WO2011002043A1 - Permanent magnet type rotary electrical machine - Google Patents

Permanent magnet type rotary electrical machine Download PDF

Info

Publication number
WO2011002043A1
WO2011002043A1 PCT/JP2010/061206 JP2010061206W WO2011002043A1 WO 2011002043 A1 WO2011002043 A1 WO 2011002043A1 JP 2010061206 W JP2010061206 W JP 2010061206W WO 2011002043 A1 WO2011002043 A1 WO 2011002043A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor core
rotor
magnet
permanent
Prior art date
Application number
PCT/JP2010/061206
Other languages
French (fr)
Japanese (ja)
Inventor
盛幸 枦山
健太 金子
正哉 井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN2010800299189A priority Critical patent/CN102474142A/en
Priority to JP2011520971A priority patent/JPWO2011002043A1/en
Publication of WO2011002043A1 publication Critical patent/WO2011002043A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • the present invention relates to a rotating electrical machine such as a vehicular electric motor, and more particularly to a rotor structure of a rotating electrical machine in which a permanent magnet is disposed inside the rotor.
  • the permanent magnet type motor includes a motor with a surface magnet structure (SPMM: Surface Permanent Magnet Motor) in which a permanent magnet is attached to the surface of the rotor, and a motor with an embedded magnet structure in which the permanent magnet is embedded in the rotor.
  • SPMM Surface Permanent Magnet Motor
  • IPMM Interior Permanent Magnet Motor
  • This permanent magnet type reluctance rotating electric machine has a rotor in which two permanent magnets are embedded in a circumferential direction at predetermined intervals in order to form a magnetic salient pole portion in a rotor core, One end of each permanent magnet is located closer to the outer periphery so as to form a thin tip portion between the outer periphery of the rotor core and the other end is closer to the center side.
  • the chip portions are arranged so that the opening angle of the inner end angle of each chip portion is a predetermined electrical angle.
  • a permanent magnet having a weight of 1 to several kg is embedded in a rotor having a large outer size (ie, radius). Rotates at a rotational speed of about 6000 rpm. For this reason, in the case of the surface magnet structure, a mechanism for firmly holding the permanent magnet must be provided separately, and the configuration is difficult. For this reason, a permanent magnet type electric motor for an electric vehicle is often used with an embedded magnet structure. However, even with a permanent magnet type electric motor having an embedded magnet structure, it is a matter of course that the rotor is required to have a structure that only receives the centrifugal force generated in the permanent magnet.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a permanent magnet type rotating electrical machine that effectively suppresses generation of leakage magnetic flux while maintaining strength against centrifugal force.
  • a permanent magnet type rotating electric machine includes a stator having a stator coil housed in a slot, and the stator rotating through a rotation gap.
  • a rotor core that can be arranged, and a rotor in which three or more permanent magnets are embedded per pole in the rotor core, and the permanent magnet is embedded in the rotor core
  • the magnet insertion holes are arranged in a substantially U shape toward the outer peripheral surface of the rotor, and a cavity is formed in a side surface portion of the permanent magnet embedded in each of the magnet insertion holes.
  • FIG. 1 is a cross-sectional view of a permanent magnet type electric motor according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the rotor shown in FIG.
  • FIG. 3 is a partially enlarged view when a permanent magnet is not inserted.
  • FIG. 4 is a partially enlarged view when a permanent magnet is inserted.
  • FIG. 5 is a diagram for explaining the influence of the leakage flux of the permanent magnet.
  • FIG. 6 is a diagram illustrating a conventional example as a comparison target.
  • FIG. 7 is a diagram comparing the maximum stress generated in the magnet insertion hole between the prior art and the first embodiment.
  • FIG. 8 is a schematic cross-sectional view showing the structure of the rotor core according to the second embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing the structure of the rotor core according to the third embodiment of the present invention.
  • FIG. 10 is a partial enlarged view of the magnet insertion hole shown in FIG. 9 and a diagram for explaining the effect of the third embodiment.
  • FIG. 11 is a schematic cross-sectional view showing the structure of the rotor core according to the fourth embodiment of the present invention.
  • FIG. 12 is a diagram showing a modification of the configuration shown in FIG.
  • FIG. 13 is a schematic cross section which shows the structure of the rotor core concerning Embodiment 5 of this invention.
  • FIG. 14 is a diagram comparing the maximum stress generated in the magnet insertion hole between the first embodiment and the fifth embodiment.
  • FIG. 15 is a diagram showing a modification of the configuration shown in FIG. FIG.
  • FIG. 16 is a diagram showing another modification of the configuration shown in FIG.
  • FIG. 17 is a schematic cross-sectional view showing the structure of the rotor core according to the sixth embodiment of the present invention.
  • FIG. 18 is a schematic cross-sectional view showing the structure of the rotor core according to the seventh embodiment of the present invention.
  • FIG. 19 is a schematic cross-sectional view showing the structure of the rotor core according to the eighth embodiment of the present invention.
  • FIG. 20 is a cross-sectional view in the axial direction of a permanent magnet on both sides of the permanent magnet according to the ninth embodiment of the present invention.
  • FIG. 21 is a sectional view in the axial direction of a permanent magnet on the center side among the permanent magnets according to the ninth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a permanent magnet type electric motor that is an example of a permanent magnet type rotating electrical machine according to a first embodiment of the present invention
  • FIG. 2 shows the structure of a rotor in the permanent magnet type electric motor shown in FIG. It is a schematic cross section shown.
  • 3 and 4 are enlarged views of a portion indicated by a broken line in the rotor of FIG. 2
  • FIG. 3 is a partially enlarged view when a permanent magnet is not inserted
  • the permanent magnet type electric motor 1 includes a stator 2 and a rotor 5.
  • the stator 2 includes a stator core 3 having a cylindrical shape, and a stator coil 4 disposed so as to be wound around the stator core 3.
  • the stator core 3 is formed with slots 3a by intermittently forming teeth 3b on the inner peripheral side thereof, and the stator coil 4 has a conductor wire wound around the teeth 3b accommodated in each of the slots 3a. To be arranged.
  • the rotor 5 is produced by, for example, laminating and integrating a predetermined number of magnetic steel plates, the outer peripheral surface forms a cylindrical surface, and 18 magnet insertion holes 7 (see FIGS. 2 and 3) are arranged at an equiangular pitch.
  • magnet insertion holes 7 there are two magnet insertion holes 7a and 7c at both ends of one magnet insertion hole 7b. Further, six sets 7a to 7c of the magnet insertion holes 7 are arranged in a substantially U shape toward the outer peripheral surface of the rotor 5, as shown in FIG.
  • the permanent magnets 16 a to 16 c of the second set of permanent magnets are magnetized in a direction in which the direction of magnetic flux extends concentrically toward the center of the rotor 5.
  • the permanent magnet group magnetized in such a direction that the direction of the magnetic flux by the permanent magnet converges toward the outer peripheral surface of the rotor, and the center of the rotor Permanent magnet groups magnetized in a direction concentrically extending toward the part are arranged alternately.
  • the reason why the direction of magnetization by the permanent magnet group is configured as described above is to make the induced voltage of the stator coil sinusoidal, and in applications that do not require the induced voltage of the stator coil to be sinusoidal. This is not the case. That is, the magnetization directions of the permanent magnet groups magnetized in the direction toward the outer peripheral surface of the rotor or in the direction toward the center of the rotor may be parallel.
  • cavities 9 as shown in FIG. 4 (cavities 9a1 and 9a2 on both side surfaces of the permanent magnet 8a and permanent magnets 8b). Cavities 9b1 and 9b2 are formed on both side surface portions, and cavity portions 9c1 and 9c2) are formed on both side surface portions of the permanent magnet 8c. The effect of the hollow portion 9 will be described later.
  • 36 slots 3a are arranged at equiangular pitches in the circumferential direction of the stator 2, and 6-pole motors (1) in which 18 permanent magnets 8 are embedded in the circumferential direction of the rotor 5.
  • 6 slots per pole and 3 permanent magnets per pole) are shown as an example, but the number of poles of the motor, the number of slots, the number of permanent magnets, etc. are not limited to the configuration of FIG. Any number of selections are possible.
  • FIG. 5 is a diagram for explaining the influence of the leakage magnetic flux of the permanent magnet 8.
  • the magnetic flux generated by the permanent magnets 8a to 8c returns to the rotor core 6 again (not shown) after passing through the core back portion 15 (see FIG. 1) of the stator core 3.
  • a part of the magnetic flux does not go to the core back portion 15 but stays in the rotor core 6 and returns to the permanent magnet 8 as a loop.
  • There is a leakage flux 12 that becomes The leakage magnetic flux 12 does not contribute to torque and causes an increase in iron loss, so it is preferable to suppress it as much as possible.
  • the cavity portion on both sides of the magnet insertion hole 7 is more than the cavity other than both sides. I try to get bigger.
  • the hollow portions 9b1 and 9b2 generated by embedding the permanent magnet 8b in the magnet insertion hole 7b are approximately equal in size, and the hollow portion generated by embedding the permanent magnet 8a in the magnet insertion hole 7a.
  • the magnet insertion hole 7a is formed so that the hollow portion 9a1 is larger, and the hollow portions 9c1 and 9c2 generated by embedding the permanent magnet 8c in the magnet insertion hole 7c are the same as the hollow portion 9c2.
  • the magnet insertion hole 7c is formed so as to be larger.
  • the cavity portion (for example, the cavity portion 9a1) formed on the outer peripheral side of the rotor core 6 is the cavity portion (for example, the cavity portions 9a2 and 9b1) formed on the center side of the rotor core 6.
  • the shape of the magnet insertion hole 7 is formed to be a larger space.
  • the leakage magnetic flux 12 due to the permanent magnet 8 is generated by the bridge portion 10a formed between the permanent magnets 8a and 8b and the bridge portion formed between the permanent magnets 8b and 8c.
  • 10b and the bridge portions 11a and 11b respectively formed between the permanent magnets 8a and 8c and the outer peripheral surface of the rotor core 6 serve as magnetic flux paths. Therefore, it is possible to reduce the leakage flux by narrowing these magnetic flux paths.
  • the bridge portions 10a, 10b and 11a, 11b are traded off with the centrifugal force intensity.
  • the number of permanent magnets is divided into three to reduce the weight of each permanent magnet, and the three permanent magnets have a curvature as shown in the figure.
  • the bridge portions 10a, 10b and 11a, 11b can be made thinner than the conventional configuration, and the leakage magnetic flux passing through these bridge portions can be reduced. Reduction is possible.
  • FIG. 7 is a diagram showing the maximum stress generated in the magnet insertion hole in comparison with the conventional example and the first embodiment.
  • the conventional example is a value obtained by simulation of the maximum stress generated in the magnet insertion hole of the rotor disclosed in Patent Document 1.
  • the arrangement configuration of the permanent magnets in Patent Document 1 is as shown in FIG. 6, and the permanent magnets 108 are arranged in a substantially V shape in the rotor core 106.
  • the maximum stress of the conventional example is “1”
  • the maximum stress of the first embodiment is 0.55, which is 45% lower than the conventional example. Therefore, according to the rotor of the first embodiment, it is possible to effectively suppress the generation of leakage magnetic flux while maintaining the strength against centrifugal force.
  • the rotor of the first embodiment it is possible to further reduce the thickness under a condition where the strength against the centrifugal force is constant, so that the leakage magnetic flux can be further reduced.
  • FIG. FIG. 8 is a schematic cross-sectional view showing the structure of the rotor core according to the second embodiment of the present invention.
  • the permanent magnet 8 embedded in the magnet insertion hole 7 is exemplified by a substantially rectangular shape as shown in FIG. 4, for example, but the permanent magnet 8 of the second embodiment is as shown in FIG.
  • the corners on the outer peripheral surface side of the permanent magnets 8a ′ and 8c ′ located on both ends are chamfered.
  • the magnetic flux 13 flowing from a stator is linked to the permanent magnet 8 (in FIG. 8, the permanent magnet 8a ′) located on the outermost peripheral side of the rotor core 6.
  • the interlinkage magnetic flux 13 is in a direction opposite to the magnetization direction of the permanent magnet 8a ', so that the permanent magnet 8 is demagnetized and the torque is reduced.
  • the contribution to the rotor torque at the corner of the permanent magnet 8a ' is small. Therefore, if the corners of the permanent magnet 8 located on the outermost peripheral side of the rotor core 6 are chamfered, it is possible to effectively reduce the weight of the permanent magnet while suppressing a decrease in the rotor torque. Become.
  • the corners of the permanent magnet 8 positioned on the outermost peripheral side of the rotor core 6 are chamfered, and the magnet insertion hole 7 for inserting the permanent magnet 8 is described in the first embodiment. Therefore, the effect of the first embodiment for reducing the leakage magnetic flux can be maintained.
  • FIG. 9 is a schematic cross-sectional view showing the structure of the rotor core according to the third embodiment of the present invention.
  • FIG. 10 is a partially enlarged view of the magnet insertion hole shown in FIG. 9 and the effects of the third embodiment. It is a figure explaining.
  • the surface of the contact surface 14 which is a part of the contact surface with the permanent magnet 8 in the magnet insertion hole 7 is roughened. With such a structure of the contact surface 14, a frictional holding force against the centrifugal force generated in the permanent magnet 8 is obtained by the frictional force obtained by the contact between the permanent magnet 8 embedded in the magnet insertion hole 7 and the contact surface 14. And the permanent magnet can be easily held.
  • FIG. 11 is a schematic cross-sectional view showing the structure of the rotor core according to the fourth embodiment of the present invention.
  • the permanent magnet 8 embedded in the magnet insertion hole 7 is exemplified by a substantially rectangular shape as shown in FIG. 4, for example, but in the fourth embodiment, as shown in FIG.
  • a substantially trapezoidal one is used as the permanent magnet 8d located at the center.
  • the approximate trapezoidal shape here means that the contact surface of the permanent magnet 8 with the magnet insertion hole 7 is tapered so that the center portion side is wider than the outer peripheral portion side. .
  • centrifugal force increases when rotating at high speed or when the outer diameter of the rotor is large. For this reason, it is desired to increase the holding force of the central permanent magnet in which the influence of the centrifugal force appears most. Therefore, as shown in FIG. 11, if the shape of the permanent magnet 8d located at the center is a substantially trapezoidal shape, the permanent magnet 8d is embedded in the magnet insertion hole 7 in a wedge shape and resists centrifugal force. A force can be obtained by the structure of the rotor core 6 and the permanent magnet can be easily held.
  • the permanent magnets 8f and 8g at both ends are also substantially trapezoidal.
  • a bridge portion formed between the permanent magnets and a bridge formed between the permanent magnets at both ends and the outer peripheral surface of the rotor core 6 are formed.
  • the strength against centrifugal force at the portion can be improved.
  • the area (volume) of both the bridge portions can be further reduced, and the leakage flux and iron loss can be further reduced.
  • FIG. FIG. 13 is a schematic cross section which shows the structure of the rotor core concerning Embodiment 5 of this invention.
  • the configuration of the rotor core having three permanent magnets per pole as shown in FIG. 4 is exemplified.
  • the rotor core of the fifth embodiment as shown in FIG.
  • FIG. 14 is a diagram comparing the maximum stress generated in the magnet insertion hole between the first embodiment and the fifth embodiment.
  • the conventional example and the first embodiment are the same as those shown in FIG.
  • the maximum stress of the conventional example is “1”
  • the maximum stress of the fifth embodiment is 0.45, which is 55% lower than the conventional example. Even if compared with the first embodiment, there is a reduction effect of slightly less than 20% (1 ⁇ (0.45 / 0.55) ⁇ 0.19). Therefore, according to the rotor of the fifth embodiment, it is possible to obtain a further suppression effect of leakage magnetic flux generation while maintaining the strength against centrifugal force.
  • the permanent magnets 8h and 8i obtained by dividing the permanent magnet located in the central portion into two are illustrated as having a substantially rectangular shape as shown in FIG. 13, but FIG. 15 shows the permanent magnets 8j and 8k.
  • the contact surface on the permanent magnet side located at both ends may be a substantially trapezoidal shape with a tapered shape, or the other contact surface may have a substantially trapezoidal shape with a tapered shape as shown in FIG. Absent.
  • the permanent magnets 8a and 8c positioned at both ends are illustrated as having a substantially rectangular shape as shown in FIG. 13, but as shown as permanent magnets 8l and 8m in FIG.
  • the permanent magnet positioned at the position may be substantially trapezoidal.
  • the configuration of the rotor core having four permanent magnets per pole obtained by dividing the permanent magnet located in the central portion into two parts is illustrated.
  • the size of the permanent magnets located at both end portions is changed. Of course, it is possible.
  • the configuration of the rotor core having four permanent magnets per pole is exemplified, but it is of course possible to have a configuration having five or more permanent magnets per pole.
  • FIG. 17 is a schematic cross-sectional view showing the structure of the rotor core according to the sixth embodiment of the present invention.
  • the magnet insertion holes 7a to 7c as shown in FIGS. 3 and 4, for example, when the permanent magnets 8a to 8c are inserted into the respective magnet insertion holes 7a to 7c, 2 Magnet insertion holes (magnet insertion holes 7b in the examples of FIGS. 3 and 4) located not only on both side surfaces of the magnet insertion holes (magnet insertion holes 7a and 7c in the examples of FIGS. 3 and 4) but also in the center. The thing which a cavity part is formed also in both the side surface parts of was illustrated.
  • the sixth embodiment as shown in FIG. 17, an example in which cavities are formed only on both side surfaces of two magnet insertion holes 7 a and 7 c located at both ends is illustrated.
  • An example was given (see FIG. 11).
  • the cavity is formed only on both side surfaces of the two magnet insertion holes 7a and 7c located at both ends, and the magnet insertion hole 7b located at the center.
  • a configuration is adopted in which no hollow portion is formed on both side surface portions.
  • the contact area between the permanent magnet and the magnet insertion hole is increased, so that the effect of increasing the permanent magnet holding force can be obtained.
  • the bridge portion 10a formed between the permanent magnets 8a and 8b and the bridge portion 10b formed between the permanent magnets 8b and 8c are widened, and the leakage magnetic flux passing between the bridge portions 10a and 10b is increased.
  • the hollow portions 9 a 2 and 9 c 1 formed on the side surface portion on the center side are shown in FIG. Since the width of the bridge portions 10a and 10b can be reduced if it is formed larger than that of the above, the increase in leakage magnetic flux can be suppressed.
  • FIG. FIG. 18 is a schematic cross-sectional view showing the structure of the rotor core according to the seventh embodiment of the present invention.
  • a spacer 21a is provided between the magnet insertion holes 7a and 7c located at both ends and the permanent magnets 8a and 8c inserted into the magnet insertion holes 7a and 7c. , 21c are provided and held.
  • the spacers 21a and 21c are preferably non-magnetic materials in order to reduce the influence of the magnetic field on the rotor core.
  • Embodiments 4 and 6 it has been explained that the influence of centrifugal force appears more in the permanent magnet located in the center than in the permanent magnet located at both ends.
  • the permanent magnets 8a which are permanent magnets at both ends.
  • the difference between the magnetization direction (the direction orthogonal to the longitudinal direction of the magnet) and the direction of the centrifugal force becomes large, and a lateral (longitudinal) force acts on the permanent magnets 8a and 8c.
  • the permanent magnet 8b which is a permanent magnet at the center, the magnetization direction and the direction of the centrifugal force substantially coincide with each other, and therefore the lateral force acting on the permanent magnet 8b is small.
  • FIG. 19 is a schematic cross-sectional view showing the structure of the rotor core according to the eighth embodiment of the present invention.
  • the unidirectional arrow lines attached to the permanent magnets 8a to 8c indicate the respective magnetization directions, and the thickness 31b in the magnetization direction of the permanent magnet 8b at the center is on both side surfaces.
  • the permanent magnets 8a and 8c are smaller (thinner) than the thicknesses 31a and 31c in the magnetization direction.
  • the magnetic flux (not shown) from the stator 2 is large, the magnetic flux is linked to the end of the permanent magnet on the side surface close to the rotor surface.
  • the smaller the thickness of the permanent magnet in the magnetizing direction the smaller the magnetic resistance of the magnetic flux from the stator, so the permanent magnet is likely to be demagnetized.
  • the magnetic flux from the stator 2 is difficult to reach. For this reason, the permanent magnet 9b in the central portion is not easily demagnetized, and the thickness of the permanent magnet 9b in the magnetization direction can be reduced (thinned).
  • FIG. 20 and 21 are axial sectional views of the permanent magnet according to the ninth embodiment of the present invention
  • FIG. 20 shows a sectional structure in the rotor axial direction of the permanent magnets 8a and 8c on both side surfaces
  • FIG. 21 shows a cross-sectional structure of the permanent magnet 8b on the center side in the rotor axis direction.
  • the number of magnet divisions of the permanent magnets 8a and 8c on both side surfaces is, for example, 10
  • the number of magnet divisions of the permanent magnet 8b on the center side is as shown in FIG. For example, five.
  • This difference is related to the eddy current loss of the permanent magnet, and is because the eddy current loss of the permanent magnet is reduced by increasing the number of magnet divisions.
  • the eddy current loss of the permanent magnet generated by the stator magnetic flux is larger in the permanent magnets 8a and 8c close to the rotor surface, so that it is necessary to increase the number of magnet divisions, but the permanent magnet 8b.
  • the permanent magnet 8b arranged at a position far from the rotor surface as described above the magnet eddy current loss due to the stator magnetic flux is reduced, so that the number of magnet divisions can be reduced and the cost can be reduced.
  • the magnet shape of the permanent magnet 8a (8) and the magnet shape of the permanent magnet 8b are different as shown in FIG. If a permanent magnet with a small number of magnet divisions is inserted on both side surfaces, eddy current loss may increase. On the other hand, as shown in FIG. 19, when the sizes of the permanent magnet 8a (8c) and the permanent magnet 8b are made different from each other, there is no possibility of inserting them by mistake, so that the yield can be improved. effective.
  • the present invention is useful as a permanent magnet type rotating electrical machine that effectively suppresses generation of leakage magnetic flux while maintaining strength against centrifugal force, and a rotor thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

Disclosed is a permanent magnet type rotary electrical machine in which generation of leakage magnetic flux can be effectively suppressed, while centrifugal force intensity can be preserved. The electrical machine is equipped with a rotor (5) in which are embedded three permanent magnets (8a to 8c) for a single pole in the interior of a rotor core (6). The rotor (5) is rotatably arranged, with the provision of a rotation gap, on a stator comprising a stator coil accommodated in the interior of a slot. Magnet insertion holes, in which the permanent magnets (8a to 8c) are embedded, are provided in the rotor core (6) adjacent to one another in a substantially U-shaped formation directed towards the outer peripheral surface of the rotor (5). Cavities (9a1, 9a2, 9b1, 9b2, 9c1 and 9c2) are formed at the side faces of the permanent magnets (8a to 8c) which are embedded in the magnet insertion holes.

Description

永久磁石型回転電機Permanent magnet type rotating electric machine
 本発明は、車両用電動機などの回転電機に係り、特に、回転子の内部に永久磁石を配置した回転電機の回転子の構造に関する。 The present invention relates to a rotating electrical machine such as a vehicular electric motor, and more particularly to a rotor structure of a rotating electrical machine in which a permanent magnet is disposed inside the rotor.
 回転子の内部に永久磁石を配置した回転電機の一つに、永久磁石を内蔵した電動機(永久磁石型電動機)がある。この永久磁石型電動機は、各種の分野で広く使用されている誘導電動機と比較して、回転子に内蔵された永久磁石による磁束が確立しているので励磁電流が不要であることや、誘導電動機のように回転子導体に電流が流れないため、二次銅損が発生しないことなどから、高効率な電動機として知られている。車両用電動機を備えた電気車には、従来から誘導電動機が使用されてきたが、近年、効率の向上、小型高出力化、冷却構造の簡素化を図るために永久磁石型同期電動機の適用が検討されている。 There is an electric motor (permanent magnet type electric motor) with a built-in permanent magnet as one of rotating electric machines in which a permanent magnet is arranged inside the rotor. Compared with induction motors that are widely used in various fields, this permanent magnet type motor has a magnetic flux established by permanent magnets built into the rotor, so that no excitation current is required. As described above, since no current flows through the rotor conductor, secondary copper loss does not occur. Conventionally, induction motors have been used for electric vehicles equipped with motors for vehicles. However, in recent years, permanent magnet synchronous motors have been applied to improve efficiency, reduce size and increase output, and simplify the cooling structure. It is being considered.
 なお、永久磁石型電動機には、回転子の表面に永久磁石を張り付けた表面磁石構造の電動機(SPMM:Surface Permanent Magnet Motor)と、回転子の内部に永久磁石を埋め込んだ埋込磁石構造の電動機(IPMM:Interior Permanent Magnet Motor)とに大別されるが、例えば、下記特許文献1に示される永久磁石型リラクタンス回転電機は、後者に属するものである。 In addition, the permanent magnet type motor includes a motor with a surface magnet structure (SPMM: Surface Permanent Magnet Motor) in which a permanent magnet is attached to the surface of the rotor, and a motor with an embedded magnet structure in which the permanent magnet is embedded in the rotor. (IPMM: Interior Permanent Magnet Motor), for example, the permanent magnet type reluctance rotating electrical machine shown in Patent Document 1 below belongs to the latter.
 この永久磁石型リラクタンス回転電機は、回転子鉄心に磁気的突極部を形成するために1極につき2個の永久磁石を円周方向に所定間隔存して埋め込んでなる回転子を有し、各永久磁石の一端が回転子鉄心の外周との間に薄肉なチップ部を形成するように外周側に寄り、他端が中心側に寄る配置となし、2個の永久磁石により形成される2個のチップ部の内端角の開角が所定の電気角となるように配置している。 This permanent magnet type reluctance rotating electric machine has a rotor in which two permanent magnets are embedded in a circumferential direction at predetermined intervals in order to form a magnetic salient pole portion in a rotor core, One end of each permanent magnet is located closer to the outer periphery so as to form a thin tip portion between the outer periphery of the rotor core and the other end is closer to the center side. The chip portions are arranged so that the opening angle of the inner end angle of each chip portion is a predetermined electrical angle.
特開2007-97290号公報JP 2007-97290 A
 ところで、電気車用として用いられる永久磁石型電動機は、回転子の内部に永久磁石を埋め込んだ埋込磁石構造のものが殆どである。 By the way, most permanent magnet type motors used for electric vehicles have an embedded magnet structure in which a permanent magnet is embedded in a rotor.
 具体的に、電気車用として用いられる永久磁石型電動機では、1個あたりの重さが1~数kgある永久磁石が外形サイズ(すなわち半径)の大きな回転子の内部に埋め込まれ、この回転子が定格約6000rpmの回転速度で回転する。このため、表面磁石構造のものでは、永久磁石を強固に保持する機構を別途設けなければならず、構成に難がある。このような理由で、電気車用の永久磁石型電動機では、埋込磁石構造のものが多用されることになる。ただし、埋込磁石構造の永久磁石型電動機であっても、永久磁石に生ずる遠心力を受け止めるだけの構造が回転子に対して要求されることは無論である。 Specifically, in a permanent magnet type electric motor used for an electric vehicle, a permanent magnet having a weight of 1 to several kg is embedded in a rotor having a large outer size (ie, radius). Rotates at a rotational speed of about 6000 rpm. For this reason, in the case of the surface magnet structure, a mechanism for firmly holding the permanent magnet must be provided separately, and the configuration is difficult. For this reason, a permanent magnet type electric motor for an electric vehicle is often used with an embedded magnet structure. However, even with a permanent magnet type electric motor having an embedded magnet structure, it is a matter of course that the rotor is required to have a structure that only receives the centrifugal force generated in the permanent magnet.
 一方、上記特許文献1に開示された回転電機では、永久磁石の遠心力に対する保持は回転子表面方向にある回転子鉄心の強度のみで持たせる構造であるため、回転子の外形サイズが大きくなった場合、遠心力に対する強度が不足するという問題点が懸念される。したがって、特許文献1に示される永久磁石型電動機を例えば電気車に適用する場合には、永久磁石を回転子の内側(中心部側)に挿入する必要性が生じるが、その結果、今度は、永久磁石の両端部における漏れ磁束が大きくなって駆動トルクの低下を招来するという問題点が懸念される。 On the other hand, in the rotating electrical machine disclosed in Patent Document 1, since the permanent magnet is held only by the strength of the rotor core in the rotor surface direction, the outer size of the rotor is increased. In such a case, there is a concern that the strength against centrifugal force is insufficient. Therefore, when the permanent magnet type electric motor shown in Patent Document 1 is applied to, for example, an electric vehicle, there is a need to insert the permanent magnet into the inner side (center side) of the rotor. As a result, this time, There is a concern that the leakage magnetic flux at both ends of the permanent magnet increases, leading to a decrease in driving torque.
 本発明は、上記に鑑みてなされたものであって、遠心力に対する強度を保持しつつ、漏れ磁束の発生を効果的に抑制した永久磁石型回転電機を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a permanent magnet type rotating electrical machine that effectively suppresses generation of leakage magnetic flux while maintaining strength against centrifugal force.
 上述した課題を解決し、目的を達成するため、本発明にかかる永久磁石型回転電機は、スロットの内部に固定子コイルを収納してなる固定子と、前記固定子に回転空隙を介して回転可能に配置される回転子鉄心を有し、この回転子鉄心の内部に1極あたり3個以上の永久磁石が埋め込まれる回転子と、を備え、前記回転子鉄心には、前記永久磁石を埋め込む磁石挿入穴が回転子の外周面に向かって概略U字状に並べて設けられ、前記各磁石挿入穴に埋め込まれた永久磁石の側面部には空洞部が形成されることを特徴とする。 In order to solve the above-described problems and achieve the object, a permanent magnet type rotating electric machine according to the present invention includes a stator having a stator coil housed in a slot, and the stator rotating through a rotation gap. A rotor core that can be arranged, and a rotor in which three or more permanent magnets are embedded per pole in the rotor core, and the permanent magnet is embedded in the rotor core The magnet insertion holes are arranged in a substantially U shape toward the outer peripheral surface of the rotor, and a cavity is formed in a side surface portion of the permanent magnet embedded in each of the magnet insertion holes.
 本発明にかかる永久磁石型回転電機によれば、遠心力に対する強度を保持しつつ、漏れ磁束の発生を効果的に抑制することができるという効果を奏する。 According to the permanent magnet type rotating electrical machine of the present invention, there is an effect that generation of leakage magnetic flux can be effectively suppressed while maintaining strength against centrifugal force.
図1は、本発明の実施の形態1にかかる永久磁石型電動機の断面図である。FIG. 1 is a cross-sectional view of a permanent magnet type electric motor according to a first embodiment of the present invention. 図2は、図1に示す回転子の構造を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing the structure of the rotor shown in FIG. 図3は、永久磁石が挿入されていない場合の部分拡大図である。FIG. 3 is a partially enlarged view when a permanent magnet is not inserted. 図4は、永久磁石が挿入されている場合の部分拡大図である。FIG. 4 is a partially enlarged view when a permanent magnet is inserted. 図5は、永久磁石の漏れ磁束による影響を説明する図である。FIG. 5 is a diagram for explaining the influence of the leakage flux of the permanent magnet. 図6は、比較対象としての従来例を示す図である。FIG. 6 is a diagram illustrating a conventional example as a comparison target. 図7は、磁石挿入穴に生ずる最大応力を従来と実施の形態1との間で比較して示した図である。FIG. 7 is a diagram comparing the maximum stress generated in the magnet insertion hole between the prior art and the first embodiment. 図8は、本発明の実施の形態2にかかる回転子鉄心の構造を示す模式断面図である。FIG. 8 is a schematic cross-sectional view showing the structure of the rotor core according to the second embodiment of the present invention. 図9は、本発明の実施の形態3にかかる回転子鉄心の構造を示す模式断面図である。FIG. 9 is a schematic cross-sectional view showing the structure of the rotor core according to the third embodiment of the present invention. 図10は、図9に示した磁石挿入穴の部分拡大図および実施の形態3の効果を説明する図である。FIG. 10 is a partial enlarged view of the magnet insertion hole shown in FIG. 9 and a diagram for explaining the effect of the third embodiment. 図11は、本発明の実施の形態4にかかる回転子鉄心の構造を示す模式断面図である。FIG. 11 is a schematic cross-sectional view showing the structure of the rotor core according to the fourth embodiment of the present invention. 図12は、図11に示す構成の変形例を示す図である。FIG. 12 is a diagram showing a modification of the configuration shown in FIG. 図13は、本発明の実施の形態5にかかる回転子鉄心の構造を示す模式断面図である。FIG. 13: is a schematic cross section which shows the structure of the rotor core concerning Embodiment 5 of this invention. 図14は、磁石挿入穴に生ずる最大応力を従来、実施の形態1および実施の形態5の間で比較して示した図である。FIG. 14 is a diagram comparing the maximum stress generated in the magnet insertion hole between the first embodiment and the fifth embodiment. 図15は、図13に示す構成の変形例を示す図である。FIG. 15 is a diagram showing a modification of the configuration shown in FIG. 図16は、図13に示す構成の他の変形例を示す図である。FIG. 16 is a diagram showing another modification of the configuration shown in FIG. 図17は、本発明の実施の形態6にかかる回転子鉄心の構造を示す模式断面図である。FIG. 17 is a schematic cross-sectional view showing the structure of the rotor core according to the sixth embodiment of the present invention. 図18は、本発明の実施の形態7にかかる回転子鉄心の構造を示す模式断面図である。FIG. 18 is a schematic cross-sectional view showing the structure of the rotor core according to the seventh embodiment of the present invention. 図19は、本発明の実施の形態8にかかる回転子鉄心の構造を示す模式断面図である。FIG. 19 is a schematic cross-sectional view showing the structure of the rotor core according to the eighth embodiment of the present invention. 図20は、本発明の実施の形態9にかかる永久磁石のうちの両側面部側にある永久磁石の軸方向断面図である。FIG. 20 is a cross-sectional view in the axial direction of a permanent magnet on both sides of the permanent magnet according to the ninth embodiment of the present invention. 図21は、本発明の実施の形態9にかかる永久磁石のうちの中央部側にある永久磁石の軸方向断面図である。FIG. 21 is a sectional view in the axial direction of a permanent magnet on the center side among the permanent magnets according to the ninth embodiment of the present invention.
 以下に添付図面を参照し、本発明の実施の形態にかかる永久磁石型回転電機について詳細に説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。 Hereinafter, a permanent magnet type rotating electrical machine according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
実施の形態1.
 図1は、本発明の実施の形態1にかかる永久磁石型回転電機の一例である永久磁石型電動機の断面図であり、図2は、図1に示す永久磁石型電動機における回転子の構造を示す模式断面図である。また、図3および図4は、図2の回転子における破線部で示した部分の拡大図であり、図3は、永久磁石が挿入されていない場合の部分拡大図であり、図4は、永久磁石が挿入されている場合の部分拡大図である。
Embodiment 1 FIG.
1 is a cross-sectional view of a permanent magnet type electric motor that is an example of a permanent magnet type rotating electrical machine according to a first embodiment of the present invention, and FIG. 2 shows the structure of a rotor in the permanent magnet type electric motor shown in FIG. It is a schematic cross section shown. 3 and 4 are enlarged views of a portion indicated by a broken line in the rotor of FIG. 2, FIG. 3 is a partially enlarged view when a permanent magnet is not inserted, and FIG. It is the elements on larger scale when the permanent magnet is inserted.
 実施の形態1にかかる永久磁石型電動機1は、固定子2および回転子5を備えている。固定子2は、円筒形状を成す固定子鉄心3と、固定子鉄心3に巻装されるように配置された固定子コイル4と、を備えている。固定子鉄心3は、その内周部側にティース3bを間欠的に形成することによってスロット3aが形成され、固定子コイル4は、ティース3bに巻装された導体線がスロット3aのそれぞれに収納されるように配置される。 The permanent magnet type electric motor 1 according to the first exemplary embodiment includes a stator 2 and a rotor 5. The stator 2 includes a stator core 3 having a cylindrical shape, and a stator coil 4 disposed so as to be wound around the stator core 3. The stator core 3 is formed with slots 3a by intermittently forming teeth 3b on the inner peripheral side thereof, and the stator coil 4 has a conductor wire wound around the teeth 3b accommodated in each of the slots 3a. To be arranged.
 回転子5は、例えば所定枚数の磁性鋼板を積層および一体化して作製され、外周面が円筒面を成し、18個の磁石挿入穴7(図2および図3参照)が等角ピッチで配列されるように形成された回転子鉄心6と、各磁石挿入穴7内にそれぞれ収納された永久磁石8(8a~8c)と、を備え、固定子2に対し回転空隙18を介して回転可能となるように配置されている。 The rotor 5 is produced by, for example, laminating and integrating a predetermined number of magnetic steel plates, the outer peripheral surface forms a cylindrical surface, and 18 magnet insertion holes 7 (see FIGS. 2 and 3) are arranged at an equiangular pitch. Rotor core 6 formed as described above and permanent magnets 8 (8a to 8c) housed in the respective magnet insertion holes 7, and can rotate with respect to the stator 2 through a rotation gap 18. It is arranged to become.
 ここで、磁石挿入穴7の配置は、図3に示すように、1つの磁石挿入穴7bの両端部に2つの磁石挿入穴7a,7cがある。また、この磁石挿入穴7の組7a~7cは、図2に示すように、回転子5の外周面に向かって概略U字状に6組配置されている。そして、第1の永久磁石の組である永久磁石8a~8cによる磁束の向きが回転子5の外周面に向かって収束するような方向に着磁(磁化)される一方で、隣接する組(第2の永久磁石の組)の永久磁石16a~16cは、磁束の向きが回転子5の中心部に向かって同心円状に広がる方向に着磁されている。すなわち、実施の形態1の永久磁石型電動機における回転子では、永久磁石による磁束の向きが回転子の外周面に向かって収束するような方向に着磁された永久磁石群と、回転子の中心部に向かって同心円状に広がる方向に着磁された永久磁石群と、が交互に配列されるように構成されている。 Here, as for the arrangement of the magnet insertion holes 7, as shown in FIG. 3, there are two magnet insertion holes 7a and 7c at both ends of one magnet insertion hole 7b. Further, six sets 7a to 7c of the magnet insertion holes 7 are arranged in a substantially U shape toward the outer peripheral surface of the rotor 5, as shown in FIG. Then, while the direction of the magnetic flux by the permanent magnets 8a to 8c, which is the first set of permanent magnets, is magnetized (magnetized) in such a direction as to converge toward the outer peripheral surface of the rotor 5, adjacent sets ( The permanent magnets 16 a to 16 c of the second set of permanent magnets are magnetized in a direction in which the direction of magnetic flux extends concentrically toward the center of the rotor 5. That is, in the rotor in the permanent magnet type electric motor according to the first embodiment, the permanent magnet group magnetized in such a direction that the direction of the magnetic flux by the permanent magnet converges toward the outer peripheral surface of the rotor, and the center of the rotor Permanent magnet groups magnetized in a direction concentrically extending toward the part are arranged alternately.
 なお、永久磁石群による着磁方向を上記のように構成したのは、固定子コイルの誘起電圧を正弦波状にするためであり、固定子コイルの誘起電圧を正弦波状にする必要のない用途では、この限りではない。すなわち回転子の外周面に向かう方向または回転子の中心部に向かう方向に着磁された各永久磁石群の各着磁方向が平行であっても構わない。 The reason why the direction of magnetization by the permanent magnet group is configured as described above is to make the induced voltage of the stator coil sinusoidal, and in applications that do not require the induced voltage of the stator coil to be sinusoidal. This is not the case. That is, the magnetization directions of the permanent magnet groups magnetized in the direction toward the outer peripheral surface of the rotor or in the direction toward the center of the rotor may be parallel.
 また、磁石挿入穴7a~7cに埋め込まれた永久磁石8a~8cの両側面部には、図4に示すような空洞部9(永久磁石8aの両側面部には空洞部9a1,9a2、永久磁石8bの両側面部には空洞部9b1,9b2、永久磁石8cの両側面部には空洞部9c1,9c2)が形成されるようになっている。この空洞部9の効果については、後述する。 Further, on both side surfaces of the permanent magnets 8a to 8c embedded in the magnet insertion holes 7a to 7c, there are hollow portions 9 as shown in FIG. 4 (cavities 9a1 and 9a2 on both side surfaces of the permanent magnet 8a and permanent magnets 8b). Cavities 9b1 and 9b2 are formed on both side surface portions, and cavity portions 9c1 and 9c2) are formed on both side surface portions of the permanent magnet 8c. The effect of the hollow portion 9 will be described later.
 なお、図1では、36個のスロット3aが固定子2の周方向に等角ピッチで配列されると共に、18個の永久磁石8が回転子5の周方向に埋め込まれる6極の電動機(1極あたり6個のスロットおよび1極あたり3個の永久磁石)を一例として示しているが、電動機の極数やスロットの数および永久磁石の数等、図1の構成に限定されるものではなく、任意の数の選択が可能である。 In FIG. 1, 36 slots 3a are arranged at equiangular pitches in the circumferential direction of the stator 2, and 6-pole motors (1) in which 18 permanent magnets 8 are embedded in the circumferential direction of the rotor 5. 6 slots per pole and 3 permanent magnets per pole) are shown as an example, but the number of poles of the motor, the number of slots, the number of permanent magnets, etc. are not limited to the configuration of FIG. Any number of selections are possible.
 つぎに、永久磁石8の漏れ磁束について図4および図5を参照して説明する。なお、図5は、永久磁石8の漏れ磁束による影響を説明する図である。 Next, the leakage flux of the permanent magnet 8 will be described with reference to FIG. 4 and FIG. FIG. 5 is a diagram for explaining the influence of the leakage magnetic flux of the permanent magnet 8.
 永久磁石8a~8cで発生した磁束は、固定子鉄心3のコアバック部15(図1参照)を通った後に再び回転子鉄心6に戻ってくる(図示せず)。しかしながら、図5に示すように、一部の磁束は、コアバック部15に向かわずに、回転子鉄心6の内部に留まり、永久磁石8に戻ってくるような回転子鉄心6内でループとなる漏れ磁束12がある。この漏れ磁束12は、トルクに寄与することなく、また、鉄損の増加要因となるため、可能な限り抑制することが好ましい。 The magnetic flux generated by the permanent magnets 8a to 8c returns to the rotor core 6 again (not shown) after passing through the core back portion 15 (see FIG. 1) of the stator core 3. However, as shown in FIG. 5, a part of the magnetic flux does not go to the core back portion 15 but stays in the rotor core 6 and returns to the permanent magnet 8 as a loop. There is a leakage flux 12 that becomes The leakage magnetic flux 12 does not contribute to torque and causes an increase in iron loss, so it is preferable to suppress it as much as possible.
 そこで、本実施の形態における回転子では、概略U字状に配置する永久磁石群に関し、図4に示すように、磁石挿入穴7の両側面部側の空洞部が両側面部以外の空洞部よりも大きくなるようにしている。具体的な構成で見ると、磁石挿入穴7bに永久磁石8bを埋め込むことによって生じた空洞部9b1と9b2の大きさは概略等しく、磁石挿入穴7aに永久磁石8aを埋め込むことによって生じた空洞部9a1と9a2とでは、空洞部9a1の方が大きくなるように磁石挿入穴7aを形成し、磁石挿入穴7cに永久磁石8cを埋め込むことによって生じた空洞部9c1と9c2とでは、空洞部9c2の方が大きくなるように磁石挿入穴7cを形成している。 Therefore, in the rotor according to the present embodiment, as shown in FIG. 4, with respect to the permanent magnet group arranged in a substantially U shape, the cavity portion on both sides of the magnet insertion hole 7 is more than the cavity other than both sides. I try to get bigger. In a specific configuration, the hollow portions 9b1 and 9b2 generated by embedding the permanent magnet 8b in the magnet insertion hole 7b are approximately equal in size, and the hollow portion generated by embedding the permanent magnet 8a in the magnet insertion hole 7a. In 9a1 and 9a2, the magnet insertion hole 7a is formed so that the hollow portion 9a1 is larger, and the hollow portions 9c1 and 9c2 generated by embedding the permanent magnet 8c in the magnet insertion hole 7c are the same as the hollow portion 9c2. The magnet insertion hole 7c is formed so as to be larger.
 別言すれば、回転子鉄心6の外周部側に形成される空洞部(例えば空洞部9a1)の方が、回転子鉄心6の中心部側に形成される空洞部(例えば空洞部9a2,9b1,…)よりも大きな空間となるように磁石挿入穴7の形状を形成しておく。このように構成された回転子鉄心6によれば、永久磁石8による漏れ磁束12は、永久磁石8a,8b間に形成されるブリッジ部10aと、永久磁石8b,8c間に形成されるブリッジ部10bと、永久磁石8a,8cと回転子鉄心6の外周面との間にそれぞれ形成されるブリッジ部11a,11bとが磁束の経路となる。したがって、これらの磁束経路を狭くすることにより、漏れ磁束を低減することが可能となる。 In other words, the cavity portion (for example, the cavity portion 9a1) formed on the outer peripheral side of the rotor core 6 is the cavity portion (for example, the cavity portions 9a2 and 9b1) formed on the center side of the rotor core 6. , ...), the shape of the magnet insertion hole 7 is formed to be a larger space. According to the rotor core 6 configured as described above, the leakage magnetic flux 12 due to the permanent magnet 8 is generated by the bridge portion 10a formed between the permanent magnets 8a and 8b and the bridge portion formed between the permanent magnets 8b and 8c. 10b and the bridge portions 11a and 11b respectively formed between the permanent magnets 8a and 8c and the outer peripheral surface of the rotor core 6 serve as magnetic flux paths. Therefore, it is possible to reduce the leakage flux by narrowing these magnetic flux paths.
 ここで、ブリッジ部10a,10bおよび11a,11bについては、遠心力強度とのトレードオフとなる。ところが、本実施の形態における回転子5では、永久磁石の個数を3個に分割して、1個あたりの永久磁石の重さを低減すると共に、これら3個の永久磁石を図示のように曲率を持たせて概略U字形状に並べて配置しているので、従来の構成に比して、ブリッジ部10a,10bおよび11a,11bの薄肉化が可能となり、これらのブリッジ部を通過する漏れ磁束の低減が可能である。 Here, the bridge portions 10a, 10b and 11a, 11b are traded off with the centrifugal force intensity. However, in the rotor 5 in the present embodiment, the number of permanent magnets is divided into three to reduce the weight of each permanent magnet, and the three permanent magnets have a curvature as shown in the figure. The bridge portions 10a, 10b and 11a, 11b can be made thinner than the conventional configuration, and the leakage magnetic flux passing through these bridge portions can be reduced. Reduction is possible.
 つぎに、実施の形態1の効果について図7を参照して説明する。図7は、磁石挿入穴に生ずる最大応力を従来と実施の形態1とで比較して示した図である。図7において、従来例とあるのは上記特許文献1に開示された回転子の磁石挿入穴に生ずる最大応力をシミュレーションにより求めた値である。なお、特許文献1における永久磁石の配置構成は図6に示すとおりであり、回転子鉄心106において、永久磁石108を概略V字形状に配置している。 Next, the effect of the first embodiment will be described with reference to FIG. FIG. 7 is a diagram showing the maximum stress generated in the magnet insertion hole in comparison with the conventional example and the first embodiment. In FIG. 7, the conventional example is a value obtained by simulation of the maximum stress generated in the magnet insertion hole of the rotor disclosed in Patent Document 1. The arrangement configuration of the permanent magnets in Patent Document 1 is as shown in FIG. 6, and the permanent magnets 108 are arranged in a substantially V shape in the rotor core 106.
 図7に示すように、従来例の最大応力を“1”とすれば、実施の形態1の最大応力は0.55であり、従来例に比して45%の低減効果がある。したがって、実施の形態1の回転子によれば、遠心力に対する強度を保持しつつ、漏れ磁束発生の効果的な抑制が可能となる。 As shown in FIG. 7, if the maximum stress of the conventional example is “1”, the maximum stress of the first embodiment is 0.55, which is 45% lower than the conventional example. Therefore, according to the rotor of the first embodiment, it is possible to effectively suppress the generation of leakage magnetic flux while maintaining the strength against centrifugal force.
 また、実施の形態1の回転子によれば、遠心力に対する強度一定の条件下で、より薄型化を図ることができるので、漏れ磁束の更なる低減が可能となる。 Further, according to the rotor of the first embodiment, it is possible to further reduce the thickness under a condition where the strength against the centrifugal force is constant, so that the leakage magnetic flux can be further reduced.
実施の形態2.
 図8は、本発明の実施の形態2にかかる回転子鉄心の構造を示す模式断面図である。実施の形態1では、磁石挿入穴7に埋め込む永久磁石8として、例えば図4に示すような概略矩形形状のものを例示したが、実施の形態2の永久磁石8は、図8に示すように、3個の永久磁石のうち、両端側に位置する永久磁石8a’,8c’の外周面側の角部を面取りするようにしている。
Embodiment 2. FIG.
FIG. 8 is a schematic cross-sectional view showing the structure of the rotor core according to the second embodiment of the present invention. In the first embodiment, the permanent magnet 8 embedded in the magnet insertion hole 7 is exemplified by a substantially rectangular shape as shown in FIG. 4, for example, but the permanent magnet 8 of the second embodiment is as shown in FIG. Of the three permanent magnets, the corners on the outer peripheral surface side of the permanent magnets 8a ′ and 8c ′ located on both ends are chamfered.
 一般に、電動機が回転子トルクを発生する場合、図示しない固定子から流入する磁束13が回転子鉄心6の最外周部側に位置する永久磁石8(図8では、永久磁石8a’)に鎖交する。このとき鎖交する磁束13は、永久磁石8a’の着磁方向とは反対向きであるため、永久磁石8が減磁して、トルクが低下する。その結果、永久磁石8a’の角部にある部分の回転子トルクに対する寄与度は小さい。そこで、回転子鉄心6の最外周部側に位置する永久磁石8の角部を面取りするようにすれば、回転子トルクの低下を抑止しつつ、永久磁石の重量の効果的な低減が可能となる。 In general, when the motor generates rotor torque, the magnetic flux 13 flowing from a stator (not shown) is linked to the permanent magnet 8 (in FIG. 8, the permanent magnet 8a ′) located on the outermost peripheral side of the rotor core 6. To do. At this time, the interlinkage magnetic flux 13 is in a direction opposite to the magnetization direction of the permanent magnet 8a ', so that the permanent magnet 8 is demagnetized and the torque is reduced. As a result, the contribution to the rotor torque at the corner of the permanent magnet 8a 'is small. Therefore, if the corners of the permanent magnet 8 located on the outermost peripheral side of the rotor core 6 are chamfered, it is possible to effectively reduce the weight of the permanent magnet while suppressing a decrease in the rotor torque. Become.
 また、磁束が通過すると、通過した部位には渦電流が流れるので、上記面取りによって、永久磁石に生ずる渦電流損の低減も可能となる。 Also, when the magnetic flux passes, an eddy current flows through the passing portion, so that the eddy current loss generated in the permanent magnet can be reduced by the chamfering.
 また、本実施の形態では、回転子鉄心6の最外周部側に位置する永久磁石8の角部のみを面取りし、永久磁石8を挿入するための磁石挿入穴7については、実施の形態1の形状を維持しているので、漏れ磁束を低減する実施の形態1の効果を維持することが可能である。 Further, in the present embodiment, only the corners of the permanent magnet 8 positioned on the outermost peripheral side of the rotor core 6 are chamfered, and the magnet insertion hole 7 for inserting the permanent magnet 8 is described in the first embodiment. Therefore, the effect of the first embodiment for reducing the leakage magnetic flux can be maintained.
実施の形態3.
 図9は、本発明の実施の形態3にかかる回転子鉄心の構造を示す模式断面図であり、図10は、図9に示した磁石挿入穴の部分拡大図および実施の形態3の効果を説明する図である。実施の形態3では、図10(a),(b)に示すように、磁石挿入穴7における永久磁石8との接触面の一部である接触面14の表面が粗面処理されている。このような接触面14の構造により、磁石挿入穴7に埋め込まれる永久磁石8と接触面14との接触によって得られる摩擦力により、永久磁石8に生ずる遠心力に抗する摩擦保持力を得ることができ、永久磁石保持が容易となる。
Embodiment 3 FIG.
FIG. 9 is a schematic cross-sectional view showing the structure of the rotor core according to the third embodiment of the present invention. FIG. 10 is a partially enlarged view of the magnet insertion hole shown in FIG. 9 and the effects of the third embodiment. It is a figure explaining. In the third embodiment, as shown in FIGS. 10A and 10B, the surface of the contact surface 14 which is a part of the contact surface with the permanent magnet 8 in the magnet insertion hole 7 is roughened. With such a structure of the contact surface 14, a frictional holding force against the centrifugal force generated in the permanent magnet 8 is obtained by the frictional force obtained by the contact between the permanent magnet 8 embedded in the magnet insertion hole 7 and the contact surface 14. And the permanent magnet can be easily held.
実施の形態4.
 図11は、本発明の実施の形態4にかかる回転子鉄心の構造を示す模式断面図である。実施の形態1では、磁石挿入穴7に埋め込む永久磁石8として、例えば図4に示すような概略矩形形状のものを例示したが、実施の形態4では、図11に示すように、3個の永久磁石のうち、中央部に位置する永久磁石8dとして、概略台形形状のものを用いている。なお、ここでいう概略台形形状とは、外周部側よりも中心部側の方が幅広となるように、永久磁石8の磁石挿入穴7との接触面がテーパ形状になっているもの意味する。
Embodiment 4 FIG.
FIG. 11 is a schematic cross-sectional view showing the structure of the rotor core according to the fourth embodiment of the present invention. In the first embodiment, the permanent magnet 8 embedded in the magnet insertion hole 7 is exemplified by a substantially rectangular shape as shown in FIG. 4, for example, but in the fourth embodiment, as shown in FIG. Among the permanent magnets, a substantially trapezoidal one is used as the permanent magnet 8d located at the center. The approximate trapezoidal shape here means that the contact surface of the permanent magnet 8 with the magnet insertion hole 7 is tapered so that the center portion side is wider than the outer peripheral portion side. .
 一般に、高速回転時や回転子の外径が大きい場合、遠心力は大きくなる。このため、遠心力の影響が最も大きく現れる中央部の永久磁石の保持力を高めることが望まれる。そこで、図11に示すように、中央部に位置する永久磁石8dの形状を概略台形形状とすれば、永久磁石8dが磁石挿入穴7にくさび状に埋め込まれることになり、遠心力に抗する力を回転子鉄心6の構造により得ることができ、永久磁石保持が容易となる。 Generally, centrifugal force increases when rotating at high speed or when the outer diameter of the rotor is large. For this reason, it is desired to increase the holding force of the central permanent magnet in which the influence of the centrifugal force appears most. Therefore, as shown in FIG. 11, if the shape of the permanent magnet 8d located at the center is a substantially trapezoidal shape, the permanent magnet 8d is embedded in the magnet insertion hole 7 in a wedge shape and resists centrifugal force. A force can be obtained by the structure of the rotor core 6 and the permanent magnet can be easily held.
 なお、図11では、3個の永久磁石のうち、中央部に位置する永久磁石のみを概略台形形状とする構成を例示したが、永久磁石の生産性を考慮し、図12に示すように、両端部の永久磁石8f,8gも併せて概略台形形状とすることが好ましい。全ての永久磁石を概略台形形状とすることにより、各永久磁石間に形成されるブリッジ部(図4参照)および各両端部永久磁石と回転子鉄心6の外周面との間に形成されるブリッジ部(図4参照)における耐遠心力強度を向上させることができる。その結果、上記両ブリッジ部の面積(容積)を更に小さくすることが可能であり、更なる漏れ磁束の低減および鉄損の低減が可能となる。 In addition, in FIG. 11, although the structure which made only the permanent magnet located in the center part a substantially trapezoid shape among three permanent magnets was illustrated, considering the productivity of a permanent magnet, as shown in FIG. It is preferable that the permanent magnets 8f and 8g at both ends are also substantially trapezoidal. By making all the permanent magnets into a substantially trapezoidal shape, a bridge portion (see FIG. 4) formed between the permanent magnets and a bridge formed between the permanent magnets at both ends and the outer peripheral surface of the rotor core 6 are formed. The strength against centrifugal force at the portion (see FIG. 4) can be improved. As a result, the area (volume) of both the bridge portions can be further reduced, and the leakage flux and iron loss can be further reduced.
実施の形態5.
 図13は、本発明の実施の形態5にかかる回転子鉄心の構造を示す模式断面図である。実施の形態1では、例えば図4に示すような1極あたり3個の永久磁石を有する回転子鉄心の構成を例示したが、実施の形態5の回転子鉄心では、図13に示すように、中央部に位置する永久磁石を2分割した概略矩形形状の永久磁石8h,8iとし、両端側に位置する概略矩形形状の永久磁石8a,8cと併せて4個の永久磁石を有する回転子鉄心の構造を例示するものである。
Embodiment 5 FIG.
FIG. 13: is a schematic cross section which shows the structure of the rotor core concerning Embodiment 5 of this invention. In the first embodiment, for example, the configuration of the rotor core having three permanent magnets per pole as shown in FIG. 4 is exemplified. However, in the rotor core of the fifth embodiment, as shown in FIG. A rotor core having four permanent magnets in combination with permanent magnets 8h and 8i having substantially rectangular shapes obtained by dividing a permanent magnet located in the central portion into two and having substantially rectangular shaped permanent magnets 8a and 8c located on both ends. It illustrates the structure.
 図14は、磁石挿入穴に生ずる最大応力を従来、実施の形態1および実施の形態5の間で比較して示した図である。図14において、従来例および実施の形態1とあるのは図7に示したものと同一である。 FIG. 14 is a diagram comparing the maximum stress generated in the magnet insertion hole between the first embodiment and the fifth embodiment. In FIG. 14, the conventional example and the first embodiment are the same as those shown in FIG.
 図14に示すように、従来例の最大応力を“1”とすれば、実施の形態5の最大応力は0.45であり、従来例に比して55%の低減効果がある。また、実施の形態1に比しても20%弱(1-(0.45/0.55)≒0.19)の低減効果がある。したがって、実施の形態5の回転子によれば、遠心力に対する強度を保持しつつ、漏れ磁束発生の更なる抑制効果が得られる。 As shown in FIG. 14, if the maximum stress of the conventional example is “1”, the maximum stress of the fifth embodiment is 0.45, which is 55% lower than the conventional example. Even if compared with the first embodiment, there is a reduction effect of slightly less than 20% (1− (0.45 / 0.55) ≈0.19). Therefore, according to the rotor of the fifth embodiment, it is possible to obtain a further suppression effect of leakage magnetic flux generation while maintaining the strength against centrifugal force.
 なお、実施の形態5では、中央部に位置する永久磁石を2分割した永久磁石8h,8iとして図13に示すような概略矩形形状のものを例示したが、図15に永久磁石8j,8kとして示すように、両端部に位置する永久磁石側の接触面をテーパ形状にした概略台形形状としても構わないし、また、図11のように他の接触面もテーパ形状にした概略台形形状としても構わない。 In the fifth embodiment, the permanent magnets 8h and 8i obtained by dividing the permanent magnet located in the central portion into two are illustrated as having a substantially rectangular shape as shown in FIG. 13, but FIG. 15 shows the permanent magnets 8j and 8k. As shown in the figure, the contact surface on the permanent magnet side located at both ends may be a substantially trapezoidal shape with a tapered shape, or the other contact surface may have a substantially trapezoidal shape with a tapered shape as shown in FIG. Absent.
 また、実施の形態5では、両端部に位置する永久磁石8a,8cとして図13に示すような概略矩形形状のものを例示したが、図16に永久磁石8l,8mとして示すように、両端部に位置する永久磁石も概略台形形状としても構わない。 Further, in the fifth embodiment, the permanent magnets 8a and 8c positioned at both ends are illustrated as having a substantially rectangular shape as shown in FIG. 13, but as shown as permanent magnets 8l and 8m in FIG. The permanent magnet positioned at the position may be substantially trapezoidal.
 また、実施の形態5では、中央部に位置する永久磁石を2分割した1極あたり4個の永久磁石を有する回転子鉄心の構成を例示したが、両端部に位置する永久磁石のサイズを変更することも無論可能である。 In the fifth embodiment, the configuration of the rotor core having four permanent magnets per pole obtained by dividing the permanent magnet located in the central portion into two parts is illustrated. However, the size of the permanent magnets located at both end portions is changed. Of course, it is possible.
 また、実施の形態5では、1極あたり4個の永久磁石を有する回転子鉄心の構成を例示したが、1極あたり5個以上の永久磁石を有する構成とすることも無論可能である。 Further, in the fifth embodiment, the configuration of the rotor core having four permanent magnets per pole is exemplified, but it is of course possible to have a configuration having five or more permanent magnets per pole.
実施の形態6.
 図17は、本発明の実施の形態6にかかる回転子鉄心の構造を示す模式断面図である。実施の形態1では、磁石挿入穴7a~7cとして、例えば図3,4に示すように、永久磁石8a~8cをそれぞれの磁石挿入穴7a~7cに挿入した場合に、両端部に位置する2個の磁石挿入穴(図3,4の例では、磁石挿入穴7a,7c)の両側面部のみならず、中央部に位置する磁石挿入穴(図3,4の例では、磁石挿入穴7b)の両側面部にも空洞部が形成されるものを例示した。一方、実施の形態6では、図17に示すように、両端部に位置する2個の磁石挿入穴7a,7cの両側面部のみに空洞部が形成されるものを例示している。
Embodiment 6 FIG.
FIG. 17 is a schematic cross-sectional view showing the structure of the rotor core according to the sixth embodiment of the present invention. In the first embodiment, as the magnet insertion holes 7a to 7c, as shown in FIGS. 3 and 4, for example, when the permanent magnets 8a to 8c are inserted into the respective magnet insertion holes 7a to 7c, 2 Magnet insertion holes (magnet insertion holes 7b in the examples of FIGS. 3 and 4) located not only on both side surfaces of the magnet insertion holes ( magnet insertion holes 7a and 7c in the examples of FIGS. 3 and 4) but also in the center. The thing which a cavity part is formed also in both the side surface parts of was illustrated. On the other hand, in the sixth embodiment, as shown in FIG. 17, an example in which cavities are formed only on both side surfaces of two magnet insertion holes 7 a and 7 c located at both ends is illustrated.
 実施の形態4では、両端部に位置する永久磁石よりも中央部に位置する永久磁石の方が遠心力の影響が大きく現れることについて説明し、中央部に位置する永久磁石の形状を概略台形形状にする一例を例示した(図11参照)。一方、この実施の形態では、上述のように、両端部に位置する2個の磁石挿入穴7a,7cの両側面部のみに空洞部が形成されるようにし、中央部に位置する磁石挿入穴7bの両側面部には空洞部が形成されない構成を採用している。 In the fourth embodiment, it will be described that the influence of centrifugal force appears more in the permanent magnet located in the center than the permanent magnet located in both ends, and the shape of the permanent magnet located in the center is substantially trapezoidal. An example was given (see FIG. 11). On the other hand, in this embodiment, as described above, the cavity is formed only on both side surfaces of the two magnet insertion holes 7a and 7c located at both ends, and the magnet insertion hole 7b located at the center. A configuration is adopted in which no hollow portion is formed on both side surface portions.
 空洞部を設けない場合、永久磁石と磁石挿入穴との接触面積が増えるので、永久磁石保持力が増大するという効果が得られる。その一方で、永久磁石8a,8b間に形成されるブリッジ部10aおよび永久磁石8b,8c間に形成されるブリッジ部10bが広くなり、ブリッジ部10a,10b間を通過する漏れ磁束が増大することの懸念がある。しかしながら、図17の構成において、両端部に位置する2個の磁石挿入穴7a,7cに形成される空洞部のうち、中央部側の側面部に形成される空洞部9a2,9c1を、図4のものと比べて大きく形成すれば、ブリッジ部10a,10bの幅を小さくすることができるので、漏れ磁束の増大を抑制することが可能となる。 When the hollow portion is not provided, the contact area between the permanent magnet and the magnet insertion hole is increased, so that the effect of increasing the permanent magnet holding force can be obtained. On the other hand, the bridge portion 10a formed between the permanent magnets 8a and 8b and the bridge portion 10b formed between the permanent magnets 8b and 8c are widened, and the leakage magnetic flux passing between the bridge portions 10a and 10b is increased. There are concerns. However, in the configuration of FIG. 17, of the hollow portions formed in the two magnet insertion holes 7 a and 7 c located at both ends, the hollow portions 9 a 2 and 9 c 1 formed on the side surface portion on the center side are shown in FIG. Since the width of the bridge portions 10a and 10b can be reduced if it is formed larger than that of the above, the increase in leakage magnetic flux can be suppressed.
 なお、本実施の形態では、両端部に位置する2個の磁石挿入穴7a,7cの両側面部のみに空洞部が形成される構成を実施の形態1の回転子鉄心に適用する場合の一例を示したが、実施の形態2~5に示す回転子鉄心に適用することも可能であり、本実施の形態と同様な効果が得られる。 In the present embodiment, an example in which a configuration in which cavities are formed only on both side surfaces of the two magnet insertion holes 7a and 7c located at both ends is applied to the rotor core of the first embodiment. Although shown, it can also be applied to the rotor cores shown in the second to fifth embodiments, and the same effects as in the present embodiment can be obtained.
実施の形態7.
 図18は、本発明の実施の形態7にかかる回転子鉄心の構造を示す模式断面図である。本実施の形態では、図18に示すように、両端部に位置する磁石挿入穴7a,7cと、これら磁石挿入穴7a,7cに挿入される永久磁石8a,8cとの間に、それぞれスペーサ21a,21cを設けて保持することとしている。なお、スペーサ21a,21cとしては、回転子鉄心での磁界の影響を小さくするため、非磁性材料であることが好ましい。
Embodiment 7 FIG.
FIG. 18 is a schematic cross-sectional view showing the structure of the rotor core according to the seventh embodiment of the present invention. In the present embodiment, as shown in FIG. 18, a spacer 21a is provided between the magnet insertion holes 7a and 7c located at both ends and the permanent magnets 8a and 8c inserted into the magnet insertion holes 7a and 7c. , 21c are provided and held. The spacers 21a and 21c are preferably non-magnetic materials in order to reduce the influence of the magnetic field on the rotor core.
 実施の形態4,6において、遠心力の影響は、両端部に位置する永久磁石よりも中央部に位置する永久磁石の方が大きく現れると説明した。その一方で、永久磁石8a~8cを配置する概略U字状の磁石挿入穴7a~7cを結ぶ曲線の曲率が大きい場合(曲率半径が小さい場合)、両端部の永久磁石である永久磁石8a,8cでは、着磁方向(磁石長手方向に直交する方向)と遠心力の方向との差異が大きくなり、永久磁石8a,8cには、横向き(長手方向)の力が働くことになる。なお、中央部の永久磁石である永久磁石8bでは、着磁方向と遠心力の方向とは略一致するため、永久磁石8bに働く横向きの力は小さい。 In Embodiments 4 and 6, it has been explained that the influence of centrifugal force appears more in the permanent magnet located in the center than in the permanent magnet located at both ends. On the other hand, when the curvature of the curve connecting the generally U-shaped magnet insertion holes 7a to 7c in which the permanent magnets 8a to 8c are arranged is large (when the radius of curvature is small), the permanent magnets 8a, which are permanent magnets at both ends. In 8c, the difference between the magnetization direction (the direction orthogonal to the longitudinal direction of the magnet) and the direction of the centrifugal force becomes large, and a lateral (longitudinal) force acts on the permanent magnets 8a and 8c. In the permanent magnet 8b, which is a permanent magnet at the center, the magnetization direction and the direction of the centrifugal force substantially coincide with each other, and therefore the lateral force acting on the permanent magnet 8b is small.
 図18に示すように、磁石挿入穴7a,7cと永久磁石8a,8cとの間に、それぞれスペーサ21a,21cを設けるようにすれば、永久磁石8a,8cとスペーサ21a,21cとの摩擦力にて長手方向に働く遠心力を抑えることができるので、永久磁石の保持が容易となる。 As shown in FIG. 18, if spacers 21a and 21c are provided between the magnet insertion holes 7a and 7c and the permanent magnets 8a and 8c, respectively, the frictional force between the permanent magnets 8a and 8c and the spacers 21a and 21c. Since the centrifugal force acting in the longitudinal direction can be suppressed, the permanent magnet can be easily held.
実施の形態8.
 図19は、本発明の実施の形態8にかかる回転子鉄心の構造を示す模式断面図である。図19において、永久磁石8a~8cに付した片方向の矢印線は、それぞれの着磁方向を示しており、中央部にある永久磁石8bの着磁方向の厚み31bは、両側面側にある永久磁石8a,8cにおける着磁方向の厚み31a,31cよりも小さく(薄く)なっている。ここで、固定子2からの磁束(図示せず)が大きい場合、回転子表面に近い側面の永久磁石の端部に磁束が鎖交する。また、永久磁石の着磁方向の厚みが小さいほど固定子からの磁束の磁気抵抗が小さくなるために永久磁石が減磁しやすい。ところが、永久磁石9bのように回転子表面からの距離が遠い場合、固定子2からの磁束が届きにくくなる。このため、中央部にある永久磁石9bは減磁しにくく、永久磁石9bの着磁方向の厚みを小さく(薄く)することが可能となる。
Embodiment 8 FIG.
FIG. 19 is a schematic cross-sectional view showing the structure of the rotor core according to the eighth embodiment of the present invention. In FIG. 19, the unidirectional arrow lines attached to the permanent magnets 8a to 8c indicate the respective magnetization directions, and the thickness 31b in the magnetization direction of the permanent magnet 8b at the center is on both side surfaces. The permanent magnets 8a and 8c are smaller (thinner) than the thicknesses 31a and 31c in the magnetization direction. Here, when the magnetic flux (not shown) from the stator 2 is large, the magnetic flux is linked to the end of the permanent magnet on the side surface close to the rotor surface. Further, the smaller the thickness of the permanent magnet in the magnetizing direction, the smaller the magnetic resistance of the magnetic flux from the stator, so the permanent magnet is likely to be demagnetized. However, when the distance from the rotor surface is long like the permanent magnet 9b, the magnetic flux from the stator 2 is difficult to reach. For this reason, the permanent magnet 9b in the central portion is not easily demagnetized, and the thickness of the permanent magnet 9b in the magnetization direction can be reduced (thinned).
 なお、中央部にある永久磁石9bの着磁方向の厚みを薄くせずに、両側面部にある永久磁石9a,9cよりも保磁力の小さい永久磁石にしてもよい。一般的に、永久磁石保磁力を高めるほど残留磁束密度が小さくなり、保磁力を小さくすれば残留磁束密度を大きくすることができる。このため、実施の形態8による磁石構造を採用すれば、回転子の軸方向短縮による軽量化が可能である。また、永久磁石の単価は、保磁力が小さいほど安価な傾向にあるため、回転子の低コスト化、ひいては回転電機の低コスト化が可能となる。 In addition, you may make it the permanent magnet with smaller coercive force than the permanent magnets 9a and 9c in a both-sides surface part, without making thickness of the permanent magnet 9b in the center part the magnetization direction thin. Generally, the residual magnetic flux density decreases as the permanent magnet coercive force is increased, and the residual magnetic flux density can be increased by reducing the coercive force. For this reason, if the magnet structure by Embodiment 8 is employ | adopted, weight reduction by the axial direction shortening of a rotor is possible. Moreover, since the unit price of the permanent magnet tends to be lower as the coercive force is smaller, it is possible to reduce the cost of the rotor and hence the cost of the rotating electrical machine.
実施の形態9.
 図20,21は、本発明の実施の形態9にかかる永久磁石の軸方向断面図であり、図20は、両側面側にある永久磁石8a,8cにおける回転子軸方向の断面構造を示し、図21は、中央部側にある永久磁石8bの回転子軸方向の断面構造を示している。両側面側にある永久磁石8a,8cの磁石分割数は、図20に示すように、例えば10個であり、中央部側にある永久磁石8bの磁石分割数は、図21に示すように、例えば5個である。この差異は、永久磁石の渦電流損に関係しており、磁石分割数を増やすことにより永久磁石の渦電流損が小さくなるという性質を利用するためである。
Embodiment 9 FIG.
20 and 21 are axial sectional views of the permanent magnet according to the ninth embodiment of the present invention, and FIG. 20 shows a sectional structure in the rotor axial direction of the permanent magnets 8a and 8c on both side surfaces, FIG. 21 shows a cross-sectional structure of the permanent magnet 8b on the center side in the rotor axis direction. As shown in FIG. 20, the number of magnet divisions of the permanent magnets 8a and 8c on both side surfaces is, for example, 10, and the number of magnet divisions of the permanent magnet 8b on the center side is as shown in FIG. For example, five. This difference is related to the eddy current loss of the permanent magnet, and is because the eddy current loss of the permanent magnet is reduced by increasing the number of magnet divisions.
 より詳細に説明すると、固定子磁束によって発生する永久磁石の渦電流損は回転子表面に近い永久磁石8a,8cの方が大きいため、磁石分割数を増やすことが必要であるが、永久磁石8bのように回転子表面から遠い位置に配置されている永久磁石8bでは、固定子磁束による磁石渦電流損が小さくなるため、磁石分割数を小さくすることができ、低コスト化が可能となる。 More specifically, the eddy current loss of the permanent magnet generated by the stator magnetic flux is larger in the permanent magnets 8a and 8c close to the rotor surface, so that it is necessary to increase the number of magnet divisions, but the permanent magnet 8b. In the permanent magnet 8b arranged at a position far from the rotor surface as described above, the magnet eddy current loss due to the stator magnetic flux is reduced, so that the number of magnet divisions can be reduced and the cost can be reduced.
 また,磁石分割数の異なる永久磁石を配置する場合、永久磁石8a(8)の磁石形状と、永久磁石8bの磁石形状とを図19に示すように異ならせておくのが好ましい。磁石分割数の少ない永久磁石を両側面部側に挿入してしまった場合、渦電流損が大きくなってしまう可能性がある。一方、図19に示すようにが、永久磁石8a(8c)と永久磁石8bの大きさを異ならせた場合、これらを間違えて挿入する可能性がなくなるため、歩留まりの向上を図ることができるという効果がある。 Further, when arranging permanent magnets having different numbers of magnet divisions, it is preferable that the magnet shape of the permanent magnet 8a (8) and the magnet shape of the permanent magnet 8b are different as shown in FIG. If a permanent magnet with a small number of magnet divisions is inserted on both side surfaces, eddy current loss may increase. On the other hand, as shown in FIG. 19, when the sizes of the permanent magnet 8a (8c) and the permanent magnet 8b are made different from each other, there is no possibility of inserting them by mistake, so that the yield can be improved. effective.
 以上のように、本発明は、遠心力に対する強度を保持しつつ、漏れ磁束の発生を効果的に抑制した永久磁石型回転電機およびその回転子として有用である。 As described above, the present invention is useful as a permanent magnet type rotating electrical machine that effectively suppresses generation of leakage magnetic flux while maintaining strength against centrifugal force, and a rotor thereof.
 1 永久磁石型電動機
 2 固定子
 3 固定子鉄心
 3a スロット
 3b ティース
 4 固定子コイル
 5 回転子
 6 回転子鉄心
 7,7a~7c 磁石挿入穴
 8,8a~8m,8a',8c',16,16a~16c 永久磁石
 9,9a1,9a2,9b1,9b2,9c1,9c2 空洞部
 10a,10b,11a,11b ブリッジ部
 12 漏れ磁束
 13 磁束
 14 接触面
 15 コアバック部
 18 回転空隙
 21a,21c スペーサ
 31a~31c 着磁方向の厚み
DESCRIPTION OF SYMBOLS 1 Permanent magnet type electric motor 2 Stator 3 Stator iron core 3a Slot 3b Teeth 4 Stator coil 5 Rotor 6 Rotor iron core 7, 7a-7c Magnet insertion hole 8, 8a-8m, 8a ', 8c', 16, 16a 16c Permanent magnet 9, 9a1, 9a2, 9b1, 9b2, 9c1, 9c2 Cavity part 10a, 10b, 11a, 11b Bridge part 12 Leakage magnetic flux 13 Magnetic flux 14 Contact surface 15 Core back part 18 Rotating air gap 21a, 21c Spacer 31a-31c Thickness in the magnetization direction

Claims (13)

  1.  スロットの内部に固定子コイルを収納してなる固定子と、
     前記固定子に回転空隙を介して回転可能に配置される回転子鉄心を有し、この回転子鉄心の内部に1極あたり3個以上の永久磁石が埋め込まれる回転子と、
     を備え、
     前記回転子鉄心には、前記永久磁石を埋め込む磁石挿入穴が回転子の外周面に向かって概略U字状に並べて設けられ、前記各磁石挿入穴に埋め込まれた永久磁石のうち、少なくとも前記回転子鉄心の最外周部側に位置する1極あたり2個の永久磁石の両側面部には空洞部が形成されることを特徴とする永久磁石型回転電機。
    A stator that houses a stator coil inside the slot;
    A rotor having a rotor core disposed rotatably in the stator via a rotation gap, and three or more permanent magnets embedded in each rotor core;
    With
    The rotor core is provided with magnet insertion holes for embedding the permanent magnets arranged in a substantially U shape toward the outer peripheral surface of the rotor, and at least the rotation of the permanent magnets embedded in the magnet insertion holes. A permanent magnet type rotating electrical machine characterized in that cavities are formed on both side surfaces of two permanent magnets per pole located on the outermost peripheral side of the core.
  2.  前記回転子鉄心の中央部側に位置する永久磁石の両側面部にも空洞部が形成されることを特徴とする請求項1に記載の永久磁石型回転電機。 2. The permanent magnet type rotating electric machine according to claim 1, wherein a hollow portion is also formed on both side portions of the permanent magnet located on the central portion side of the rotor core.
  3.  前記回転子鉄心は、前記回転子の外周面に向かって収束するような方向に着磁された第1の永久磁石の組と、前記回転子の中心部に向かって同心円状に広がる方向に着磁された第2の永久磁石の組と、が交互に配列されることを特徴とする請求項2に記載の永久磁石型回転電機。 The rotor core is attached to a first permanent magnet set magnetized in a direction that converges toward the outer peripheral surface of the rotor and a direction that extends concentrically toward the center of the rotor. The permanent magnet type rotating electric machine according to claim 2, wherein the magnetized second permanent magnet groups are alternately arranged.
  4.  前記磁石挿入穴の大きさは、前記回転子鉄心の最外周部側に位置する磁石挿入穴の方が、他の磁石挿入穴よりも大きいことを特徴とする請求項2に記載の永久磁石型回転電機。 The permanent magnet type according to claim 2, wherein the magnet insertion hole is larger in the magnet insertion hole located on the outermost peripheral side of the rotor core than in the other magnet insertion holes. Rotating electric machine.
  5.  前記回転子鉄心の最外周部側に位置する1極あたり2個の磁石挿入穴において、
     これらの磁石挿入穴に永久磁石を埋め込んだときに形成される空洞部の大きさは、外周部側に形成される空洞部の方が、中心部側に形成される空洞部よりも大きいことを特徴とする請求項2に記載の永久磁石型回転電機。
    In two magnet insertion holes per pole located on the outermost peripheral side of the rotor core,
    The size of the cavity formed when the permanent magnets are embedded in these magnet insertion holes is such that the cavity formed on the outer peripheral side is larger than the cavity formed on the center side. The permanent magnet type rotating electrical machine according to claim 2,
  6.  前記回転子鉄心の最外周部側に位置する1極あたり2個の永久磁石における外周面側の角部が面取りされていることを特徴とする請求項2に記載の永久磁石型回転電機。 The permanent magnet type rotating electric machine according to claim 2, wherein corners on the outer peripheral surface side of two permanent magnets per pole located on the outermost peripheral side of the rotor core are chamfered.
  7.  前記磁石挿入穴と前記永久磁石との接触面の一部が粗面処理されていることを特徴とする請求項2に記載の永久磁石型回転電機。 The permanent magnet type rotating electric machine according to claim 2, wherein a part of a contact surface between the magnet insertion hole and the permanent magnet is roughened.
  8.  前記永久磁石は、前記磁石挿入穴との接触面が前記回転子鉄心の中心部に向かって幅広となるテーパ形状であることを特徴とする請求項2に記載の永久磁石型回転電機。 The permanent magnet type rotating electric machine according to claim 2, wherein the permanent magnet has a tapered shape in which a contact surface with the magnet insertion hole becomes wider toward a central portion of the rotor core.
  9.  前記回転子鉄心の最外周部側に位置する1極あたり2個の永久磁石は、非磁性部材のスペーサにて固定されていることを特徴とする請求項2に記載の永久磁石型回転電機。 3. The permanent magnet type rotating electric machine according to claim 2, wherein two permanent magnets per pole located on the outermost peripheral side of the rotor core are fixed by a spacer of a nonmagnetic member.
  10.  前記回転子鉄心の中央部側に位置する永久磁石は、前記回転子鉄心の最外周部側に位置する永久磁石よりも磁化方向の厚さが薄いことを特徴とする請求項2に記載の永久磁石型回転電機。 3. The permanent magnet according to claim 2, wherein the permanent magnet located on the center side of the rotor core has a smaller magnetization direction thickness than the permanent magnet located on the outermost peripheral side of the rotor core. Magnet type rotating electrical machine.
  11.  前記回転子鉄心の中央部側に位置する永久磁石は、前記回転子鉄心の最外周部側に位置する永久磁石よりも保持力が小さいことを特徴とする請求項2または10に記載の永久磁石型回転電機。 11. The permanent magnet according to claim 2, wherein the permanent magnet positioned on the central portion side of the rotor core has a smaller holding force than the permanent magnet positioned on the outermost peripheral portion side of the rotor core. Type rotating electric machine.
  12.  前記各永久磁石を前記回転子の軸方向に分割することを特徴とする請求項2に記載の永久磁石型回転電機。 3. The permanent magnet type rotating electric machine according to claim 2, wherein each permanent magnet is divided in the axial direction of the rotor.
  13.  前記回転子鉄心の中央部側に位置する永久磁石の分割数は、前記回転子鉄心の最外周部側に位置する永久磁石の分割数よりも小さいことを特徴とする請求項12に記載の永久磁石型回転電機。 The permanent magnet according to claim 12, wherein the number of divisions of the permanent magnet located on the center side of the rotor core is smaller than the number of divisions of the permanent magnet located on the outermost peripheral side of the rotor core. Magnet type rotating electrical machine.
PCT/JP2010/061206 2009-07-03 2010-06-30 Permanent magnet type rotary electrical machine WO2011002043A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800299189A CN102474142A (en) 2009-07-03 2010-06-30 Permanent magnet type rotary electrical machine
JP2011520971A JPWO2011002043A1 (en) 2009-07-03 2010-06-30 Permanent magnet type rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2009/062207 2009-07-03
PCT/JP2009/062207 WO2011001533A1 (en) 2009-07-03 2009-07-03 Permanent magnetic rotating electric machine

Publications (1)

Publication Number Publication Date
WO2011002043A1 true WO2011002043A1 (en) 2011-01-06

Family

ID=43410631

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/062207 WO2011001533A1 (en) 2009-07-03 2009-07-03 Permanent magnetic rotating electric machine
PCT/JP2010/061206 WO2011002043A1 (en) 2009-07-03 2010-06-30 Permanent magnet type rotary electrical machine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062207 WO2011001533A1 (en) 2009-07-03 2009-07-03 Permanent magnetic rotating electric machine

Country Status (3)

Country Link
JP (1) JPWO2011002043A1 (en)
CN (1) CN102474142A (en)
WO (2) WO2011001533A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160988A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Permanent magnet-type rotary electric machine and vehicle drive system
JP2013230086A (en) * 2013-08-13 2013-11-07 Mitsubishi Electric Corp Railway vehicle driving system
JP2014204599A (en) * 2013-04-08 2014-10-27 株式会社東芝 Motor
JPWO2013160988A1 (en) * 2012-04-23 2015-12-21 三菱電機株式会社 Permanent magnet type rotating electric machine and vehicle drive system
JP2017005857A (en) * 2015-06-10 2017-01-05 株式会社デンソー Rotor
US20190089212A1 (en) * 2017-09-15 2019-03-21 Ford Global Technologies, Llc Rotor with nonmagnetic insert
DE102019002449A1 (en) 2019-04-03 2020-07-09 Daimler Ag Rotor core for a rotor of an electrical machine, rotor element with such a rotor core and electrical machine for a motor vehicle
CN113169608A (en) * 2019-03-05 2021-07-23 宝马股份公司 Rotor for an electric machine excited by permanent magnets, comprising a support structure
WO2021210249A1 (en) * 2020-04-15 2021-10-21 パナソニックIpマネジメント株式会社 Rotor and electric motor
TWI812289B (en) * 2022-06-16 2023-08-11 大銀微系統股份有限公司 Improved structure for high-frequency rotary mechanism

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5372296B2 (en) * 2011-05-16 2013-12-18 三菱電機株式会社 Permanent magnet type rotating electric machine
FR2995469B1 (en) * 2012-09-13 2017-04-21 Moteurs Leroy-Somer ROTOR OF ROTATING ELECTRIC MACHINE HAVING A ROTORIC MASS IN WHICH ARE HOUSEHOLDS.
CN203219023U (en) * 2012-12-10 2013-09-25 艾默生环境优化技术(苏州)有限公司 Motor rotor
CN104937817B (en) * 2013-01-23 2017-04-26 三菱电机株式会社 Rotor and rotating electrical machine equipped with rotor
FR3002091B1 (en) * 2013-02-14 2016-07-15 Moteurs Leroy-Somer ROTATING ELECTRIC MACHINE.
JP6090987B2 (en) 2013-02-21 2017-03-08 本田技研工業株式会社 Rotating electric machine
CN103269136A (en) * 2013-03-25 2013-08-28 杭州德沃仕电动科技有限公司 Motor
CN105141058B (en) * 2015-09-07 2018-03-30 中车株洲电力机车研究所有限公司 Permanent-magnetic synchronous motor rotor and permagnetic synchronous motor
CN105763011A (en) * 2016-05-11 2016-07-13 山东理工大学 Embedded bi-radial permanent magnet generator with vacuum pump
CN105790475A (en) * 2016-05-11 2016-07-20 山东理工大学 Built-in biradial permanent magnet steel combined-type magnetic field drive motor for electric automobile
CN105958752A (en) * 2016-05-11 2016-09-21 山东理工大学 Method of producing built-in combined permanent magnetic pole and electromagnetic composite excitation generator rotor
CN105914986A (en) * 2016-05-11 2016-08-31 山东理工大学 Brushless electromagnetic and composite permanent magnet magnetic pole mixed excitation driving motor
CN113517770B (en) * 2021-07-01 2023-08-29 河南通宇新源动力有限公司 Multi-combination type permanent magnet motor rotor punching sheet and permanent magnet motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119877A (en) * 1999-10-21 2001-04-27 Aichi Emerson Electric Co Ltd Permanent magnet embedded rotor
JP2003088019A (en) * 2001-09-10 2003-03-20 Fujitsu General Ltd Permanent-magnet motor
WO2003079516A1 (en) * 2002-03-20 2003-09-25 Daikin Industries, Ltd. Permanent magnet type motor and compressor comprising it
JP2005086955A (en) * 2003-09-10 2005-03-31 Aichi Elec Co Permanent magnet rotating machine
JP2007300796A (en) * 2007-07-17 2007-11-15 Aichi Elec Co Rotor for permanent magnet type motor
JP2009142081A (en) * 2007-12-06 2009-06-25 Toyota Motor Corp Permanent magnet and method of manufacturing the same, and rotor and ipm motor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795572B2 (en) * 1992-01-20 1998-09-10 ファナック株式会社 Synchronous machine rotor and method of manufacturing the same
JPH1169735A (en) * 1997-08-26 1999-03-09 Sankyo Seiki Mfg Co Ltd Manufacture of motor
JP2002084722A (en) * 2000-09-06 2002-03-22 Fujitsu General Ltd Permanent magnet motor
JP2003164083A (en) * 2001-11-22 2003-06-06 Shin Etsu Chem Co Ltd Permanent magnet and motor
JP2004088846A (en) * 2002-08-23 2004-03-18 Toshiba Corp Permanent magnet rotor
JP5244290B2 (en) * 2005-08-23 2013-07-24 日産自動車株式会社 Rotor structure of rotating electrical machine
JP4815204B2 (en) * 2005-12-01 2011-11-16 アイチエレック株式会社 Permanent magnet rotating machine and compressor
US7556082B2 (en) * 2006-03-29 2009-07-07 Gm Global Technology Operations, Inc. Interior permanent magnet rotors with multiple properties and methods of making same
JP2008220053A (en) * 2007-03-05 2008-09-18 Toyota Motor Corp Motor
JP4466681B2 (en) * 2007-05-11 2010-05-26 トヨタ自動車株式会社 Rotating electric machine rotor and rotating electric machine
JP4368916B2 (en) * 2007-08-17 2009-11-18 三菱電機株式会社 Rotating electric machine
JP4886624B2 (en) * 2007-07-11 2012-02-29 株式会社日立製作所 Permanent magnet type rotating electrical machine and permanent magnet type rotating electrical machine system
EP2216884B1 (en) * 2007-11-28 2017-03-29 Daikin Industries, Ltd. Field element core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119877A (en) * 1999-10-21 2001-04-27 Aichi Emerson Electric Co Ltd Permanent magnet embedded rotor
JP2003088019A (en) * 2001-09-10 2003-03-20 Fujitsu General Ltd Permanent-magnet motor
WO2003079516A1 (en) * 2002-03-20 2003-09-25 Daikin Industries, Ltd. Permanent magnet type motor and compressor comprising it
JP2005086955A (en) * 2003-09-10 2005-03-31 Aichi Elec Co Permanent magnet rotating machine
JP2007300796A (en) * 2007-07-17 2007-11-15 Aichi Elec Co Rotor for permanent magnet type motor
JP2009142081A (en) * 2007-12-06 2009-06-25 Toyota Motor Corp Permanent magnet and method of manufacturing the same, and rotor and ipm motor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160988A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Permanent magnet-type rotary electric machine and vehicle drive system
JPWO2013160988A1 (en) * 2012-04-23 2015-12-21 三菱電機株式会社 Permanent magnet type rotating electric machine and vehicle drive system
KR101624070B1 (en) 2012-04-23 2016-05-24 미쓰비시덴키 가부시키가이샤 Permanent magnet-type rotary electric machine and vehicle drive system
US9685829B2 (en) 2012-04-23 2017-06-20 Mitsubishi Electric Corporation Permanent magnet-type rotary electric machine and vehicle drive system
JP2014204599A (en) * 2013-04-08 2014-10-27 株式会社東芝 Motor
JP2013230086A (en) * 2013-08-13 2013-11-07 Mitsubishi Electric Corp Railway vehicle driving system
JP2017005857A (en) * 2015-06-10 2017-01-05 株式会社デンソー Rotor
US20190089212A1 (en) * 2017-09-15 2019-03-21 Ford Global Technologies, Llc Rotor with nonmagnetic insert
CN113169608A (en) * 2019-03-05 2021-07-23 宝马股份公司 Rotor for an electric machine excited by permanent magnets, comprising a support structure
DE102019002449A1 (en) 2019-04-03 2020-07-09 Daimler Ag Rotor core for a rotor of an electrical machine, rotor element with such a rotor core and electrical machine for a motor vehicle
WO2021210249A1 (en) * 2020-04-15 2021-10-21 パナソニックIpマネジメント株式会社 Rotor and electric motor
TWI812289B (en) * 2022-06-16 2023-08-11 大銀微系統股份有限公司 Improved structure for high-frequency rotary mechanism

Also Published As

Publication number Publication date
WO2011001533A1 (en) 2011-01-06
JPWO2011002043A1 (en) 2012-12-13
CN102474142A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2011002043A1 (en) Permanent magnet type rotary electrical machine
JP6508168B2 (en) Electric rotating machine
US7598645B2 (en) Stress distributing permanent magnet rotor geometry for electric machines
US9143024B2 (en) Double-stator motor having various configurations for inner and outer windings
JP5663936B2 (en) Permanent magnet rotating electric machine
JP5502571B2 (en) Permanent magnet rotating electric machine
JP5709907B2 (en) Permanent magnet embedded rotary electric machine for vehicles
JP4901839B2 (en) Electric motor, compressor, blower and ventilation fan
JP5868513B2 (en) Permanent magnet embedded motor
WO2013018245A1 (en) Electric motor
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
JP5347588B2 (en) Embedded magnet motor
WO2014046228A1 (en) Permanent magnet-embedded electric motor
JP2008104323A (en) Permanent magnet-assisted reluctance rotary electric machine
JPWO2019064801A1 (en) Permanent magnet type rotating electric machine
WO2012157056A1 (en) Permanent-magnet type rotating electrical machine
JP6048191B2 (en) Multi-gap rotating electric machine
JP2012228104A (en) Permanent magnet-embedded motor
JP5383915B2 (en) Permanent magnet type rotating electric machine
JP2014039475A (en) Pm synchronous motor
JP2005328679A (en) Permanent magnet reluctance type rotating electric machine
JP6428458B2 (en) Embedded magnet type motor
JP4080273B2 (en) Permanent magnet embedded motor
JP2006025486A (en) Electric electric machine
JP2010246301A (en) Rotor for permanent magnet type motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029918.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520971

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794211

Country of ref document: EP

Kind code of ref document: A1