first cooling flow path and the third cooling flow. It is characterized by being smaller than the cross-sectional area of the road.
 本発明に係る回転電機によれば、回転子の中心軸方向に垂直な第2の冷却流路の断面積が、第1の冷却流路の断面積および第3の冷却流路の断面積よりも小さいため、第2の冷却流路における冷媒の流速が増加し、温度が高い回転子の中心軸方向中央部の冷却効果が中心軸方向両端部の冷却効果より向上する。よって、相対的に温度の低い中心軸方向両端部から温度の高い中心軸方向中央部へ冷却性能配分を変えることができ、回転電機を大型化せずに、回転子の中心軸方向の熱分布を均一化することができる。また、効率よく永久磁石を冷却でき、永久磁石の熱減磁を抑制できる。 According to the rotating electrical machine according to the present invention, the cross-sectional area of the second cooling channel perpendicular to the central axis direction of the rotor is greater than the cross-sectional area of the first cooling channel and the third cooling channel. Therefore, the flow rate of the refrigerant in the second cooling channel is increased, and the cooling effect at the central portion in the central axis direction of the rotor having a high temperature is improved as compared with the cooling effects at both ends in the central axial direction. Therefore, it is possible to change the cooling performance distribution from the both ends of the central axis direction where the temperature is relatively low to the central part where the temperature is high, and the heat distribution in the central axis direction of the rotor without increasing the size of the rotating electrical machine. Can be made uniform. In addition, the permanent magnet can be efficiently cooled and thermal demagnetization of the permanent magnet can be suppressed.
本発明を実施するための実施の形態1に係る回転電機の上半面の側断面図である。It is a sectional side view of the upper half surface of the rotary electric machine which concerns on Embodiment 1 for implementing this invention. 本発明の実施の形態1に係る回転子鉄心の斜視図である。It is a perspective view of the rotor core which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転子の要部断面図である。It is principal part sectional drawing of the rotor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転子の要部断面図である。It is principal part sectional drawing of the rotor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転子の熱コンダクタンスの特性図である。It is a characteristic figure of the thermal conductance of the rotor concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る回転子の温度特性図である。It is a temperature characteristic figure of the rotor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転子における冷却流路の冷却効果を示す図である。It is a figure which shows the cooling effect of the cooling flow path in the rotor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る回転子鉄心の断面図である。It is sectional drawing of the rotor core which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る回転子鉄心における第2の冷却流路135aの断面図である。It is sectional drawing of the 2nd cooling flow path 135a in the rotor core which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る回転子鉄心における第2の冷却流路135bの断面図である。It is sectional drawing of the 2nd cooling flow path 135b in the rotor core which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る回転子の斜視図である。It is a perspective view of the rotor which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る回転子鉄心の要部を構成する側断面図である。It is a sectional side view which comprises the principal part of the rotor core which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る回転子鉄心の要部を構成する側断面図である。It is a sectional side view which comprises the principal part of the rotor core which concerns on Embodiment 6 of this invention.
以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
 図1は、本発明を実施するための実施の形態1に係る回転電機1の上半面の側断面図である。図1において、回転電機1は、円環状の固定子31と、固定子31の内側に配置され、固定子31に対して回転可能な回転子40とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a side sectional view of an upper half surface of a rotating electrical machine 1 according to Embodiment 1 for carrying out the present invention. In FIG. 1, the rotating electrical machine 1 includes an annular stator 31 and a rotor 40 that is disposed inside the stator 31 and is rotatable with respect to the stator 31.
 固定子31は、固定子鉄心32および固定子鉄心32に巻回された多相巻線33で構成され、固定子鉄心32の外周がフレーム10に固定されている。固定子鉄心32は、所定の形状に成形された複数枚の磁性鋼板が回転子40の中心軸方向に積層一体化されて構成されている。また、固定子鉄心32は、円筒状のコアバックおよびコアバックの内周面から回転子40の中心軸に垂直な方向である径方向に突出し、周方向に等角ピッチで配置された48個のティースを備えている。図1において、ティースおよびコアバックは省略されている。ここで、固定子は、毎極毎相あたりのティースの数が2となるようにティースに分布巻に巻回された多相巻線33を有するが、図1において詳細の巻線分布は省略されている。 The stator 31 includes a stator core 32 and a multiphase winding 33 wound around the stator core 32, and the outer periphery of the stator core 32 is fixed to the frame 10. The stator core 32 is configured by laminating and integrating a plurality of magnetic steel plates formed in a predetermined shape in the central axis direction of the rotor 40. Further, the stator core 32 protrudes in a radial direction that is a direction perpendicular to the central axis of the rotor 40 from the cylindrical core back and the inner peripheral surface of the core back, and is arranged in 48 pieces at an equiangular pitch in the circumferential direction. The teeth are provided. In FIG. 1, the teeth and the core back are omitted. Here, the stator has multiphase windings 33 wound around the teeth so that the number of teeth per phase per phase is 2, but the detailed winding distribution is omitted in FIG. Has been.
 回転子40は、起磁力発生源としての永久磁石42(図示せず)、第1の回転子鉄心34、第2の回転子鉄心35、第3の回転子鉄心36および回転軸38を備えている。また、回転子40は、回転軸38の中心軸方向両端に取り付けられたベアリング39を介して、回転子40の中心軸方向両端に取り付けられたブラケット11およびブラケット12に、回転自在に取り付けられている。そして、第1の回転子鉄心34、第2の回転子鉄心35および第3の回転子鉄心36は、回転軸38の外周に固定されている。さらに、第1の回転子鉄心34、第2の回転子鉄心35および第3の回転子鉄心36は、固定子鉄心32に対向させて配置されている。 The rotor 40 includes a permanent magnet 42 (not shown) as a magnetomotive force generation source, a first rotor core 34, a second rotor core 35, a third rotor core 36, and a rotation shaft 38. Yes. Further, the rotor 40 is rotatably attached to the brackets 11 and 12 attached to both ends of the rotor 40 in the central axis direction via bearings 39 attached to both ends of the rotary shaft 38 in the central axis direction. Yes. The first rotor core 34, the second rotor core 35, and the third rotor core 36 are fixed to the outer periphery of the rotating shaft 38. Further, the first rotor core 34, the second rotor core 35, and the third rotor core 36 are disposed so as to face the stator core 32.
 第1の回転子鉄心34、第2の回転子鉄心35および第3回転子鉄心36には、空気や油などの冷媒が通る流路である第1の冷却流路134、第2の冷却流路135および第3の冷却流路136がそれぞれ形成されている。ブラケット11に冷媒流入口13が設けられ、ブラケット12に冷媒流出口14が設けられている。冷媒流入口13および冷媒流出口14の少なくともいずれか一方には、図示しないが、冷媒を移動させる動力源であるファンまたはポンプが取り付けられている。そして、ファンまたはポンプは、冷媒流入口13から、第1の冷却流路134、第2の冷却流路135および第3の冷却流路136を順に経由して冷媒流出口14まで、図1における矢印の向きに冷媒を移動させる。なお、ファンまたはポンプは、冷媒流入口13および冷媒流出口14に限らず、回転電機の外部に取り付けられて、冷媒流入口13および冷媒流出口14に冷媒を移動させてもよい。 In the first rotor core 34, the second rotor core 35, and the third rotor core 36, a first cooling flow path 134 that is a flow path through which a refrigerant such as air or oil passes, a second cooling flow A channel 135 and a third cooling channel 136 are formed. The bracket 11 is provided with a refrigerant inlet 13, and the bracket 12 is provided with a refrigerant outlet 14. Although not shown, at least one of the refrigerant inlet 13 and the refrigerant outlet 14 is attached with a fan or a pump that is a power source for moving the refrigerant. The fan or pump then passes through the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136 in order from the refrigerant inlet 13 to the refrigerant outlet 14 in FIG. Move the refrigerant in the direction of the arrow. Note that the fan or pump is not limited to the refrigerant inlet 13 and the refrigerant outlet 14, and may be attached to the outside of the rotating electrical machine to move the refrigerant to the refrigerant inlet 13 and the refrigerant outlet 14.
 図2は、本実施の形態に係る回転子鉄心の斜視図である。図2において、第1の回転子鉄心34、第2の回転子鉄心35および第3の回転子鉄心36は、所定の形状に成形された複数枚の磁性鋼板が回転子40の中心軸方向にそれぞれ積層一体化されて作製されている。第1の回転子鉄心34、第2の回転子鉄心35および第3回転子鉄心36には、回転子40の回転方向である周方向に等角ピッチで配置され永久磁石42(図示せず)を挿通する永久磁石挿通孔41が形成されている。また、穴部41-1が、永久磁石挿通孔41に挿通される永久磁石42に隣接し、永久磁石42間における回転子鉄心の外周との幅を最小にする位置に形成されている。穴部41-1には、永久磁石42が挿通されず、永久磁石42間の磁束の漏れを抑制できる。 FIG. 2 is a perspective view of the rotor core according to the present embodiment. In FIG. 2, the first rotor core 34, the second rotor core 35, and the third rotor core 36 are formed of a plurality of magnetic steel plates formed in a predetermined shape in the direction of the central axis of the rotor 40. Each is manufactured by being laminated and integrated. Permanent magnets 42 (not shown) are arranged on the first rotor core 34, the second rotor core 35, and the third rotor core 36 at equiangular pitches in the circumferential direction that is the rotation direction of the rotor 40. Permanent magnet insertion holes 41 are formed. Further, the hole 41-1 is formed adjacent to the permanent magnet 42 inserted through the permanent magnet insertion hole 41, and at a position that minimizes the width between the permanent magnet 42 and the outer periphery of the rotor core. The permanent magnet 42 is not inserted into the hole 41-1, and leakage of magnetic flux between the permanent magnets 42 can be suppressed.
 また、第1の回転子鉄心34、第2の回転子鉄心35および第3回転子鉄心36には、空気や油などの冷媒が通る流路である第1の冷却流路134、第2の冷却流路135および第3の冷却流路136がそれぞれ形成されている。なお、図の簡略化のため、回転子鉄心の中心軸方向端部に設けられる端板は図示していない。 The first rotor core 34, the second rotor core 35, and the third rotor core 36 have a first cooling channel 134, a second channel through which a refrigerant such as air or oil passes, A cooling channel 135 and a third cooling channel 136 are respectively formed. For simplification of the drawing, the end plate provided at the central axial direction end of the rotor core is not shown.
 また、図2において、第1の冷却流路134、第2の冷却流路135および第3の冷却流路136は、周方向に等角ピッチで永久磁石挿通孔41の間に設けられているが、周方向に対して等角ピッチである必要はない。第1の冷却流路134、第2の冷却流路135および第3の冷却流路136の個数も、永久磁石挿通孔41の数と一致する必要は無い。 In FIG. 2, the first cooling channel 134, the second cooling channel 135, and the third cooling channel 136 are provided between the permanent magnet insertion holes 41 at an equiangular pitch in the circumferential direction. However, it is not necessary to have an equiangular pitch with respect to the circumferential direction. The number of the first cooling channel 134, the second cooling channel 135, and the third cooling channel 136 does not need to match the number of the permanent magnet insertion holes 41.
 図3および図4は、本実施の形態に係る回転子の要部断面図である。図3は、第1の回転子鉄心34の第1の冷却流路134の断面形状および第3の回転子鉄心36の第3の冷却流路136の断面形状であり、図4は、第2の回転子鉄心35の第2の冷却流路135の断面形状である。ここで、図4に示す破線は、第1の冷却流路134の断面形状および第3の冷却流路136の断面形状を示しており、第2の冷却流路135の断面形状との比較のために図示している。図3および図4において、第2の冷却流路135における回転子40の中心軸方向に垂直な断面積が、第1の冷却流路134および第3の冷却流路136における回転子40の中心軸方向に垂直な断面積よりも小さい。そして、第1の冷却流路134から第2の冷却流路135を経由して第3の冷却流路136まで、冷媒が流れる。このため、第1の冷却流路134、第2の冷却流路135および第3の冷却流路136は、回転子40の中心軸方向の一端から他端まで貫通している。すなわち、第1の冷却流路134、第2の冷却流路135および第3の冷却流路136は、回転子40の中心軸方向に順に並んで配置されている。そして、第1の回転子鉄心34、第2の回転子鉄心35および第3の回転子鉄心36も、回転子40の中心軸方向に順に並んで配置されている。 3 and 4 are cross-sectional views of the main part of the rotor according to the present embodiment. FIG. 3 shows a cross-sectional shape of the first cooling flow path 134 of the first rotor core 34 and a cross-sectional shape of the third cooling flow path 136 of the third rotor core 36. FIG. This is the cross-sectional shape of the second cooling flow path 135 of the rotor core 35. Here, the broken lines shown in FIG. 4 indicate the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136, and are compared with the cross-sectional shape of the second cooling flow path 135. For illustration. 3 and 4, the cross-sectional area perpendicular to the central axis direction of the rotor 40 in the second cooling flow path 135 is the center of the rotor 40 in the first cooling flow path 134 and the third cooling flow path 136. It is smaller than the cross-sectional area perpendicular to the axial direction. Then, the refrigerant flows from the first cooling channel 134 to the third cooling channel 136 via the second cooling channel 135. For this reason, the 1st cooling flow path 134, the 2nd cooling flow path 135, and the 3rd cooling flow path 136 have penetrated from the one end of the center axis direction of the rotor 40 to the other end. That is, the first cooling channel 134, the second cooling channel 135, and the third cooling channel 136 are arranged side by side in the direction of the central axis of the rotor 40. The first rotor core 34, the second rotor core 35, and the third rotor core 36 are also arranged in order in the central axis direction of the rotor 40.
 次に、回転電機1の冷却動作について説明する。図5は、本実施の形態に係る回転子の熱コンダクタンスの特性図である。図5における横軸は、後述する冷却流路の断面積の減少率κを表している。図5における縦軸は、後述する回転子鉄心の熱コンダクタンス[W/℃]を表している。また、図5における棒グラフ51および棒グラフ52は、それぞれ第1の回転子鉄心34の熱コンダクタンスGaおよび第2の回転子鉄心35の熱コンダクタンスGbを示している。 Next, the cooling operation of the rotating electrical machine 1 will be described. FIG. 5 is a characteristic diagram of the thermal conductance of the rotor according to the present embodiment. The horizontal axis in FIG. 5 represents the reduction rate κ of the cross-sectional area of the cooling channel described later. The vertical axis in FIG. 5 represents the thermal conductance [W / ° C.] of the rotor core described later. Further, a bar graph 51 and a bar graph 52 in FIG. 5 indicate the thermal conductance Ga of the first rotor core 34 and the thermal conductance Gb of the second rotor core 35, respectively.
 ここで、第1の回転子鉄心34の第1の冷却流路134の断面積Saに対する第2の回転子鉄心35の第2の冷却流路135の断面積Sbの減少率κを、κ=(Sa―Sb)/(Sa)と定義する。κ=0の場合、第2の冷却流路135の断面積Sbは、第1の冷却流路134の断面積Saと等しく、κ>0では、第2の冷却流路135の断面積Sbは、第1の冷却流路134の断面積Saよりも減少する(Sb<Sa)。また、熱コンダクタンスを熱の通り易さと定義する。回転子鉄心で発生する熱量をQ、回転子鉄心と冷媒との温度差をΔTとした場合、回転子鉄心と冷媒との間の熱コンダクタンスGはG=Q/ΔTで表される。また、熱コンダクタンスは、熱抵抗の逆数でもある。そのため、熱コンダクタンスが大きいと、熱が伝わりやすくなるため、回転子鉄心の温度は低下する。反対に、熱コンダクタンスが小さいと、熱が伝わりにくくなるため、回転子鉄心の温度は上昇する。 Here, the reduction rate κ of the cross-sectional area Sb of the second cooling flow path 135 of the second rotor core 35 with respect to the cross-sectional area Sa of the first cooling flow path 134 of the first rotor core 34 is expressed as κ = It is defined as (Sa−Sb) / (Sa). When κ = 0, the sectional area Sb of the second cooling channel 135 is equal to the sectional area Sa of the first cooling channel 134. When κ> 0, the sectional area Sb of the second cooling channel 135 is , It is smaller than the cross-sectional area Sa of the first cooling flow path 134 (Sb <Sa). The thermal conductance is defined as the ease of passing heat. When the amount of heat generated in the rotor core is Q and the temperature difference between the rotor core and the refrigerant is ΔT, the thermal conductance G between the rotor core and the refrigerant is expressed by G = Q / ΔT. Thermal conductance is also the reciprocal of thermal resistance. For this reason, when the thermal conductance is large, heat is easily transmitted, so the temperature of the rotor core is lowered. On the other hand, if the thermal conductance is small, it is difficult for heat to be transmitted, so the temperature of the rotor core rises.
 図5において、κ=0の場合、第2の冷却流路135の断面積は、第1の冷却流路134の断面積と等しい。このため、第1の冷却流路134および第2の冷却流路135を流れる冷媒の圧力損失は変化せず一定である。また、第1の冷却流路134および第2の冷却流路135を流れる冷媒の流速も一定である。よって、冷媒の圧力損失が一定であり、冷媒の流速も一定であるため、第1の回転子鉄心34および第2の回転子鉄心35における熱コンダクタンスは、Ga=Gbで一定となる。 5, when κ = 0, the cross-sectional area of the second cooling flow path 135 is equal to the cross-sectional area of the first cooling flow path 134. For this reason, the pressure loss of the refrigerant flowing through the first cooling flow path 134 and the second cooling flow path 135 does not change and is constant. The flow rate of the refrigerant flowing through the first cooling channel 134 and the second cooling channel 135 is also constant. Therefore, since the pressure loss of the refrigerant is constant and the flow rate of the refrigerant is also constant, the thermal conductance in the first rotor core 34 and the second rotor core 35 is constant at Ga = Gb.
 また、図5において、κ>0の場合、κ=0の場合と比較して、第1の回転子鉄心34の熱コンダクタンスGaは減少している。一方、第2の回転子鉄心35の熱コンダクタンスGbは増加している。さらに、第2の回転子鉄心35の熱コンダクタンスGbは、第1の回転子鉄心34の熱コンダクタンスGaより大きくなっている(Ga<Gb)。よって、第2の回転子鉄心35の冷却性能が、第1の回転子鉄心34の冷却性能に対して向上する。 In FIG. 5, when κ> 0, the thermal conductance Ga of the first rotor core 34 is reduced as compared with the case where κ = 0. On the other hand, the thermal conductance Gb of the second rotor core 35 is increased. Furthermore, the thermal conductance Gb of the second rotor core 35 is larger than the thermal conductance Ga of the first rotor core 34 (Ga <Gb). Therefore, the cooling performance of the second rotor core 35 is improved with respect to the cooling performance of the first rotor core 34.
 この原理について説明する。まず、第2の冷却流路135の断面積Sbが第1の冷却流路134の断面積Saより減少すると、流量保存の法則から第2の冷却流路135における冷媒の流速が増加する。第2の冷却流路135における冷媒の流速が増加すると、次式により圧力損失が増加する。 This principle will be explained. First, when the cross-sectional area Sb of the second cooling flow path 135 decreases from the cross-sectional area Sa of the first cooling flow path 134, the flow rate of the refrigerant in the second cooling flow path 135 increases from the law of flow rate conservation. When the flow rate of the refrigerant in the second cooling channel 135 increases, the pressure loss increases according to the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Pは圧力損失、ξは摩擦損失係数、Lは冷却流路の長さ、Deは冷却流路断面を等価的に円で近似した場合の直径である等価直径、uは冷媒の流速、ρは冷媒の密度、nは冷却流路の並列数、Reはレイノルズ数、dは冷却流路の直径、νは冷媒の動粘性係数、Sは冷却流路の断面積、fwは冷却流路の断面における周長を表す。なお、式(1)において、第1の冷却流路134、第2の冷却流路135および第3の冷却流路136の添字a、bおよびcは省略されている。以降の式においても同様である。
 図5の前提条件として、第1の冷却流路134の冷媒の入口と第3の冷却流路136の冷媒の出口との圧力差を一定としている。このため、第2の冷却流路135における圧力損失の増加によって、第1の冷却流路134における冷媒の流速が減少する。この結果、回転子全体における冷媒の平均流速が減少する。
 ここで、次式に熱コンダクタンスと冷媒の流速の関係を示す。
In Equation (1), P is a pressure loss, ξ is a friction loss coefficient, L is a length of the cooling channel, De is an equivalent diameter that is a diameter when the cooling channel cross section is approximated by a circle, u is The flow velocity of the refrigerant, ρ is the density of the refrigerant, n is the number of parallel cooling channels, Re is the Reynolds number, d is the diameter of the cooling channel, ν is the kinematic viscosity coefficient of the refrigerant, S is the cross-sectional area of the cooling channel, fw Represents the circumference of the cross section of the cooling channel. In the formula (1), the subscripts a, b, and c of the first cooling channel 134, the second cooling channel 135, and the third cooling channel 136 are omitted. The same applies to the following equations.
As a precondition in FIG. 5, the pressure difference between the refrigerant inlet of the first cooling channel 134 and the refrigerant outlet of the third cooling channel 136 is constant. For this reason, the flow rate of the refrigerant in the first cooling channel 134 decreases due to an increase in pressure loss in the second cooling channel 135. As a result, the average flow rate of the refrigerant in the entire rotor is reduced.
Here, the relationship between the thermal conductance and the flow rate of the refrigerant is shown in the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)において、Gは第1、第2または第3の回転子鉄心34、35または36の熱コンダクタンス、Aは伝熱面積、hは熱伝達率、Nuはヌセルト数、λは熱伝導率を表す。 In equation (2), G is the thermal conductance of the first, second or third rotor core 34, 35 or 36, A is the heat transfer area, h is the heat transfer coefficient, Nu is the Nusselt number, and λ is the heat transfer Represents a rate.
 第1の冷却流路134における冷媒の流速が減少するため、式(2)より、第1の回転子鉄心34の熱コンダクタンスGaが減少する。よって、第1の回転子鉄心34の冷却性能が低下する。一方、第2の冷却流路135における冷媒の流速が増加するため、式(2)より、第2の回転子鉄心35の熱コンダクタンスGbが増加し、第2の回転子鉄心35の冷却性能が向上する。よって、第2の回転子鉄心35の熱コンダクタンスGbが、第1の回転子鉄心34の熱コンダクタンスGaよりも大きくなる(Ga<Gb)。このため、第2の回転子鉄心35の冷却性能が、第1の回転子鉄心34の冷却性能よりも向上することになる。
 図5では、冷媒が空気と仮定し、ρ=1.2[kg/m]、ν=0.0000154[m/s]、Nu=4.36、λ=0.0261[W/(mK)]とおいて計算した。
Since the flow rate of the refrigerant in the first cooling flow path 134 decreases, the thermal conductance Ga of the first rotor core 34 decreases from the equation (2). Therefore, the cooling performance of the first rotor core 34 is lowered. On the other hand, since the flow rate of the refrigerant in the second cooling flow path 135 increases, the thermal conductance Gb of the second rotor core 35 increases from the equation (2), and the cooling performance of the second rotor core 35 increases. improves. Therefore, the thermal conductance Gb of the second rotor core 35 is larger than the thermal conductance Ga of the first rotor core 34 (Ga <Gb). For this reason, the cooling performance of the second rotor core 35 is improved as compared with the cooling performance of the first rotor core 34.
In FIG. 5, assuming that the refrigerant is air, ρ = 1.2 [kg / m 3 ], ν = 0.0000154 [m 2 / s], Nu = 4.36, λ = 0.0261 [W / ( mK)].
 さらに、図5において、第2の冷却流路135の断面積Sbが減少し、κ=61%まで増加すると、第1の回転子鉄心34の熱コンダクタンスGaは単調に減少する。一方、第2の回転子鉄心35の熱コンダクタンスGbは、κ=26%まで増加し、その後減少する。κ>26%の場合、圧力損失も増加していくため、回転子全体における冷媒の平均流速も減少していく。そして、回転子全体における冷媒の平均流速の減少による第2の回転子鉄心35の熱コンダクタンスGbの減少分が、第2の回転子鉄心35における冷媒の流速の増加による第2の回転子鉄心35の熱コンダクタンスGbの増加分を上回る。このため、第2の回転子鉄心35の熱コンダクタンスGbが減少し、第2の回転子鉄心35の冷却性能が低下することになる。しかし、κ=61%まで増加しても、第2の回転子鉄心35の熱コンダクタンスGbが、第1の回転子鉄心34の熱コンダクタンスGaよりも大きくなっている(Ga<Gb)。このため、第2の回転子鉄心35の冷却性能が、第1の回転子鉄心34の冷却性能よりも向上することになる。 Furthermore, in FIG. 5, when the cross-sectional area Sb of the second cooling flow path 135 decreases and increases to κ = 61%, the thermal conductance Ga of the first rotor core 34 decreases monotonously. On the other hand, the thermal conductance Gb of the second rotor core 35 increases to κ = 26% and then decreases. When κ> 26%, the pressure loss also increases, so the average flow rate of the refrigerant in the entire rotor also decreases. The decrease in the thermal conductance Gb of the second rotor core 35 due to the decrease in the average refrigerant flow velocity in the entire rotor is the second rotor core 35 due to the increase in the refrigerant flow velocity in the second rotor core 35. This exceeds the increase in the thermal conductance Gb. For this reason, the thermal conductance Gb of the second rotor core 35 decreases, and the cooling performance of the second rotor core 35 decreases. However, even when κ = 61%, the thermal conductance Gb of the second rotor core 35 is larger than the thermal conductance Ga of the first rotor core 34 (Ga <Gb). For this reason, the cooling performance of the second rotor core 35 is improved as compared with the cooling performance of the first rotor core 34.
 また図5には示していないが、第3の回転子鉄心36の第3の冷却流路136の断面積Scが、第1の回転子鉄心34の第1の冷却流路134の断面積Saと異なる場合でも(Sa≠Sc)、第2の回転子鉄心35の第2の冷却流路135の断面積Sbよりも大きい場合は(Sb<Sc)、前述のSb<Saの場合と同様に、第2の回転子鉄心35の熱コンダクタンスGbが、第3の回転子鉄心36の熱コンダクタンスGcよりも大きくなる(Gc<Gb)。よって、第2の回転子鉄心35の冷却性能が、第3の回転子鉄心36の冷却性能よりも向上することになる。 Although not shown in FIG. 5, the sectional area Sc of the third cooling channel 136 of the third rotor core 36 is equal to the sectional area Sa of the first cooling channel 134 of the first rotor core 34. Even if they are different from each other (Sa ≠ Sc), if they are larger than the cross-sectional area Sb of the second cooling flow path 135 of the second rotor core 35 (Sb <Sc), as in the case of Sb <Sa described above. The thermal conductance Gb of the second rotor core 35 becomes larger than the thermal conductance Gc of the third rotor core 36 (Gc <Gb). Therefore, the cooling performance of the second rotor core 35 is improved more than the cooling performance of the third rotor core 36.
 この原理について説明する。第3の冷却流路136の断面積Scが、第2の冷却流路135の断面積Sbより大きくなると、前述のSb<Saの場合と同様に、流量保存の法則から、第3の冷却流路136における冷媒の流速が減少する。このため、第3の回転子鉄心36の熱コンダクタンスGcが減少し、第3の回転子鉄心36の冷却性能が低下することになる。 This principle will be explained. When the cross-sectional area Sc of the third cooling flow path 136 is larger than the cross-sectional area Sb of the second cooling flow path 135, the third cooling flow is determined from the flow rate conservation law as in the case of Sb <Sa described above. The flow rate of the refrigerant in the path 136 decreases. For this reason, the thermal conductance Gc of the third rotor core 36 decreases, and the cooling performance of the third rotor core 36 decreases.
 また、図6は、本実施の形態に係る回転子の温度特性図である。図6における横軸は、冷却流路の断面積の減少率κを表している。図6における縦軸は、回転子鉄心の温度[℃]を表している。また、図6における棒グラフ61および棒グラフ62は、それぞれ第1の回転子鉄心34の温度および第2の回転子鉄心35の温度を示している。ここで、第3の回転子鉄心36の第3の冷却流路136の断面積Scが、第1の回転子鉄心34の第1の冷却流路134の断面積Saと等しい(Sa=Sc)。第1、第2または第3の回転子鉄心34、35または36の温度上昇δT[℃]の計算式を以下に示す。 FIG. 6 is a temperature characteristic diagram of the rotor according to the present embodiment. The horizontal axis in FIG. 6 represents the reduction rate κ of the cross-sectional area of the cooling channel. The vertical axis in FIG. 6 represents the temperature [° C.] of the rotor core. Moreover, the bar graph 61 and the bar graph 62 in FIG. 6 have shown the temperature of the 1st rotor core 34, and the temperature of the 2nd rotor core 35, respectively. Here, the cross-sectional area Sc of the third cooling flow path 136 of the third rotor core 36 is equal to the cross-sectional area Sa of the first cooling flow path 134 of the first rotor core 34 (Sa = Sc). . A calculation formula for the temperature rise δT [° C.] of the first, second or third rotor core 34, 35 or 36 is shown below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)において、Q[W]は熱量を表す。
 κ=0%の場合では、第1の回転子鉄心34の温度よりも第2の回転子鉄心35の温度が高い。一方、κ>0%の場合では、κ=0%と比べて第2の回転子鉄心35の温度が低下する。このため、第1の回転子鉄心34の温度が第2の回転子鉄心35の温度よりも高くなるようなκが存在する。さらにκを増加させると、第1の回転子鉄心34の温度よりも第2の回転子鉄心35の温度が低下する。これは、第1の回転子鉄心34の冷却性能よりも第2の回転子鉄心35の冷却性能が向上したことを示している。
In Formula (3), Q [W] represents the amount of heat.
When κ = 0%, the temperature of the second rotor core 35 is higher than the temperature of the first rotor core 34. On the other hand, in the case of κ> 0%, the temperature of the second rotor core 35 is lowered as compared with κ = 0%. For this reason, κ exists such that the temperature of the first rotor core 34 is higher than the temperature of the second rotor core 35. When κ is further increased, the temperature of the second rotor core 35 is lower than the temperature of the first rotor core 34. This indicates that the cooling performance of the second rotor core 35 is improved as compared with the cooling performance of the first rotor core 34.
 図7は、本実施の形態に係る回転子における冷却流路の冷却効果を示す図である。図7は、回転子鉄心の中心軸方向両端において、熱の授受がない条件で解析を行った結果である。図7における横軸は、冷却流路の断面積の減少率κを表している。図7における縦軸は、第1の回転子鉄心34の最大温度をTmax、第2の回転子鉄心35の最小温度をTminとした場合の温度差の絶対値ΔT=|Tmax-Tmin|[℃]の解析値を表している。図7より、κが0から増加するに連れて、ΔTが減少し、κ=0.05のとき、ΔTが極小となる。さらに、κが増加すると、第2の回転子鉄心35の温度が、第1の回転子鉄心34の温度より低下し、ΔT>0となる。よって、ΔTが極小となるκから、ΔTが極小となる第1の冷却流路134の断面積Saおよび第2の冷却流路135の断面積Sbを求めることができる。図7において、0<κ<0.15の場合、ΔTは、κ=0の場合よりも低下する。また、0.02<κ<0.1の場合、ΔTは、κ=0の場合の半分以下になる。そして、κ=0.05の場合、ΔTは0で極小となる。よって、κ=0.05の場合、第1の回転子鉄心34の温度と第2の回転子鉄心35の温度とが同じになる。 FIG. 7 is a diagram showing the cooling effect of the cooling flow path in the rotor according to the present embodiment. FIG. 7 shows the results of analysis under conditions where heat is not transferred at both ends of the rotor core in the central axis direction. The horizontal axis in FIG. 7 represents the reduction rate κ of the cross-sectional area of the cooling channel. The vertical axis in FIG. 7 represents the absolute value ΔT = | Tmax−Tmin | [° C. where the maximum temperature of the first rotor core 34 is Tmax and the minimum temperature of the second rotor core 35 is Tmin. ] Represents the analysis value. From FIG. 7, as κ increases from 0, ΔT decreases, and when κ = 0.05, ΔT becomes minimal. Further, when κ increases, the temperature of the second rotor core 35 decreases from the temperature of the first rotor core 34, and ΔT> 0. Therefore, the sectional area Sa of the first cooling channel 134 and the sectional area Sb of the second cooling channel 135 at which ΔT is minimized can be obtained from κ at which ΔT is minimized. In FIG. 7, when 0 <κ <0.15, ΔT is lower than when κ = 0. Further, when 0.02 <κ <0.1, ΔT is half or less than that when κ = 0. When κ = 0.05, ΔT is 0 and is minimal. Therefore, when κ = 0.05, the temperature of the first rotor core 34 and the temperature of the second rotor core 35 are the same.
 このような回転電機1では、第1の回転子鉄心34,第2の回転子鉄心35および第3の回転子鉄心36は、永久磁石42と回転子40の中心軸方向に貫通し回転子40の中心軸方向に順に並んで配置された第1の冷却流路134、第2の冷却流路135および第3の冷却流路136とをそれぞれ有し、回転子40の中心軸方向に垂直な第2の冷却流路135の断面積Sbが、第1の冷却流路134の断面積Saおよび第3の冷却流路136の断面積Scよりも小さいため、第2の冷却流路135における冷媒の流速が増加し、温度が高い回転子40の中心軸方向中央部の冷却効果が、中心軸方向両端部の冷却効果より向上する。また、回転子40の中心軸方向に垂直な第2の冷却流路135の断面積Sbが、第1の冷却流路134の断面積Saおよび第3の冷却流路136の断面積Scよりも小さい構成のため、回転電機1は大型化しない。よって、放熱特性が良く相対的に温度が低くなる中心軸方向両端部から、放熱特性が悪く温度が高くなる中心軸方向中央部へ冷却性能配分を変えることができ、回転電機1を大型化せずに、回転子40の中心軸方向の熱分布を均一化することができる。また、効率よく永久磁石42を冷却でき、永久磁石42の熱減磁を抑制できる。 In such a rotating electrical machine 1, the first rotor core 34, the second rotor core 35, and the third rotor core 36 penetrate in the direction of the central axis of the permanent magnet 42 and the rotor 40, and the rotor 40. The first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136, which are arranged side by side in the direction of the central axis of the rotor 40, are perpendicular to the direction of the central axis of the rotor 40. Since the sectional area Sb of the second cooling channel 135 is smaller than the sectional area Sa of the first cooling channel 134 and the sectional area Sc of the third cooling channel 136, the refrigerant in the second cooling channel 135 The cooling effect at the central portion in the central axis direction of the rotor 40 having a high temperature is improved more than the cooling effect at both ends in the central axial direction. Further, the cross-sectional area Sb of the second cooling flow path 135 perpendicular to the central axis direction of the rotor 40 is larger than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Due to the small configuration, the rotating electrical machine 1 is not increased in size. Therefore, the cooling performance distribution can be changed from the both ends in the central axis direction where the heat dissipation characteristics are good and the temperature is relatively low to the central part in the central axis direction where the heat dissipation characteristics are poor and the temperature is high, and the rotating electrical machine 1 is increased in size. In addition, the heat distribution in the central axis direction of the rotor 40 can be made uniform. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
 なお、本実施の形態における回転電機1では、多相巻線33は、分布巻方式で固定子鉄心32に巻装されているが、集中巻方式で固定子鉄心32に巻装されてもよい。 In the rotating electrical machine 1 according to the present embodiment, the multiphase winding 33 is wound around the stator core 32 by the distributed winding method, but may be wound around the stator core 32 by the concentrated winding method. .
 また、本実施の形態における回転電機1では、極数とスロット数は、8極48スロットであるが、これに限定されるものではなく、例えば8極72スロットであってもよい。 In the rotating electrical machine 1 according to the present embodiment, the number of poles and the number of slots are 8 poles and 48 slots, but are not limited to this, and may be 8 poles and 72 slots, for example.
実施の形態2. 
 図8は、本発明を実施するための実施の形態2に係る回転子鉄心の断面図である。図8において、本実施の形態に係る回転電機1の構成は、以下に述べる点で、実施の形態1と異なる。第2の冷却流路135の断面形状は、第1の冷却流路134の断面形状および第3の冷却流路136の断面形状と同様に四辺形形状を有している。そして、四辺形形状の4つの隅部における各2辺は、円弧状に滑らかに接続されている。また、第1の冷却流路134の断面形状、第2の冷却流路135の断面形状および第3の冷却流路136の断面形状は、回転子40の周方向に配置された永久磁石42間の周方向における中間点43(図3における回転子40の外周上の点)と中間点43から回転子40の軸に直交する点とを結ぶ線を基準線44とした場合に、基準線44と長辺方向とが平行に形成された四辺形形状となっている。ここで、永久磁石42による界磁磁束が固定子31の多相巻線33に鎖交することによって生じる誘起電圧と同位相の電流をq軸電流、q軸電流に対して90度位相が遅れた電流をd軸電流と呼ぶ。また、図8に示すq軸磁路81は、q軸電流で発生する磁界による磁束が通る磁路であり、永久磁石42間の周方向における中間点43におけるq軸磁路の方向は、基準線44に沿っている。そのため四辺形形状の長辺方向は、q軸磁路81に沿っている。
Embodiment 2. FIG.
FIG. 8 is a cross-sectional view of a rotor core according to Embodiment 2 for carrying out the present invention. In FIG. 8, the configuration of the rotating electrical machine 1 according to the present embodiment is different from that of the first embodiment in the following points. The cross-sectional shape of the second cooling flow path 135 has a quadrilateral shape, similar to the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136. And each two sides in the four corners of the quadrilateral shape are smoothly connected in an arc shape. Further, the cross-sectional shape of the first cooling flow path 134, the cross-sectional shape of the second cooling flow path 135, and the cross-sectional shape of the third cooling flow path 136 are between the permanent magnets 42 arranged in the circumferential direction of the rotor 40. When the reference line 44 is a line connecting the intermediate point 43 in the circumferential direction (a point on the outer periphery of the rotor 40 in FIG. 3) and a point perpendicular to the axis of the rotor 40 from the intermediate point 43, the reference line 44. And the long side direction is a quadrilateral shape formed in parallel. Here, the current having the same phase as the induced voltage generated by the linkage of the field magnetic flux generated by the permanent magnet 42 to the multiphase winding 33 of the stator 31 is delayed by 90 degrees with respect to the q-axis current and the q-axis current. This current is called d-axis current. The q-axis magnetic path 81 shown in FIG. 8 is a magnetic path through which the magnetic flux generated by the magnetic field generated by the q-axis current passes. The direction of the q-axis magnetic path at the intermediate point 43 in the circumferential direction between the permanent magnets 42 is the reference. Along line 44. Therefore, the long side direction of the quadrilateral shape is along the q-axis magnetic path 81.
 このように、q軸磁路81が、永久磁石42と第1の冷却流路134、第2の冷却流路135および第3の冷却流路136との間を通るように形成されているため、第1の冷却流路134、第2の冷却流路135および第3の冷却流路136によるq軸磁路81上の磁気抵抗の増加を防ぐことができる。よって、q軸電流とq軸電流による磁束との比例係数であるq軸インダクタンスLqは、冷却流路が設けられていない場合と同等となる。また、第2の冷却流路135の断面形状が、従来の円形形状である場合に対して、Lqは増加する。ここで、この円形形状の中心は、本実施の形態の冷却流路135の断面における四辺形形状の図心と同じ位置にある。よって、Lqは、d軸電流とd軸電流による磁束との比例係数であるd軸インダクタンスLdより大きくなる(Lq>Ld)。このため、突極性の指標であるLq-Ldが増加する。よって、Lq-Ldに比例するリラクタンストルクが、従来の円形形状の断面形状を有する冷却流路に対して向上する。 Thus, the q-axis magnetic path 81 is formed so as to pass between the permanent magnet 42 and the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136. The increase in the magnetic resistance on the q-axis magnetic path 81 by the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136 can be prevented. Therefore, the q-axis inductance Lq, which is a proportional coefficient between the q-axis current and the magnetic flux generated by the q-axis current, is equivalent to the case where no cooling flow path is provided. Further, Lq increases as compared with the case where the cross-sectional shape of the second cooling flow path 135 is a conventional circular shape. Here, the center of this circular shape is at the same position as the centroid of the quadrilateral shape in the cross section of the cooling channel 135 of the present embodiment. Therefore, Lq is larger than the d-axis inductance Ld, which is a proportional coefficient between the d-axis current and the magnetic flux generated by the d-axis current (Lq> Ld). For this reason, Lq−Ld, which is an index of saliency, increases. Therefore, the reluctance torque proportional to Lq−Ld is improved with respect to the cooling channel having the conventional circular cross-sectional shape.
 このように、第1の冷却流路134、第2の冷却流路135および第3の冷却流路136の断面形状は、回転子40の周方向に配置された永久磁石42間の周方向における中間点43と中間点43から回転子40の軸に直交する点とを結ぶ線を基準線44とした場合に、基準線44と長辺方向とが平行に形成された四辺形形状となっており、四辺形形状の長辺方向は、q軸磁路81に沿っているため、Lq-Ldに比例するリラクタンストルクが、従来の円形形状の断面形状を有する冷却流路に対して向上する。 Thus, the cross-sectional shapes of the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136 are in the circumferential direction between the permanent magnets 42 arranged in the circumferential direction of the rotor 40. When the reference line 44 is a line connecting the intermediate point 43 and the point perpendicular to the axis of the rotor 40 from the intermediate point 43, the reference line 44 and the long side direction are formed in a quadrilateral shape. In addition, since the long side direction of the quadrilateral shape is along the q-axis magnetic path 81, the reluctance torque proportional to Lq-Ld is improved with respect to the conventional cooling flow path having a circular cross-sectional shape.
 また、第1の冷却流路134、第2の冷却流路135および第3の冷却流路136の配置は等角ピッチでない場合や、第1の冷却流路134、第2の冷却流路135および第3の冷却流路136の数が回転子40の極数より少ない場合でも、第1の冷却流路134、第2の冷却流路135および第3の冷却流路136の四辺形形状の長辺方向がq軸磁路81に沿っているため、リラクタンストルクが向上し、小型・軽量化できる。 Further, the arrangement of the first cooling channel 134, the second cooling channel 135, and the third cooling channel 136 is not an equiangular pitch, or the first cooling channel 134, the second cooling channel 135 are arranged. Even when the number of the third cooling flow paths 136 is smaller than the number of poles of the rotor 40, the quadrilateral shape of the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136 is reduced. Since the long side direction is along the q-axis magnetic path 81, the reluctance torque is improved, and the size and weight can be reduced.
実施の形態3.
 図9は、本発明を実施するための実施の形態3に係る回転子鉄心における第2の冷却流路135aの断面図である。図9において、本実施の形態に係る回転電機1の構成は、以下に述べる点で、実施の形態2と異なる。第2の冷却流路135aの断面形状は、基準線44に沿って左右に分割された四辺形のスリット状になっている。そして、基準線44に沿って平行な鉄心部分45が、これらのスリット135a-1、135a-2を中央部で分割している。また、第1の冷却流路134の断面形状および第3の冷却流路136の断面形状は、図示されていないが、第2の冷却流路135aの断面形状から鉄心部分45を除いた形状である。このため、第2の冷却流路135aの断面積は、第1の冷却流路134の断面形状および第3の冷却流路136の断面形状よりも鉄心部分45の断面積の分だけ減少している。なお、スリット135a-1、135a-2における四辺形形状の4つの隅部では、各2辺が円弧状に滑らかに接続されている。そして、スリット135a-1、135a-2における四辺形形状の長辺方向は、q軸磁路(図示せず)に沿っている。
Embodiment 3 FIG.
FIG. 9 is a cross-sectional view of second cooling flow path 135a in the rotor core according to Embodiment 3 for carrying out the present invention. In FIG. 9, the configuration of the rotating electrical machine 1 according to the present embodiment is different from that of the second embodiment in the following points. The cross-sectional shape of the second cooling flow path 135a is a quadrilateral slit shape divided into right and left along the reference line 44. An iron core portion 45 parallel to the reference line 44 divides these slits 135a-1 and 135a-2 at the center. Further, although the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 are not illustrated, the cross-sectional shape of the second cooling flow path 135a is a shape obtained by removing the core portion 45. is there. For this reason, the cross-sectional area of the second cooling flow path 135a is smaller than the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 by the cross-sectional area of the iron core portion 45. Yes. At the four corners of the quadrilateral shape in the slits 135a-1 and 135a-2, the two sides are smoothly connected in an arc shape. The long side direction of the quadrilateral shape in the slits 135a-1 and 135a-2 is along the q-axis magnetic path (not shown).
 このように、本実施の形態では、第2の冷却流路135aの断面形状は、基準線44に対して左右に分割された四辺形形状であるため、第2の冷却流路135aを通る流体分子と接触する面積を増やすことが可能となり、冷却性能を高めることができる。 As described above, in the present embodiment, the cross-sectional shape of the second cooling flow path 135a is a quadrilateral shape divided into the left and right with respect to the reference line 44, and thus the fluid passing through the second cooling flow path 135a. The area in contact with the molecules can be increased, and the cooling performance can be improved.
 また、第2の冷却流路135aの断面形状が、基準線44に対して左右に分割された四辺形形状となっているため、回転子40の中心軸方向に垂直な第2の冷却流路135aの断面積Sbが、第1の冷却流路134の断面積Saおよび第3の冷却流路136の断面積Scよりも小さい。よって、実施の形態1と同様に、回転電機1を大型化せずに、回転子40の中心軸方向の熱分布を均一化することができる。また、効率よく永久磁石42を冷却でき、永久磁石42の熱減磁を抑制できる。 In addition, since the cross-sectional shape of the second cooling flow path 135a is a quadrilateral shape divided to the left and right with respect to the reference line 44, the second cooling flow path is perpendicular to the central axis direction of the rotor 40. The cross-sectional area Sb of 135a is smaller than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Therefore, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
 また、第2の冷却流路135aの四辺形形状の長辺方向は、q軸磁路(図示せず)に沿っている。このため、実施の形態2と同様に、リラクタンストルクが向上し、小型・軽量化できる。 Also, the long side direction of the quadrilateral shape of the second cooling channel 135a is along the q-axis magnetic path (not shown). For this reason, as in the second embodiment, the reluctance torque is improved and the size and weight can be reduced.
 また、第2の冷却流路135aの断面形状が、基準線44に対して左右に分割された四辺形形状となっているのみならず、第1の冷却流路134の断面形状および第3の冷却流路136の断面形状が、基準線44に対して左右に分割された四辺形形状であってもよい。この場合、回転子40の中心軸方向に垂直な第2の冷却流路135aの断面積Sbが、第1の冷却流路134の断面積Saおよび第3の冷却流路136の断面積Scよりも小さくなる必要がある。この構成によっても、第1の冷却流路134の断面形状および第3の冷却流路136の断面形状を通る流体分子と接触する面積を増やすことが可能となり、冷却性能をさらに高めることができる。また、実施の形態1と同様に、回転電機1を大型化せずに、回転子40の中心軸方向の熱分布を均一化することができる。また、効率よく永久磁石42を冷却でき、永久磁石42の熱減磁を抑制できる。 In addition, the cross-sectional shape of the second cooling flow path 135a is not only a quadrilateral shape divided to the left and right with respect to the reference line 44, but also the cross-sectional shape of the first cooling flow path 134 and the third shape. The cross-sectional shape of the cooling flow path 136 may be a quadrilateral shape that is divided to the left and right with respect to the reference line 44. In this case, the cross-sectional area Sb of the second cooling flow path 135a perpendicular to the central axis direction of the rotor 40 is greater than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Needs to be smaller. Also with this configuration, it is possible to increase the area in contact with the fluid molecules passing through the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136, and the cooling performance can be further enhanced. Further, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
実施の形態4.
 図10は、本発明を実施するための実施の形態4に係る回転子鉄心における第2の冷却流路135bの断面図である。図10において、本実施の形態に係る回転電機1の構成は、以下に述べる点で、実施の形態2と異なる。第2の冷却流路135bの内面は、複数の突起46を有している。第1の冷却流路134の断面形状および第3の冷却流路136の断面形状は、図示していないが、第2の冷却流路135bの内面から複数の突起46を除いた形状である。このため、第2の冷却流路135bの断面積は、第1の冷却流路134の断面形状および第3の冷却流路136の断面形状よりも複数の突起46の分だけ減少している。なお、四辺形形状の4つの隅部では、各2辺が円弧状に滑らかに接続されている。そして、四辺形形状の長辺方向は、q軸磁路(図示せず)に沿っている。
Embodiment 4 FIG.
FIG. 10 is a cross-sectional view of second cooling flow path 135b in the rotor core according to the fourth embodiment for carrying out the present invention. In FIG. 10, the configuration of the rotating electrical machine 1 according to the present embodiment is different from that of the second embodiment in the following points. The inner surface of the second cooling channel 135 b has a plurality of protrusions 46. Although the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 are not shown in the drawing, the cross-sectional shape of the second cooling flow path 135b is a shape obtained by removing the plurality of protrusions 46. For this reason, the cross-sectional area of the second cooling flow path 135b is smaller than the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 by the plurality of protrusions 46. At the four corners of the quadrilateral shape, each two sides are smoothly connected in an arc shape. The long side direction of the quadrilateral shape is along a q-axis magnetic path (not shown).
 このように、本実施の形態では、第2の冷却流路135bの内面は、複数の突起46、すなわち複数の凹凸を有する形状を有するため、第2の冷却流路135bの内面の放熱面積を増やすことができ、冷却性能を高めることができる。さらに各内面の凹凸形状によって流体分子が攪拌されるため、冷却性能を高めることができる。 As described above, in the present embodiment, the inner surface of the second cooling channel 135b has a plurality of protrusions 46, that is, a shape having a plurality of irregularities, and thus the heat radiation area of the inner surface of the second cooling channel 135b is reduced. The cooling performance can be increased. Furthermore, since the fluid molecules are agitated by the uneven shape of each inner surface, the cooling performance can be enhanced.
 また、第2の冷却流路135bの内面が、複数の突起46、すなわち複数の凹凸を有する形状を有するため、回転子40の中心軸方向に垂直な第2の冷却流路135bの断面積Sbが、第1の冷却流路134の断面積Saおよび第3の冷却流路136の断面積Scよりも小さい。よって、実施の形態1と同様に、回転電機1を大型化せずに、回転子40の中心軸方向の熱分布を均一化することができる。また、効率よく永久磁石42を冷却でき、永久磁石42の熱減磁を抑制できる。 Further, since the inner surface of the second cooling channel 135b has a plurality of protrusions 46, that is, a shape having a plurality of irregularities, the cross-sectional area Sb of the second cooling channel 135b perpendicular to the central axis direction of the rotor 40 is obtained. Is smaller than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Therefore, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
 また、第2の冷却流路135bの四辺形形状の長辺方向は、q軸磁路(図示せず)に沿っている。このため、実施の形態2と同様に、リラクタンストルクが向上し、小型・軽量化できる。 Also, the long side direction of the quadrilateral shape of the second cooling channel 135b is along the q-axis magnetic path (not shown). For this reason, as in the second embodiment, the reluctance torque is improved and the size and weight can be reduced.
 また、第2の冷却流路135bの内面が、複数の突起46、すなわち複数の凹凸を有する形状を有するのみならず、第1の冷却流路134の断面形状および第3の冷却流路136の内面が、複数の突起46、すなわち複数の凹凸を有する形状を有していてもよい。この場合、回転子40の中心軸方向に垂直な第2の冷却流路135bの断面積Sbが、第1の冷却流路134の断面積Saおよび第3の冷却流路136の断面積Scよりも小さくなる必要がある。この構成によっても、第1の冷却流路134の断面形状および第3の冷却流路136の断面形状を通る流体分子と接触する面積を増やすことが可能となり、冷却性能をさらに高めることができる。また、実施の形態1と同様に、回転電機1を大型化せずに、回転子40の中心軸方向の熱分布を均一化することができる。また、効率よく永久磁石42を冷却でき、永久磁石42の熱減磁を抑制できる。 In addition, the inner surface of the second cooling channel 135b has not only a plurality of protrusions 46, that is, a shape having a plurality of irregularities, but also the cross-sectional shape of the first cooling channel 134 and the third cooling channel 136. The inner surface may have a plurality of protrusions 46, that is, a shape having a plurality of irregularities. In this case, the cross-sectional area Sb of the second cooling flow path 135b perpendicular to the central axis direction of the rotor 40 is greater than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Needs to be smaller. Also with this configuration, it is possible to increase the area in contact with the fluid molecules passing through the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136, and the cooling performance can be further enhanced. Further, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
 また、第2の冷却流路135bの内面が、複数の突起46、すなわち複数の凹凸を有する形状を有しているのに加えて、実施の形態3と同様に、第2の冷却流路135bの断面形状が、基準線44に対して左右に分割された四辺形形状であってもよい。このような構成によっても、第2の冷却流路135bを通る流体分子と接触する面積を増やすことが可能となり、冷却性能を高めることができる。また、第2の冷却流路135bの内面が、複数の突起46、すなわち複数の凹凸を有する形状を有し、第2の冷却流路135bの断面形状が、基準線44に対して左右に分割された四辺形形状となっているため、回転子40の中心軸方向に垂直な第2の冷却流路135bの断面積Sbが、第1の冷却流路134の断面積Saおよび第3の冷却流路136の断面積Scよりも小さい。よって、実施の形態1と同様に、回転電機1を大型化せずに、回転子40の中心軸方向の熱分布を均一化することができる。また、効率よく永久磁石42を冷却でき、永久磁石42の熱減磁を抑制できる。 Further, in addition to the inner surface of the second cooling channel 135b having a plurality of protrusions 46, that is, a shape having a plurality of irregularities, the second cooling channel 135b is similar to the third embodiment. The cross-sectional shape may be a quadrilateral shape divided to the left and right with respect to the reference line 44. Even with such a configuration, it is possible to increase the area in contact with the fluid molecules passing through the second cooling flow path 135b, and the cooling performance can be improved. In addition, the inner surface of the second cooling channel 135b has a plurality of protrusions 46, that is, a shape having a plurality of irregularities, and the cross-sectional shape of the second cooling channel 135b is divided into left and right with respect to the reference line 44. Therefore, the sectional area Sb of the second cooling channel 135b perpendicular to the central axis direction of the rotor 40 is equal to the sectional area Sa of the first cooling channel 134 and the third cooling channel. It is smaller than the cross-sectional area Sc of the flow path 136. Therefore, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
 また、第1の冷却流路134の断面形状および第3の冷却流路136の内面が、複数の突起46、すなわち複数の凹凸を有する形状を有しているのに加えて、実施の形態3と同様に、第1の冷却流路134の断面形状および第3の冷却流路136の断面形状が、基準線44に対して左右に分割された四辺形形状であってもよい。この場合、回転子40の中心軸方向に垂直な第2の冷却流路135bの断面積Sbが、第1の冷却流路134の断面積Saおよび第3の冷却流路136の断面積Scよりも小さくなる必要がある。この構成によっても、第1の冷却流路134の断面形状および第3の冷却流路136の断面形状を通る流体分子と接触する面積を増やすことが可能となり、冷却性能をさらに高めることができる。また、実施の形態1と同様に、回転電機1を大型化せずに、回転子40の中心軸方向の熱分布を均一化することができる。また、効率よく永久磁石42を冷却でき、永久磁石42の熱減磁を抑制できる。 In addition to the fact that the cross-sectional shape of the first cooling channel 134 and the inner surface of the third cooling channel 136 have a plurality of protrusions 46, that is, a shape having a plurality of irregularities, the third embodiment. Similarly to the above, the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 may be quadrilateral shapes divided on the left and right with respect to the reference line 44. In this case, the cross-sectional area Sb of the second cooling flow path 135b perpendicular to the central axis direction of the rotor 40 is greater than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136. Needs to be smaller. Also with this configuration, it is possible to increase the area in contact with the fluid molecules passing through the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136, and the cooling performance can be further enhanced. Further, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
実施の形態5.
 図11は、本発明を実施するための実施の形態5に係る回転子の斜視図である。図11において、本実施の形態に係る回転電機1の構成は、以下に述べる点で、実施の形態1と異なる。回転子40は、実施の形態1の第1の回転子鉄心34、第2の回転子鉄心35および第3の回転子鉄心36に代えて、第4の回転子鉄心63、第5の回転子鉄心64および第6の回転子鉄心65を備えている。
Embodiment 5 FIG.
FIG. 11 is a perspective view of a rotor according to Embodiment 5 for carrying out the present invention. In FIG. 11, the configuration of the rotating electrical machine 1 according to the present embodiment is different from the first embodiment in the points described below. The rotor 40 includes a fourth rotor core 63 and a fifth rotor instead of the first rotor core 34, the second rotor core 35, and the third rotor core 36 of the first embodiment. An iron core 64 and a sixth rotor iron core 65 are provided.
 図12は、本実施の形態に係る回転子鉄心の要部を構成する側断面図である。図12において、本実施の形態に係る回転電機1の構成は、以下に述べる点で、実施の形態1と異なる。第5の回転子鉄心64の第5の冷却流路164は、冷媒の上流から下流に向かうにつれて、外周側に向かって回転子40の中心軸方向に対し傾斜している。また、第4の回転子鉄心63の第4の冷却流路163および第6の回転子鉄心65の第6の冷却流路165は、回転子40の中心軸方向に略平行に形成されている。そして、第4の冷却流路163および第6の冷却流路165は、第5の冷却流路164における冷媒の上流端および下流端でそれぞれつながっている。このため、第6の冷却流路165の径方向位置は、第4の冷却流路163の径方向位置よりも外周側にある。よって、第5の冷却流路164における第6の回転子鉄心65側の径方向位置が、第5の冷却流路164における第4の回転子鉄心63側の径方向位置よりも外周側にある。すなわち第5の冷却流路の冷媒が流れる方向の下流端の径方向位置が、冷媒が流れる方向の上流端の径方向位置よりも外周側にある。また、第5の冷却流路164の断面積は、第4の冷却流路163の断面積および第6の冷却流路165の断面積よりも小さい。 FIG. 12 is a cross-sectional side view of the main part of the rotor core according to the present embodiment. In FIG. 12, the configuration of the rotating electrical machine 1 according to the present embodiment is different from that of the first embodiment in the points described below. The fifth cooling channel 164 of the fifth rotor core 64 is inclined with respect to the central axis direction of the rotor 40 toward the outer peripheral side from the upstream side to the downstream side of the refrigerant. The fourth cooling flow path 163 of the fourth rotor core 63 and the sixth cooling flow path 165 of the sixth rotor core 65 are formed substantially parallel to the central axis direction of the rotor 40. . The fourth cooling channel 163 and the sixth cooling channel 165 are connected to each other at the upstream end and the downstream end of the refrigerant in the fifth cooling channel 164, respectively. For this reason, the radial position of the sixth cooling channel 165 is on the outer peripheral side with respect to the radial position of the fourth cooling channel 163. Therefore, the radial position on the sixth rotor core 65 side in the fifth cooling channel 164 is on the outer peripheral side than the radial position on the fourth rotor core 63 side in the fifth cooling channel 164. . That is, the radial position of the downstream end in the direction in which the refrigerant flows in the fifth cooling channel is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows. The cross-sectional area of the fifth cooling channel 164 is smaller than the cross-sectional area of the fourth cooling channel 163 and the cross-sectional area of the sixth cooling channel 165.
 実際に回転子40が回転した場合の冷媒の流れを説明する。図12において、回転子40が中心軸周りに回転すると、空気や油などの冷媒は、第4の冷却流路163から第5の冷却流路164を通り第6の冷却流路165へ流れる。第4の冷却流路163を冷媒が通るとき、第4の冷却流路163が回転子40の中心軸方向に略平行に形成されているため、回転子40の回転によって生じる遠心力が一定となり、冷媒の流速が一定となる。一方、第5の冷却流路164では冷媒の流れ方が変わる。すなわち、第5の冷却流路164の径方向位置は、冷媒の上流から下流に向かうにつれて外周側に向かうため、第5の冷却流路164における冷媒の上流端と下流端とで遠心力が異なる。このため、第5の冷却流路164を通る冷媒は、上流端と下流端との遠心力の差異により攪拌され、冷媒分子と第5の冷却流路164における伝熱面との熱交換の回数が増加する。この結果、第5の回転子鉄心64と冷媒との熱伝達は向上する。 The flow of the refrigerant when the rotor 40 actually rotates will be described. In FIG. 12, when the rotor 40 rotates around the central axis, a refrigerant such as air or oil flows from the fourth cooling channel 163 to the sixth cooling channel 165 through the fifth cooling channel 164. When the refrigerant passes through the fourth cooling flow path 163, the fourth cooling flow path 163 is formed substantially parallel to the central axis direction of the rotor 40, so that the centrifugal force generated by the rotation of the rotor 40 becomes constant. The flow rate of the refrigerant becomes constant. On the other hand, the flow of the refrigerant changes in the fifth cooling channel 164. That is, since the radial position of the fifth cooling channel 164 is directed toward the outer periphery as it goes from the upstream side to the downstream side of the refrigerant, the centrifugal force is different between the upstream end and the downstream end of the refrigerant in the fifth cooling channel 164. . For this reason, the refrigerant passing through the fifth cooling channel 164 is agitated due to the difference in centrifugal force between the upstream end and the downstream end, and the number of heat exchanges between the refrigerant molecules and the heat transfer surface in the fifth cooling channel 164. Will increase. As a result, heat transfer between the fifth rotor core 64 and the refrigerant is improved.
 このように、本実施の形態では、第5の冷却流路164の冷媒が流れる方向の下流端の径方向位置が、冷媒が流れる方向の上流端の径方向位置よりも外周側にあるため、第5の冷却流路164を通る冷媒分子は、上流端と下流端との遠心力の差異により攪拌され、伝熱面との接触回数が増加する。この結果、実施の形態1よりも第5の回転子鉄心64の冷却性能を上げることができる。 Thus, in the present embodiment, the radial position of the downstream end in the direction in which the refrigerant flows in the fifth cooling channel 164 is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows. The refrigerant molecules passing through the fifth cooling channel 164 are agitated due to the difference in centrifugal force between the upstream end and the downstream end, and the number of times of contact with the heat transfer surface increases. As a result, the cooling performance of the fifth rotor core 64 can be improved as compared with the first embodiment.
 また、第5の冷却流路164の断面積は、第4の冷却流路163の断面積と第6の冷却流路165の断面積よりも小さい。よって、実施の形態1と同様に、回転電機1を大型化せずに、回転子40の中心軸方向の熱分布を均一化することができる。また、効率よく永久磁石42を冷却でき、永久磁石42の熱減磁を抑制できる。 Also, the cross-sectional area of the fifth cooling channel 164 is smaller than the cross-sectional area of the fourth cooling channel 163 and the sixth cooling channel 165. Therefore, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
実施の形態6
 図13は、本発明を実施するための実施の形態6に係る回転子鉄心の要部を構成する側断面図である。図13において、本実施の形態に係る回転電機1の構成は、以下に述べる点で、実施の形態5と異なる。第4の回転子鉄心63の第4の冷却流路163および第6の回転子鉄心65の第6の冷却流路165は、冷媒の上流から下流に向かうにつれて、外周側に向かって回転子40の中心軸方向に対し傾斜している。そして、第4の冷却流路163および第6の冷却流路165は、第5の回転子鉄心64の第5の冷却流路164における冷媒の上流端および下流端でつながっている。すなわち、第4の冷却流路163の冷媒が流れる方向の下流端における径方向位置が、第4の冷却流路163の冷媒が流れる方向の上流端における径方向位置よりも外周側にある。そして、第6の冷却流路165の冷媒が流れる方向の下流端における径方向位置が、第6の冷却流路165の冷媒が流れる方向の上流端における径方向位置よりも外周側にある。また、第5の冷却流路164の断面積は、第4の冷却流路163の断面積および第6の冷却流路165の断面積よりも小さい。
Embodiment 6
FIG. 13 is a side cross-sectional view that constitutes a main part of a rotor core according to Embodiment 6 for carrying out the present invention. In FIG. 13, the configuration of the rotating electrical machine 1 according to the present embodiment is different from that of the fifth embodiment in the following points. The fourth cooling flow path 163 of the fourth rotor core 63 and the sixth cooling flow path 165 of the sixth rotor core 65 move toward the outer peripheral side from the upstream side to the downstream side of the refrigerant. It is inclined with respect to the central axis direction. The fourth cooling channel 163 and the sixth cooling channel 165 are connected at the upstream end and the downstream end of the refrigerant in the fifth cooling channel 164 of the fifth rotor core 64. That is, the radial position at the downstream end in the direction in which the refrigerant flows in the fourth cooling flow path 163 is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows in the fourth cooling flow path 163. The radial position at the downstream end in the direction in which the refrigerant flows in the sixth cooling flow path 165 is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows in the sixth cooling flow path 165. The cross-sectional area of the fifth cooling channel 164 is smaller than the cross-sectional area of the fourth cooling channel 163 and the cross-sectional area of the sixth cooling channel 165.
 このように、本実施の形態では、第4の冷却流路163の冷媒が流れる方向の下流端における径方向位置が、第4の冷却流路163の冷媒が流れる方向の上流端における径方向位置よりも外周側にある。そして、第6の冷却流路165の冷媒が流れる方向の下流端における径方向位置が、第6の冷却流路165の冷媒が流れる方向の上流端における径方向位置よりも外周側にある。このため、第4の冷却流路163および第6の冷却流路165を通る冷媒分子は、上流端と下流端との遠心力の差異により攪拌され、伝熱面との接触回数が増加する。この結果、実施の形態5よりも、第4の回転子鉄心63および第6回転子鉄心65の冷却性能、すなわち回転子40の中心軸方向両端の冷却性能を上げることができる。 Thus, in the present embodiment, the radial position at the downstream end in the direction in which the refrigerant flows in the fourth cooling flow path 163 is the radial position at the upstream end in the direction in which the refrigerant flows in the fourth cooling flow path 163. It is on the outer peripheral side. The radial position at the downstream end in the direction in which the refrigerant flows in the sixth cooling flow path 165 is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows in the sixth cooling flow path 165. For this reason, the refrigerant molecules passing through the fourth cooling channel 163 and the sixth cooling channel 165 are agitated due to the difference in centrifugal force between the upstream end and the downstream end, and the number of times of contact with the heat transfer surface increases. As a result, the cooling performance of the fourth rotor core 63 and the sixth rotor core 65, that is, the cooling performance at both ends in the central axis direction of the rotor 40 can be improved as compared with the fifth embodiment.
 また、第5の冷却流路164の断面積は、第4の冷却流路163の断面積と第6の冷却流路165の断面積よりも小さい。よって、実施の形態1と同様に、回転電機1を大型化せずに、回転子40の中心軸方向の熱分布を均一化することができる。また、効率よく永久磁石42を冷却でき、永久磁石42の熱減磁を抑制できる。 Also, the cross-sectional area of the fifth cooling channel 164 is smaller than the cross-sectional area of the fourth cooling channel 163 and the sixth cooling channel 165. Therefore, similarly to the first embodiment, the heat distribution in the central axis direction of the rotor 40 can be made uniform without increasing the size of the rotating electrical machine 1. Further, the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
 また、実施の形態5および6の第4の冷却流路163、第5の冷却流路164および第6の冷却流路165の断面形状は、それぞれ実施の形態3における第1の冷却流路134の断面形状、第2の冷却流路135aおよび第3の冷却流路136の断面形状であってもよい。また、実施の形態5および6の第4の冷却流路163、第5の冷却流路164および第6の冷却流路165の断面形状は、それぞれ実施の形態4における第1の冷却流路134の断面形状、第2の冷却流路135bおよび第3の冷却流路136の断面形状であってもよい。 Further, the fourth cooling channel 163, the fifth cooling channel 164, and the sixth cooling channel 165 of the fifth and sixth embodiments have the same cross-sectional shape as the first cooling channel 134 of the third embodiment. Or the cross-sectional shapes of the second cooling channel 135a and the third cooling channel 136. Further, the cross-sectional shapes of the fourth cooling channel 163, the fifth cooling channel 164, and the sixth cooling channel 165 of the fifth and sixth embodiments are the same as those of the first cooling channel 134 of the fourth embodiment. Or the cross-sectional shapes of the second cooling channel 135b and the third cooling channel 136.
1 回転電機、10 フレーム、11、12 ブラケット、13 冷媒流入口、14 冷媒流出口、31 固定子、32 固定子鉄心、33 多相巻線、34 第1の回転子鉄心、35 第2の回転子鉄心、36 第3の回転子鉄心、38 回転軸、39 ベアリング、40 回転子、41 永久磁石挿通孔、41-1 穴部、42 永久磁石、43 中間点、44 基準線、45 鉄心部分、46 突起、51 第1の回転子鉄心の熱コンダクタンスを示す棒グラフ、52 第2の回転子鉄心の熱コンダクタンスを示す棒グラフ、61 第1の回転子鉄心の温度を示す棒グラフ、62 第2の回転子鉄心の温度を示す棒グラフ、63 第4の回転子鉄心、64 第5の回転子鉄心、65 第6の回転子鉄心、81 q軸磁路、134 第1の冷却流路、135、135a、135b 第2の冷却流路、135a-1、135a-2 スリット、136 第3の冷却流路、163 第4の冷却流路、164 第5冷却流路、165 第6の冷却流路。 1 rotating electrical machine, 10 frame, 11, 12 bracket, 13 refrigerant inlet, 14 refrigerant outlet, 31 stator, 32 stator core, 33 multi-phase winding, 34 first rotor core, 35 second rotation Core, 36, 3rd rotor core, 38 rotary shaft, 39 bearing, 40 rotor, 41 permanent magnet insertion hole, 41-1 hole, 42 permanent magnet, 43 intermediate point, 44 reference line, 45 core part, 46 protrusions, 51 bar graph indicating the thermal conductance of the first rotor core, 52 bar graph indicating the thermal conductance of the second rotor core, 61 bar graph indicating the temperature of the first rotor core, 62 second rotor Bar graph showing temperature of iron core, 63 4th rotor core, 64 5th rotor core, 65 6th rotor core, 81 q-axis magnetic path, 134 1st Cooling channel, 135, 135a, 135b, second cooling channel, 135a-1, 135a-2 slit, 136, third cooling channel, 163, fourth cooling channel, 164, fifth cooling channel, 165th 6 cooling channels.

Claims (9)

  1.  固定子鉄心およびこの固定子鉄心に巻回された多層巻線を有する固定子と、
     前記固定子鉄心に対向させて配置された回転子鉄心を有し前記固定子に対し回転自在に支持された回転子とを備え、
     前記回転子鉄心は、永久磁石と前記回転子の中心軸方向に貫通し前記回転子の中心軸方向に順に並んで第1の冷却流路、第2の冷却流路および第3の冷却流路とを有し、
     前記回転子の中心軸方向に垂直な前記第2の冷却流路の断面積は、前記第1の冷却流路の断面積および前記第3の冷却流路の断面積よりも小さいことを特徴とする回転電機。
    A stator having a stator core and a multi-layer winding wound around the stator core;
    A rotor having a rotor core disposed so as to face the stator core and supported rotatably with respect to the stator;
    The rotor core penetrates in the direction of the central axis of the permanent magnet and the rotor, and is arranged in order in the direction of the central axis of the rotor. The first cooling channel, the second cooling channel, and the third cooling channel And
    A cross-sectional area of the second cooling flow path perpendicular to the central axis direction of the rotor is smaller than a cross-sectional area of the first cooling flow path and a cross-sectional area of the third cooling flow path. Rotating electric machine.
  2.  前記回転子の中心軸方向に垂直な前記第1の冷却流路の断面積と前記第3の冷却流路の断面積とが等しいことを特徴とする請求項1に記載の回転電機。 The rotating electrical machine according to claim 1, wherein a cross-sectional area of the first cooling flow path perpendicular to a central axis direction of the rotor is equal to a cross-sectional area of the third cooling flow path.
  3.  前記回転子の中心軸方向に垂直な前記第1の冷却流路の断面積と前記第3の冷却流路の断面積をSa、前記第2の冷却流路の断面積をSbおよび前記Saに対する前記Sbの減少率をκ=(Sa―Sb)/(Sa)とした場合に、
     前記κが0<κ<0.15の関係にあることを特徴とする請求項2に記載の回転電機。
    The cross-sectional area of the first cooling channel and the cross-sectional area of the third cooling channel perpendicular to the central axis direction of the rotor are Sa, and the cross-sectional area of the second cooling channel is Sb and Sa When the decrease rate of Sb is κ = (Sa−Sb) / (Sa),
    The rotating electrical machine according to claim 2, wherein the κ has a relationship of 0 <κ <0.15.
  4.  前記κが
     0.02<κ<0.1の関係にあることを特徴とする請求項3に記載の回転電機。
    The rotating electrical machine according to claim 3, wherein the κ has a relationship of 0.02 <κ <0.1.
  5.  前記回転子の中心軸方向に垂直な前記第1の冷却流路の断面形状、前記第2の冷却流路の断面形状および前記第3の冷却流路の断面形状は、前記回転子の周方向に配置された前記永久磁石間の前記周方向における中間点と前記中間点から前記回転子の軸に直交する点とを結ぶ線を基準線とした場合に、前記基準線と長辺方向とが平行に形成された四辺形形状であることを特徴とする請求項1から請求項4のいずれか1項に記載の回転電機。 The cross-sectional shape of the first cooling channel perpendicular to the central axis direction of the rotor, the cross-sectional shape of the second cooling channel, and the cross-sectional shape of the third cooling channel are the circumferential direction of the rotor When the reference line is a line connecting the intermediate point in the circumferential direction between the permanent magnets arranged on the point and a point perpendicular to the axis of the rotor from the intermediate point, the reference line and the long side direction are The rotating electrical machine according to any one of claims 1 to 4, wherein the rotating electrical machine has a quadrangular shape formed in parallel.
  6.  前記回転子の中心軸方向に垂直な前記第2の冷却流路の断面形状は、前記基準線に対して左右に分割された四辺形形状であることを特徴とする請求項1から請求項5のいずれか1項に記載の回転電機。 6. The cross-sectional shape of the second cooling flow path perpendicular to the central axis direction of the rotor is a quadrilateral shape divided into left and right with respect to the reference line. The rotating electrical machine according to any one of the above.
  7.  前記第2の冷却流路の内面は、複数の凹凸を有する形状を有することを特徴とする請求項1から請求項6のいずれか1項に記載の回転電機。 The rotating electrical machine according to any one of claims 1 to 6, wherein an inner surface of the second cooling channel has a shape having a plurality of irregularities.
  8.  前記第2の冷却流路の冷媒が流れる方向の下流端の径方向位置が、前記冷媒が流れる方向の上流端の径方向位置よりも外周側にあることを特徴とする請求項1から請求項7のいずれか1項に記載の回転電機。 The radial position at the downstream end in the direction in which the refrigerant flows in the second cooling channel is located on the outer peripheral side with respect to the radial position at the upstream end in the direction in which the refrigerant flows. The rotating electrical machine according to claim 1.
  9.  前記第1の冷却流路の前記冷媒が流れる方向の下流端における径方向位置が、前記第1の冷却流路の前記冷媒が流れる方向の上流端における径方向位置よりも外周側にあり、
     前記第3の冷却流路の前記冷媒が流れる方向の下流端における径方向位置が、前記第3の冷却流路の前記冷媒が流れる方向の上流端における径方向位置よりも外周側にあることを特徴とする請求項8に記載の回転電機。
    The radial position at the downstream end of the first cooling channel in the direction in which the refrigerant flows is on the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows in the first cooling channel,
    The radial position at the downstream end of the third cooling flow path in the direction in which the refrigerant flows is closer to the outer peripheral side than the radial position at the upstream end in the direction in which the refrigerant flows in the third cooling flow path. The rotating electrical machine according to claim 8, wherein
PCT/JP2015/055509 2014-07-02 2015-02-26 Dynamo-electric machine WO2016002253A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/069087 WO2016002867A1 (en) 2014-07-02 2015-07-02 Dynamo-electric machine
JP2016531435A JP6173593B2 (en) 2014-07-02 2015-07-02 Rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-136425 2014-07-02
JP2014136425 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002253A1 true WO2016002253A1 (en) 2016-01-07

Family

ID=55018817

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/055509 WO2016002253A1 (en) 2014-07-02 2015-02-26 Dynamo-electric machine
PCT/JP2015/069087 WO2016002867A1 (en) 2014-07-02 2015-07-02 Dynamo-electric machine

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069087 WO2016002867A1 (en) 2014-07-02 2015-07-02 Dynamo-electric machine

Country Status (2)

Country Link
JP (1) JP6173593B2 (en)
WO (2) WO2016002253A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208556A1 (en) 2017-05-19 2018-11-22 Mahle International Gmbh Electric machine, in particular for a vehicle
JP7077903B2 (en) * 2018-10-04 2022-05-31 トヨタ自動車株式会社 Rotating electric machine
CN113394890B (en) * 2021-06-28 2023-04-07 威海西立电子有限公司 Motor stator cooling system and motor
CN113394908B (en) * 2021-06-28 2022-09-27 威海西立电子有限公司 Motor cooling structure, motor and manufacturing method of motor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114556U (en) * 1984-01-10 1985-08-02 東洋電機製造株式会社 Rotor core of rotating electric machine
JPH0648355U (en) * 1992-12-07 1994-06-28 東洋電機製造株式会社 Rotating machine rotor
JP2005184957A (en) * 2003-12-18 2005-07-07 Toshiba Corp Permanent magnet type reluctance rotary electric machine
JP2010183800A (en) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp Rotor of electric motor, electric motor, air blower and compressor
US20110163640A1 (en) * 2006-09-06 2011-07-07 Haiko Adolf Rotor cooling for a dynamoelectric machine
JP2011254577A (en) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd Rotary electric machine
JP2012165600A (en) * 2011-02-08 2012-08-30 Jtekt Corp Motor and electrically driven power steering device
JP2013223291A (en) * 2012-04-13 2013-10-28 Toyota Motor Corp Rotor of rotary electric machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114556U (en) * 1984-01-10 1985-08-02 東洋電機製造株式会社 Rotor core of rotating electric machine
JPH0648355U (en) * 1992-12-07 1994-06-28 東洋電機製造株式会社 Rotating machine rotor
JP2005184957A (en) * 2003-12-18 2005-07-07 Toshiba Corp Permanent magnet type reluctance rotary electric machine
US20110163640A1 (en) * 2006-09-06 2011-07-07 Haiko Adolf Rotor cooling for a dynamoelectric machine
JP2010183800A (en) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp Rotor of electric motor, electric motor, air blower and compressor
JP2011254577A (en) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd Rotary electric machine
JP2012165600A (en) * 2011-02-08 2012-08-30 Jtekt Corp Motor and electrically driven power steering device
JP2013223291A (en) * 2012-04-13 2013-10-28 Toyota Motor Corp Rotor of rotary electric machine

Also Published As

Publication number Publication date
JP6173593B2 (en) 2017-08-02
JPWO2016002867A1 (en) 2017-04-27
WO2016002867A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
US20210021176A1 (en) Stator for an electric motor and cooling thereof
JP6194926B2 (en) Rotating electrical machine rotor
JP4980747B2 (en) Rotating electric machine
JP6312111B2 (en) Rotating electric machine
JP6173593B2 (en) Rotating electric machine
JP5897206B2 (en) Electric machine
US11025116B2 (en) Centrifugal fluid-cooled axial flux motor
EP2897259B1 (en) Rotating electric machine
JP5951131B2 (en) Rotating electric machine
JP5379611B2 (en) Rotating electric machine
JP2012165620A (en) Rotating machine
JP5387121B2 (en) Rotating electric machine
CN111293809A (en) Rotor
JP6811855B2 (en) Rotating electric machine
US10193421B2 (en) System for thermal management in electrical machines
JP5943056B2 (en) Rotating machine
JP2020078200A (en) Rotary electric machine rotor
JP6609482B2 (en) Rotating electric machine
JP5404525B2 (en) Rotating electric machine
WO2017099027A1 (en) Rotor structure of rotary electrical machine
JP2013179732A (en) Motor
JP5691930B2 (en) Rotating electric machine
JP2019075932A (en) Rotor of rotary electric machine
JP2014036518A (en) Motor
JP2014220885A (en) Induction motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15816038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15816038

Country of ref document: EP

Kind code of ref document: A1