JP4677950B2 - 三次元繊維構造体及び複合材並びに三次元繊維構造体の製造方法 - Google Patents

三次元繊維構造体及び複合材並びに三次元繊維構造体の製造方法 Download PDF

Info

Publication number
JP4677950B2
JP4677950B2 JP2006144507A JP2006144507A JP4677950B2 JP 4677950 B2 JP4677950 B2 JP 4677950B2 JP 2006144507 A JP2006144507 A JP 2006144507A JP 2006144507 A JP2006144507 A JP 2006144507A JP 4677950 B2 JP4677950 B2 JP 4677950B2
Authority
JP
Japan
Prior art keywords
thickness direction
fiber layer
laminated
fiber
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006144507A
Other languages
English (en)
Other versions
JP2007291582A (ja
Inventor
亜矢 牧
隆太 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2006144507A priority Critical patent/JP4677950B2/ja
Priority to EP07105193.2A priority patent/EP1842656B1/en
Priority to US11/731,390 priority patent/US7758946B2/en
Publication of JP2007291582A publication Critical patent/JP2007291582A/ja
Application granted granted Critical
Publication of JP4677950B2 publication Critical patent/JP4677950B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24033Structurally defined web or sheet [e.g., overall dimension, etc.] including stitching and discrete fastener[s], coating or bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24074Strand or strand-portions
    • Y10T428/24091Strand or strand-portions with additional layer[s]
    • Y10T428/24099On each side of strands or strand-portions
    • Y10T428/24107On each side of strands or strand-portions including mechanically interengaged strands, strand-portions or strand-like strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24124Fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249923Including interlaminar mechanical fastener
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/3195Three-dimensional weave [e.g., x-y-z planes, multi-planar warps and/or wefts, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3528Three or more fabric layers
    • Y10T442/3569Woven fabric layers impregnated with a thermosetting resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3528Three or more fabric layers
    • Y10T442/3569Woven fabric layers impregnated with a thermosetting resin
    • Y10T442/3577Phenolic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3528Three or more fabric layers
    • Y10T442/3569Woven fabric layers impregnated with a thermosetting resin
    • Y10T442/3585Epoxy resin

Description

本発明は、曲げ部を有する三次元繊維構造体及び複合材並びに三次元繊維構造体の製造方法に関する。
繊維強化複合材(以下、単に複合材と言う。)は軽量の構造材として広く使用されている。複合材用の強化基材として三次元織物等の三次元繊維構造体がある。三次元繊維構造体を複合材の強化材として広い用途に使用可能とするためには、単純な平板状ではなく曲げ部を有する三次元繊維構造体が必要となる。
この種の三次元繊維構造体として、多数の経糸を三次元織物の断面形状に対応した複数行、複数列に張設して経糸群を形成し、該経糸群の行間及び列間に経糸と直交する状態で第2緯糸及び第1緯糸をそれぞれ挿入する工程を繰り返して三次元織物を織成する方法が提案されている(例えば、特許文献1参照。)。この方法では、三次元織物の屈曲部(曲げ部)を織成する際に、屈曲状態に対応して第1緯糸を部分的に屈曲部の最内層となる行の経糸に達する手前で折り返すとともに第2緯糸の挿入行数をそれに対応して減少する織成工程を入れ、製織の進行に伴い織り上がった部分の三次元織物を順次屈曲させる。
また、三次元繊維構造体の製造方法として枠体を使用する方法も提案されている(例えば、特許文献2参照。)。この方法では、複数の板状部が接続部において屈曲状態で連続する形状の三次元繊維構造体の形状に対応した形状に形成されるとともに規制部材が所定ピッチで配置された枠体上に、規制部材間に糸(連続繊維)を折り返し状に配列した糸層を積層して積層糸群を形成した後、積層糸群を枠体に保持した状態で厚さ方向糸を挿入する。
特開平2−191742号公報 特開平9−137336号公報
ところが、特許文献1の製造方法では製造装置として三次元織機が必要となり、装置が複雑で大型になる。また、特許文献2の製造方法では特許文献1の方法に比較して装置は簡単になるが、屈曲状態で枠体上に配列された積層糸群に厚さ方向糸を挿入する作業工数が大きくなり、装置も複雑になる。また、特許文献2の製造方法のように、規制部材が設けられた枠体を使用して、規制部材と係合する状態で連続繊維を配列する方法では、異なる方向に曲がった屈曲部を有する三次元繊維構造体を製造することはできない。
そこで、連続繊維からなる繊維層が積層されて形成された積層繊維層が、厚さ方向糸で結合された三次元繊維構造体を形成した後、その三次元繊維構造体を曲げて、最終的に曲げ部を有する三次元繊維構造体を形成する場合がある。
例えば、図9に示すように、断面略ハット状の三次元繊維構造体61を製造する際、連続繊維からなる繊維層が積層されて形成された少なくとも2軸配向となる積層繊維層62を厚さ方向糸63で結合した平板状の三次元繊維構造体を折り曲げて形成することが考えられる。しかし、三次元繊維構造体に使用される連続繊維は一般に伸びが非常に小さいため、曲げ部における外側に配列された連続繊維が伸びることができず、結果として内側に皺64や歪みが発生した三次元繊維構造体61となる。この皺64や歪みは三次元繊維構造体61を強化材として樹脂をマトリックスとした複合材(FRP)を形成した場合、物性低下(例えば、強度低下)の原因となるとともに、外観品質を低下させる。
本発明は、前記従来の問題に鑑みてなされたものであって、その第1の目的は、連続繊維からなる繊維層が積層されて少なくとも2軸配向となるように形成され、かつ厚さ方向糸で結合された積層繊維層から、曲げ加工で、曲げ部における皺や歪みの発生が抑制された状態で製造が可能な新規な構成の三次元繊維構造体を提供することにある。第2の目的は、前記三次元繊維構造体を強化材とする複合材を提供することにある。また、第3の目的は、前記三次元繊維構造体の製造方法を提供することにある。
前記第1の目的を達成するため請求項1に記載の発明は、連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体である。そして、前記曲げ部を挟んで隣り合う一方の平面部に配列される前記厚さ方向糸と、他方の平面部に配列される前記厚さ方向糸とは前記繊維層に対して交差する角度が異なる方向に配列されている。
ここで、「立体的な板状」とは、全体として平面状ではなく平板が屈曲されて立体形状となっていることを意味する。また、「連続繊維」とは、単繊維(モノフィラメント)に限らず、単繊維が複数本束ねられた繊維束を含む。また、「糸」とは、撚りが掛かった糸のみを意味するのではなく、多数本の繊維が束となって撚りが実質掛かっていない繊維束(所謂ロービング)をも含む。
この発明では、三次元繊維構造体を構成する積層繊維層を結合する厚さ方向糸は、全ての領域で積層繊維層の厚さ方向と平行に配列されているのではなく、曲げ部を挟んで隣り合う一方の平面部に配列される厚さ方向糸と、他方の平面部に配列される厚さ方向糸とは前記繊維層に対して交差する角度が異なる方向に配列されている。そのため、三次元繊維構造体を製造する際に、連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層に曲げ加工を施すことで製造することが可能になる。なぜならば、厚さ方向糸で結合された積層繊維層に曲げ加工を施す際に、積層繊維層を板圧方向に圧縮しながら曲げると、曲げ部の外側に配列されている連続繊維の非曲げ部の部分がずれようとする。そのとき、非曲げ部に配列されている厚さ方向糸がずれを許容するように連続繊維と共に移動することにより、曲げ部における皺や歪みの発生が抑制された状態で製造が可能になる。
請求項2に記載の発明は、織物組織からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体である。そして、前記曲げ部を挟んで隣り合う一方の平面部に配列される前記厚さ方向糸と、他方の平面部に配列される前記厚さ方向糸とは前記繊維層に対して交差する角度が異なる方向に配列されている。この発明の三次元繊維構造体は、連続繊維を配列した繊維層を積層して積層繊維層を構成するより、短時間で三次元繊維構造体を製造することが可能になる。
請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記一方の平面部には前記厚さ方向糸が前記繊維層と斜めに交差する状態で配列され、前記他方の平面部には前記厚さ方向糸が前記繊維層と直交する方向に配列されている。この発明の三次元繊維構造体は、三次元繊維構造体を製造する際に、連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層を厚さ方向糸で結合した一次構造体に曲げ加工を施すことで製造することが可能になる。
請求項4に記載の発明は、連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体である。そして、2個の曲げ部が平面部を挟むように設けられている部分を備えており、前記平面部に配列される前記厚さ方向糸は前記繊維層と斜めに交差する状態で配列されている。この発明の三次元繊維構造体も、三次元繊維構造体を製造する際に、連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層を厚さ方向糸で結合した一次構造体に曲げ加工を施すことで製造することが可能になる。
請求項5に記載の発明は、請求項1〜請求項4のいずれか一項に記載の発明において、前記積層繊維層は、前記曲げ部の曲率中心線と直交する仮想平面による断面形状が、厚さ方向の一方の側における外形線の長さと、他方の側における外形線の長さとが等しい形状に形成されている。この発明の三次元繊維構造体は、三次元繊維構造体を製造する際に、厚さ方向糸で結合された積層繊維層に曲げ加工を施す際、連続繊維のずれが円滑に起こり、曲げ部における皺や歪みの発生が抑制された状態で製造が可能になる。
請求項6に記載の発明は、請求項1〜請求項4のいずれか一項に記載の発明において、前記積層繊維層は、前記曲げ部及び前記平面部に跨るように前記連続繊維が配列される仮想平面による断面形状が、厚さ方向の一方の側における外形線の長さと、他方の側における外形線の長さとが等しい形状に形成されている。この発明の三次元繊維構造体は、三次元繊維構造体を製造する際に、厚さ方向糸で結合された積層繊維層に曲げ加工を施す際、連続繊維のずれが円滑に起こり、曲げ部における皺や歪みの発生が抑制された状態で製造が可能になる。
請求項7に記載の発明は、請求項1〜請求項6のいずれか一項に記載の発明において、前記積層繊維層は、前記曲げ部として曲げ方向の異なる曲げ部を平面部が間に存在する隣り合う状態で備えており、前記曲げ方向の異なる曲げ部に挟まれた平面部に前記厚さ方向糸が前記繊維層と斜めに交差する状態で配列されている。ここで、「曲げ方向の異なる曲げ部」とは、曲げ部の曲率中心線は互いに平行で、一方の曲げ部が外側に凸であれば他方の曲げ部が内側に凸となるように湾曲している状態であることを意味する。
この発明では、平面部を挟んで隣り合う曲げ部の曲げ方向が異なるため、一方の曲げ部において外側となる繊維層は、他方の曲げ部では内側となり、積層繊維層を曲げて三次元繊維構造体を形成する際に、曲げ部において連続繊維に皺や歪みが発生しない状態で曲げ易くなる。
請求項8に記載の発明は、請求項5〜請求項7のいずれか一項に記載の発明において、前記仮想平面と対向する方向から見た場合、前記平面部において前記繊維層と斜めに交差する状態で配列されている前記厚さ方向糸の長さをL、曲げ部の角度をθ(ラジアン)、前記曲げ部における前記積層繊維層の厚さをtとした場合、t/L≦cos( tan−1θ) の関係を有する。ここで、「厚さ方向糸の長さ」とは、厚さ方向糸の三次元繊維構造体に挿入されている部分の長さを意味する。また、「曲げ部の角度」とは、曲げ部の曲率中心と、曲げ部の両端とを結ぶ直線の成す角度を意味する。
この発明では、厚さ方向糸の長さが前記関係を満たすように三次元繊維構造体を製造することにより、三次元繊維構造体の厚さに関係なく、曲げ部において連続繊維に皺や歪みが発生しない状態で曲げ易くなる。
請求項9に記載の発明は、請求項1〜請求項8のいずれか一項に記載の発明において、前記連続繊維及び厚さ方向糸の少なくとも一方は、伸び率が2.4%以下である。10%以上伸びる繊維(ナイロン、アクリル)と比較して、炭素繊維の破断伸び率は、一般に0.5%〜2.4%と小さく、弛みのない連続繊維を伸ばして曲げを行うことは難しい。しかし、この発明では連続繊維に炭素繊維を使用しても無理なく曲げ部を形成することができる。
第2の目的を達成するため請求項10に記載の発明の複合材は、請求項1〜請求項9のいずれか一項に記載の三次元繊維構造体を強化材とし、樹脂をマトリックスとしている。この発明では、曲げ部の内側に皺や歪みのない三次元繊維構造体を強化材とした複合材を容易に製造することができる。
第3の目的を達成するため請求項11に記載の発明は、連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続し、かつ曲げ方向の異なる曲げ部が平面部を間にして隣り合う状態で隣接して存在する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体の製造方法である。そして、規制部材が所定ピッチで配置された治具上に、前記規制部材と係合して折り返すように連続繊維を前記規制部材間に配列して形成した繊維層を複数積層して少なくとも2軸配向となる積層繊維層を形成する連続繊維配列工程を備えている。また、前記積層繊維層に厚さ方向糸を前記積層繊維層と直交するように挿入して平板状の一次構造体を形成する厚さ方向糸挿入工程と、前記厚さ方向糸が挿入された平板状の一次構造体の所定位置に曲げ部を形成する曲げ工程とを備えている。そして、前記厚さ方向糸挿入工程において、少なくとも前記曲げ工程後に曲げ方向の異なる曲げ部に挟まれた平面部となる部分には、厚さ方向糸を前記曲げ工程後の平面部の積層繊維層の厚さより長く挿入する。
この発明では、連続繊維配列工程において、規制部材が所定ピッチで配置された治具上に、規制部材と係合して折り返すように連続繊維が規制部材間に配列されて形成された繊維層が複数積層されて、少なくとも2軸配向となる積層繊維層が形成される。その後、厚さ方向糸挿入工程で積層繊維層に厚さ方向糸が、積層繊維層と直交するように挿入されて平板状の一次構造体が形成された後、曲げ工程において、平板状の一次構造体の所定位置が曲げられて曲げ部を備えた三次元繊維構造体が形成される。厚さ方向糸挿入工程においては、少なくとも前記曲げ工程後も平面部となる部分には厚さ方向糸が前記曲げ工程後の平面部の積層繊維層の厚さより長く挿入される。その結果、曲げ工程において、曲げ部の外側になる連続繊維に繋がる繊維がずれようとする際に、厚さ方向糸もずれを許容するように移動され、曲げ部の内側になる連続繊維に皺や歪みが発生するのが抑制された状態で曲げ加工が行われる。その結果、三次元繊維構造体を曲げ部における皺や歪みの発生が抑制された状態で簡単に製造することができる。
請求項12に記載の発明は、連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体の製造方法である。そして、規制部材が所定ピッチで配置された治具上に、前記規制部材と係合して折り返すように連続繊維を前記規制部材間に配列して形成した繊維層を積層して少なくとも2軸配向となる積層繊維層を形成する連続繊維配列工程を備えている。また、前記積層繊維層に厚さ方向糸を前記積層繊維層と直交するように挿入して平板状の一次構造体を形成する厚さ方向糸挿入工程と、前記厚さ方向糸が挿入された平板状の一次構造体の所定位置に曲げ部を形成する曲げ工程とを備えている。前記厚さ方向糸挿入工程において、前記曲げ工程後に曲げ部を挟んで隣り合う少なくとも一方の平面部となる部分には、厚さ方向糸を前記曲げ工程後の平面部の積層繊維層の厚さより長く挿入する。
この発明でも、曲げ工程において、曲げ部の外側になる連続繊維に繋がる繊維がずれようとする際に、厚さ方向糸もずれを許容するように移動され、曲げ部の内側になる連続繊維に皺や歪みが発生するのが抑制された状態で曲げ加工が行われる。その結果、三次元繊維構造体を曲げ部における皺や歪みの発生が抑制された状態で簡単に製造することができる。
請求項13に記載の発明は、織物組織からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続し、かつ曲げ方向の異なる曲げ部が平面部を間にして隣り合う状態で隣接して存在する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体の製造方法である。そして、織物を積層して積層繊維層を形成する織物積層工程と、前記積層繊維層に厚さ方向糸を前記積層繊維層と直交するように挿入して平板状の一次構造体を形成する厚さ方向糸挿入工程と、前記厚さ方向糸が挿入された平板状の一次構造体の所定位置に曲げ部を形成する曲げ工程とを備えている。前記厚さ方向糸挿入工程において、少なくとも前記曲げ工程後に曲げ方向の異なる曲げ部に挟まれた平面部となる部分には、厚さ方向糸を前記曲げ工程後の平面部の積層繊維層の厚さより長く挿入する。従って、この発明では、連続繊維を配列した繊維層を積層して積層繊維層を構成するより、積層繊維層の形成を短時間で行うことができる。
請求項14に記載の発明は、織物組織からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体の製造方法である。そして、織物を積層して積層繊維層を形成する織物積層工程と、前記積層繊維層に厚さ方向糸を前記積層繊維層と直交するように挿入して平板状の一次構造体を形成する厚さ方向糸挿入工程と、前記厚さ方向糸が挿入された平板状の一次構造体の所定位置に曲げ部を形成する曲げ工程とを備えている。前記厚さ方向糸挿入工程において、前記曲げ工程後に曲げ部を挟んで隣り合う少なくとも一方の平面部となる部分には、厚さ方向糸を前記曲げ工程後の平面部の積層繊維層の厚さより長く挿入する。従って、この発明では、連続繊維を配列した繊維層を積層して積層繊維層を構成するより、積層繊維層の形成を短時間で行うことができる。
請求項15に記載の発明は、請求項11又は請求項13に記載の発明において、前記曲げ工程における曲げ加工完了後の三次元繊維構造体の曲げ部の角度をθ(ラジアン)、前記曲げ部における前記積層繊維層の厚さをt、前記曲げ方向の異なる曲げ部の間の平面部に配列されている前記厚さ方向糸の長さをLとした場合、t/L≦cos( tan−1θ) の関係を満たす長さとなるように、前記厚さ方向糸挿入工程において、少なくとも前記曲げ工程後に曲げ方向の異なる曲げ部の間となる平面部に挿入される厚さ方向糸の長さが設定される。この発明では、曲げ部の内側になる連続繊維に皺や歪みが発生するのが抑制された状態で、曲げ加工を容易に行うことができる。
請求項16に記載の発明は、請求項15に記載の発明において、前記厚さ方向糸挿入工程において、前記曲げ工程後に曲げ方向の異なる曲げ部の間となる平面部に挿入される厚さ方向糸は、その長さが前記t/L=cos( tan−1θ) の関係を満たす長さで挿入される。また、他の平面部に挿入される厚さ方向糸は、前記曲げ工程後の当該平面部における前記積層繊維層の厚さと同じ長さで挿入される。
厚さ方向糸挿入工程において積層繊維層の全ての部分に同じ長さで厚さ方向糸が挿入されると、曲げ加工後に曲げ方向の異なる曲げ部の間となる平面部以外の平面部に挿入された厚さ方向糸は、その一部が弛んだ状態となる場合がある。しかし、この発明では、そのような状態を回避することができる。
請求項17に記載の発明は、請求項11〜請求項16のいずれか一項に記載の発明において、前記曲げ工程において、曲げ部を形成した後の前記積層繊維層の繊維体積率が、前記一次構造体の繊維体積率より高くなるように曲げ加工を行う。従って、曲げ工程において、曲げ部の外側になる連続繊維に繋がる繊維がずれようとする際に、厚さ方向糸がずれを許容するように移動され易くなり、曲げ部の内側になる連続繊維に皺や歪みが発生するのが抑制された状態で曲げ加工が行われる。その結果、三次元繊維構造体を曲げ部における皺や歪みの発生が抑制された状態で簡単に製造することができる。
請求項18に記載の発明は、請求項11、請求項12、請求項15、請求項16及び請求項17のいずれか一項に記載の発明において、前記連続繊維及び厚さ方向糸の少なくとも一方は、伸び率が2.4%以下である。10%以上伸びる繊維(ナイロン、アクリル)と比較して、炭素繊維の伸び率は、一般に0.5%〜2.4%と小さく、弛みのない連続繊維を伸ばして曲げを行うことは難しい。しかし、この発明では連続繊維に炭素繊維を使用しても無理なく曲げ部を形成することができる。
請求項19に記載の発明は、請求項13又は請求項14に記載の発明において、前記織物組織及び厚さ方向糸の少なくとも一方は、伸び率が2.4%以下である。10%以上伸びる繊維(ナイロン、アクリル)と比較して、炭素繊維の伸び率は、一般に0.5%〜2.4%と小さく、弛みのない連続繊維を伸ばして曲げを行うことは難しい。しかし、この発明では、織物組織の繊維や厚さ方向糸に炭素繊維が使用された場合でも無理なく曲げ部を形成することができる。
本発明によれば、連続繊維からなる繊維層が積層されて少なくとも2軸配向となるように形成された積層繊維層から、曲げ加工で、曲げ部における皺や歪みの発生が抑制された状態で製造が可能な新規な構成の三次元繊維構造体を提供することができる。また、前記三次元繊維構造体を強化材とする複合材を提供することができる。さらに、前記三次元繊維構造体の製造方法を提供することができる。
(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図1〜図4にしたがって説明する。
図1(a),(b)に示すように、三次元繊維構造体11は、連続繊維が少なくとも2軸配向となるように配列された積層繊維層12と、積層繊維層12を結合するため積層繊維層12の厚さ方向に配列された厚さ方向糸13により構成されている。連続繊維としては、例えば、炭素繊維が使用される。炭素繊維はフィラメント数が3000〜24000本程度である。
図1(a)に示すように、積層繊維層12は、曲げ方向の異なる曲げ部14a,14bと、平面部15a,15b,15cとが連続する立体的な板状に形成されている。積層繊維層12は、曲げ部として曲げ方向の異なる曲げ部14a,14bを平面部15bが間に存在する隣り合う状態で備えている。具体的には、積層繊維層12は、断面形状がハット状に形成され、曲げ部14aは、ハット形状の鍔の部分に対応する位置に設けられ、曲げ部14bは、ハット形状の頂部に対応する位置に設けられている。即ち、一端が自由端の平面部15aの他端に曲げ部14aが連続し、曲げ部14aに対して平面部15bを挟んで曲げ部14bが隣り合う状態に形成されている。また、曲げ部14bの間に平面部15cが形成されている。
図1(b)に示すように、積層繊維層12は、配列角度0°の連続繊維16aから成る繊維層としての0度繊維層12aと、配列角度90°の連続繊維16bから成る繊維層としての90度繊維層12bとで構成されている。この明細書では、配列角度0°とは、連続繊維が曲げ部14a,14bの曲率中心線と平行に配列される状態を意味し、配列角度90°とは連続繊維が曲げ部14a,14bの曲率中心線と直交するように配列される状態を意味する。0度繊維層12aと90度繊維層12bが交互に複数積層されて、2軸配向の積層繊維層12が形成されている。
図2(a)に示すように、積層繊維層12は、曲げ部14a,14bの曲率中心線と直交する仮想平面による断面における曲げ部14a、平面部15b及び曲げ部14bで形成される部分の形状、即ちABCDEFGHを結ぶ線で形成される形状で、厚さ方向の一方の側の外形線LG1と、他方の側の外形線LG2の長さが等しく形成されている。即ち、積層繊維層12は、曲げ部14a,14bの曲率中心線と直交する仮想平面による断面形状が、厚さ方向の一方の側の外形線LG1と、他方の側の外形線LG2の長さとが等しい形状に形成されている。
図1(a),図2(a)に示すように、曲げ方向の異なる曲げ部14a,14bに挟まれた平面部15bには、厚さ方向糸13が積層繊維層12と斜めに交差する状態で配列されている。また、片側が自由端の平面部15a及び曲げ方向が同じ2つの曲げ部14bに挟まれた平面部15cには、厚さ方向糸13が積層繊維層12と直交する方向に配列されている。即ち、三次元繊維構造体11は、曲げ部14a,14bを挟んで隣り合う一方の平面部15bには厚さ方向糸13が積層繊維層12即ち繊維層と斜めに交差する状態で配列され、他方の平面部15a,15cには厚さ方向糸13が積層繊維層12と直交する方向に配列されている。
積層繊維層12は、曲げ部14a,14b及び曲げ部14a,14bに挟まれる平面部15bにおいて、外側の長さと内側の長さに差が無い状態で曲げられている。そのため、図2(b)に示すように、平面部15bにおいて積層繊維層12と斜めに交差する状態で配列されている厚さ方向糸13の長さをL、曲げ部14aの角度をθ(ラジアン)、曲げ部14aにおける積層繊維層12の厚さをtとした場合、t/L=cos( tan−1θ) の関係が成立する。曲げ部14aの角度θとは、曲げ部14aの曲率中心Oと、曲げ部14aの両端とを結ぶ直線L1,L2の成す角度を意味する。この関係は、曲げ部14bにおいても同様である。
次に前記のように構成された三次元繊維構造体11の製造方法を説明する。
三次元繊維構造体11は、連続繊維配列工程と、厚さ方向糸挿入工程と、曲げ工程とを備えている。
連続繊維配列工程では、図3(a),(b)に示すように、規制部材としてのピン17a,17bが所定ピッチで配置された治具18を使用する。治具18は矩形の枠状に形成され、ピン17a,17bは着脱可能に立設されている。ピン17aのピッチは、治具18の長手方向と直交する方向、即ち配列角度0°に配列される連続繊維16aの配列ピッチに合わせて設定され、ピン17bのピッチは、治具18の長手方向と平行に、即ち配列角度90°に配列される連続繊維16bの配列ピッチに合わせて設定されている。
そして、図3(b)に示すように、治具18上に、ピン17aと係合して折り返すように連続繊維16aがピン17a間に配列されて、配列角度0°の繊維層としての0度繊維層12aが形成される。また、図3(a)に示すように、ピン17bと係合して折り返すように連続繊維16bがピン17b間に配列されて、配列角度90°の繊維層としての90度繊維層12bが形成される。そして、90度繊維層12b及び0度繊維層12aが交互に複数積層されて、2軸配向となる積層繊維層12が形成される。図3(a),(b)では、連続繊維16a,16bの配列間隔が広く図示されているが、連続繊維16a,16bは、隣接する連続繊維16a,16b同士が接触する状態で配列される。
連続繊維配列工程終了後、積層繊維層12が治具18に保持されている状態で厚さ方向糸挿入工程が行われる。厚さ方向糸13の挿入は、例えば、特許文献2に開示されている方法と同様に行われる。詳述すれば、積層繊維層12の厚さ方向に、先端に孔を備え該孔に厚さ方向糸13を掛止した図示しない挿入針を挿入する。挿入針は厚さ方向糸13が掛止された孔が積層繊維層12を貫通するまで前進する。その後、挿入針はわずかに後退される。その結果、厚さ方向糸13はU字状のループを形成した状態となる。
次に図示しない抜け止め糸針が前記U字状のループ内を通過し、積層繊維層12の端部まで到達した時点で停止する。この時抜け止め糸19(図1(b)に図示)が抜け止め糸針の先端に掛止される。そして、抜け止め糸針が引き戻され、抜け止め糸19が厚さ方向糸13のU字状ループ内に挿通された状態になる。その状態で挿入針が引き戻され、厚さ方向糸13により抜け止め糸19が締め付けられて積層繊維層12が結合される。
厚さ方向糸挿入工程において、少なくとも曲げ工程後も平面部15bとなる部分には厚さ方向糸13を曲げ工程後の平面部15bの積層繊維層12の厚さより長く挿入する。曲げ加工後の積層繊維層12の厚さが変化する場合は、曲げ工程後の平面部15aとなる部分の厚さ方向糸13も曲げ工程後の平面部15aの積層繊維層12の厚さより長く挿入する。積層繊維層12への厚さ方向糸13の挿入が完了すると、0度繊維層12a及び90度繊維層12bが厚さ方向糸13で結合された平板状の一次構造体(プリフォーム)20が形成される。
次に厚さ方向糸13が挿入された平板状の一次構造体20の所定位置に曲げ部14a,14bを形成する曲げ工程が行われる。曲げ工程においては、曲げ部14a,14bを形成した後の積層繊維層12の繊維体積率が、一次構造体20の繊維体積率より高くなるように曲げ加工が行われる。
曲げ加工は、一次構造体20を曲げ加工後に曲げ部14a,14bとなる部分より端部側で保持するとともに、一次構造体20に配列角度90°の連続繊維16bの配列方向に所定範囲の張力を掛けた状態で、可動型により一次構造体20を前記張力が加えられている方向と直交する方向に押圧する賦形装置を用いて行われる。
曲げ加工に使用する賦形装置は、図4(a),(b)に示すように、一次構造体20の端部を把持可能な一組のクランプ装置21,22備えている。クランプ装置21,22は、水平に配置されたエアシリンダ23と、そのピストンロッド23aの先端に設けられた把持部24とを備えている。クランプ装置21,22は、一次構造体(プリフォーム)20の端部を把持部24で把持した状態において、エアシリンダ23により一次構造体20を所定範囲の張力で引っ張ることが可能に構成されている。
また、賦形装置は、形成すべき三次元繊維構造体11の曲げ部14bの外側の形状に対応した型面25aを有する固定型25と、曲げ部14bの内側の形状に対応した形状の押圧面26aを有する可動型26とを備えている。可動型26は、上下方向に延びる状態で設けられたシリンダ27のピストンロッド27aの先端に固定されている。可動型26は、シリンダ27の作動により、待機位置とクランプ装置21,22により所定範囲の張力が加えられて保持される一次構造体20を押圧する作用位置とに移動されるようになっている。可動型26の押圧面26aのうち、曲げ部に挟まれた平面部26bは、一次構造体20を押圧する際に、一次構造体20との間で滑りが生じないように摩擦抵抗が大きく形成されているのが好ましい。摩擦抵抗を大きくする構成として、例えば、ゴム等の摩擦抵抗が大きな材料によるライニングがある。
一次構造体20の曲げ加工は、図4(a)に示すように、クランプ装置21,22の把持部24で一次構造体20を把持し、一次構造体20に対して水平方向に所定範囲の張力を加えた状態とする。その状態からシリンダ27を作動させて、可動型26を下降させる。下降途中で可動型26の押圧面26aが一次構造体20と係合する状態となり、一次構造体20に対して可動型26により押圧力が加えられる。可動型26は一次構造体20と係合した状態から更に下降移動が継続され、一次構造体20は可動型26との係合部が下方へ移動する。それにともなって、エアシリンダ23のピストンロッド23aの突出量が大きくなり、両把持部24の間隔が小さくなる。
両把持部24が一定の高さ位置において一次構造体20に水平方向の張力を加えている状態で、一次構造体20の中央部が可動型26により下方へ押圧されて下降移動することにより、一次構造体20は押圧面26aと対応する部分だけでなく、把持部24の近くにおいても曲げられた状態となる。一次構造体20が曲げられると、当該曲げ部だけで見ると、内経路と外経路で長さが異なる状態となる。この経路差を吸収するように、90度繊維層12bにずれが発生すれば、曲げ部の内側に皺や歪みが発生せずに曲げ加工が行われることになる。
90度繊維層12bのずれを許容させるためには、90度繊維層12bのずれに伴って厚さ方向糸13が積層繊維層12の厚さ方向に対して斜めに配列された状態となる必要がある。しかし、従来は、曲げ加工の前と後で、積層繊維層12の厚さが変わらない状態で曲げ加工が行われるため、90度繊維層12bを結合している厚さ方向糸13が積層繊維層12の厚さ方向に対して斜めに配列された状態となることができない。その結果、曲げ部の内側に皺や歪みが発生する状態となっていた。
これに対して、この実施形態では、曲げ加工の際に一次構造体20は板厚方向に圧縮作用を受けながら曲げ作用を受ける。曲げ工程後に平面部15bとなる部分には厚さ方向糸13が曲げ工程後の平面部15bの積層繊維層12の厚さより長く挿入してある。そのため、一次構造体20の厚さが曲げ加工を受ける際に小さくなり、厚さ方向糸13は積層繊維層12の厚さより長い状態となる。その結果、一次構造体20が曲げられた際に、曲げ部の内経路と外経路の経路差を吸収するように、90度繊維層12bがずれるに伴って、厚さ方向糸13が積層繊維層12の厚さ方向に対して斜めに配列された状態となる。また、曲げ方向が異なる曲げ部14a,14bが平面部15bの両側に存在するため、一方の曲げ部14aの内側のずれに対応する分が、他方の曲げ部14bの外側のずれで吸収されるように変形する。
図2(b)に示すように、曲げ部14aの曲率中心線と直交する仮想平面と対向する方向から見た場合の、曲げ部14aの角度(曲げ角)をθ(ラジアン)、曲げ部14aにおける積層繊維層12の厚さをt、曲げ部14aに連続する平面部15bの積層繊維層12と斜めに交差する状態で配列されている厚さ方向糸13の長さをLとする。曲げ部14aの内側に皺や歪みが発生せずに曲げ部14aが形成されていると、曲げ部の角度θに対応する曲げ部14aの外経路の長さは(r+t)θで表され、内経路の長さはrθで表される。また、厚さ方向糸13が平面部15bの厚さ方向と成す角度をФとすると、(1)式が成り立つ。
(r+t)θ=rθ+t tanФ・・・(1)
(1)式からθ= tanФとなり、Ф= tan−1θとなる。
また、 cosФ=t/Lであるので、(2)式が成り立つ。
t/L= cos( tan−1θ)・・・(2)
この実施形態では、(2)式が成り立つ長さとなるように、厚さ方向糸挿入工程において厚さ方向糸13が積層繊維層12に挿入されているため、前記曲げ加工により、曲げ部14a及び曲げ部14bの内側に皺や歪みが発生しない状態で曲げ部14a,14bが形成される。
(2)式の左辺t/Lは、曲げ加工後の積層繊維層12の厚さと、曲げ加工前の積層繊維層12の厚さとの比を表しており、この値は、積層繊維層12の繊維体積率(Vf)の曲げ加工後の値と、曲げ加工前の値との比と同じになる。従って、(2)式から、曲げ部14a,14bの内側に皺や歪みが発生しない状態で三次元繊維構造体11を製造するための繊維体積率の変化は、曲げ部14a,14bの内径(曲率半径)rには依存せずに、曲げ部の角度θに依存することが分かる。即ち、所望の繊維体積率の三次元繊維構造体11を製造するには、一次構造体20を製造する際の厚さ方向糸13の長さLと、曲げ加工時の曲げ部の角度θを調整することにより可能になることが分かる。
繊維体積率が70%を超える三次元繊維構造体11を強化材とするとともに樹脂をマトリックスとした複合材を製造する際、樹脂を三次元繊維構造体11に均一に含浸させるのが難しくなる。また、一次構造体20の繊維体積率Vfが低いとハンドリング性が悪くなって作業性が落ち、一次構造体20の繊維体積率Vfが高いと厚さ方向糸13の長さが短くなり、曲げ部の角度θが小さくなる。曲げ部の角度が30°以上を可能とし、成形性とハンドリング性を確保するためには、一次構造体20の繊維体積率Vfは20〜60%となる。
三次元繊維構造体11の板厚、即ち曲げ加工後の積層繊維層12の厚さtを5mm、曲げ部の外径Rを10mm、内径rを5mmで一定として、三次元繊維構造体11の繊維体積率Vfが40%、50%、60%、70%の三次元繊維構造体11を製造する場合の一次構造体20の繊維体積率Vf、厚さ方向糸13の長さL、曲げ部の角度(°)の関係を表1〜表4に示す。
Figure 0004677950
Figure 0004677950
Figure 0004677950
Figure 0004677950
表1〜表4において、成形Vfは三次元繊維構造体11のVfを示し、曲げ前Vfは一次構造体20のVfを示す。
表1〜表4から、曲げ部の角度を90°にする場合、三次元繊維構造体11の繊維体積率が40%であれば一次構造体20の繊維体積率は22%程度、三次元繊維構造体11の繊維体積率が50%であれば一次構造体20の繊維体積率は27%程度になる。また、三次元繊維構造体11の繊維体積率が60%であれば一次構造体20の繊維体積率は32%程度、三次元繊維構造体11の繊維体積率が70%であれば一次構造体20の繊維体積率は37%程度になる。
前記のように構成された三次元繊維構造体11は、例えば、樹脂の含浸、硬化を行って繊維強化複合材(繊維強化樹脂)として使用される。樹脂の含浸、硬化には、例えば、レジントランスファーモールディング(RTM)法が採用される。RTM法では、樹脂含浸用金型(成形金型)内に三次元繊維構造体11を配置し、この樹脂含浸用金型内に熱硬化性のマトリック樹脂を注入して三次元繊維構造体11に含浸させた後、加熱硬化させることにより、繊維強化複合材が製造される。熱硬化性樹脂として、例えばエポキシ樹脂が使用される。
この実施形態によれば、以下に示す効果を得ることができる。
(1)三次元繊維構造体11は、連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層12が、曲げ部14a,14bと平面部15a,15b,15cとが連続する立体的な板状に形成されるとともに、積層繊維層12の各繊維層と交差する状態で厚さ方向糸13が配列されている。そして、曲げ部14a,14bを挟んで隣り合う一方の平面部15bには厚さ方向糸13が積層繊維層12(繊維層)と斜めに交差する状態で配列され、他方の平面部15a又は平面部15cには厚さ方向糸13が繊維層と直交する方向に配列されている。従って、三次元繊維構造体11を製造する際に、連続繊維からなる繊維層が積層されて少なくとも2軸配向となるように形成され、かつ厚さ方向糸13で結合された積層繊維層12に曲げ加工を施すことで、曲げ部における皺や歪みの発生が抑制された状態で製造が可能になる。また、三次元繊維構造体11を強化材として製造された複合材(繊維強化樹脂)は、厚さ方向糸13が厚さ方向に平行に配列されている場合に比較して平面部15bにおける剪断力に対する強度が高くなる。
(2)三次元繊維構造体11を構成する積層繊維層12は、曲げ部14a,14bの曲率中心線と直交する仮想平面による断面形状が、厚さ方向の一方の側の外形線LG1と、他方の側の外形線LG2の長さが等しい形状に形成されている。従って、三次元繊維構造体11を製造する際に、厚さ方向糸13で結合された積層繊維層12に曲げ加工を施す際、曲げ部14a,14bの曲率中心線と直交する方向に延びる連続繊維16bのずれが円滑に起こり、曲げ部14a,14bにおける皺や歪みの発生が抑制された状態で製造が可能になる。
(3)積層繊維層12は、曲げ部として曲げ方向の異なる曲げ部14a,14bを平面部15bが間に存在する隣り合う状態で備えており、曲げ方向の異なる曲げ部14a,14bに挟まれた平面部15bに厚さ方向糸13が積層繊維層12(繊維層)と斜めに交差する状態で配列されている。従って、平面部15bを挟んで隣り合う曲げ部14a,14bの曲げ方向が異なるため、一方の曲げ部14aにおいて外側となる繊維層は、他方の曲げ部14bでは内側となり、積層繊維層12を曲げて三次元繊維構造体11を形成する際に、曲げ部14a,14bにおいて連続繊維16bに皺や歪みが発生しない状態で曲げ易くなる。
(4)三次元繊維構造体11は、平面部15bにおいて積層繊維層12(繊維層)と斜めに交差する状態で配列されている厚さ方向糸13の長さをL、曲げ部の角度をθ(ラジアン)、曲げ部における積層繊維層12の厚さをtとした場合、t/L=cos( tan−1θ) の関係を有する。従って、厚さ方向糸13の長さが前記関係を満たすように三次元繊維構造体11を製造することにより、三次元繊維構造体11の厚さに関係なく、曲げ部において連続繊維に皺や歪みが発生しない状態で曲げ易くなる。
(5)三次元繊維構造体11を強化材とし、樹脂をマトリックスとして複合材を製造することにより、曲げ部の内側に皺や歪みのない複合材(繊維強化樹脂)を容易に製造することができる。
(6)三次元繊維構造体11の製造方法は、連続繊維配列工程と、厚さ方向糸挿入工程と、曲げ工程とを備えており、連続繊維配列工程では、治具18上に連続繊維からなる繊維層が積層されて少なくとも2軸配向となる積層繊維層12を形成する。厚さ方向糸挿入工程では、治具18上の積層繊維層12に厚さ方向糸13を積層繊維層12と直交するように、かつ曲げ工程後の平面部の積層繊維層12の厚さより長く挿入して平板状の一次構造体20を形成する。曲げ工程では、曲げ部を形成した後の積層繊維層12の繊維体積率が、一次構造体20の繊維体積率より高くなるように曲げ加工を行う。従って、三次元繊維構造体11を曲げ部14a,14bにおける皺や歪みの発生が抑制された状態で簡単に製造することができる。
(7)三次元繊維構造体11の曲げ部の角度をθ(ラジアン)、積層繊維層12の厚さをt、曲げ方向の異なる曲げ部14a,14bの間の平面部15bに配列されている厚さ方向糸13の長さをLとした場合、t/L=cos( tan−1θ) の関係を満たす長さとなるように、厚さ方向糸挿入工程で挿入される厚さ方向糸13の長さが設定される。従って、曲げ部の内側になる連続繊維に皺や歪みが発生しない状態で、曲げ加工を容易に行うことができる。
(8)一次構造体20の曲げ加工は、一次構造体20を曲げ加工後に曲げ部14a,14bとなる部分より端部側で保持するとともに、一次構造体20に配列角度90°の連続繊維16bの配列方向に所定範囲の張力を掛けた状態で、可動型26により一次構造体20を張力が加えられている方向と直交する方向に押圧する賦形装置を用いて行われる。従って、曲げ加工が容易に行われる。
(9)連続繊維16a,16bとして炭素繊維が使用されている。10%以上伸びる繊維(ナイロン、アクリル)と比較して、炭素繊維の破断伸び率は、一般に0.5%〜2.4%と小さく、一次構造体20の曲げ加工時に厚さ方向糸13の移動が許容されない場合は、曲げ部の内側に皺や歪みが発生し易くなるが、この実施形態では、連続繊維に炭素繊維を使用しても曲げ部を無理なく形成することができる。
(第2の実施形態)
次に、本発明を具体化した第2の実施形態を、図5及び図6を参照しながら説明する。この実施形態は、三次元繊維構造体11の製造方法が第1の実施形態と異なる。具体的には製造工程の厚さ方向糸挿入工程において、積層繊維層12の位置によって厚さ方向糸13の挿入長さが異なり、その他の構成は第1の実施形態と基本的に同様であるため、同様の部分についてはその詳細な説明を省略する。
厚さ方向糸挿入工程において、積層繊維層12に対して全ての部分に同じ長さで厚さ方向糸13を挿入して一次構造体20を形成すると、曲げ工程における曲げ加工後に、曲げ方向の異なる曲げ部14a,14bの間となる平面部15以外の平面部15a,15cに挿入された厚さ方向糸13は、その一部が弛んだ状態となる場合がある。なぜならば、曲げ工程後には、積層繊維層12の繊維体積率が一次構造体20の繊維体積率より高くなるため、三次元繊維構造体11の厚さ、即ち曲げ工程後の積層繊維層12の厚さは、一次構造体20の厚さより薄くなる。そのため、曲げ工程においてずれが発生しない積層繊維層12(繊維層)の部分に挿入されており、斜めになるように移動しない部分の厚さ方向糸13は長さが三次元繊維構造体11の厚さより長くなって弛んだ状態となる。
この実施形態では、厚さ方向糸挿入工程において厚さ方向糸13を挿入する際に、曲げ工程における曲げ加工の際にずれが生じる平面部15bと対応する部分には、第1の実施形態における(2)式の関係を満たす長さ、即ちt/L=cos( tan−1θ) の関係を満たす長さで厚さ方向糸13が挿入される。また、他の平面部15a,15c、即ち曲げ工程における曲げ加工の際にずれが生じない平面部15a,15cに挿入される厚さ方向糸13は、曲げ工程後の当該平面部15a,15cにおける積層繊維層12の厚さ、即ち三次元繊維構造体11の厚さtと同じ長さで挿入される。
従って、図5に示すように、一次構造体20は、三次元繊維構造体11の平面部15bに対応する部分30bに挿入される厚さ方向糸13が長さLで挿入される。また、三次元繊維構造体11の平面部15bを挟んで両側に位置する平面部15a及び平面部15cに対応する部分30a,30cに挿入される厚さ方向糸13は、三次元繊維構造体11の厚さtに等しい長さで挿入される。なお、図5は一次構造体20のほぼ半分の部分を示す模式図である。また、各30a,30b,30cの長さの比は、図示の都合上、他の場合と異なっており、厚さ方向糸13の数も少なくなっている。この一次構造体20が曲げ工程において第1の実施形態と同様にして曲げ加工を受けることにより、図6に示すように、第1の実施形態と同様な形状の三次元繊維構造体11が形成される。
この実施形態によれば、第1の実施形態における(1)〜(9)と同様の効果の他に次の効果を得ることができる。
(10)厚さ方向糸挿入工程において、曲げ工程後に曲げ方向の異なる曲げ部14a,14bの間となる平面部15bに対応する部分30bに挿入される厚さ方向糸13は、その長さがt/L=cos( tan−1θ) の関係を満たす長さで挿入される。また、他の平面部15a及び平面部15cに対応する部分30a,30cに挿入される厚さ方向糸13は、曲げ工程後の当該平面部における積層繊維層12の厚さtと同じ長さで挿入される。従って、曲げ加工後に曲げ方向の異なる曲げ部14a,14bの間となる平面部15b以外の平面部15a,15cに挿入された厚さ方向糸13の一部が弛んだ状態となるのを回避することができる。
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 積層繊維層12は、0度繊維層12aと90度繊維層12bとが交互に積層された構成に限らず、連続繊維からなる繊維層が積層されて形成された少なくとも2軸配向となる構成であればよい。例えば、配列角度が0°の連続繊維16aからなる0度繊維層12aと、配列角度が90°の連続繊維16bからなる90度繊維層12bに加えて、配列角度が+45°及び−45°の連続繊維(バイアス繊維)からなるバイアス繊維層を有する4軸配向となる構成としてもよい。また、配列角度が0°の連続繊維16aと、バイアス繊維との組み合わせあるいは、配列角度が90°の連続繊維16bと、バイアス繊維との組み合わせにより3軸配向としてもよい。
○ 積層繊維層12は、異なる配列角度の連続繊維からなる繊維層が交互に積層される構成に限らず、同じ配列角度の連続繊維からなる繊維層が複数層連続して積層された部分がある構成としてもよい。
○ 三次元繊維構造体11は、織物組織からなる繊維層が積層された少なくとも2軸配向となる積層繊維層12が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、積層繊維層12の各繊維層と交差する状態で厚さ方向糸13が配列された構成でもよい。即ち、三次元繊維構造体11は積層された織物が厚さ方向糸13で結合された構成であってもよい。この場合、三次元繊維構造体11を製造する際は、連続繊維配列工程に代えて織物を積層する織物積層工程が行われる。その他の工程、即ち厚さ方向糸挿入工程及び、厚さ方向糸13が挿入された平板状の一次構造体20の所定位置に曲げ部を形成する曲げ工程は前記実施の形態と同様に行われる。織物としては、例えば、平織りの織物が使用されるが、二重織物、三重織物、風通織物等の多層織物を積層してもよい。この場合、連続繊維を配列した繊維層を積層して積層繊維層12を構成するより、積層繊維層12の形成を短時間で行うことができる。
○ 三次元繊維構造体11は、少なくとも2軸配向となる積層繊維層12が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、曲げ部を挟んで隣り合う一方の平面部には厚さ方向糸13が繊維層と斜めに交差する状態で配列され、他方の平面部には厚さ方向糸13が繊維層と直交する方向に配列されている構成であればよい。例えば、図7(a)に示すように、1個の曲げ部14aと2個の平面部15a,15bからなる断面L字状の三次元繊維構造体11や、図7(b)に示すように、2個の曲げ部14a,14bと3個の平面部15a,15bからなる断面クランク形状の三次元繊維構造体11であってもよい。断面クランク形状の三次元繊維構造体11は、一次構造体20の両端部を把持した状態で張力をかけつつ、両端部を相対移動させるようにして曲げ加工を行うことで形成される。また、図7(a)に示す三次元繊維構造体11は、図7(b)に示す断面クランク形状の三次元繊維構造体11を平面部15bにおいて切断することで形成することができる。これらの三次元繊維構造体11も複合材(繊維強化樹脂)の強化材として使用される。
○ 図7(a)に示すように、1個の曲げ部14aと2個の平面部15a,15bからなる断面L字状の三次元繊維構造体11の製造方法は、図7(b)に示す断面クランク形状の三次元繊維構造体11を平面部15bにおいて切断する方法に限らない。例えば、一次構造体20の一端側を固定把持した状態で、一次構造体20に対してその厚さ方向に押圧力作用させることにより曲げ加工を施しても製造することができる。この場合、一次構造体20を型に沿わせるように曲げを施すのが好ましい。
○ 三次元繊維構造体11は、図8に示すように、ハット形状が連続した断面形状のように複雑な断面形状であってもよい。この三次元繊維構造体11は、曲げ方向の異なる曲げ部14a,14bに挟まれた平面部15bを4個、一端が自由端の平面部15aを2個、曲げ方向が同じ曲げ部に挟まれた平面部15cを3個備えている。この三次元繊維構造体11を製造する場合は、中央に位置する平面部15cとなる部分を固定位置に保持した状態で、第1の実施形態と同様に一次構造体20の両端部をクランプ装置21,22で把持する。そして、一次構造体20に水平方向に所定範囲の張力を加えた状態で保持するとともに、2個の可動型26で一次構造体20を下方へ押圧する。このとき、可動型26が一次構造体20、即ち積層繊維層12を押圧している箇所(平面部26b)が積層繊維層12に対して相対移動しないように移動させる必要がある。そのため、シリンダ27は、第1の実施形態等と異なり、水平方向にも移動される。また、把持部24は、第1の実施形態等と同様に互いに近づく方向に移動される。
○ 曲げ部14a,14bを挟んで隣り合う一方の平面部15bに配列される厚さ方向糸13が積層繊維層12と斜めに交差する状態で配列され、他方の平面部15a,15cに配列される厚さ方向糸13が積層繊維層12(繊維層)と直交する方向に配列される構成に限らない。一方の平面部15bに配列される厚さ方向糸13と、他方の平面部15a,15cに配列される厚さ方向糸13が積層繊維層12に対して交差する角度が異なる方向に配列されていればよい。
○ 三次元繊維構造体11として、2個の曲げ部が平面部を挟むように設けられている部分を備えており、平面部に配列される厚さ方向糸13が繊維層と斜めに交差する状態で配列されている構成でもよい。
○ 三次元繊維構造体11として、2個の曲げ部が平面部を挟むように設けられている構造の場合、2個の曲げ部と3個の平面部が交互に連続する構成の物を製造した後、両端の平面部を除去する方法に限らない。例えば、一次構造体20の両端面を接着剤で保持部材に固着して、保持部材を移動させることで、製造することができる。
○ 三次元繊維構造体11は、曲げ部及び平面部と同時に交差する断面における形状が、一定の大きさではなく、三次元繊維構造体11の一端側から徐々に拡大又は縮小される形状であってもよい。このような構成の三次元繊維構造体11では、積層繊維層12は、曲げ部及び平面部に跨るように連続繊維が配列される仮想平面による断面形状が、厚さ方向の一方の側における外形線の長さと、他方の側における外形線の長さとが等しい形状に形成されているのが好ましい。その場合、三次元繊維構造体11を製造する際に、厚さ方向糸13で結合された積層繊維層12に曲げ加工を施す際、連続繊維のずれが円滑に起こり、曲げ部における皺や歪みの発生が抑制された状態で製造が可能になる。
○ 曲げ部の角度をθ(ラジアン)、厚さ方向糸が前記曲げ部に隣接する平面部の厚さ方向と成す角度をФとするとθ=tanФを満たすように三次元繊維構造体11を構成すると、平面部15bと平面部15cとの成す角度を90°に近づけることが容易になる。
○ 三次元繊維構造体11の曲げ部の角度をθ(ラジアン)、積層繊維層12の厚さをt、曲げ方向の異なる曲げ部14a,14bの間の平面部15bに配列されている厚さ方向糸13の長さをLとした場合、t/L<cos( tan−1θ) の関係を満たす長さとなるように、厚さ方向糸挿入工程で挿入される厚さ方向糸13の長さを設定してもよい。この場合、曲げ方向の異なる曲げ部14a,14bの間の平面部15bに配列された厚さ方向糸13は、t/L=cos( tan−1θ) の関係を満たす場合に比較して、張力が弱くなる。しかし、曲げ工程において、一次構造体20が曲げ作用を受ける際に曲げ部14a,14bの外側の90度繊維層12bのずれに伴って厚さ方向糸13も支障なく移動することができ、曲げ部14a,14bの内側になる連続繊維に皺や歪みが発生しない状態で、曲げ加工を容易に行うことができる。
○ 積層繊維層12を構成する連続繊維は炭素繊維に限らず、三次元繊維構造体11に要求される物性に対応して、アラミド繊維、ガラス繊維等を使用してもよい。
○ 三次元繊維構造体11を強化材とした複合材に使用される熱硬化性樹脂は、エポキシ樹脂に限らず、不飽和ポリエステル樹脂、フェノール樹脂等を使用してもよい。
○ 三次元繊維構造体11を強化材とした複合材を構成するマトリックス樹脂として熱硬化性樹脂に代えて、熱可塑性樹脂を使用してもよい。マトリックス樹脂として熱可塑性樹脂を使用する場合は、積層繊維群に溶融含浸成形法など一般の含浸法で熱可塑性樹脂が含浸された後、冷却されて複合材が形成される。熱可塑性樹脂としては、例えば、ナイロン、ポリブチレンテレフタレート、ポリカーボネートなどが使用される。
以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1〜請求項9のいずれか一項に記載の発明において、三次元繊維構造体の曲げ部の角度をθ(ラジアン)、厚さ方向糸が前記曲げ部に隣接する平面部の厚さ方向と成す角度をФとするとθ=tanФを満たす。
(a)は第1の実施形態における三次元繊維構造体の模式斜視図、(b)は一次構造体の積層繊維層と厚さ方向糸との関係を示す模式断面図。 (a)は曲げ部に挟まれた平面部の厚さ方向糸の配列状態を示す模式図、(b)は曲げ部における内経路と外経路の関係を示す模式図。 (a),(b)は治具と連続繊維の配列状態を示す模式平面図。 (a),(b)は曲げ工程の手順を示す模式図。 第2の実施形態における一次構造体の厚さ方向糸の配列状態を示す部分模式図。 三次元繊維構造体の模式図。 (a),(b)は別の実施形態における三次元繊維構造体の模式図。 別の実施形態における三次元繊維構造体が形成された状態を示す模式図。 従来技術を示す模式図。
符号の説明
L…長さ、t…厚さ、θ…角度、LG1,LG2…外形線、11…三次元繊維構造体、12…積層繊維層、12a…繊維層としての0度繊維層、12b…繊維層としての90度繊維層、13…厚さ方向糸、14a,14b…曲げ部、15a,15b,15c…平面部、16a,16b…連続繊維、18…治具、20…一次構造体、30a,30b,30c…部分。

Claims (19)

  1. 連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体であって、
    前記曲げ部を挟んで隣り合う一方の平面部に配列される前記厚さ方向糸と、他方の平面部に配列される前記厚さ方向糸とは前記繊維層に対して交差する角度が異なる方向に配列されていることを特徴とする三次元繊維構造体。
  2. 織物組織からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体であって、
    前記曲げ部を挟んで隣り合う一方の平面部に配列される前記厚さ方向糸と、他方の平面部に配列される前記厚さ方向糸とは前記繊維層に対して交差する角度が異なる方向に配列されていることを特徴とする三次元繊維構造体。
  3. 前記一方の平面部には前記厚さ方向糸が前記繊維層と斜めに交差する状態で配列され、前記他方の平面部には前記厚さ方向糸が前記繊維層と直交する方向に配列されている請求項1又は請求項2に記載の三次元繊維構造体。
  4. 連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体であって、
    2個の曲げ部が平面部を挟むように設けられている部分を備えており、前記平面部に配列される前記厚さ方向糸は前記繊維層と斜めに交差する状態で配列されていることを特徴とする三次元繊維構造体。
  5. 前記積層繊維層は、前記曲げ部の曲率中心線と直交する仮想平面による断面形状が、厚さ方向の一方の側における外形線の長さと、他方の側における外形線の長さとが等しい形状に形成されている請求項1〜請求項4のいずれか一項に記載の三次元繊維構造体。
  6. 前記積層繊維層は、前記曲げ部及び前記平面部に跨るように前記連続繊維が配列される仮想平面による断面形状が、厚さ方向の一方の側における外形線の長さと、他方の側における外形線の長さとが等しい形状に形成されている請求項1〜請求項4のいずれか一項に記載の三次元繊維構造体。
  7. 前記積層繊維層は、前記曲げ部として曲げ方向の異なる曲げ部を平面部が間に存在する隣り合う状態で備えており、前記曲げ方向の異なる曲げ部に挟まれた平面部に前記厚さ方向糸が前記繊維層と斜めに交差する状態で配列されている請求項1〜請求項6のいずれか一項に記載の三次元繊維構造体。
  8. 前記仮想平面と対向する方向から見た場合、前記平面部において前記繊維層と斜めに交差する状態で配列されている前記厚さ方向糸の長さをL、曲げ部の角度をθ(ラジアン)、前記曲げ部における前記積層繊維層の厚さをtとした場合、t/L≦cos( tan−1θ) の関係を有する請求項5〜請求項7のいずれか一項に記載の三次元繊維構造体。
  9. 前記連続繊維及び厚さ方向糸の少なくとも一方は、伸び率が2.4%以下である請求項1〜請求項8のいずれか一項に記載の三次元繊維構造体。
  10. 請求項1〜請求項9のいずれか一項に記載の三次元繊維構造体を強化材とし、樹脂をマトリックスとしている複合材。
  11. 連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続し、かつ曲げ方向の異なる曲げ部が平面部を間にして隣り合う状態で隣接して存在する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体の製造方法であって、
    規制部材が所定ピッチで配置された治具上に、前記規制部材と係合して折り返すように連続繊維を前記規制部材間に配列して形成した繊維層を複数積層して少なくとも2軸配向となる積層繊維層を形成する連続繊維配列工程と、
    前記積層繊維層に厚さ方向糸を前記積層繊維層と直交するように挿入して平板状の一次構造体を形成する厚さ方向糸挿入工程と、
    前記厚さ方向糸が挿入された平板状の一次構造体の所定位置に曲げ部を形成する曲げ工程とを備え、
    前記厚さ方向糸挿入工程において、少なくとも前記曲げ工程後に曲げ方向の異なる曲げ部に挟まれた平面部となる部分には、厚さ方向糸を前記曲げ工程後の平面部の積層繊維層の厚さより長く挿入することを特徴とする三次元繊維構造体の製造方法。
  12. 連続繊維からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体の製造方法であって、
    規制部材が所定ピッチで配置された治具上に、前記規制部材と係合して折り返すように連続繊維を前記規制部材間に配列して形成した繊維層を複数積層して少なくとも2軸配向となる積層繊維層を形成する連続繊維配列工程と、
    前記積層繊維層に厚さ方向糸を前記積層繊維層と直交するように挿入して平板状の一次構造体を形成する厚さ方向糸挿入工程と、
    前記厚さ方向糸が挿入された平板状の一次構造体の所定位置に曲げ部を形成する曲げ工程とを備え、
    前記厚さ方向糸挿入工程において、前記曲げ工程後に曲げ部を挟んで隣り合う少なくとも一方の平面部となる部分には、厚さ方向糸を前記曲げ工程後の平面部の積層繊維層の厚さより長く挿入することを特徴とする三次元繊維構造体の製造方法。
  13. 織物組織からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続し、かつ曲げ方向の異なる曲げ部が平面部を間にして隣り合う状態で隣接して存在する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体の製造方法であって、
    織物を積層して積層繊維層を形成する織物積層工程と、
    前記積層繊維層に厚さ方向糸を前記積層繊維層と直交するように挿入して平板状の一次構造体を形成する厚さ方向糸挿入工程と、
    前記厚さ方向糸が挿入された平板状の一次構造体の所定位置に曲げ部を形成する曲げ工程とを備え、
    前記厚さ方向糸挿入工程において、少なくとも前記曲げ工程後に曲げ方向の異なる曲げ部に挟まれた平面部となる部分には、厚さ方向糸を前記曲げ工程後の平面部の積層繊維層の厚さより長く挿入することを特徴とする三次元繊維構造体の製造方法。
  14. 織物組織からなる繊維層が積層された少なくとも2軸配向となる積層繊維層が、曲げ部と平面部とが連続する立体的な板状に形成されるとともに、前記積層繊維層の各繊維層と交差する状態で厚さ方向糸が配列された三次元繊維構造体の製造方法であって、
    織物を積層して積層繊維層を形成する織物積層工程と、
    前記積層繊維層に厚さ方向糸を前記積層繊維層と直交するように挿入して平板状の一次構造体を形成する厚さ方向糸挿入工程と、
    前記厚さ方向糸が挿入された平板状の一次構造体の所定位置に曲げ部を形成する曲げ工程とを備え、
    前記厚さ方向糸挿入工程において、前記曲げ工程後に曲げ部を挟んで隣り合う少なくとも一方の平面部となる部分には、厚さ方向糸を前記曲げ工程後の平面部の積層繊維層の厚さより長く挿入することを特徴とする三次元繊維構造体の製造方法。
  15. 前記曲げ工程における曲げ加工完了後の三次元繊維構造体の曲げ部の角度をθ(ラジアン)、前記曲げ部における前記積層繊維層の厚さをt、前記曲げ方向の異なる曲げ部の間の平面部に配列されている前記厚さ方向糸の長さをLとした場合、t/L≦cos( tan−1θ) の関係を満たす長さとなるように、前記厚さ方向糸挿入工程において、少なくとも前記曲げ工程後に曲げ方向の異なる曲げ部の間となる平面部に挿入される厚さ方向糸の長さが設定される請求項11又は請求項13に記載の三次元繊維構造体の製造方法。
  16. 前記厚さ方向糸挿入工程において、前記曲げ工程後に曲げ方向の異なる曲げ部の間となる平面部に挿入される厚さ方向糸は、その長さが前記t/L=cos( tan−1θ) の関係を満たす長さで挿入され、他の平面部に挿入される厚さ方向糸は、前記曲げ工程後の当該平面部における前記積層繊維層の厚さと同じ長さで挿入される請求項15に記載の三次元繊維構造体の製造方法。
  17. 前記曲げ工程において、曲げ部を形成した後の前記積層繊維層の繊維体積率が、前記一次構造体の繊維体積率より高くなるように曲げ加工を行う、請求項11〜請求項16のいずれか一項に記載の三次元繊維構造体の製造方法。
  18. 前記連続繊維及び厚さ方向糸の少なくとも一方は、伸び率が2.4%以下である請求項11、請求項12、請求項15、請求項16及び請求項17のいずれか一項に記載の三次元繊維構造体の製造方法。
  19. 前記織物組織及び厚さ方向糸の少なくとも一方は、伸び率が2.4%以下である請求項13又は請求項14に記載の三次元繊維構造体の製造方法。
JP2006144507A 2006-03-31 2006-05-24 三次元繊維構造体及び複合材並びに三次元繊維構造体の製造方法 Active JP4677950B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006144507A JP4677950B2 (ja) 2006-03-31 2006-05-24 三次元繊維構造体及び複合材並びに三次元繊維構造体の製造方法
EP07105193.2A EP1842656B1 (en) 2006-03-31 2007-03-29 Three-dimensional fiber structure and method for manufacturing three-dimensional fiber structure
US11/731,390 US7758946B2 (en) 2006-03-31 2007-03-30 Three-dimensional fiber structure, composite, and method for manufacturing three-dimensional fiber structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006100565 2006-03-31
JP2006144507A JP4677950B2 (ja) 2006-03-31 2006-05-24 三次元繊維構造体及び複合材並びに三次元繊維構造体の製造方法

Publications (2)

Publication Number Publication Date
JP2007291582A JP2007291582A (ja) 2007-11-08
JP4677950B2 true JP4677950B2 (ja) 2011-04-27

Family

ID=38197810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144507A Active JP4677950B2 (ja) 2006-03-31 2006-05-24 三次元繊維構造体及び複合材並びに三次元繊維構造体の製造方法

Country Status (3)

Country Link
US (1) US7758946B2 (ja)
EP (1) EP1842656B1 (ja)
JP (1) JP4677950B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014851A1 (ja) 2019-07-19 2021-01-28 株式会社豊田自動織機 繊維構造体及び繊維強化複合材

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907475B1 (fr) * 2006-10-18 2008-12-05 Messier Dowty Sa Sa Tissu composite 3d
DE102008017573A1 (de) 2008-04-07 2010-04-15 Airbus Deutschland Gmbh Verfahren zur Herstellung eines FVW/FVK-Bauteils aus Rovings mit einem Formwerkzeug und Formwerkzeug zur Durchführung des Verfahrens
JP2010047875A (ja) * 2008-08-22 2010-03-04 Toyota Industries Corp 繊維構造体、繊維構造体の製造方法及び繊維強化複合材の製造方法
EP2349686B1 (en) * 2008-11-13 2018-08-08 Saab AB Method of forming a composite article
CN101899739B (zh) * 2010-06-30 2012-09-05 北京玻钢院复合材料有限公司 一种曲形板状三维角联锁织物及其织造方法
DE102011007020A1 (de) 2011-04-08 2012-10-11 Voith Patent Gmbh Vorrichtung und Verfahren zur Herstellung von Faserformlingen, die insbesondere eine Vorstufe bei der Herstellung von faserverstärkten Kunststoff-Bauteilen darstellen
DE102011007021A1 (de) * 2011-04-08 2012-10-11 Voith Patent Gmbh Vorrichtung und Verfahren zur Herstellung von Faservorformlingen, die insbesondere eine Vorstufe bei der Herstellung von faserverstärkten Kunststoff-Bauteilen darstellen
US9539789B2 (en) * 2012-08-21 2017-01-10 Kabushiki Kaisha Toyota Jidoshokki Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite
WO2014030633A1 (ja) * 2012-08-21 2014-02-27 株式会社 豊田自動織機 三次元繊維強化複合材
CN104540882B (zh) * 2012-08-21 2017-02-22 株式会社丰田自动织机 三维纤维增强复合材料
DE102013200288A1 (de) * 2013-01-11 2014-07-17 Bayerische Motoren Werke Aktiengesellschaft Verfahren für die Herstellung eines Strukturbauteils eines Fahrzeugs
PL2881237T3 (pl) * 2013-12-03 2019-12-31 Lm Wp Patent Holding A/S Sposób wytwarzania ścinanego żebra przy użyciu wstępnie utworzonego kołnierza podstawy żebra
FR3018286B1 (fr) * 2014-03-10 2016-05-27 Aircelle Sa Preforme tissee pour realiser un renfort circonferentiel ou torique a section en omega
DK2927361T3 (en) * 2014-04-03 2016-11-28 Siemens Ag Fiber mat, component for a wind turbine, device for making the fiber mat and method for making the fiber mat
US10525637B2 (en) * 2017-03-09 2020-01-07 The Boeing Company Flat composites having layup features for forming into 3D shapes
JP2019094578A (ja) 2017-11-17 2019-06-20 株式会社豊田自動織機 繊維構造体及び繊維強化複合材
JP7397567B2 (ja) * 2017-12-20 2023-12-13 富士通オプティカルコンポーネンツ株式会社 光変調器及び光モジュール
JP2021014646A (ja) * 2019-07-11 2021-02-12 株式会社豊田自動織機 繊維構造体及び繊維構造体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148243A (ja) * 1993-09-24 1995-06-13 Takiron Co Ltd インプラント材料
JP2002127944A (ja) * 2000-08-18 2002-05-09 Toray Ind Inc Frp製自動車パネル
JP2003286639A (ja) * 2002-03-26 2003-10-10 Shikibo Ltd 繊維構造体とその製造方法
JP2007283586A (ja) * 2006-04-14 2007-11-01 Toyota Industries Corp 繊維強化複合材の製造方法
JP2007297753A (ja) * 2006-04-03 2007-11-15 Toyota Industries Corp 三次元繊維構造体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2497726A1 (fr) * 1981-01-12 1982-07-16 Brochier Fils J Article textile multicouches pour le renforcement de materiaux stratifies et procede pour son obtention
JPH02191742A (ja) 1989-01-18 1990-07-27 Toyota Autom Loom Works Ltd 三次元織物及びその製造方法
JPH0823095B2 (ja) * 1989-06-06 1996-03-06 東レ株式会社 補強繊維織物
US5211967A (en) * 1991-03-15 1993-05-18 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Three-dimensional fabric and method of producing the same
FR2718758B1 (fr) * 1994-04-18 1996-06-14 Aerospatiale Procédé et machine pour la réalisation d'une armature pour une pièce de matière composite.
JP3475609B2 (ja) * 1995-11-13 2003-12-08 株式会社豊田自動織機 三次元繊維構造体及びその製造方法
FR2779749B1 (fr) * 1998-06-10 2000-08-11 Aerospatiale Armature fibreuse pour piece de matiere composite, ainsi que procede et dispositif pour sa realisation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148243A (ja) * 1993-09-24 1995-06-13 Takiron Co Ltd インプラント材料
JP2002127944A (ja) * 2000-08-18 2002-05-09 Toray Ind Inc Frp製自動車パネル
JP2003286639A (ja) * 2002-03-26 2003-10-10 Shikibo Ltd 繊維構造体とその製造方法
JP2007297753A (ja) * 2006-04-03 2007-11-15 Toyota Industries Corp 三次元繊維構造体の製造方法
JP2007283586A (ja) * 2006-04-14 2007-11-01 Toyota Industries Corp 繊維強化複合材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014851A1 (ja) 2019-07-19 2021-01-28 株式会社豊田自動織機 繊維構造体及び繊維強化複合材

Also Published As

Publication number Publication date
JP2007291582A (ja) 2007-11-08
US20070232171A1 (en) 2007-10-04
EP1842656A1 (en) 2007-10-10
US7758946B2 (en) 2010-07-20
EP1842656B1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
JP4677950B2 (ja) 三次元繊維構造体及び複合材並びに三次元繊維構造体の製造方法
JP4775090B2 (ja) 繊維強化複合材の製造方法
US11173687B2 (en) Reinforced substrate for composite material, composite material, and method for manufacturing reinforced substrate for composite material
JP4544266B2 (ja) 繊維強化複合材
US10023141B2 (en) Energy-absorbing member
JP4677951B2 (ja) 三次元繊維構造体の製造方法
US10697094B2 (en) Fiber structure and fiber reinforced composite material
WO2019012983A1 (ja) 繊維構造体及び繊維強化複合材
JP2004276393A (ja) 複合材料用ドライプリフォームとその製造方法および製造装置
EP3712309A1 (en) Fiber construct, fiber-reinforced composite material, and method for manufacturing these
JP2021025164A (ja) 繊維構造体及び繊維強化複合材
JP6210097B2 (ja) 織物積層体、織物積層体の製造方法、及び織物積層体の製造装置
JP4019822B2 (ja) 繊維強化複合材の製造方法
JP7287162B2 (ja) 繊維構造体及び繊維強化複合材
JP3915614B2 (ja) 変形部分を有する繊維構造体及び複合材
WO2013035518A1 (ja) 織物基材及び繊維強化複合材料
WO2014034606A1 (ja) 三次元繊維構造体、それを使用したプリプレグ、及び、三次元繊維構造体の製造方法
WO2012014613A1 (ja) 繊維基材及び繊維強化複合材料
WO2018083735A1 (ja) 複合材料用強化基材、複合材料および複合材料用強化基材の製造方法
WO2012014605A1 (ja) 繊維基材及び繊維強化複合材料
WO2012169308A1 (ja) 強化繊維からなる繊維束シート
JPS59184642A (ja) 繊維強化プラスチツク

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R151 Written notification of patent or utility model registration

Ref document number: 4677950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3