JP4660406B2 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP4660406B2
JP4660406B2 JP2006084126A JP2006084126A JP4660406B2 JP 4660406 B2 JP4660406 B2 JP 4660406B2 JP 2006084126 A JP2006084126 A JP 2006084126A JP 2006084126 A JP2006084126 A JP 2006084126A JP 4660406 B2 JP4660406 B2 JP 4660406B2
Authority
JP
Japan
Prior art keywords
rotor
rotor core
stator
permanent magnet
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006084126A
Other languages
Japanese (ja)
Other versions
JP2007104888A5 (en
JP2007104888A (en
Inventor
則雄 高橋
和人 堺
良夫 橋立
政憲 新
伊藤  渉
正克 松原
隆 花井
恭男 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2006084126A priority Critical patent/JP4660406B2/en
Publication of JP2007104888A publication Critical patent/JP2007104888A/en
Publication of JP2007104888A5 publication Critical patent/JP2007104888A5/ja
Application granted granted Critical
Publication of JP4660406B2 publication Critical patent/JP4660406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ハイブリッド自動車等に用いられる永久磁石埋め込み型の回転電機に関する。   The present invention relates to a permanent magnet embedded type rotating electrical machine used in a hybrid vehicle or the like.

近年、永久磁石の目ざましい研究開発により、高磁気エネルギー積の永久磁石が開発され、回転電機の小型・高出力化が進められている。特にハイブリッド自動車向けのような車両用を用途とする回転電機では、限られた空間の中で高トルク、高出力化を要求されており、これを達成するためには永久磁石量を増やして高速化する必要がある。   In recent years, permanent magnets with a high magnetic energy product have been developed by remarkable research and development of permanent magnets, and miniaturization and high output of rotating electric machines are being promoted. In particular, rotating electrical machines used for vehicles such as those for hybrid vehicles are required to have high torque and high output in a limited space. To achieve this, the amount of permanent magnets is increased to increase the speed. It is necessary to make it.

この場合、高遠心力化に伴う回転子鉄心強度、損失密度増加に伴う冷却が大きな問題となる。更に、高速化に伴って永久磁石表面に発生する渦電流が増大、発熱することにより、熱減磁(不可逆減磁)を生じ、回転電機の出力、効率などの性能を著しく低下させるため、深刻な問題となっている。   In this case, the rotor core strength associated with the increased centrifugal force and the cooling associated with increased loss density are major problems. Furthermore, since the eddy current generated on the surface of the permanent magnet increases and generates heat as the speed increases, thermal demagnetization (irreversible demagnetization) occurs and the performance such as the output and efficiency of the rotating electrical machine is remarkably deteriorated. It has become a problem.

そこで従来の回転電機は、例えば図16に示すように、回転子鉄心101の永久磁石埋め込み用の空洞102内に突き出すように永久磁石位置決め用の突起103を設け、これで永久磁石104を支持することにより応力の集中する薄肉部の強度を確保することで、高出力、高速化を図っている。(特許文献1参照)。   Therefore, in the conventional rotating electrical machine, for example, as shown in FIG. 16, a permanent magnet positioning protrusion 103 is provided so as to protrude into the cavity 102 for embedding the permanent magnet of the rotor core 101, thereby supporting the permanent magnet 104. This ensures high strength and high speed by ensuring the strength of the thin-walled portion where stress is concentrated. (See Patent Document 1).

また、永久磁石を用いた回転電機の冷却を強化する方法として、例えば図17に示すように、回転子鉄心201に形成された永久磁石埋め込み用の空洞202を利用し、軸方向端部から軸中央部に冷却空気を流すことにより、最も発熱量の大きい軸中央部、並びに永久磁石を冷却する方法が提案されている。(例えば特許文献2参照)。
特開2001−339919号公報(第3頁第3行) 特開2004−343915号公報(第3頁13行)
Further, as a method for enhancing cooling of a rotating electrical machine using a permanent magnet, for example, as shown in FIG. 17, a permanent magnet embedding cavity 202 formed in a rotor core 201 is used to There has been proposed a method of cooling the shaft central portion, which generates the largest amount of heat, and the permanent magnet by flowing cooling air through the central portion. (For example, refer to Patent Document 2).
JP 2001-339919 A (page 3, line 3) JP 2004-343915 A (page 3, line 13)

上述した特許文献1の回転電機においては、突起で永久磁石を支持することにより回転子鉄心強度を確保し、高出力、高速化が可能となっているが、高速化に伴い、鉄損、高調波損失の増大により回転電機の温度が上昇し、並びに渦電流による永久磁石の発熱を十分に冷却することが出来ない。従って、回転電機の温度上昇により出力及び効率が低下し、信頼性が低下するという課題がある。   In the rotating electrical machine described in Patent Document 1 described above, the rotor core strength is ensured by supporting the permanent magnets with the protrusions, so that high output and high speed can be achieved. The temperature of the rotating electrical machine rises due to the increase of the wave loss, and the heat generation of the permanent magnet due to the eddy current cannot be sufficiently cooled. Therefore, there is a problem that the output and efficiency are lowered due to the temperature rise of the rotating electrical machine, and the reliability is lowered.

また、特許文献2の回転電機においては、高遠心力による回転子鉄心の強度を確保することが出来ないため、高速化が困難であるという課題があった。   Moreover, in the rotary electric machine of patent document 2, since the intensity | strength of the rotor core by high centrifugal force was not securable, there existed a subject that speeding-up was difficult.

本発明は上述した課題を解決するためになされたものであり、高速回転に耐えうる回転子強度を確保しつつ冷却性能を向上させ、小型で高トルク、高出力を得ることができると共に、信頼性の向上を図った回転電機を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and can improve the cooling performance while ensuring the rotor strength that can withstand high-speed rotation, and can achieve a small size, high torque, high output, and reliability. It aims at providing the rotary electric machine which aimed at the improvement of property.

上記目的を達成するために、本発明に係る回転電機は、環状の固定子と、この固定子の内側に回転自在に配置された回転子とを備え、前記固定子は、電機子巻線を持つ固定子鉄心を有し、前記回転子は、永久磁石が装着されると共に冷媒が通る冷却穴が形成された回転子鉄心を有し、前記永久磁石は、前記回転子鉄心の外周部に沿って周方向に等間隔をおいて設定された複数の所定箇所においてそれぞれ二個1組にして設けられ、これら二個1組の永久磁石は回転子鉄心の外周部に向かって開くV字状を成すように配置され、前記回転鉄心において、前記二個1組の永久磁石とそれに隣接する他の二個1組の永久磁石とで挟まれた部分を磁化容易な磁極部とし、前記二個1組の永久磁石の両永久磁石にて挟まれた部分を磁化困難な磁極間部とし、前記冷却穴は、前記磁極部の中心を半径方向に通る線上にその中心線が一致する位置に形成され、かつ、前記冷却穴は、前記回転鉄心の外周側に向かって凸となり、前記回転子鉄心の内周側に対向する部位該回転子鉄心の内周側に向かって凸となる円弧状となり、かつ、当該円弧状部分の端部が前記外周側の凸形状部分と角なく連続する断面形状を有するように形成されていることを特徴とする。
In order to achieve the above object, a rotating electrical machine according to the present invention includes an annular stator and a rotor rotatably disposed inside the stator, and the stator includes an armature winding. The rotor has a rotor core in which a permanent magnet is mounted and a cooling hole through which a coolant passes is formed, and the permanent magnet extends along the outer periphery of the rotor core. In each of a plurality of predetermined locations set at equal intervals in the circumferential direction, two sets are provided as a set, and each set of two permanent magnets has a V-shape that opens toward the outer periphery of the rotor core. are arranged to form, in the rotary stator core, and the two pair of permanent magnets and easy pole portion magnetized portion sandwiched between the other two pair of permanent magnets adjacent thereto, the two The part between a pair of permanent magnets, which is difficult to magnetize the part sandwiched between both permanent magnets And, wherein the cooling hole is formed at a position where the center line on a line passing through the center of the magnetic pole portion in the radial direction coincides, and wherein the cooling holes becomes convex toward the outer periphery of the rotating stator core, portion facing the inner peripheral side of the front SL rotor core Ri Do arcuate to be convex toward the inner peripheral side of the rotor core, and a convex shape of the end portion of the arcuate portion is the outer circumferential side It is formed so as to have a cross-sectional shape that is continuous with the portion without corners .

また、本発明に係る他の回転電機は、環状の固定子と、この固定子の内側に回転自在に配置された回転子とを備え、前記固定子は、電機子巻線を持つ固定子鉄心を有し、前記回転子は、永久磁石が装着された回転子鉄心を有し、前記永久磁石が前記回転子の軸方向に延びる間隙を有するように分割されると共に前記間隙を冷媒が通る冷却流路としたことを特徴としている。
また、本発明に係る他の回転電機は、環状の固定子と、この固定子の内側に回転自在に配置された回転子とを備え、前記固定子は、電機子巻線を持つ固定子鉄心を有し、前記回転子は、空洞が形成され、前記空洞に永久磁石が挿入されている回転子鉄心を有し、前記永久磁石が前記回転子の軸方向に延びる間隙を有するように分割されると共に前記間隙を冷媒が通る冷却流路とし、前記空洞の両端部には、前記永久磁石の存在しない空隙を形成し、前記空洞の一方の端部から前記冷却流路を通って前記空洞の他方の端部に至るバイパス冷却流路を形成したことを特徴としている。
In addition, another rotating electrical machine according to the present invention includes an annular stator and a rotor rotatably disposed inside the stator, and the stator has a stator core having an armature winding. The rotor has a rotor core on which a permanent magnet is mounted, and the permanent magnet is divided so as to have a gap extending in the axial direction of the rotor, and the coolant passes through the gap. It is characterized by having a flow path.
In addition, another rotating electrical machine according to the present invention includes an annular stator and a rotor rotatably disposed inside the stator, and the stator has a stator core having an armature winding. The rotor has a rotor core in which a cavity is formed and a permanent magnet is inserted into the cavity, and the permanent magnet is divided so as to have a gap extending in the axial direction of the rotor. In addition, a cooling flow path through which the refrigerant passes is formed, and a gap where the permanent magnet does not exist is formed at both ends of the cavity, and the cavity passes through the cooling flow path from one end of the cavity. It is characterized in that a bypass cooling flow path reaching the other end is formed.

また、本発明に係る他の回転電機は、環状の固定子と、この固定子の内側に回転自在に配置された回転子とを備え、前記固定子は、電機子巻線を持つ固定子鉄心を有し、前記回転子は、永久磁石が挿入される空洞を有すると共にこの空洞の内面と前記永久磁石との間に熱伝導性シートを介在させたことを特徴としている。   In addition, another rotating electrical machine according to the present invention includes an annular stator and a rotor rotatably disposed inside the stator, and the stator has a stator core having an armature winding. The rotor has a cavity into which a permanent magnet is inserted, and a heat conductive sheet is interposed between the inner surface of the cavity and the permanent magnet.

また、本発明に係る他の回転電機は、環状の固定子と、この固定子の内側に回転自在に配置された回転子とを備え、前記固定子は、電機子巻線を持つ固定子鉄心を有し、前記回転子は、軸方向に延びる空洞と、この空洞の内面に接するように挿入された永久磁石とを有し、前記空洞における前記永久磁石が接する内面に軸方向に延びると共に冷媒が通る溝状の冷却流路を設けたことを特徴としている。   In addition, another rotating electrical machine according to the present invention includes an annular stator and a rotor rotatably disposed inside the stator, and the stator has a stator core having an armature winding. And the rotor includes a cavity extending in the axial direction and a permanent magnet inserted so as to contact the inner surface of the cavity, and extends in the axial direction to the inner surface of the cavity where the permanent magnet is in contact with the refrigerant. It is characterized by providing a groove-like cooling flow path through which.

また、本発明に係る他の回転電機は、環状の固定子と、この固定子の内側に回転自在に配置された回転子とを備え、前記固定子は、電機子巻線を持つ固定子鉄心を有し、前記回転子は、永久磁石が装着されると共に冷媒が通る冷却穴が形成された環状の回転子鉄心を有し、前記冷却穴における前記回転子鉄心の内周側に対向する部位が、前記回転子鉄心の内周側に向かって凸となる断面円弧状を呈していることを特徴としている。   In addition, another rotating electrical machine according to the present invention includes an annular stator and a rotor rotatably disposed inside the stator, and the stator has a stator core having an armature winding. And the rotor has an annular rotor core on which a permanent magnet is mounted and a cooling hole through which a refrigerant passes. The rotor hole is opposed to the inner peripheral side of the rotor core. However, it is characterized by exhibiting the cross-sectional arc shape which becomes convex toward the inner peripheral side of the said rotor core.

また、本発明に係る他の回転電機は、環状の固定子と、この固定子の内側に回転自在に配置された回転子とを備え、前記固定子は、電機子巻線を持つ固定子鉄心を有し、前記回転子は、永久磁石が装着されると共に冷媒が通る冷却穴が形成された環状の回転子鉄心を有し、前記冷却穴における前記回転子鉄心の内周側に対向する部位が、前記回転子鉄心の外周側に向かって凸となると共に前記回転子鉄心の内周面と略平行となるように形成されていることを特徴としている。   In addition, another rotating electrical machine according to the present invention includes an annular stator and a rotor rotatably disposed inside the stator, and the stator has a stator core having an armature winding. And the rotor has an annular rotor core on which a permanent magnet is mounted and a cooling hole through which a refrigerant passes. The rotor hole is opposed to the inner peripheral side of the rotor core. Is formed so as to be convex toward the outer peripheral side of the rotor core and to be substantially parallel to the inner peripheral surface of the rotor core.

また、本発明に係る他の回転電機は、環状の固定子と、この固定子の内側に回転自在に配置された環状の回転子と、この回転子の内側に配置された回転子シャフトとを備え、前記固定子は、電機子巻線を持つ固定子鉄心を有し、前記回転子は、永久磁石が装着された環状の回転子鉄心と、その内周面から外周側に向かって凸となる断面形状の切欠部とを有しており、この切欠部と前記回転子シャフトの外周面とにより冷媒流路を形成していることを特徴としている。   Further, another rotating electrical machine according to the present invention includes an annular stator, an annular rotor that is rotatably disposed inside the stator, and a rotor shaft that is disposed inside the rotor. The stator has a stator core having an armature winding, and the rotor has an annular rotor core on which a permanent magnet is mounted and a convex shape from the inner peripheral surface toward the outer peripheral side. And a cutout portion having a cross-sectional shape, and a refrigerant flow path is formed by the cutout portion and the outer peripheral surface of the rotor shaft.

また、本発明に係る他の回転電機は、環状の固定子と、この固定子の内側に回転自在に配置された環状の回転子と、この回転子の内側に配置された回転子シャフトとを備え、前記固定子は、電機子巻線を持つ固定子鉄心を有し、前記回転子は、永久磁石が装着された環状の回転子鉄心を有し、前記回転子シャフトは、その外周面から中心側に向かって凸となる断面形状の切欠部を有しており、この切欠部と前記回転子鉄心の内周面とにより冷媒流路を形成していることを特徴としている。   Further, another rotating electrical machine according to the present invention includes an annular stator, an annular rotor that is rotatably disposed inside the stator, and a rotor shaft that is disposed inside the rotor. The stator has a stator core having an armature winding, the rotor has an annular rotor core on which a permanent magnet is mounted, and the rotor shaft extends from an outer peripheral surface thereof. A notch having a cross-sectional shape that protrudes toward the center side is formed, and a refrigerant flow path is formed by the notch and the inner peripheral surface of the rotor core.

本発明に係る他の回転電機は、環状の固定子と、この固定子の内側に回転自在に配置された環状の回転子と、この回転子の内側に配置された回転子シャフトとを備え、前記固定子は、電機子巻線を持つ固定子鉄心を有し、前記回転子は、永久磁石が装着された環状の回転子鉄心を有し、前記回転子シャフトは、その外周面から中心側に向かって凸となる断面形状の切欠部を有し、前記回転子鉄心は、その内周面から外周側に向かって凸となる断面形状の切欠部を有しており、前記回転子シャフトの切欠部と前記回転子鉄心の切欠部とが互いに対向することにより冷媒流路を形成していることを特徴としている。   Another rotating electrical machine according to the present invention includes an annular stator, an annular rotor that is rotatably disposed inside the stator, and a rotor shaft that is disposed inside the rotor, The stator has a stator core having armature windings, the rotor has an annular rotor core on which a permanent magnet is mounted, and the rotor shaft is centered from the outer peripheral surface thereof. The rotor iron core has a cross-sectional notch that is convex from the inner peripheral surface toward the outer peripheral side, and the rotor shaft The notch part and the notch part of the rotor core face each other to form a refrigerant flow path.

本発明によれば、高速回転に耐えうる回転子強度を確保しつつ冷却性能を向上させ、小型で高トルク、高出力を得ることができると共に、信頼性の向上を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, while ensuring the rotor intensity | strength which can endure high speed rotation, a cooling performance can be improved, high torque and high output can be obtained with small size, and reliability can be improved.

以下、本発明の一実施形態を図面に基づいて説明する。図1は本発明の第1の実施形態の半径方向断面図である。図1において、1は固定子であり、その内側には回転子2が設けられている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a radial cross-sectional view of a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a stator, and a rotor 2 is provided inside thereof.

固定子1は、環状の電磁鋼板を複数枚積層することにより構成された固定子鉄心3を有しており、その内周側には、電機子巻線4を収容する固定子スロット5が周方向に間隔をおいて複数個形成され、それらの間には回転子2に対向する固定子ティース6が形成されている。   The stator 1 has a stator core 3 formed by laminating a plurality of annular electromagnetic steel plates, and a stator slot 5 for accommodating an armature winding 4 is provided on the inner peripheral side thereof. A plurality of stator teeth 6 are formed at intervals in the direction and opposed to the rotor 2.

図2は図1の一部拡大図である。回転子2は、固定子ティース6との間に間隙を介して固定子1の内側に配置され、環状の回転子鉄心7と、その外周部に沿って装着された複数個の板状の永久磁石8とを有している。   FIG. 2 is a partially enlarged view of FIG. The rotor 2 is disposed inside the stator 1 with a gap between it and the stator teeth 6, and has an annular rotor core 7 and a plurality of plate-like permanent members mounted along the outer periphery thereof. And a magnet 8.

この永久磁石8は、回転子鉄心7の外周部に沿って周方向に等間隔をおいて設定された複数の所定箇所においてそれぞれ二個ずつ設けられ、これら二個の永久磁石8は回転子鉄心7の外周部に向かって開くV字状を成すように配置されている。   Two permanent magnets 8 are provided in each of a plurality of predetermined locations set at equal intervals in the circumferential direction along the outer peripheral portion of the rotor core 7, and the two permanent magnets 8 are provided in the rotor core 8. 7 is arranged so as to form a V-shape that opens toward the outer peripheral portion of 7.

回転子鉄心7は、環状の電磁鋼板を複数枚積層することにより構成され、その回転軸を中心とした円周方向に磁化容易方向と磁化困難方向とが交互に形成されている。回転子2は、固定子鉄心3に保持された電機子巻線4を流れる電流による回転磁界によって回転軸を中心に回転する。   The rotor core 7 is configured by laminating a plurality of annular electromagnetic steel plates, and easy magnetization directions and difficult magnetization directions are alternately formed in a circumferential direction around the rotation axis. The rotor 2 rotates around the rotation axis by a rotating magnetic field generated by a current flowing through the armature winding 4 held by the stator core 3.

回転子鉄心7には、リラクタンストルクを発生する磁束の流れに沿うように空洞12を軸方向に設けてあり、この空洞12に挿入された永久磁石8によって、磁極Pを前記磁束に対して交差する方向に通る電機子巻線4の磁束が打ち消され、磁極端部の漏れ磁界が抑制されて回転子鉄心7の周方向に磁気的に凹凸が形成されている。 The rotor core 7 is provided with a cavity 12 in the axial direction so as to follow the flow of magnetic flux that generates reluctance torque. The permanent magnet 8 inserted into the cavity 12 crosses the magnetic pole P with the magnetic flux. The magnetic flux of the armature winding 4 passing in the direction to be canceled out, the leakage magnetic field at the end of the magnetic pole is suppressed, and unevenness is formed magnetically in the circumferential direction of the rotor core 7.

また、回転子鉄心7には、外周側に向かって凸となる断面形状の冷却穴9が設けられている。この冷却穴9は回転子2の軸方向に延びており、内部には冷媒が流通する。なお、この冷却穴9における回転子鉄心7の内周側に対向する部位は、回転子鉄心7の内周側に向かって凸となる断面円弧状を呈している。   The rotor core 7 is provided with a cooling hole 9 having a cross-sectional shape that is convex toward the outer peripheral side. The cooling hole 9 extends in the axial direction of the rotor 2, and refrigerant flows through the cooling hole 9. A portion of the cooling hole 9 that faces the inner peripheral side of the rotor core 7 has an arcuate cross-sectional shape that is convex toward the inner peripheral side of the rotor core 7.

また、回転子2の外径をD、回転子2の最高回転数をN、並びに冷却穴9と回転子2の内周との間の部位の径方向厚みをTiとしたとき、回転子の外径周速=(π×D×N)/60で厚さTiを除した比が1.5×10−4となるように冷却穴9が配置されている。 Further, when the outer diameter of the rotor 2 is D, the maximum rotational speed of the rotor 2 is N, and the radial thickness of the portion between the cooling hole 9 and the inner periphery of the rotor 2 is Ti, The cooling hole 9 is arranged so that the ratio of the outer peripheral diameter = (π × D × N) / 60 and the thickness Ti is 1.5 × 10 −4 .

また、図2に示すように、回転子2の磁極Pにおける永久磁石8間の距離をWpとし、永久磁石8とその内側に配置された冷却穴9との間の最小距離をWmとしたときに、WmをWpで除した比が0.60となるように冷却穴9が配置されている。   As shown in FIG. 2, when the distance between the permanent magnets 8 in the magnetic pole P of the rotor 2 is Wp, and the minimum distance between the permanent magnet 8 and the cooling hole 9 disposed inside thereof is Wm. In addition, the cooling holes 9 are arranged so that a ratio obtained by dividing Wm by Wp is 0.60.

次に、本実施形態の作用について説明する。回転子鉄心7内を流れる磁束は、磁極Pの外周側から磁極Pの永久磁石8間の部位を通り、永久磁石8と冷却穴9との間を通って隣の磁極へと流れる。   Next, the operation of this embodiment will be described. The magnetic flux flowing in the rotor iron core 7 flows from the outer peripheral side of the magnetic pole P through the portion between the permanent magnets 8 of the magnetic pole P, and flows between the permanent magnet 8 and the cooling hole 9 to the adjacent magnetic pole.

冷却穴9は、回転子2の外周側に向かって凸となる形状となっているため、回転子鉄心7内の磁束の流れを阻害することなく、断面積を確保することができる。また、冷却穴9における回転子鉄心7の内周側に対向する部位は、回転子鉄心7の内周側に向かって凸となる断面円弧状を呈しており、曲率半径が大きいため、応力が集中しにくい。これにより、回転子鉄心7の強度を確保することができ、信頼性が向上する。   Since the cooling hole 9 has a convex shape toward the outer peripheral side of the rotor 2, a cross-sectional area can be ensured without hindering the flow of magnetic flux in the rotor core 7. Further, the portion of the cooling hole 9 that faces the inner peripheral side of the rotor core 7 has a circular arc shape that is convex toward the inner peripheral side of the rotor core 7 and has a large radius of curvature, so that stress is applied. Difficult to concentrate. Thereby, the intensity | strength of the rotor core 7 can be ensured and reliability improves.

図3は、回転子鉄心7の内径側肉厚Ti/回転子2の外径周速と、回転子鉄心7の強度係数(安全率)との関係を示すグラフである。   FIG. 3 is a graph showing the relationship between the inner diameter side thickness Ti of the rotor core 7 / the outer peripheral speed of the rotor 2 and the strength coefficient (safety factor) of the rotor core 7.

回転子鉄心7の強度係数(安全率)は、回転遠心力により回転子鉄心7内に発生する最大の応力に対し、回転子鉄心7の材料強度(許容応力)がどの程度であるかを示す指標(強度安全率)であり、1.0以上とする必要がある。   The strength coefficient (safety factor) of the rotor core 7 indicates how much the material strength (allowable stress) of the rotor core 7 is relative to the maximum stress generated in the rotor core 7 by the rotational centrifugal force. It is an index (strength safety factor) and should be 1.0 or more.

図3に示すように、内径側肉厚Tiを回転子2の外径周速(π×D×N/60)で除した数値を増加、すなわち回転子2の外径周速に対し、内径側肉厚Tiの割合を大きくすると、回転子鉄心7の強度係数(安全率)も大きくなっており、回転子2の外径周速に対する内径側肉厚Tiの比が1.5×10−4のときには、回転子鉄心7の強度係数(安全率)が1.0となることが判る。 As shown in FIG. 3, the numerical value obtained by dividing the inner diameter side thickness Ti by the outer circumferential speed (π × D × N / 60) of the rotor 2 is increased, that is, the inner diameter is larger than the outer circumferential speed of the rotor 2. When the ratio of the side wall thickness Ti is increased, the strength coefficient (safety factor) of the rotor core 7 is also increased, and the ratio of the inner diameter side wall thickness Ti to the outer peripheral speed of the rotor 2 is 1.5 × 10 −. When 4 , the strength coefficient (safety factor) of the rotor core 7 is 1.0.

従って、回転子2の外径寸法、最高回転数、及び回転子鉄心7の材料強度を固定した場合、回転子鉄心7の強度を確保するために必要な最小のTiとなるときの回転子2の外径周速に対するTiの比は1.5×10−4であることが判る。 Therefore, when the outer diameter of the rotor 2, the maximum rotation speed, and the material strength of the rotor core 7 are fixed, the rotor 2 when the minimum Ti necessary for securing the strength of the rotor core 7 is obtained. It can be seen that the ratio of Ti to the outer circumferential speed of the steel is 1.5 × 10 −4 .

また、図4に、永久磁石8と冷却穴9との間の最小距離Wm/磁極Pにおける永久磁石8間の距離Wpと、トルク係数との関係を示す。トルク係数は、回転電機の仕様として必要とされるトルクに対する回転電機発生可能トルクの割合を示しており、回転電機の性能を評価する上で重要な指標である。このトルク係数は1.0以上とする必要がある。   FIG. 4 shows the relationship between the torque coefficient and the minimum distance Wm between the permanent magnet 8 and the cooling hole 9 / the distance Wp between the permanent magnets 8 at the magnetic pole P. The torque coefficient indicates the ratio of the torque that can be generated by the rotating electrical machine to the torque required as the specification of the rotating electrical machine, and is an important index for evaluating the performance of the rotating electrical machine. This torque coefficient needs to be 1.0 or more.

図4に示すように、Wpに対するWmの比を増加させたとき、それに伴ってトルク係数も大きくなり、Wpに対するWmの比を0.60としたとき、トルク係数が1.0となることが判る。従って、Wpを固定した場合、回転電機の必要トルクを発生するために必要な最小のWmとなるときのWpに対するWmの比は0.60であることが判る。   As shown in FIG. 4, when the ratio of Wm to Wp is increased, the torque coefficient increases accordingly, and when the ratio of Wm to Wp is 0.60, the torque coefficient may be 1.0. I understand. Therefore, it can be seen that when Wp is fixed, the ratio of Wm to Wp when the minimum Wm necessary for generating the required torque of the rotating electrical machine is 0.60 is 0.60.

本実施形態によれば、冷却穴9を外周側に向かって凸となる形状することにより、回転子鉄心7内の磁束の流れを阻害することなく、且つ効果的に冷却穴9の断面積を確保(増やす)することができるため、回転子鉄心7内の冷却する伝熱面積、及び冷媒(例えば冷却油)の流量を増やすことができ、冷却性能を高めることができる。   According to the present embodiment, by forming the cooling hole 9 to be convex toward the outer peripheral side, the cross-sectional area of the cooling hole 9 can be effectively reduced without hindering the flow of magnetic flux in the rotor core 7. Since it can be ensured (increased), the heat transfer area to be cooled in the rotor core 7 and the flow rate of the refrigerant (for example, cooling oil) can be increased, and the cooling performance can be enhanced.

また、冷却穴9の断面積を効果的に確保できることから、回転子鉄心7の質量を低減することができ、回転遠心力による応力を抑制することが可能となり、信頼性が向上する。   Moreover, since the cross-sectional area of the cooling hole 9 can be effectively ensured, the mass of the rotor core 7 can be reduced, the stress due to the rotational centrifugal force can be suppressed, and the reliability is improved.

また、同様に回転子鉄心7の質量低減により、回転子2の回転慣性力も小さくすることができることから、回転電機の回転制御性が向上し、駆動システムとしての加減速特性、制御を含めた信頼性が向上する。   Similarly, since the rotational inertia force of the rotor 2 can be reduced by reducing the mass of the rotor core 7, the rotational controllability of the rotating electrical machine is improved, and the reliability including acceleration / deceleration characteristics and control as a drive system is improved. Improves.

また、回転子2の外径周速に対する内径側肉厚Tiの比を1.5×10−4以上とすることにより、回転子2の強度係数(安全率1.0)を確保することができるため、回転子2の破損などの恐れがなくなり、信頼性が向上する。 Moreover, the strength factor (safety factor 1.0) of the rotor 2 can be ensured by setting the ratio of the inner diameter side thickness Ti to the outer diameter peripheral speed of the rotor 2 to 1.5 × 10 −4 or more. Therefore, there is no risk of the rotor 2 being damaged, and the reliability is improved.

加えて、回転子2の外径周速に対する内径側肉厚Tiの比を1.5×10−4とし、回転子鉄心7の強度を確保するために必要な最小の内径側肉厚Tiとすることにより、冷却穴9の断面積を大きくとることが可能となり、回転子2の質量の低減による燃費向上、並びに冷却性能、駆動システムの制御性を高めることができ、信頼性が向上する。 In addition, the ratio of the inner diameter side thickness Ti to the outer diameter peripheral speed of the rotor 2 is 1.5 × 10 −4, and the minimum inner diameter side thickness Ti necessary for securing the strength of the rotor core 7 is As a result, the cross-sectional area of the cooling hole 9 can be increased, and the fuel efficiency can be improved by reducing the mass of the rotor 2, the cooling performance and the controllability of the drive system can be improved, and the reliability is improved.

また、磁極幅Wpに対する永久磁石8と冷却穴9間の最小距離Wmの比を0.60以上とすることにより、トルク係数を1.0以上とすることができ、回転電機としての必要トルクを確保することが可能となる。加えて、磁極における永久磁石8間の距離Wpに対する永久磁石8と冷却穴9間の最小距離Wmの比を0.60とし、回転電機の必要トルクを発生するために必要な永久磁石8と冷却穴9間の最小距離Wmとすることで、同様に冷却穴9の断面積を大きくとることが可能となり、回転子2の質量の低減による燃費向上、並びに冷却性能、駆動システムの制御性を高めることができ、信頼性が向上する。   Further, by setting the ratio of the minimum distance Wm between the permanent magnet 8 and the cooling hole 9 to the magnetic pole width Wp to be 0.60 or more, the torque coefficient can be set to 1.0 or more, and the required torque as the rotating electric machine can be reduced. It can be secured. In addition, the ratio of the minimum distance Wm between the permanent magnet 8 and the cooling hole 9 to the distance Wp between the permanent magnets 8 in the magnetic pole is set to 0.60, and the permanent magnet 8 and the cooling required for generating the necessary torque of the rotating electrical machine. By setting the minimum distance Wm between the holes 9, it is possible to increase the cross-sectional area of the cooling holes 9 in the same manner, improving the fuel consumption by reducing the mass of the rotor 2, and improving the cooling performance and controllability of the drive system. Can improve reliability.

次に、本発明の第2の実施形態を説明する。図5は本発明の第2の実施形態の回転電機の半径方向断面拡大図である。なお、以下の各実施形態において、それ以前に説明した実施形態と同一又は類似の部分には同一の符号を用いてあり、重複する説明は省略してある。   Next, a second embodiment of the present invention will be described. FIG. 5 is an enlarged sectional view in the radial direction of the rotating electrical machine according to the second embodiment of the present invention. In the following embodiments, the same reference numerals are used for the same or similar parts as those of the previously described embodiments, and duplicate descriptions are omitted.

本実施形態では、各永久磁石8が回転子2の軸方向に延びる間隙10を有するように着磁方向と平行な方向に一対の部分8aに分割されると共に、分割した部分8a間の間隙10に熱伝導性及び剛性を有する材料で形成されたダクト11を間隙10の内面に接するように同軸状に配置して、その内部を冷媒が通る冷却流路としている。   In the present embodiment, each permanent magnet 8 is divided into a pair of portions 8a in a direction parallel to the magnetization direction so as to have a gap 10 extending in the axial direction of the rotor 2, and the gap 10 between the divided portions 8a. A duct 11 formed of a material having thermal conductivity and rigidity is arranged coaxially so as to be in contact with the inner surface of the gap 10, and a cooling flow path through which the refrigerant passes is provided.

このような構成によれば、永久磁石8を直接冷媒により冷却することができ、永久磁石8の温度上昇を抑制することができる。これにより、永久磁石8の温度上昇による磁束量低下を低減でき、トルク特性、効率等の回転電機の性能を向上することができる。また、熱減磁(不可逆減磁)による性能劣化の恐れが解消され、信頼性が向上する。   According to such a configuration, the permanent magnet 8 can be directly cooled by the refrigerant, and the temperature rise of the permanent magnet 8 can be suppressed. Thereby, the magnetic flux fall by the temperature rise of the permanent magnet 8 can be reduced, and the performance of the rotating electrical machine such as torque characteristics and efficiency can be improved. Further, the risk of performance deterioration due to thermal demagnetization (irreversible demagnetization) is eliminated, and reliability is improved.

加えて、永久磁石8を分割することにより、永久磁石8の回転遠心力により回転子鉄心7に加わる力を分散することができ、回転子鉄心7内の発生応力を低減することができる。   In addition, by dividing the permanent magnet 8, the force applied to the rotor core 7 by the rotational centrifugal force of the permanent magnet 8 can be dispersed, and the generated stress in the rotor core 7 can be reduced.

また、永久磁石8の分割した一対の部分8a間の間隙10にダクト11を配置し、その内部を冷却流路とすることで、所定の断面積の冷却流路を確保することができると共に、冷却流路を流れる冷媒の漏れ、回転遠心力等による冷媒流路の変形等を防ぐことができ、信頼性が向上する。   In addition, by arranging the duct 11 in the gap 10 between the pair of parts 8a divided by the permanent magnet 8 and using the inside as a cooling channel, a cooling channel with a predetermined cross-sectional area can be secured, Leakage of the refrigerant flowing through the cooling channel, deformation of the refrigerant channel due to rotational centrifugal force, and the like can be prevented, and reliability is improved.

次に、本発明の第3の実施形態を説明する。図6は本発明の第3の実施形態の回転電機の半径方向断面拡大図である。   Next, a third embodiment of the present invention will be described. FIG. 6 is an enlarged sectional view in the radial direction of the rotating electrical machine according to the third embodiment of the present invention.

本実施形態では、各永久磁石8が回転子2の軸方向に延びる間隙10を有するように着磁方向と垂直な方向に一対の部分8aに分割されると共に、分割した部分8a間の間隙10に熱伝導性を有する材料で形成されたダクト11を間隙10の内面に接するように配置して、その内部を冷媒が通る冷却流路としている。   In the present embodiment, each permanent magnet 8 is divided into a pair of portions 8a in a direction perpendicular to the magnetization direction so as to have a gap 10 extending in the axial direction of the rotor 2, and the gap 10 between the divided portions 8a. A duct 11 formed of a material having thermal conductivity is disposed so as to be in contact with the inner surface of the gap 10, and a cooling flow path through which the refrigerant passes is provided.

このように構成することで、第2の実施形態で述べた作用効果を得ることができるだけでなく、第2の実施形態に比べて永久磁石8を冷却するための伝熱面積をより大きくすることができるため、さらに永久磁石8の温度上昇を抑制し、温度上昇による永久磁石8の磁束量低下を格段に低減できることから、トルク特性、効率などの回転電機の性能をより向上することが可能となる。また、熱減磁(不可逆減磁)による性能劣化の恐れがより少なくなり、信頼性が格段に向上する。   By configuring in this way, not only the effects described in the second embodiment can be obtained, but also the heat transfer area for cooling the permanent magnet 8 can be made larger than in the second embodiment. Therefore, the temperature rise of the permanent magnet 8 can be further suppressed, and the decrease in the magnetic flux amount of the permanent magnet 8 due to the temperature rise can be remarkably reduced, so that the performance of the rotating electrical machine such as torque characteristics and efficiency can be further improved. Become. In addition, there is less risk of performance deterioration due to thermal demagnetization (irreversible demagnetization), and the reliability is greatly improved.

次に、本発明の第4の実施形態を説明する。図7は本発明の第4の実施形態の回転電機の半径方向断面拡大図、図8は図7のA−A断面図である。   Next, a fourth embodiment of the present invention will be described. FIG. 7 is an enlarged sectional view in the radial direction of the rotating electric machine according to the fourth embodiment of the present invention, and FIG. 8 is a sectional view taken along the line AA in FIG.

この第4の実施形態では、図7に示すように、回転子鉄心7から永久磁石8の分割した一対の部分8a間に突出する突起7aを設け、この突起7aにより、各部分8aを回転子2の軸方向に直交する方向に移動しないように支持している。   In this 4th Embodiment, as shown in FIG. 7, the protrusion 7a which protrudes between the pair of parts 8a which the permanent magnet 8 divided | segmented from the rotor core 7 is provided, and each part 8a is made into a rotor by this protrusion 7a. It supports so that it may not move to the direction orthogonal to the axial direction of 2.

永久磁石8を挿入するために回転子鉄心7に形成された空洞12は、それぞれ回転子鉄心7の軸方向に延びると共に磁極間において回転子鉄心7の外周部に向かって開くV字状を成すようにスリット状に形成され、さらに両端部12a、12bが永久磁石8の端部から外方に突出して空隙を形成している。   The cavities 12 formed in the rotor core 7 for inserting the permanent magnets 8 extend in the axial direction of the rotor core 7 and form a V shape that opens toward the outer periphery of the rotor core 7 between the magnetic poles. Thus, both end portions 12a and 12b protrude outward from the end portion of the permanent magnet 8 to form a gap.

そして、空洞12の一方の端部12aから間隙10を通って空洞12の他方の端部12bに至るバイパス冷却流路13が設けられている。また、永久磁石8と空洞12の内面との間に熱伝導シート14を介在させている。   A bypass cooling flow path 13 extending from one end 12 a of the cavity 12 through the gap 10 to the other end 12 b of the cavity 12 is provided. Further, a heat conductive sheet 14 is interposed between the permanent magnet 8 and the inner surface of the cavity 12.

このような構成によれば、永久磁石8を支持するように回転子鉄心7から突出した突起7aを設けていることにより、製作時の永久磁石8の挿入位置決めが容易となり、さらには、永久磁石8を固定する接着剤等が劣化した場合でも、永久磁石8を確実に所定位置に保持することができる。したがって、永久磁石8の飛散、回転子2の破損の恐れが解消でき、信頼性が向上する。   According to such a configuration, by providing the projection 7a protruding from the rotor core 7 so as to support the permanent magnet 8, the insertion and positioning of the permanent magnet 8 at the time of manufacture becomes easy. Even when the adhesive or the like for fixing 8 is deteriorated, the permanent magnet 8 can be reliably held at a predetermined position. Therefore, the possibility of scattering of the permanent magnet 8 and the damage of the rotor 2 can be eliminated, and the reliability is improved.

また、永久磁石8間の間隙10の突起7a以外の部位は、冷媒が通る冷却流路となるため、冷却性能が向上する。   Moreover, since parts other than the protrusions 7a of the gap 10 between the permanent magnets 8 serve as cooling passages through which the refrigerant passes, the cooling performance is improved.

また、空洞12の一方の端部12aより他方の端部12bに通じるバイパス冷却流路13を形成していることにより、端部12aを流れる冷媒、例えば冷却油は、軸方向に流れると同時に回転遠心力によりバイパス冷却流路13を通って他方の端部12b並びに軸方向の下流側へ流れるため、永久磁石8における軸方向端部と比べて高温となる軸中央部を直接冷却することが可能となり、冷却性能が向上する。   Further, by forming a bypass cooling flow path 13 that leads from one end portion 12a of the cavity 12 to the other end portion 12b, a refrigerant that flows through the end portion 12a, for example, cooling oil, rotates simultaneously with flowing in the axial direction. Since the centrifugal force causes the bypass cooling flow path 13 to flow to the other end 12b and the downstream side in the axial direction, it is possible to directly cool the central portion of the shaft that is hotter than the axial end of the permanent magnet 8. Thus, the cooling performance is improved.

また、永久磁石8と空洞12の内面との間に、熱伝導性を有する材料から成る熱伝導シート14を挟みこむことにより、回転子鉄心7と永久磁石8との接触熱抵抗を小さくすることができ、冷却性能が向上する。加えて、回転遠心力が加わることにより、永久磁石8は、熱伝導シート14を介して空洞12の内面に押し付けられるため、永久磁石8、熱伝導シート14、空洞12の間の隙間が小さくなり、更に接触熱抵抗が小さくなって冷却性能が向上する。また、熱伝導シート14を設けたことで、永久磁石8から回転子鉄心2に加わる衝撃が緩和される。   Further, the contact thermal resistance between the rotor core 7 and the permanent magnet 8 is reduced by sandwiching a heat conductive sheet 14 made of a material having thermal conductivity between the permanent magnet 8 and the inner surface of the cavity 12. And the cooling performance is improved. In addition, by applying the rotational centrifugal force, the permanent magnet 8 is pressed against the inner surface of the cavity 12 via the heat conductive sheet 14, so the gap between the permanent magnet 8, the heat conductive sheet 14, and the cavity 12 is reduced. Furthermore, the contact thermal resistance is reduced, and the cooling performance is improved. Moreover, the impact applied to the rotor core 2 from the permanent magnet 8 is relieved by providing the heat conductive sheet 14.

なお、回転電機を駆動または発電するために固定子1の電機子巻き線4の電流によって形成される電磁界により、永久磁石8の着磁方向と逆方向の磁束が永久磁石8の磁極側外周角部8bに集中し、この角部8bに不可逆減磁を生じて磁束量が大幅に低下する。また、運転時に回転により固定子ティース6に対向する部位を回転子2が横切るときに発生する高調波電磁力によって、永久磁石8の磁極側外周角部8bに渦電流が発生し、発熱を生じるため、局所的な温度上昇により磁極側外周角部8bに熱減磁(不可逆減磁)が生じ、永久磁石8の磁束量が大幅に低下する。   Note that the magnetic flux in the direction opposite to the magnetization direction of the permanent magnet 8 is caused by the electromagnetic field formed by the current of the armature winding 4 of the stator 1 to drive or generate power in the rotating electric machine. Concentrating on the corner 8b, causing irreversible demagnetization in the corner 8b, the amount of magnetic flux is greatly reduced. Further, eddy currents are generated in the magnetic pole side outer peripheral corner 8b of the permanent magnet 8 by the harmonic electromagnetic force generated when the rotor 2 crosses the portion facing the stator teeth 6 due to rotation during operation, and heat is generated. Therefore, thermal demagnetization (irreversible demagnetization) occurs in the magnetic pole side outer peripheral corner portion 8b due to a local temperature rise, and the amount of magnetic flux of the permanent magnet 8 is significantly reduced.

本実施形態では、回転子鉄心7における磁極側外周角部8bに対向する部位に空隙(空洞12の端部12b)を設けていることにより、磁極側外周角部8bと回転子鉄心7とが接していない。したがって、磁気抵抗が大きくなり、電機子巻き線4によって形成される電磁界による永久磁石8の着磁方向と逆の磁束が流れにくくなり、不可逆減磁が生じる恐れを解消できる。加えて、この空隙に冷媒が流れることで、渦電流によって発熱する磁極側外周角部8bを直接冷却することができ、永久磁石8の熱減磁が生じる恐れが解消できる。   In the present embodiment, by providing a gap (end 12b of the cavity 12) in a portion of the rotor core 7 that faces the magnetic pole side outer peripheral corner 8b, the magnetic pole side outer peripheral corner 8b and the rotor core 7 are separated from each other. Not touching. Therefore, the magnetic resistance increases, and it becomes difficult for the magnetic flux opposite to the magnetization direction of the permanent magnet 8 due to the electromagnetic field formed by the armature winding 4 to flow, thereby eliminating the possibility of irreversible demagnetization. In addition, when the refrigerant flows through the gap, the magnetic pole side outer peripheral corner 8b that generates heat by eddy current can be directly cooled, and the possibility of thermal demagnetization of the permanent magnet 8 can be eliminated.

次に、本発明の第5の実施形態を説明する。図9は本発明の第5の実施形態の回転電機の半径方向断面拡大図である。   Next, a fifth embodiment of the present invention will be described. FIG. 9 is an enlarged sectional view in the radial direction of the rotating electrical machine according to the fifth embodiment of the present invention.

この第5の実施形態では、図9に示すように、永久磁石8を埋め込む空洞12における永久磁石8との内周側接触面に軸方向に延びる複数の溝状の冷却流路15を設けたことを特徴としている。   In the fifth embodiment, as shown in FIG. 9, a plurality of groove-like cooling flow paths 15 extending in the axial direction are provided on the inner peripheral side contact surface with the permanent magnet 8 in the cavity 12 in which the permanent magnet 8 is embedded. It is characterized by that.

このような構成によれば、冷却流路15に冷媒を流すことにより、永久磁石8を直接冷却することができるため、永久磁石8の温度上昇を抑制することができ、温度上昇による永久磁石の磁束量低下を低減でき、トルク特性、効率などの回転電機の性能を向上することが可能となる。また、熱減磁(不可逆減磁)による性能劣化の恐れが解消され、信頼性が向上する。   According to such a configuration, since the permanent magnet 8 can be directly cooled by flowing the refrigerant through the cooling flow path 15, the temperature increase of the permanent magnet 8 can be suppressed, and The decrease in the amount of magnetic flux can be reduced, and the performance of the rotating electrical machine such as torque characteristics and efficiency can be improved. Further, the risk of performance deterioration due to thermal demagnetization (irreversible demagnetization) is eliminated, and reliability is improved.

次に、本発明の第6の実施形態を説明する。   Next, a sixth embodiment of the present invention will be described.

図10は本発明の第6の実施形態の回転電機の半径方向断面拡大図、図11は図10のB−B断面図である。   FIG. 10 is an enlarged sectional view in the radial direction of the rotating electric machine according to the sixth embodiment of the present invention, and FIG. 11 is a sectional view taken along the line BB in FIG.

本実施形態では、図10に示すように、永久磁石8を埋め込む空洞12における外周側の内面に複数の溝状の冷却流路15を設けたことを特徴としている。   As shown in FIG. 10, the present embodiment is characterized in that a plurality of groove-like cooling channels 15 are provided on the inner surface on the outer peripheral side of the cavity 12 in which the permanent magnet 8 is embedded.

図11に示すように、この冷却流路15は、軸方向にジグザグで、互いに隣接する冷却流路15同士が連通した状態となっている。すなわち、軸方向に直交する方向にピッチP1をおいて形成された複数の第1の流路15aと、軸方向に直交する方向にピッチP2をおいて形成された複数の第2の流路15bとが軸方向に積み重ねられて複数の冷却流路15を形成している。   As shown in FIG. 11, the cooling flow path 15 is zigzag in the axial direction, and the cooling flow paths 15 adjacent to each other are in communication with each other. That is, a plurality of first flow paths 15a formed at a pitch P1 in a direction orthogonal to the axial direction, and a plurality of second flow paths 15b formed at a pitch P2 in a direction orthogonal to the axial direction. Are stacked in the axial direction to form a plurality of cooling channels 15.

このような構成によれば、永久磁石8を直接冷却することができる。特に、冷却流路15が軸方向にジグザグに形成されていることにより、直線状の場合と比べて伝熱面積を大幅に増加させることができるため、永久磁石8を冷却する性能が向上する。   According to such a configuration, the permanent magnet 8 can be directly cooled. In particular, since the cooling flow path 15 is formed in a zigzag shape in the axial direction, the heat transfer area can be greatly increased as compared with the case of the linear shape, so that the performance of cooling the permanent magnet 8 is improved.

したがって、永久磁石8の温度上昇による磁束量低下を低減でき、トルク特性、効率などの回転電機の性能を向上することが可能となる。また、熱減磁(不可逆減磁)による性能劣化の恐れが解消され、信頼性が向上する。   Therefore, the decrease in the amount of magnetic flux due to the temperature rise of the permanent magnet 8 can be reduced, and the performance of the rotating electrical machine such as torque characteristics and efficiency can be improved. Further, the risk of performance deterioration due to thermal demagnetization (irreversible demagnetization) is eliminated, and reliability is improved.

また、空洞12の外周側の内面に冷却流路15を設けたことで、その質量減により回転遠心力を小さくするのに有効で、回転子鉄心7に発生する応力を低減することができる。   Further, the provision of the cooling flow path 15 on the inner surface on the outer peripheral side of the cavity 12 is effective in reducing the rotational centrifugal force due to the mass reduction, and the stress generated in the rotor core 7 can be reduced.

次に、本発明の第7の実施形態を説明する。   Next, a seventh embodiment of the present invention will be described.

図12は本発明の第7の実施形態の回転電機の半径方向断面拡大図である。   FIG. 12 is an enlarged sectional view in the radial direction of the rotating electrical machine according to the seventh embodiment of the present invention.

本実施形態では、冷却穴9が断面三角形状に形成されると共に、この冷却穴9における回転子鉄心7の内周側に対向する辺9aが、回転子鉄心7の外周側に向かって凸となると共に回転子鉄心7の内周面と略平行となるように形成されている。   In the present embodiment, the cooling hole 9 is formed in a triangular cross section, and the side 9 a facing the inner peripheral side of the rotor core 7 in the cooling hole 9 is convex toward the outer peripheral side of the rotor core 7. And formed so as to be substantially parallel to the inner peripheral surface of the rotor core 7.

このような構成によれば、冷却穴9の辺9aと回転子鉄心7の内周面との間の部位の肉厚が全長にわたって均一となる。すなわち、図中のt、t、tが互いに等しくなる。これにより、この部位に発生する応力が均一となって応力集中が生じるのを避けることができるため、信頼性が向上する。 According to such a structure, the thickness of the site | part between the edge | side 9a of the cooling hole 9 and the internal peripheral surface of the rotor core 7 becomes uniform over a full length. That is, t 1 , t 2 , and t 3 in the figure are equal to each other. As a result, it is possible to avoid the occurrence of stress concentration due to uniform stress generated in this portion, and thus reliability is improved.

次に、本発明の第8の実施形態を説明する。   Next, an eighth embodiment of the present invention will be described.

図13は本発明の第8の実施形態の回転電機の半径方向断面拡大図である。   FIG. 13 is an enlarged sectional view in the radial direction of the rotating electrical machine according to the eighth embodiment of the present invention.

本実施形態では、回転子鉄心7が、各磁極Pに対応する箇所において、その内周面から外周側に向かって凸となる断面形状の切欠部16を有している。この切欠部16は、回転子鉄心7の軸方向に延びており、回転子鉄心7の内側に配置された回転子シャフト17の外周面とにより冷媒流路を形成している。   In the present embodiment, the rotor core 7 has a cutout portion 16 having a cross-sectional shape that protrudes from the inner peripheral surface toward the outer peripheral side at a location corresponding to each magnetic pole P. The notch 16 extends in the axial direction of the rotor core 7, and forms a refrigerant flow path with the outer peripheral surface of the rotor shaft 17 disposed inside the rotor core 7.

この冷媒流路の場合、上記の他の実施形態の冷却穴9と比べて、回転子鉄心7の強度を確保しやすいため、断面積を大きくすることができる。よって、冷却性能が向上する。また、冷却流路の断面積を大きくすることで質量が低減するため、制御性が向上すると共に、加減速特性が向上する。   In the case of this refrigerant flow path, the cross-sectional area can be increased because the strength of the rotor core 7 can be easily ensured as compared with the cooling holes 9 of the other embodiments described above. Therefore, the cooling performance is improved. Moreover, since mass is reduced by increasing the cross-sectional area of the cooling flow path, controllability is improved and acceleration / deceleration characteristics are improved.

次に、本発明の第9の実施形態を説明する。   Next, a ninth embodiment of the present invention will be described.

図14は本発明の第9の実施形態の回転電機の半径方向断面図である。   FIG. 14 is a radial cross-sectional view of a rotating electrical machine according to the ninth embodiment of the present invention.

本実施形態では、回転子鉄心7の内側に配置された回転子シャフト17が、各磁極に対応する箇所において、その外周面から中心側に向かって凸となる断面形状の切欠部18を有している。この切欠部18は、回転子鉄心7の軸方向に延びており、回転子鉄心7の内周面とにより冷媒流路を形成している。   In this embodiment, the rotor shaft 17 disposed inside the rotor core 7 has a cutout portion 18 having a cross-sectional shape that protrudes from the outer peripheral surface toward the center side at a location corresponding to each magnetic pole. ing. The notch 18 extends in the axial direction of the rotor core 7, and forms a coolant channel with the inner peripheral surface of the rotor core 7.

このような構成によれば、回転子鉄心7に切欠部や冷却穴を設けていないため、回転子鉄心7における発生応力を低減することができる。したがって、耐久性が向上して信頼性が向上する。   According to such a structure, since the notch part and the cooling hole are not provided in the rotor core 7, the generated stress in the rotor core 7 can be reduced. Therefore, durability is improved and reliability is improved.

次に、本発明の第10の実施形態を説明する。   Next, a tenth embodiment of the present invention will be described.

図14は本発明の第10の実施形態の回転電機の半径方向断面図である。   FIG. 14 is a radial cross-sectional view of a rotating electrical machine according to the tenth embodiment of the present invention.

本実施形態では、第9の実施形態の構成に加えて、回転子鉄心7にも、その内周面から外周側に向かって凸となる断面形状の切欠部19を設けている。この切欠部19は、回転子鉄心7の軸方向に延びており、回転子シャフト17の切欠部18と互いに対向することにより冷媒流路を形成している。   In the present embodiment, in addition to the configuration of the ninth embodiment, the rotor core 7 is also provided with a notch portion 19 having a cross-sectional shape that is convex from the inner peripheral surface toward the outer peripheral side. The notch 19 extends in the axial direction of the rotor core 7, and forms a coolant channel by facing the notch 18 of the rotor shaft 17.

このような構成によれば、冷媒流路の断面積を大きくすることができる。したがって、冷却性能が向上して信頼性が向上する。   According to such a configuration, the cross-sectional area of the refrigerant channel can be increased. Therefore, the cooling performance is improved and the reliability is improved.

なお、第1乃至第10の実施形態の構成を任意に組み合わせることにより、それぞれの単独の効果に加え、さらなる冷却性能の向上と回転子鉄心7内の発生応力の低減を図ることができ、信頼性を向上することができる。   In addition, by arbitrarily combining the configurations of the first to tenth embodiments, it is possible to improve the cooling performance and reduce the generated stress in the rotor core 7 in addition to the individual effects. Can be improved.

また、外周側に向かって凸となる冷却穴9の断面形状としては、上記の実施形態で示したもの以外の形状にしてもよい。図18は、そのような冷却穴9の断面形状の変形例を示している。   Further, the cross-sectional shape of the cooling hole 9 that protrudes toward the outer peripheral side may be a shape other than that shown in the above embodiment. FIG. 18 shows a modification of the cross-sectional shape of such a cooling hole 9.

その他にも、本発明の要旨を逸脱しない範囲で上記の各実施形態に種々の改変を施すことができる。   In addition, various modifications can be made to the above-described embodiments without departing from the gist of the present invention.

本発明の第1の実施形態の回転電機の半径方向断面図。The radial direction sectional view of the rotary electric machine of the 1st embodiment of the present invention. 図2の一部拡大断面図。The partially expanded sectional view of FIG. 回転子鉄心の内径側肉厚Ti/回転子の外径周速と回転子鉄心の強度係数(安全率)との関係を示すグラフ。The graph which shows the relationship between the inner diameter side thickness Ti of a rotor core / outer diameter peripheral speed of a rotor, and the strength coefficient (safety factor) of a rotor core. 永久磁石と冷却穴との間の最小距離Wm/磁極Pにおける永久磁石間の距離Wpとトルク係数との関係を示すグラフ。The graph which shows the relationship between the distance Wp between the permanent magnet in the minimum distance Wm / magnetic pole P between a permanent magnet and a cooling hole, and a torque coefficient. 本発明の第2の実施形態の回転電機の半径方向断面拡大図。The radial direction cross-section enlarged view of the rotary electric machine of the 2nd Embodiment of this invention. 本発明の第3の実施形態の回転電機の半径方向断面拡大図。The radial direction cross-section enlarged view of the rotary electric machine of the 3rd Embodiment of this invention. 本発明の第4の実施形態の回転電機の半径方向断面拡大図。The radial direction cross-section enlarged view of the rotary electric machine of the 4th Embodiment of this invention. 図7のA−A断面図。AA sectional drawing of FIG. 本発明の第5の実施形態の回転電機の半径方向断面拡大図。The radial direction cross-section enlarged view of the rotary electric machine of the 5th Embodiment of this invention. 本発明の第6の実施形態の回転電機の半径方向断面拡大図。The radial direction cross-section enlarged view of the rotary electric machine of the 6th Embodiment of this invention. 図10のB−B断面図。BB sectional drawing of FIG. 本発明の第7の実施形態の回転電機の半径方向断面拡大図。The radial direction cross-section enlarged view of the rotary electric machine of the 7th Embodiment of this invention. 本発明の第8の実施形態の回転電機の半径方向断面拡大図。The radial direction cross-section enlarged view of the rotary electric machine of the 8th Embodiment of this invention. 本発明の第9の実施形態の回転電機の半径方向断面図。Sectional drawing of radial direction of the rotary electric machine of the 9th Embodiment of this invention. 本発明の第10の実施形態の回転電機の半径方向断面拡大図。The radial direction cross-section enlarged view of the rotary electric machine of the 10th Embodiment of this invention. 従来の回転電機の半径方向断面図。Radial direction sectional drawing of the conventional rotary electric machine. 従来の回転電機の分解斜視図。The exploded perspective view of the conventional rotary electric machine. 冷却穴の断面形状の変形例を示す図。The figure which shows the modification of the cross-sectional shape of a cooling hole.

符号の説明Explanation of symbols

1:固定子
2:回転子
3:固定子鉄心
4:電機子巻線
6:エアギャップ
7:回転子鉄心
7a:突起
8:永久磁石
8b:磁極側外周角部
9:冷却穴
10:間隙
11:ダクト
12:空洞
12a:空洞の端部(空隙)
12b:空洞の端部(空隙)
13:バイパス冷却流路
14:熱伝導性シート
15:冷却流路
16:切欠部
17:回転子シャフト
18:切欠部
19:切欠部
1: Stator 2: Rotor 3: Stator core 4: Armature winding 6: Air gap 7: Rotor core 7a: Protrusion 8: Permanent magnet 8b: Magnetic pole side outer peripheral corner 9: Cooling hole 10: Gap 11 : Duct 12: Cavity 12a: End of cavity (gap)
12b: End of the cavity (void)
13: Bypass cooling channel 14: Thermally conductive sheet 15: Cooling channel 16: Notch 17: Rotor shaft 18: Notch 19: Notch

Claims (3)

環状の固定子と、この固定子の内側に回転自在に配置された回転子とを備え、
前記固定子は、電機子巻線を持つ固定子鉄心を有し、
前記回転子は、永久磁石が装着されると共に冷媒が通る冷却穴が形成された回転子鉄心を有し、
前記永久磁石は、前記回転子鉄心の外周部に沿って周方向に等間隔をおいて設定された複数の所定箇所においてそれぞれ二個1組にして設けられ、これら二個1組の永久磁石は回転子鉄心の外周部に向かって開くV字状を成すように配置され、
前記回転鉄心において、前記二個1組の永久磁石とそれに隣接する他の二個1組の永久磁石とで挟まれた部分を磁化容易な磁極部とし、前記二個1組の永久磁石の両永久磁石にて挟まれた部分を磁化困難な磁極間部とし、
前記冷却穴は、前記磁極部の中心を半径方向に通る線上にその中心線が一致する位置に形成され、かつ、
前記冷却穴は、前記回転鉄心の外周側に向かって凸となり、前記回転子鉄心の内周側に対向する部位該回転子鉄心の内周側に向かって凸となる円弧状となり、かつ、当該円弧状部分の端部が前記外周側の凸形状部分と角なく連続する断面形状を有するように形成されていることを特徴とする回転電機。
An annular stator, and a rotor rotatably disposed inside the stator,
The stator has a stator core having an armature winding,
The rotor has a rotor core in which a permanent magnet is mounted and a cooling hole through which a refrigerant passes is formed.
The permanent magnets are provided in pairs at a plurality of predetermined locations set at equal intervals in the circumferential direction along the outer peripheral portion of the rotor core. It is arranged to form a V shape that opens toward the outer periphery of the rotor core,
Wherein the rotating stator core, wherein the two pair of permanent magnets and easy pole portion magnetized portion sandwiched between the other two pair of permanent magnets adjacent thereto, of the two pair of permanent magnets The part sandwiched between both permanent magnets is the part between the magnetic poles, which is difficult to magnetize,
The cooling hole is formed at a position where the center line coincides with a line passing through the center of the magnetic pole portion in the radial direction, and
The cooling holes becomes convex toward the outer periphery of the rotating stator core, before and SL portion facing the inner circumferential side of the rotor core arc shape projecting toward the inner peripheral side of the rotor core And an end portion of the arcuate portion is formed so as to have a cross-sectional shape that is continuous with the convex portion on the outer peripheral side without any corners .
前記回転子の外径をD、最高回転数をN、並びに前記冷却穴と前記回転子の内周との間の部位の厚みをTiとしたとき、Ti×60/(π×D×N)≧1.5×10−4としたことを特徴とする請求項1記載の回転電機。 Ti × 60 / (π × D × N) where D is the outer diameter of the rotor, N is the maximum rotational speed, and Ti is the thickness of the portion between the cooling hole and the inner periphery of the rotor. The rotating electrical machine according to claim 1, wherein ≧ 1.5 × 10 −4 . 前記回転子鉄心の外周部に沿って形成される磁極における前記永久磁石間の距離をWp、前記永久磁石と前記冷却穴との間の最小距離をWmとしたとき、Wm/Wp≧0.60としたことを特徴とする請求項1記載の回転電機。   Wm / Wp ≧ 0.60, where Wp is the distance between the permanent magnets in the magnetic pole formed along the outer periphery of the rotor core, and Wm is the minimum distance between the permanent magnet and the cooling hole. The rotating electrical machine according to claim 1, wherein:
JP2006084126A 2005-09-07 2006-03-24 Rotating electric machine Active JP4660406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084126A JP4660406B2 (en) 2005-09-07 2006-03-24 Rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005259905 2005-09-07
JP2006084126A JP4660406B2 (en) 2005-09-07 2006-03-24 Rotating electric machine

Publications (3)

Publication Number Publication Date
JP2007104888A JP2007104888A (en) 2007-04-19
JP2007104888A5 JP2007104888A5 (en) 2008-05-15
JP4660406B2 true JP4660406B2 (en) 2011-03-30

Family

ID=38031255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084126A Active JP4660406B2 (en) 2005-09-07 2006-03-24 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP4660406B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104820A1 (en) * 2012-12-28 2014-07-03 주식회사 효성 Rotor for motor
US9935513B2 (en) 2013-04-22 2018-04-03 Mitsubishi Electric Corporation Rotating electrical machine
JP2019165593A (en) * 2018-03-20 2019-09-26 株式会社東芝 Rotary electric machine

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092579B2 (en) * 2007-06-26 2012-12-05 株式会社明電舎 Permanent magnet reluctance motor rotor
JP4757238B2 (en) * 2007-07-13 2011-08-24 アイシン・エィ・ダブリュ株式会社 Cooling structure and cooling method for rotating electrical machine
JP4424385B2 (en) * 2007-07-20 2010-03-03 トヨタ自動車株式会社 Rotating electric machine
US7791236B2 (en) * 2007-08-16 2010-09-07 Ford Global Technologies, Llc Permanent magnet machine
GB201008458D0 (en) 2010-05-20 2010-07-07 Switched Reluctance Drives Ltd Stress reduction in electrical machines
KR101692870B1 (en) * 2010-05-24 2017-01-06 학교법인 두원학원 Structure of driving part in electromotive scroll compressor
JP5038475B2 (en) * 2010-09-28 2012-10-03 本田技研工業株式会社 Rotor
FI20115076A0 (en) * 2011-01-26 2011-01-26 Axco Motors Oy Laminated rotor construction in a permanent magnet synchronous machine
JP5773196B2 (en) * 2011-07-19 2015-09-02 アイシン・エィ・ダブリュ株式会社 Rotating electric machine
JP5899716B2 (en) * 2011-09-02 2016-04-06 トヨタ自動車株式会社 Rotor structure of rotating electrical machine
JP5436525B2 (en) * 2011-12-05 2014-03-05 三菱電機株式会社 Electric motor
US9899897B2 (en) 2012-12-21 2018-02-20 Mitsubishi Electric Corporation Permanent magnet buried type electric motor and compressor
CN103973005A (en) * 2013-01-24 2014-08-06 艾默生环境优化技术(苏州)有限公司 Rotor and motor and compressor comprising same
JP2014176147A (en) * 2013-03-07 2014-09-22 Mitsubishi Electric Corp Permanent magnet dynamo-electric machine
JP2015089178A (en) 2013-10-29 2015-05-07 三菱電機株式会社 Rotary electric machine embedded with permanent magnet
US10211688B2 (en) 2014-06-06 2019-02-19 Komatsu Ltd. Electric machine
CN108141077B (en) 2015-10-06 2019-10-18 三菱电机株式会社 Rotating electric machine
JP2017077142A (en) * 2015-10-16 2017-04-20 株式会社エクセディ Rotary electric machine
JP6298086B2 (en) * 2016-02-24 2018-03-20 ファナック株式会社 Electric motor rotor and method of manufacturing the same
JP2019022404A (en) * 2017-07-21 2019-02-07 トヨタ自動車株式会社 Rotor for rotary electric machine
JP6755840B2 (en) * 2017-08-22 2020-09-16 株式会社東芝 Rotating machine
WO2019111374A1 (en) * 2017-12-07 2019-06-13 三菱電機株式会社 Rotor, electric machine, compressor, air conditioner, and method for manufacturing rotor
JP6651496B2 (en) * 2017-12-22 2020-02-19 本田技研工業株式会社 Rotating electric machine
JP6648774B2 (en) * 2018-03-22 2020-02-14 株式会社富士通ゼネラル Compressor
CN110365146A (en) * 2018-03-26 2019-10-22 株式会社安川电机 The assembly method of motor rotor, motor and motor rotor
JP7142072B2 (en) * 2020-11-02 2022-09-26 本田技研工業株式会社 Rotor of rotary electric machine
JP7435482B2 (en) 2021-01-07 2024-02-21 トヨタ自動車株式会社 Rotor for rotating electric machines
CN116806407A (en) * 2021-02-10 2023-09-26 尼得科株式会社 Rotary electric machine
JPWO2022219923A1 (en) * 2021-04-13 2022-10-20

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161035A (en) * 1990-10-19 1992-06-04 Sanyo Electric Co Ltd Squirrel-cage induction motor
JP2001025209A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Rotor of motor
JP2003018775A (en) * 2001-06-29 2003-01-17 Toshiba Corp Permanent magnet motor
JP2004173375A (en) * 2002-11-18 2004-06-17 Mitsui High Tec Inc Laminated core with permanent magnet
JP2005184957A (en) * 2003-12-18 2005-07-07 Toshiba Corp Permanent magnet type reluctance rotary electric machine
JP2005192365A (en) * 2003-12-26 2005-07-14 Honda Motor Co Ltd Motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161035A (en) * 1990-10-19 1992-06-04 Sanyo Electric Co Ltd Squirrel-cage induction motor
JP2001025209A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Rotor of motor
JP2003018775A (en) * 2001-06-29 2003-01-17 Toshiba Corp Permanent magnet motor
JP2004173375A (en) * 2002-11-18 2004-06-17 Mitsui High Tec Inc Laminated core with permanent magnet
JP2005184957A (en) * 2003-12-18 2005-07-07 Toshiba Corp Permanent magnet type reluctance rotary electric machine
JP2005192365A (en) * 2003-12-26 2005-07-14 Honda Motor Co Ltd Motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104820A1 (en) * 2012-12-28 2014-07-03 주식회사 효성 Rotor for motor
KR101426168B1 (en) 2012-12-28 2014-08-04 주식회사 효성 Rotator in motor
US9935513B2 (en) 2013-04-22 2018-04-03 Mitsubishi Electric Corporation Rotating electrical machine
JP2019165593A (en) * 2018-03-20 2019-09-26 株式会社東芝 Rotary electric machine
WO2019181001A1 (en) * 2018-03-20 2019-09-26 株式会社 東芝 Rotary electric machine
JP7166066B2 (en) 2018-03-20 2022-11-07 株式会社東芝 Rotating electric machine

Also Published As

Publication number Publication date
JP2007104888A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4660406B2 (en) Rotating electric machine
US7705503B2 (en) Rotating electrical machine
JP5288698B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP5238231B2 (en) Rotating electrical machine rotor
JP5502571B2 (en) Permanent magnet rotating electric machine
JP5157138B2 (en) Permanent magnet rotating electrical machine and wind power generation system
US8546990B2 (en) Permanent magnet synchronous rotating electric machine and rotor core
US7768170B2 (en) Rotary electric machine
EP2362523B1 (en) Rotating electrical machine
JP6042976B2 (en) Rotating electric machine
EP1643618B1 (en) Rotor for rotary electric machine
WO2011002043A1 (en) Permanent magnet type rotary electrical machine
JP2008131813A5 (en)
JPWO2009136574A1 (en) Rotating motor and blower using the same
JP5951131B2 (en) Rotating electric machine
JP2011139617A (en) Rotary electric machine
JP6025998B2 (en) Magnetic inductor type electric motor
JP2014155373A (en) Multi-gap rotary electric machine
JP6469964B2 (en) Permanent magnet rotating electric machine
JP2005328679A (en) Permanent magnet reluctance type rotating electric machine
JP2016129447A (en) Rotary electric machine
JP2019161828A (en) Rotary electric machine
JP2006333544A (en) Rotor, motor, compressor, blower, and air conditioner
JP6169496B2 (en) Permanent magnet rotating electric machine
JP5679695B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4660406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350