JP4676907B2 - Electronic component mounting structure using solder adhesive and solder adhesive - Google Patents

Electronic component mounting structure using solder adhesive and solder adhesive Download PDF

Info

Publication number
JP4676907B2
JP4676907B2 JP2006065743A JP2006065743A JP4676907B2 JP 4676907 B2 JP4676907 B2 JP 4676907B2 JP 2006065743 A JP2006065743 A JP 2006065743A JP 2006065743 A JP2006065743 A JP 2006065743A JP 4676907 B2 JP4676907 B2 JP 4676907B2
Authority
JP
Japan
Prior art keywords
solder
electronic component
resin
adhesive
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006065743A
Other languages
Japanese (ja)
Other versions
JP2007237271A (en
Inventor
優 土井
宏記 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2006065743A priority Critical patent/JP4676907B2/en
Publication of JP2007237271A publication Critical patent/JP2007237271A/en
Application granted granted Critical
Publication of JP4676907B2 publication Critical patent/JP4676907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、接着強度に優れた半田接着剤及び半田接着剤を用いた電子部品実装構造に関する。   The present invention relates to a solder adhesive having excellent adhesive strength and an electronic component mounting structure using the solder adhesive.

近年、基板上に電子部品を実装する際に、環境汚染物質である鉛を含有しない鉛フリー半田として、金属粉末を含む樹脂が用いられるようになっている。特許文献2および3には、電極がパターン印刷された基板上に半田粒子が分散した接着剤を塗布し、電極同士が対向するように別の基板を重ねて加圧加熱することにより、対向する電極間に金属粒子が融解凝集し、電気的接合を行う配線基板が開示されている。   In recent years, when an electronic component is mounted on a substrate, a resin containing a metal powder has been used as a lead-free solder that does not contain lead as an environmental pollutant. In Patent Documents 2 and 3, an adhesive in which solder particles are dispersed is applied onto a substrate on which electrodes are pattern-printed, and another substrate is stacked and heated under pressure so that the electrodes are opposed to each other. A wiring substrate is disclosed in which metal particles are fused and aggregated between electrodes to perform electrical bonding.

特許文献4には、絶縁性樹脂の中に半田粒子を相互に接触しないように含む異方性導電樹脂を用い、樹脂を加熱硬化すると同時に半田粒子を溶融させることにより、半田接続を行う技術が開示されている。   Patent Document 4 discloses a technique for performing solder connection by using an anisotropic conductive resin containing solder particles so as not to contact each other in an insulating resin, and simultaneously melting the resin by melting the solder particles. It is disclosed.

特許文献1には、金属粉末と熱硬化性樹脂からなるペースト状の半田接着剤において、金属粉末の融点が熱硬化性樹脂の硬化温度よりも低くなるように金属および熱硬化性樹脂を選択的に組み合わせることによって、熱硬化性樹脂が硬化する前に金属が溶融してペースト中の導体成分を結合し、導電路を形成させることにより、導電性を高める技術が開示されている。
特開2002−109956号公報 特開昭60−178690号公報 特開昭61−174643号公報 特開平11−4064号公報
In Patent Document 1, in a paste solder adhesive composed of metal powder and a thermosetting resin, the metal and the thermosetting resin are selectively selected so that the melting point of the metal powder is lower than the curing temperature of the thermosetting resin. In combination with the above, a technique is disclosed in which the metal is melted before the thermosetting resin is cured, the conductor components in the paste are combined, and a conductive path is formed to increase the conductivity.
JP 2002-109956 A JP-A-60-178690 JP-A-61-174643 Japanese Patent Laid-Open No. 11-4064

特許文献1では、絶縁シートに形成されたビアホールに導電ペーストを充填してビアホール導体を形成した後、配線回路層を形成し、次に、金属粉末を溶融させて導電路を形成した後、熱硬化性樹脂を硬化しているが、硬化後の熱硬化性樹脂の配線回路層や導電路に対する接着強度は十分ではなく、外力によって前記ビアホール導体と配線回路層とが剥がれてしまうなどの問題が生じていた。熱硬化性樹脂の含有量を高めれば、接着力を高めることは可能であるが、相対的に導電性粒子の含有量が低下し導電性を損なうこととなる。   In Patent Document 1, a via hole formed in an insulating sheet is filled with a conductive paste to form a via hole conductor, then a wiring circuit layer is formed, and then a metal path is melted to form a conductive path. Although the curable resin is cured, the adhesive strength of the cured thermosetting resin to the wiring circuit layer and the conductive path is not sufficient, and the via hole conductor and the wiring circuit layer are peeled off by an external force. It was happening. If the content of the thermosetting resin is increased, it is possible to increase the adhesive force, but the content of the conductive particles is relatively lowered and the conductivity is impaired.

また特許文献2ないし4に開示された発明についても、基板と電子部品間の接合に半田粒子と樹脂とを含有してなる接着剤を用いたという以外、特に、前記接着剤の接着強度を高めるという工夫はなされていない。   The inventions disclosed in Patent Documents 2 to 4 also particularly increase the adhesive strength of the adhesive except that an adhesive containing solder particles and a resin is used for bonding between the substrate and the electronic component. There is no ingenuity.

また特許文献2及び特許文献3に記載された方法では、2枚の基板を両側から加圧する必要があり、密閉した基板間の電気的接合に限定され、基板上に開放系で半田接着を行うことはできなかった。また、基板間の電極以外の部分には、金属粒子が樹脂中に分散しており、この金属粒子同士が接触して短絡が起こりやすいという問題があった。   Further, in the methods described in Patent Document 2 and Patent Document 3, it is necessary to pressurize two substrates from both sides, which is limited to electrical bonding between sealed substrates, and solder bonding is performed on the substrates in an open system. I couldn't. In addition, there is a problem that metal particles are dispersed in the resin at portions other than the electrodes between the substrates, and the metal particles come into contact with each other and a short circuit is likely to occur.

また特許文献4でも異方性導電樹脂中には半田粒子が分散しているため、やはり前記特許文献2および3の場合と同様、短絡が起こりやすいという問題があった。   Also in Patent Document 4, since the solder particles are dispersed in the anisotropic conductive resin, there is a problem that a short circuit is likely to occur as in Patent Documents 2 and 3.

また接着強度や電気的安定性の向上には接着剤内での半田粒子の分散性が高い必要があるが、各文献には半田粒子の分散性について特に記載がない。   Further, in order to improve the adhesive strength and electrical stability, it is necessary that the dispersibility of the solder particles in the adhesive is high, but each document does not particularly describe the dispersibility of the solder particles.

そこで、本発明では、半田粒子による導電性を損なうことなく、熱硬化性樹脂による接着力を高めた、基板や電子部品に対する接着強度の高い半田接着剤を提供することを目的とする。   In view of the above, an object of the present invention is to provide a solder adhesive having a high adhesive strength to a substrate or an electronic component, in which the adhesive strength of the thermosetting resin is enhanced without impairing the electrical conductivity of the solder particles.

本発明における半田接着剤は、半田粒子と、熱硬化性樹脂とを主成分とし、前記半田粒子、前記樹脂および硬化剤の合計質量に対し、0.01質量%以上で1質量%以下のシランカップリング剤を含有し、加熱により、前記半田粒子が凝集して半田を形成するとともに、前記樹脂が流れ出して樹脂層を形成することを特徴とするものである。 The solder adhesive in the present invention contains solder particles and a thermosetting resin as main components, and 0.01 mass% or more and 1 mass% or less of silane with respect to the total mass of the solder particles, the resin and the curing agent. It contains a coupling agent, and by heating, the solder particles aggregate to form solder, and the resin flows out to form a resin layer .

本発明では、後述する実験によれば、シランカップリング剤を含有することで、接着強度を向上させることができることがわかっている。また、シランカップリング剤の添加によって半田接着剤中における半田粒子の分散性を向上させることができることで、前記接着強度の向上とともに、基板と電子部品間の接合に使用したときの前記基板と電子部品間の導電性を高めることが出来、電気的安定性を向上させることができることがわかっている。   In the present invention, according to experiments described later, it is known that the adhesive strength can be improved by containing a silane coupling agent. Moreover, the dispersibility of the solder particles in the solder adhesive can be improved by the addition of the silane coupling agent, thereby improving the adhesive strength as well as the substrate and the electronic when used for bonding between the substrate and the electronic component. It has been found that the electrical conductivity between components can be increased and electrical stability can be improved.

前記半田粒子は、すず−銀−銅(Sn−Ag−Cu)合金の粒子からなることが好ましい。後述する実験によれば、前記半田粒子として、すず−銀−銅(Sn−Ag−Cu)合金の粒子を用いることで、前記シランカップリング剤を含有しない比較例に比べて、適切に前記接着強度を向上させることが出来ることがわかっている。   The solder particles are preferably made of tin-silver-copper (Sn-Ag-Cu) alloy particles. According to an experiment described later, by using particles of a tin-silver-copper (Sn-Ag-Cu) alloy as the solder particles, the adhesion can be appropriately performed as compared with the comparative example not containing the silane coupling agent. It has been found that the strength can be improved.

また、前記樹脂は熱硬化性樹脂であることが好ましく、さらに熱硬化性樹脂がエポキシ系樹脂であると、接着力に優れる。   Moreover, it is preferable that the said resin is a thermosetting resin, and when the thermosetting resin is an epoxy resin, it is excellent in adhesive force.

前記シランカップリング剤の含有量、上記範囲内であるので、より効果的に前記接着強度及び前記導電性を高めることができる。 The content of the silane coupling agent, because within the above range, it is possible to increase more effectively the adhesive strength and the electrical conductivity.

また、本発明における電子部品実装構造は、基板と電子部品の間の接合に、上記のいずれかに記載された半田接着剤が用いられ、
前記基板上に形成された電極と、前記電子部品の端子部間は半田接合されており、前記電子部品の周囲の少なくとも一部と前記基板間は、樹脂層により接着されていることを特徴とするものである。
The electronic component mounting structure in the present invention uses the solder adhesive described in any of the above for bonding between the substrate and the electronic component,
The electrode formed on the substrate and the terminal portion of the electronic component are solder-bonded, and at least a part of the periphery of the electronic component and the substrate are bonded by a resin layer. To do.

これにより、前記半田と樹脂層間の接着強度、前記樹脂層と電子部品、及び前記樹脂層と前記基板間の接着強度を向上させることができ、したがって、前記基板と電子部品間の接着強度を適切に向上させることができる。また、前記基板の電極と前記電子部品の端子部間の導電性を良好な状態にできる。   Thereby, the adhesive strength between the solder and the resin layer, the resin layer and the electronic component, and the adhesive strength between the resin layer and the substrate can be improved. Can be improved. In addition, the conductivity between the electrode of the substrate and the terminal portion of the electronic component can be made good.

また本発明では、前記半田接着剤は、接合前、前記基板の電極上に塗布され、加熱により、前記半田粒子は前記電極と端子部間に凝集して前記電極と端子部間が半田接合され、前記樹脂は前記電子部品の周囲の少なくとも一部に流れ出して、前記電子部品の周囲の少なくとも一部と前記基板間が前記樹脂層により接着されることが好ましい。従来では、基板と電子部品間を例えば熱プレスによって接合していたが、本発明では、熱プレスを必要とせず、前記電極上への半田接着剤の塗布及び加熱を行うことで、簡単且つ適切に、電極と端子部間を半田接合できるとともに、電子部品の周囲と基板間を樹脂層により接着できる。上記のように本発明では前記樹脂が電子部品の周囲に流れ出すが、このとき前記電子部品の周囲は開放されており、特に前記樹脂の流動を阻害するものはないので、前記電極上から前記電子部品の周囲へ適切に樹脂層を形成できる。また本発明では、前記半田接着剤にシランカップリング剤を添加していることで前記半田粒子の分散性は優れており、これによって、前記電極と端子部間を適切に半田接合できるとともに、前記樹脂層の内部に半田粒子が残されにくくなり、電気的安定性に優れた電子部品実装構造を提供できる。   Further, in the present invention, the solder adhesive is applied onto the electrode of the substrate before bonding, and by heating, the solder particles are aggregated between the electrode and the terminal portion, and the electrode and the terminal portion are solder-bonded. Preferably, the resin flows out to at least a part of the periphery of the electronic component, and at least a part of the periphery of the electronic component and the substrate are bonded by the resin layer. Conventionally, the substrate and the electronic component are bonded by, for example, hot pressing. However, in the present invention, it is not necessary to perform hot pressing, and it is simple and appropriate to apply and heat the solder adhesive on the electrode. In addition, the electrode and the terminal portion can be soldered together, and the periphery of the electronic component and the substrate can be bonded by a resin layer. As described above, in the present invention, the resin flows out to the periphery of the electronic component. At this time, the periphery of the electronic component is open, and in particular, there is nothing that inhibits the flow of the resin. A resin layer can be appropriately formed around the part. Further, in the present invention, the dispersibility of the solder particles is excellent by adding a silane coupling agent to the solder adhesive, thereby enabling appropriate solder bonding between the electrode and the terminal portion, Solder particles are less likely to remain inside the resin layer, and an electronic component mounting structure with excellent electrical stability can be provided.

本発明の半田接着剤は、シランカップリング剤を含有し、これにより、接着強度に優れたものとなり、また半田粒子の分散性にも優れている。   The solder adhesive of the present invention contains a silane coupling agent, which makes it excellent in adhesive strength and excellent in dispersibility of solder particles.

本発明の半田接着剤は、基板と電子部品間との接合に使用され、これにより前記基板の電極と電子部品の端子部間を半田接合できるとともに、前記電子部品の周囲の一部と前記基板間を樹脂層により接着できる。このとき前記半田接着剤にシランカップリング剤が含まれていることで、半田と樹脂層との間の接着力や前記樹脂層と基板間、前記樹脂層と電子部品間の接着力を従来よりも向上させることができ、したがって、前記基板と電子部品間の接着強度を適切に向上させることができる。加えて、前記基板の電極と前記電子部品の端子部間の導電性を良好な状態にできる。   The solder adhesive of the present invention is used for bonding between a substrate and an electronic component, whereby solder bonding can be performed between an electrode of the substrate and a terminal portion of the electronic component, and a part of the periphery of the electronic component and the substrate The gap can be adhered by a resin layer. At this time, since the silane coupling agent is included in the solder adhesive, the adhesive force between the solder and the resin layer, the adhesive force between the resin layer and the substrate, and the adhesive force between the resin layer and the electronic component are conventionally increased. Therefore, the adhesive strength between the substrate and the electronic component can be appropriately improved. In addition, the electrical conductivity between the electrode of the substrate and the terminal part of the electronic component can be made good.

本実施形態の半田接着剤は、半田粒子と熱硬化性樹脂を主成分とするペースト状で、シランカップリング剤を含有する。そして、加熱により、半田粒子が溶解して半田を形成すると同時に、前記熱硬化性樹脂がその周囲に流れ出し、接着層を形成するものである。   The solder adhesive of the present embodiment is a paste mainly composed of solder particles and a thermosetting resin, and contains a silane coupling agent. Then, by heating, the solder particles dissolve to form solder, and at the same time, the thermosetting resin flows out to the periphery to form an adhesive layer.

半田接着剤に含有される半田粒子は、半田を形成するものであればいずれの金属粒子も用いることができるが、特にすず(Sn)を主成分とする合金が好適に用いられる。この場合、Snは合金の10質量%以上、より好ましくは40質量%以上を占める。Snと合金を形成する金属としては、半田の融点の高低、あるいは電気伝導率の高低の目的に応じて、銀(Ag)、銅(Cu)、ニッケル(Ni)、ビスマス(Bi)、アンチモン(Sb)、亜鉛(Zn)、インジウム(In)、鉛(Pb)、金(Au)、ゲルマニウム(Ge)から1種あるいは2種以上を選択することができる。例えば、銀や銅は電気伝導率が高いので、Sn−Ag、Sn−Cu、Sn−Ag−Cu系合金は、電気伝導率の高い半田を形成するが、融点200〜250℃と高い。また、Sn−Bi系合金からなる半田は融点が60〜200℃と低く、加工性に優れており、基板や電子部品に熱損傷を与えにくい。またこれらの半田合金の金属組織を改良するために微量の元素を添加してもよい。   As the solder particles contained in the solder adhesive, any metal particles can be used as long as they can form solder. In particular, an alloy mainly composed of tin (Sn) is preferably used. In this case, Sn accounts for 10% by mass or more, more preferably 40% by mass or more of the alloy. As a metal forming an alloy with Sn, silver (Ag), copper (Cu), nickel (Ni), bismuth (Bi), antimony (depending on the purpose of the melting point of the solder or the electrical conductivity) One type or two or more types can be selected from Sb), zinc (Zn), indium (In), lead (Pb), gold (Au), and germanium (Ge). For example, since silver and copper have high electrical conductivity, Sn—Ag, Sn—Cu, and Sn—Ag—Cu alloys form solder with high electrical conductivity, but have a high melting point of 200 to 250 ° C. In addition, the solder made of the Sn—Bi alloy has a low melting point of 60 to 200 ° C., is excellent in workability, and hardly causes thermal damage to the substrate or the electronic component. A trace amount of elements may be added to improve the metal structure of these solder alloys.

本実施形態では、前記半田粒子は、すず−銀−銅(Sn−Ag−Cu)合金の粒子であることが好ましい。後述する実験によれば、前記半田粒子としてSn−Ag−Cuを用いたとき、前記シランカップリング剤の有無により接着強度に大きな差が生じることがわかっている。   In the present embodiment, the solder particles are preferably tin-silver-copper (Sn-Ag-Cu) alloy particles. According to experiments described later, it is known that when Sn—Ag—Cu is used as the solder particles, a large difference in adhesive strength occurs depending on the presence or absence of the silane coupling agent.

半田粒子の粒子径は、1〜100μmが好ましく、10〜50μm、特に30μm程度がより好適である。塗布前の半田接着剤はペースト状であるので、ペースト中の半田粒子は粒径が小さいほうが分散性に優れ、また後の工程で加熱されるときも、迅速に溶融して半田を形成することができるが、1μmより小さいと、粒子どうしの凝集が起こって接着剤中の粒子の分散性が低下したり、半田粒子の表面が酸化されて溶融時の凝集を妨げたりするので好ましくない。また粒径の小さい粒子を作成するのには時間とエネルギーを要するので、必要以上に小さい粒子とするのは経済的ではない。半田粒子の粒子径が100μmより大きいと、ペースト中での分散性が悪く粒子が偏在するので印刷性が悪く、接合部分の半田量がむらになり形成された半田の導電性、接着性が低下する。また、後の工程で加熱されるとき、粒子が大きいと溶融するまでに時間がかかるので好ましくない。また、球状の半田粒子を用いて分散性を向上させたり、偏平な半田粒子を用いて溶融時の凝集性を向上させることもできる。   The particle diameter of the solder particles is preferably 1 to 100 μm, more preferably 10 to 50 μm, particularly about 30 μm. Since the solder adhesive before application is in the form of a paste, the smaller the particle size of the solder particles in the paste, the better the dispersibility, and even when heated in a later process, it melts quickly to form solder. However, if the particle size is less than 1 μm, the particles are aggregated to reduce the dispersibility of the particles in the adhesive, and the surface of the solder particles is oxidized to prevent aggregation at the time of melting. Moreover, since it takes time and energy to produce particles having a small particle size, it is not economical to make particles smaller than necessary. If the particle size of the solder particles is larger than 100 μm, the dispersibility in the paste is poor and the particles are unevenly distributed, so the printability is poor, the solder amount at the joint is uneven, and the conductivity and adhesiveness of the formed solder are reduced. To do. Further, when heated in a later step, if the particles are large, it takes time to melt, which is not preferable. Further, the dispersibility can be improved by using spherical solder particles, and the cohesiveness at the time of melting can be improved by using flat solder particles.

半田粒子の塗布前の半田接着剤中の含有量は、50〜90質量%が好ましい。半田粒子の含有量が50質量%より少ないと、加熱後の電気伝導率が低く、また加熱後の半田接合に欠陥が生じるので、好ましくない。また、半田粒子の含有量が90質量%より高いと、相対的に樹脂の含有量が低く、樹脂による接着強度が弱くなる。   The content in the solder adhesive before applying the solder particles is preferably 50 to 90% by mass. If the solder particle content is less than 50% by mass, the electrical conductivity after heating is low, and defects occur in the solder joint after heating, which is not preferable. On the other hand, if the solder particle content is higher than 90% by mass, the resin content is relatively low, and the adhesive strength of the resin is weakened.

前記半田接着剤中に含まれる樹脂は紫外線硬化性樹脂等、熱硬化性樹脂以外の樹脂であってもよいが、熱硬化性樹脂は使いやすく、また所定の接着強度を得やすいので好ましく使用される。前記熱硬化性樹脂は、エポキシ系樹脂、フェノール系樹脂、メラミン系樹脂、尿素樹脂、ポリエステル系樹脂を用いることができるが、機械的強度、耐薬品性、接着性に優れることから、特にエポキシ系樹脂が好ましく用いられる。   The resin contained in the solder adhesive may be a resin other than a thermosetting resin such as an ultraviolet curable resin, but the thermosetting resin is preferably used because it is easy to use and easily obtains a predetermined adhesive strength. The As the thermosetting resin, an epoxy resin, a phenol resin, a melamine resin, a urea resin, or a polyester resin can be used, and particularly an epoxy resin because of excellent mechanical strength, chemical resistance, and adhesiveness. Resins are preferably used.

本実施形態の半田接着剤は、半田粒子と熱硬化性樹脂が主成分であり、半田接着剤中の半田粒子の含有量は、前記したように、50〜90質量%が好ましいので、硬化剤およびシランカップリング剤の含有量を考慮すると、熱硬化性樹脂の好適な含有量は、約5〜50質量%である。   The solder adhesive of this embodiment is mainly composed of solder particles and a thermosetting resin, and the content of solder particles in the solder adhesive is preferably 50 to 90% by mass as described above. Considering the content of the silane coupling agent, the preferable content of the thermosetting resin is about 5 to 50% by mass.

熱硬化性樹脂を加熱すると重合反応が起こり硬化するが、硬化剤が存在すると反応が促進され、より短時間で樹脂が硬化する。また、加える硬化剤の種類によって得られる樹脂の特性を変化させることも可能である。硬化剤は熱硬化性樹脂の種類によって適宜選択されるが、エポキシ系樹脂を用いる場合の硬化剤としては、アミン類、ポリアミド樹脂、ポリメルカプタン、酸無水物、イミダゾール化合物を用いることができる。さらに、接着強度の高い樹脂が得られるので、イミダゾール化合物がより好適である。   When the thermosetting resin is heated, a polymerization reaction occurs and cures. However, when a curing agent is present, the reaction is accelerated and the resin is cured in a shorter time. It is also possible to change the properties of the resin obtained depending on the type of curing agent to be added. The curing agent is appropriately selected depending on the type of the thermosetting resin, and amines, polyamide resins, polymercaptans, acid anhydrides, and imidazole compounds can be used as the curing agent when using an epoxy resin. Furthermore, since a resin having high adhesive strength is obtained, an imidazole compound is more preferable.

硬化剤は熱硬化性樹脂の硬化を促進するので、その添加量は、熱硬化性樹脂の硬化温度、硬化時間に応じて適宜調整することが好ましいが、熱硬化性樹脂に対して、1〜10質量%程度加えることが好ましい。1質量%より少ないと、熱硬化性樹脂の硬化時間が長くなりすぎるので好ましくない。また、完全に硬化しない場合もある。10質量%より多いと、硬化時間が短く、加熱する前に硬化したり、半田粒子が溶解する前に熱硬化性樹脂が硬化してしまい、半田接合が形成されないので、好ましくない。   Since the curing agent promotes the curing of the thermosetting resin, it is preferable to adjust the addition amount as appropriate according to the curing temperature and curing time of the thermosetting resin. It is preferable to add about 10% by mass. When it is less than 1% by mass, the curing time of the thermosetting resin becomes too long, which is not preferable. Moreover, it may not be completely cured. If it is more than 10% by mass, the curing time is short, and it is not preferable because the resin is cured before heating or the thermosetting resin is cured before the solder particles are dissolved, and a solder joint is not formed.

熱硬化性樹脂に適宜硬化剤を加え、半田粒子を分散させて、ペースト状の半田接着剤が得られるが、本実施形態では、さらにシランカップリング剤を含有させており、これにより接着強度の高い半田接着剤が得られる。   A curing agent is appropriately added to the thermosetting resin, and the solder particles are dispersed to obtain a paste-like solder adhesive, but in this embodiment, a silane coupling agent is further contained, thereby improving the adhesive strength. A high solder adhesive is obtained.

前記シランカップリング剤は、化1に示すようなX−R−Si((CH3−n)−Yの構造をもつ化合物である。ここで、Rはアルキレン基であり、Xは、例えば、エポキシ基、アミノ基、ビニル基、スチリル基、メタクリロキシ基、アクリロキシ基、ウレイド基、クロロプロピル基、メルカプト基、スルフィド基、イソシアネート基など、合成樹脂などの有機質材料と化学結合する有機官能基であり、Yは、クロル基、アルコキシ基、アセトキシ基、アミノ基など、加水分解によりシラノール基(Si−OH)を与える官能基である。シラノール基は部分的に縮合してオリゴマー状態となり、無機材料表面に水素結合的に吸着するので、シランカップリング剤はガラス、金属など無機材料表面と高い親和性を示す。また、化1で示すR、XおよびYに相当する官能基の例を表1に示す。 The silane coupling agent is a compound having a structure of X—R—Si ((CH 3 ) 3 -n ) —Y n as shown in Chemical Formula 1 . Here, R is an alkylene group, and X is, for example, an epoxy group, amino group, vinyl group, styryl group, methacryloxy group, acryloxy group, ureido group, chloropropyl group, mercapto group, sulfide group, isocyanate group, etc. Y is an organic functional group that chemically bonds to an organic material such as a synthetic resin, and Y is a functional group that gives a silanol group (Si—OH) by hydrolysis, such as a chloro group, an alkoxy group, an acetoxy group, and an amino group. Since the silanol group is partially condensed into an oligomer state and adsorbed on the surface of the inorganic material by hydrogen bonding, the silane coupling agent has a high affinity with the surface of the inorganic material such as glass or metal. Table 1 shows examples of functional groups corresponding to R, X, and Y shown in Chemical formula 1.

Figure 0004676907
Figure 0004676907

Figure 0004676907
Figure 0004676907

このように、シランカップリング剤は金属および有機材料との親和性が高いので、半田粒子と熱硬化性樹脂からなる半田接着剤にシランカップリング剤を加えると、半田粒子と熱硬化性樹脂の界面でシランカップリング剤が作用し、ペースト中での半田粒子の分散性が高まる。従って、基板上に塗布したときに半田粒子が均一に分布するので、加熱により、後述するように、基板の電極と電子部品の端子部間を良好に半田接合でき、接着強度を高めることが出来るとともに前記電極と端子部間の導電性を良好な状態に保つことが出来る。   Thus, since the silane coupling agent has a high affinity with metals and organic materials, when the silane coupling agent is added to the solder adhesive composed of solder particles and thermosetting resin, the solder particles and the thermosetting resin The silane coupling agent acts at the interface, and the dispersibility of the solder particles in the paste is increased. Accordingly, since the solder particles are uniformly distributed when applied on the substrate, the heating can satisfactorily solder the electrode between the electrode of the substrate and the terminal part of the electronic component as described later, and the adhesive strength can be increased. In addition, the conductivity between the electrode and the terminal portion can be kept in a good state.

シランカップリング剤は、上記したようなX−R−Si((CH3−n)−Yの構造をもつものであればどのようなものも好適に用いられるが、例えば、Yがアルコキシ基の場合、容易に加水分解が起こるのでメトキシ基、エトキシ基が好適である。また、熱硬化性樹脂がエポキシ系樹脂の場合、有機官能基(−X)がエポキシ基、あるいはアミノ基であると、熱硬化性樹脂とシランカップリング剤の親和性が特に高いので、特に接着強度を高く出来る。その他、用いる基板の材質、熱硬化性樹脂の種類に応じてシランカップリング剤の有機官能基を、エポキシ基、アミノ基、ビニル基、スチリル基、メタクリロキシ基、アクリロキシ基、ウレイド基、クロロプロピル基、メルカプト基、スルフィド基、イソシアネート基などから適宜選択することにより、半田と熱硬化性樹脂との間、および熱硬化性樹脂と基板、熱硬化性樹脂と電極あるいは熱硬化性樹脂と電子部品との間の接着力を向上させることが可能である。 Any silane coupling agent may be used as long as it has a structure of X—R—Si ((CH 3 ) 3 -n ) —Y n as described above. In the case of an alkoxy group, since hydrolysis easily occurs, a methoxy group or an ethoxy group is preferable. In addition, when the thermosetting resin is an epoxy resin, when the organic functional group (-X) is an epoxy group or an amino group, the affinity between the thermosetting resin and the silane coupling agent is particularly high. Strength can be increased. In addition, depending on the material of the substrate used and the type of thermosetting resin, the organic functional group of the silane coupling agent is epoxy group, amino group, vinyl group, styryl group, methacryloxy group, acryloxy group, ureido group, chloropropyl group. By appropriately selecting from a mercapto group, a sulfide group, an isocyanate group, etc., between the solder and the thermosetting resin, and between the thermosetting resin and the substrate, the thermosetting resin and the electrode, or the thermosetting resin and the electronic component It is possible to improve the adhesive force between the two.

シランカップリング剤の含有量は、半田粒子、熱硬化性樹脂および硬化剤の合計質量に対し(半田粒子、熱硬化性樹脂および硬化剤を100質量%としたときに対する量)、0.01〜1質量%加える。0.01質量%より少ないと、接着強度を適切に向上させることができず、また、ペースト中での半田粒子の分散性が悪いのでペーストが安定せず、さらに電極などに塗布したときのぬれ性が悪いので好ましくない。シランカップリング剤の含有量が、半田粒子、熱硬化性樹脂および硬化剤の合計質量に対し5質量%より多いと、シランカップリング剤が熱硬化性樹脂の反応を促進し、ペーストの粘度変化が大きくなりすぎて好ましくない。シランカップリング剤は液状であるので、添加直後はペースト中の液状分が多くなりすぎ、塗布性、印刷性が低下する。そして添加後2〜3時間後あるいはそれ以上経過すると粘度が高くなるので印刷や塗布が難しく、または塗布前や半田粒子が溶融する前に熱硬化性樹脂が硬化されてしまい、いずれにしろ好ましくない。よって、シランカップリング剤の含有量は5質量%より少ないことが好ましい。さらに、シランカップリング剤の含有量が、半田粒子、熱硬化性樹脂および硬化剤の合計質量に対し0.05〜1質量%であると、より好ましい。   The content of the silane coupling agent is from 0.01 to the total mass of the solder particles, the thermosetting resin and the curing agent (amount based on 100% by mass of the solder particles, the thermosetting resin and the curing agent). Add 1% by weight. If it is less than 0.01% by mass, the adhesive strength cannot be improved properly, and the dispersibility of the solder particles in the paste is poor, so the paste is not stable, and wetting when applied to an electrode, etc. It is not preferable because of its poor nature. When the content of the silane coupling agent is more than 5% by mass with respect to the total mass of the solder particles, the thermosetting resin and the curing agent, the silane coupling agent promotes the reaction of the thermosetting resin, and the viscosity change of the paste. Is undesirably large. Since the silane coupling agent is in a liquid state, immediately after the addition, the liquid content in the paste is excessive, and the coating properties and printability are deteriorated. And after 2 to 3 hours or more after addition, the viscosity becomes so high that printing or coating is difficult, or the thermosetting resin is cured before coating or before the solder particles melt, which is not preferable anyway. . Therefore, the content of the silane coupling agent is preferably less than 5% by mass. Furthermore, it is more preferable that content of a silane coupling agent is 0.05-1 mass% with respect to the total mass of a solder particle, a thermosetting resin, and a hardening | curing agent.

前記半田接着剤に対する加熱温度は、例えば前記半田粒子が溶融する温度に設定することが可能である。このとき前記加熱温度は前記熱硬化性樹脂の熱硬化温度より低くてもかまわない。例えば、エポキシ系樹脂は、反応の進行に伴い発熱するので、前記加熱温度が前記熱硬化温度より低くても、前記エポキシ樹脂を適切に熱硬化することが可能である。重要なことは、前記半田粒子が溶融し凝集して半田を形成する前に、前記熱硬化性樹脂が熱硬化しないようにすることであり、加熱温度及び昇温時間は、使用される半田粒子や熱硬化性樹脂の種類等によって適宜最適な範囲に設定される。   The heating temperature for the solder adhesive can be set, for example, to a temperature at which the solder particles melt. At this time, the heating temperature may be lower than the thermosetting temperature of the thermosetting resin. For example, since the epoxy resin generates heat as the reaction proceeds, the epoxy resin can be appropriately heat-cured even if the heating temperature is lower than the thermosetting temperature. What is important is to prevent the thermosetting resin from thermosetting before the solder particles are melted and aggregated to form solder. Depending on the type of the thermosetting resin and the like, the optimum range is appropriately set.

次に、本実施形態の半田接着剤を用いて、電子部品を基板上に実装する工程を説明する。   Next, a process of mounting an electronic component on a substrate using the solder adhesive of this embodiment will be described.

図1は、本実施形態の半田接着剤を用いて電子部品4を基板2上に実装した電子部品実装構造1を上から見た平面図、図2は図1に示す前記電子部品実装構造をA−A線に沿って高さ方向と平行な方向へ切断し、その切断面を矢印方向から見た前記電子部品実装構造1の断面図を示している。   FIG. 1 is a plan view of an electronic component mounting structure 1 in which an electronic component 4 is mounted on a substrate 2 using the solder adhesive of the present embodiment, and FIG. 2 is a plan view of the electronic component mounting structure shown in FIG. Sectional drawing of the said electronic component mounting structure 1 which cut | disconnected in the direction parallel to a height direction along the AA line and looked at the cut surface from the arrow direction is shown.

前記基板2は絶縁性基板であり、特に前記半田接着剤として低温半田を用いた場合には、前記基板2を、安価なポリエチレンテレフタレート(PET)で形成できる。また、前記基板2に、より高い透明性が求められる場合はポリエチレンナフタレート(PEN)フィルムを用いたり、前記基板2にPETよりも高い難燃性が必要な場合はポリイミドフィルムを用いることが出来る。またフィルムに接着剤を用いて銅等の金属箔を貼り付け、エッチング処理等により電極を形成したものを用いることもできる。   The substrate 2 is an insulating substrate. In particular, when low-temperature solder is used as the solder adhesive, the substrate 2 can be formed of inexpensive polyethylene terephthalate (PET). Further, when the substrate 2 is required to have higher transparency, a polyethylene naphthalate (PEN) film can be used, and when the substrate 2 requires higher flame retardancy than PET, a polyimide film can be used. . Alternatively, a film in which a metal foil such as copper is attached using an adhesive and an electrode is formed by etching or the like can be used.

前記基板2上には電極3が形成されている。前記電極3は、例えば銀粒子とバインダー樹脂(ポリエステル樹脂やフェノール樹脂等)とを有して成る塗膜状で形成されている。前記電極3は半田濡れ性が良好であることが必要である。   An electrode 3 is formed on the substrate 2. The electrode 3 is formed, for example, in the form of a film having silver particles and a binder resin (polyester resin, phenol resin, etc.). The electrode 3 needs to have good solder wettability.

図1,図2に示すように前記電極3上には電子部品4の端子部4aが半田層5を介して接合されている。前記半田層5は図2に示すように例えばフィレット状である。前記半田層5は、前記半田接着剤に含有される半田粒子が溶融し前記端子部4aと電極3間に凝集した状態で固まったものである。なお一般的な半田接合は被接合物と半田が合金を形成すると言われているが、本実施形態では物理的な接合も含めている。   As shown in FIGS. 1 and 2, a terminal portion 4 a of an electronic component 4 is joined to the electrode 3 via a solder layer 5. The solder layer 5 has, for example, a fillet shape as shown in FIG. The solder layer 5 is solidified in a state where solder particles contained in the solder adhesive are melted and agglomerated between the terminal portions 4 a and the electrodes 3. In general solder bonding, it is said that an object to be bonded and solder form an alloy, but in this embodiment, physical bonding is also included.

図1に示すように前記電子部品4の周囲には熱硬化性樹脂よりなる樹脂層6が形成され、前記電子部品4と前記基板2間を接着している。前記樹脂層6は前記電極3上に設けられた半田層5の両側から前記電子部品4の周囲を取り囲むようにして形成されている。図2に示すように、前記電子部品4の下面4bと前記基板2間にも前記樹脂層6が介在すると、より前記電子部品4と基板2間の実装強度を向上させることができて好ましい。   As shown in FIG. 1, a resin layer 6 made of a thermosetting resin is formed around the electronic component 4 to bond the electronic component 4 and the substrate 2. The resin layer 6 is formed so as to surround the electronic component 4 from both sides of the solder layer 5 provided on the electrode 3. As shown in FIG. 2, it is preferable that the resin layer 6 is interposed between the lower surface 4 b of the electronic component 4 and the substrate 2 because the mounting strength between the electronic component 4 and the substrate 2 can be further improved.

図1,図2に示す実施形態では、前記半田層5と樹脂層6間、前記樹脂層6と基板2間、前記樹脂層6と電子部品4間の接着強度が、金属および有機材料との親和性が高いシランカップリング剤により高くなっている。したがって本実施形態では、前記基板2と電子部品4間の接着強度が従来に比べて適切に高くなっている。しかも前記電子部品4の端子部4aと電極3間には適切に半田粒子が凝集して半田層5が形成されているので、前記端子部4aと電極3間の導電性も優れている。また、前記半田層5の周囲には樹脂層6が存在し、また前記半田層5の上面も一部、前記樹脂層6で覆われることから、加熱による半田粒子の結晶成長を抑制でき前記半田層5に粒界が形成されて亀裂等が入る不具合を適切に防止できる。   In the embodiment shown in FIGS. 1 and 2, the adhesive strength between the solder layer 5 and the resin layer 6, between the resin layer 6 and the substrate 2, and between the resin layer 6 and the electronic component 4 is between metal and organic material. It is higher due to the silane coupling agent having higher affinity. Therefore, in this embodiment, the adhesive strength between the substrate 2 and the electronic component 4 is appropriately higher than the conventional one. Moreover, since the solder layer 5 is formed by appropriately agglomerating the solder particles between the terminal portion 4a and the electrode 3 of the electronic component 4, the conductivity between the terminal portion 4a and the electrode 3 is excellent. In addition, since the resin layer 6 exists around the solder layer 5 and the upper surface of the solder layer 5 is partially covered with the resin layer 6, crystal growth of solder particles due to heating can be suppressed. The problem that a grain boundary is formed in the layer 5 and a crack etc. enter can be prevented appropriately.

図1,図2に示す半田層5及び樹脂層6は、半田粒子を溶融し、さらに前記熱硬化性樹脂を熱硬化するための加熱工程前、混合された前記半田接着剤として少なくとも前記電極3上に塗布されたものである。   The solder layer 5 and the resin layer 6 shown in FIGS. 1 and 2 have at least the electrode 3 as the solder adhesive mixed before the heating step for melting the solder particles and further thermosetting the thermosetting resin. It is applied on top.

図1,図2に示す電子部品実装構造1の製造方法について説明する。
前記電極3上に本実施形態における半田接着剤をメタルマスク印刷等により塗布する。そして前記電子部品4を基板2上の所定位置に設置する。このとき前記電子部品4の端子部4aを前記電極3上に前記半田接着剤を介して対向させる。
A method for manufacturing the electronic component mounting structure 1 shown in FIGS. 1 and 2 will be described.
The solder adhesive in this embodiment is applied onto the electrode 3 by metal mask printing or the like. Then, the electronic component 4 is installed at a predetermined position on the substrate 2. At this time, the terminal portion 4a of the electronic component 4 is opposed to the electrode 3 via the solder adhesive.

その後、半田粒子の融解温度まで加熱する。導電性金属としてSn−Ag−Cu系合金を用いた場合、融点は240〜250℃の範囲であるので、加熱温度を240〜250℃とする。   Then, it heats to the melting temperature of a solder particle. When the Sn—Ag—Cu alloy is used as the conductive metal, the melting point is in the range of 240 to 250 ° C., so the heating temperature is 240 to 250 ° C.

前記電極3上の半田接着剤が加熱されると、前記半田接着剤に含有された半田粒子が溶解するとともに、前記電極3と前記端子部4a間に凝集し始め半田層5を形成する。その後、前記半田層5が室温まで冷却されることで固まり、前記電子部品4の端子部4aと基板2の電極3間が適切に半田接合される。一方、前記半田接着剤中に含まれる熱硬化性樹脂は、加熱処理中、前記電極3上に凝集する半田粒子と完全に分離して前記電極3上から前記電子部品4の周囲及び前記電子部品4下の前記基板2上に流れ出す。流れ出した前記熱硬化性樹脂は、その後、熱硬化して図1,図2に示す樹脂層6となる。   When the solder adhesive on the electrode 3 is heated, the solder particles contained in the solder adhesive are dissolved, and the solder layer 5 starts to aggregate between the electrode 3 and the terminal portion 4a. Thereafter, the solder layer 5 is solidified by being cooled to room temperature, and the terminal portion 4a of the electronic component 4 and the electrode 3 of the substrate 2 are appropriately soldered. On the other hand, the thermosetting resin contained in the solder adhesive is completely separated from the solder particles agglomerated on the electrode 3 during the heat treatment, and the periphery of the electronic component 4 and the electronic component from above the electrode 3. 4 flows out onto the substrate 2 below. The flowed-out thermosetting resin is then thermoset to form the resin layer 6 shown in FIGS.

以上により前記基板2の電極3と前記電子部品4の端子部4a間を適切に半田層5によって接合でき、また前記電子部品4の周囲と前記基板2間を樹脂層6により適切に接着できる。   As described above, the electrode 3 of the substrate 2 and the terminal portion 4a of the electronic component 4 can be appropriately bonded by the solder layer 5, and the periphery of the electronic component 4 and the substrate 2 can be appropriately bonded by the resin layer 6.

本実施形態では、前記半田接着剤にシランカップリング剤を含有しているため、金属および有機材料との親和性が高まり、また前記半田接着剤中に含有される半田粒子の分散性を高めることが出来る。このような半田接着剤を用いることで、半田層5と樹脂層6間、樹脂層6と基板2間、樹脂層6と電極3間、及び樹脂層6と電子部品4間の接着力を適切に向上させることができ、よって前記基板2と電子部品4間の接着強度を適切に向上させることができる。   In this embodiment, since the solder adhesive contains a silane coupling agent, the affinity for metal and organic materials is increased, and the dispersibility of the solder particles contained in the solder adhesive is increased. I can do it. By using such a solder adhesive, the adhesive force between the solder layer 5 and the resin layer 6, between the resin layer 6 and the substrate 2, between the resin layer 6 and the electrode 3, and between the resin layer 6 and the electronic component 4 is appropriately set. Therefore, the adhesive strength between the substrate 2 and the electronic component 4 can be appropriately improved.

また、前記半田接着剤中における半田粒子の分散性が優れているので、加熱工程において、前記半田粒子を適切に、端子部4aと電極3間に凝集させることができ、半田層5を介した前記電極3と端子部4a間の導電性を高い状態に保つことが出来る。   Further, since the dispersibility of the solder particles in the solder adhesive is excellent, the solder particles can be appropriately aggregated between the terminal portion 4a and the electrode 3 in the heating step, and the solder layer 5 is interposed. The conductivity between the electrode 3 and the terminal portion 4a can be kept high.

また、従来では、基板2と電子部品4間に半田接着剤を充填し、熱プレスによって両者を接合していたが、本実施形態では、熱プレスを必要とせず、半田接着剤の電極3上への塗布及び加熱工程によって、簡単且つ適切に、電子部品4と基板2間を半田接合及び樹脂接着できる。   Conventionally, a solder adhesive is filled between the substrate 2 and the electronic component 4 and both are joined by hot pressing. However, in this embodiment, no hot pressing is required, and the solder adhesive on the electrode 3 is not required. The electronic component 4 and the substrate 2 can be solder-bonded and resin-bonded easily and appropriately by the coating and heating process.

また本実施形態では、樹脂層6及び半田層5が形成される電子部品4の周囲の基板2上は開放されているため、半田粒子の凝集や熱硬化性樹脂の流動性を損なうことがなく、前記電極3と端子部4a間を適切に半田接合できるとともに、前記半田粒子は前記樹脂層6中にほとんど残されず(より好ましくは、全く前記半田粒子を含んでいない)、電気的安定性を適切に向上させることが出来る。   In the present embodiment, since the substrate 2 around the electronic component 4 on which the resin layer 6 and the solder layer 5 are formed is open, the aggregation of solder particles and the fluidity of the thermosetting resin are not impaired. The electrode 3 and the terminal portion 4a can be appropriately soldered together, and the solder particles are hardly left in the resin layer 6 (more preferably, the solder particles are not included at all). It can be improved appropriately.

シランカップリング剤を含有する半田接着剤を用いて、図1に示す電子部品実装構造を作成し、導電性試験および接着強度試験を行った。   An electronic component mounting structure shown in FIG. 1 was prepared using a solder adhesive containing a silane coupling agent, and a conductivity test and an adhesive strength test were performed.

半田粒子は、粒子径30μmのSn−Ag−Cu系合金(Sn96.5/Ag3.0/Cu0.5)の粒子を用い、熱硬化性樹脂としてエポキシ系樹脂(ジャパンエポキシレジン(株)製「エピコート828」)、イミダゾール化合物を硬化剤として加え、半田粒子を78質量%、熱硬化性樹脂を21質量%、硬化剤を1質量%、合計を100質量%とする半田接着剤Aとした。   The solder particles are Sn-Ag-Cu alloy particles (Sn96.5 / Ag3.0 / Cu0.5) with a particle diameter of 30 μm, and epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.) as a thermosetting resin. Epicoat 828 ") and an imidazole compound were added as a curing agent to obtain a solder adhesive A containing 78 mass% solder particles, 21 mass% thermosetting resin, 1 mass% curing agent, and a total of 100 mass%.

前記半田接着剤Aに、シランカップリング剤(信越化学工業(株)製「KBM−403」)を、半田接着剤Aの質量に対して0.01質量%加えて、実施例1の半田接着剤とした。   To the solder adhesive A, a silane coupling agent (“KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.) is added in an amount of 0.01% by mass with respect to the mass of the solder adhesive A. An agent was used.

厚さ50μmのポリイミドフィルム上に、銀をコートした銅粉80質量%に対しフェノール樹脂を20質量%混合したペーストを用いて電極をパターン印刷し、温度160℃で30分加熱しフェノール樹脂を硬化させた。ディスペンサを用いて、電極上に実施例1の半田接着剤を塗布(印刷)し、1608サイズのジャンパーチップを2つの電極をつなぐように配置した。その後、250℃で5分間加熱して半田成分を溶融して半田接合を行い、熱硬化性樹脂を硬化させ、電子部品実装構造を得た。   On the polyimide film with a thickness of 50 μm, the electrode was pattern printed using a paste in which 20% by mass of phenol resin was mixed with 80% by mass of copper powder coated with silver, and the phenol resin was cured by heating at 160 ° C. for 30 minutes. I let you. Using the dispenser, the solder adhesive of Example 1 was applied (printed) on the electrode, and a 1608 size jumper chip was arranged to connect the two electrodes. Thereafter, the solder component was melted by heating at 250 ° C. for 5 minutes to perform solder bonding, and the thermosetting resin was cured to obtain an electronic component mounting structure.

表2に示すように、半田接着剤Aに対するシランカップリング剤の添加量を0.05質量%(実施例2)、0.5質量%(実施例3)および1質量%(実施例4)とする半田接着剤を作成し、各実施例の半田接着剤を用いて、実施例1と同じ電子部品実装構造をそれぞれ作成した。   As shown in Table 2, the addition amount of the silane coupling agent to the solder adhesive A is 0.05 mass% (Example 2), 0.5 mass% (Example 3), and 1 mass% (Example 4). The same electronic component mounting structure as that of Example 1 was prepared using the solder adhesive of each Example.

比較例Comparative example

同じく表2に示すように、半田接着剤Aにシランカップリング剤を添加しないで用いた以外は全て実施例1と同じようにして電子部品実装構造を作成した(比較例1)。また、半田接着剤Aに対するシランカップリング剤の添加量を5質量%とする半田接着剤を作成し、実施例1と同じ電子部品実装構造を作成した(比較例2)。   Similarly, as shown in Table 2, an electronic component mounting structure was prepared in the same manner as in Example 1 except that the silane coupling agent was not added to the solder adhesive A (Comparative Example 1). Moreover, the solder adhesive which makes the addition amount of the silane coupling agent with respect to the solder adhesive A 5 mass% was created, and the same electronic component mounting structure as Example 1 was created (comparative example 2).

実施例3及び比較例1の半田接着剤を用いて得られた電子部品実装構造の導電性試験を行った。さらに、実施例1〜4および比較例1の電子部品実装構造について接着強度測定試験を行った。   Conductivity tests were conducted on the electronic component mounting structures obtained using the solder adhesives of Example 3 and Comparative Example 1. Furthermore, the adhesive strength measurement test was done about the electronic component mounting structure of Examples 1-4 and the comparative example 1. FIG.

室温において、図3に示すように電極3,3間に電流を流して導電性試験を行い、2電極間の導通性を調べた。前記電極3,3間が導通した場合を〇、導通しなかった場合を×とした。   At room temperature, a current was passed between the electrodes 3 and 3 as shown in FIG. 3 to conduct a conductivity test, and the conductivity between the two electrodes was examined. The case where the electrodes 3 and 3 are electrically connected is indicated by 〇, and the case where the electrodes 3 and 3 are not electrically connected is indicated by ×.

同様に室温において、図4に示すような接着強度測定試験を行った。幅2mm×高さ5mmのロッド7を用いて、実装されたチップ部を、側方から5mm/分の速度で押し、破壊した時の最大強度を測定し、接着強度とした。
結果を表2にまとめて示す。
Similarly, an adhesive strength measurement test as shown in FIG. 4 was performed at room temperature. Using the rod 7 having a width of 2 mm and a height of 5 mm, the mounted chip portion was pushed from the side at a speed of 5 mm / min, and the maximum strength when it was broken was measured to obtain an adhesive strength.
The results are summarized in Table 2.

Figure 0004676907
Figure 0004676907

実施例3および比較例1ともに、2つの電極間は導電性を有しており、電極−電子部品間は良好に半田接合されていることがわかった。また各実施例の接着強度は、12.0〜17.2Nと、シランカップリング剤を添加しない半田接着剤を用いた比較例1の接着強度(6.5N)の約2〜3倍の接着強度を示し、シランカップリング剤を含有する半田接着剤は接着強度が高いことがわかった。このことから、シランカップリング剤を含む半田接着剤は、含まない場合に比べて電子部品と電極および基板間の接着強度を高くできることが確認された。   In both Example 3 and Comparative Example 1, it was found that the two electrodes had electrical conductivity, and the electrode-electronic component was well soldered. The adhesive strength of each example is 12.0 to 17.2 N, which is about 2 to 3 times the adhesive strength (6.5 N) of Comparative Example 1 using a solder adhesive to which no silane coupling agent is added. It was found that a solder adhesive containing a silane coupling agent showed high adhesive strength. From this, it was confirmed that the solder adhesive containing the silane coupling agent can increase the adhesive strength between the electronic component, the electrode and the substrate as compared with the case where the solder adhesive is not contained.

さらに、シランカップリング剤を5質量%添加した比較例2の半田接着剤は、シランカップリング剤添加直後は粘度が低すぎて電極に印刷できず、添加2時間後に再度印刷を試みたが、今度は粘度が高すぎて電極に塗布できず、電子部品を実装することができなかった。よって、シランカップリリング剤の添加量は5質量%より少ないことが好ましい。さらに半田接着剤の接着強度を考慮すると、シランカップリング剤の添加量は、0.05〜1質量%がより好ましい。   Furthermore, the solder adhesive of Comparative Example 2 to which 5% by mass of the silane coupling agent was added had a viscosity that was too low immediately after the addition of the silane coupling agent, and could not be printed on the electrode. This time, the viscosity was so high that it could not be applied to the electrode, and the electronic component could not be mounted. Therefore, it is preferable that the addition amount of a silane coupling agent is less than 5 mass%. Further, considering the adhesive strength of the solder adhesive, the addition amount of the silane coupling agent is more preferably 0.05 to 1% by mass.

本実施形態の半田接着剤を用いた実装構造を示す平面図The top view which shows the mounting structure using the solder adhesive of this embodiment 図1に示すA−A線における実装構造の断面図Sectional drawing of the mounting structure in the AA line shown in FIG. 実装構造の導電性試験の様子を表す模式図Schematic diagram showing the state of conductivity test of the mounting structure 実装構造の接着強度の測定試験の様子を表す模式図Schematic diagram showing the state of measurement test for adhesive strength of mounting structure

符号の説明Explanation of symbols

1 電子部品実装構造
2 基板
3 電極
4 電子部品
4a 端子部
5 半田層
6 樹脂層
DESCRIPTION OF SYMBOLS 1 Electronic component mounting structure 2 Board | substrate 3 Electrode 4 Electronic component 4a Terminal part 5 Solder layer 6 Resin layer

Claims (6)

半田粒子と、樹脂とを主成分とし、前記半田粒子、前記樹脂および硬化剤の合計質量に対し、0.01質量%以上で1質量%以下のシランカップリング剤を含有し、加熱により、前記半田粒子が凝集して半田を形成するとともに、前記樹脂が流れ出して樹脂層を形成することを特徴とする半田接着剤。 Solder particles and a resin as main components, containing 0.01% by mass or more and 1% by mass or less of a silane coupling agent with respect to the total mass of the solder particles, the resin and the curing agent , A solder adhesive , wherein solder particles aggregate to form solder, and the resin flows out to form a resin layer . 前記半田粒子が、すず−銀−銅(Sn−Ag−Cu)合金の粒子からなる請求項1記載の半田接着剤。   The solder adhesive according to claim 1, wherein the solder particles are particles of a tin-silver-copper (Sn—Ag—Cu) alloy. 前記樹脂は熱硬化性樹脂である請求項1又は2に記載の半田接着剤。   The solder adhesive according to claim 1, wherein the resin is a thermosetting resin. 熱硬化性樹脂が、エポキシ系樹脂である請求項3記載の半田接着剤。   The solder adhesive according to claim 3, wherein the thermosetting resin is an epoxy resin. 基板と電子部品間の接合に、請求項1ないしのいずれかに記載された半田接着剤が用いられ、
前記基板上に形成された電極と、前記電子部品の端子部間は半田接合されており、前記電子部品の周囲の少なくとも一部と前記基板間は、樹脂層により接着されていることを特徴とする電子部品実装構造。
For bonding between the substrate and the electronic component, the solder adhesive according to any one of claims 1 to 4 is used,
The electrode formed on the substrate and the terminal portion of the electronic component are solder-bonded, and at least a part of the periphery of the electronic component and the substrate are bonded by a resin layer. Electronic component mounting structure.
前記半田接着剤は、接合前、前記基板の電極上に塗布され、加熱により、前記半田粒子は前記電極と端子部間に凝集して前記電極と端子部間が半田接合され、前記樹脂は前記電子部品の周囲の少なくとも一部に流れ出して、前記電子部品の周囲の少なくとも一部と前記基板間が前記樹脂層により接着される請求項記載の電子部品実装構造。 The solder adhesive is applied onto the electrode of the substrate before bonding, and by heating, the solder particles are aggregated between the electrode and the terminal portion to be soldered between the electrode and the terminal portion, and the resin is The electronic component mounting structure according to claim 5 , wherein the electronic component mounting structure flows out to at least a part of the periphery of the electronic component, and at least a part of the periphery of the electronic component and the substrate are bonded by the resin layer.
JP2006065743A 2006-03-10 2006-03-10 Electronic component mounting structure using solder adhesive and solder adhesive Active JP4676907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065743A JP4676907B2 (en) 2006-03-10 2006-03-10 Electronic component mounting structure using solder adhesive and solder adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065743A JP4676907B2 (en) 2006-03-10 2006-03-10 Electronic component mounting structure using solder adhesive and solder adhesive

Publications (2)

Publication Number Publication Date
JP2007237271A JP2007237271A (en) 2007-09-20
JP4676907B2 true JP4676907B2 (en) 2011-04-27

Family

ID=38583312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065743A Active JP4676907B2 (en) 2006-03-10 2006-03-10 Electronic component mounting structure using solder adhesive and solder adhesive

Country Status (1)

Country Link
JP (1) JP4676907B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281551B2 (en) * 2009-02-20 2013-09-04 アルプス電気株式会社 Capacitive input device
JP2012104557A (en) * 2010-11-08 2012-05-31 Ngk Spark Plug Co Ltd Wiring board with electronic component and manufacturing method of the same
JP5587804B2 (en) * 2011-01-21 2014-09-10 日本特殊陶業株式会社 Manufacturing method of wiring board for mounting electronic component, wiring board for mounting electronic component, and manufacturing method of wiring board with electronic component
JP2014045152A (en) * 2012-08-28 2014-03-13 Panasonic Corp Component mounting board
TWI626720B (en) * 2013-03-29 2018-06-11 三菱綜合材料股份有限公司 Power module
JPWO2018174066A1 (en) * 2017-03-23 2020-01-23 積水化学工業株式会社 Conductive particles, conductive material and connection structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985394A (en) * 1982-11-09 1984-05-17 Senjiyu Kinzoku Kogyo Kk Cream solder
JPH06126481A (en) * 1992-10-21 1994-05-10 Toyota Motor Corp Cream solder
JPH0853659A (en) * 1994-08-12 1996-02-27 Fujitsu Ltd Adhesive
JPH09167890A (en) * 1995-12-15 1997-06-24 Matsushita Electric Ind Co Ltd Solder paste, soldering method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985394A (en) * 1982-11-09 1984-05-17 Senjiyu Kinzoku Kogyo Kk Cream solder
JPH06126481A (en) * 1992-10-21 1994-05-10 Toyota Motor Corp Cream solder
JPH0853659A (en) * 1994-08-12 1996-02-27 Fujitsu Ltd Adhesive
JPH09167890A (en) * 1995-12-15 1997-06-24 Matsushita Electric Ind Co Ltd Solder paste, soldering method and device

Also Published As

Publication number Publication date
JP2007237271A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
JP3454509B2 (en) How to use conductive materials
JP5212462B2 (en) Conductive material, conductive paste, circuit board, and semiconductor device
KR101221148B1 (en) Anisotropic electroconductive material
KR20080109895A (en) Adhesive tape, semiconductor package, and electronic device
JPH1145618A (en) Conductive paste structure and manufacture thereof
JP4676907B2 (en) Electronic component mounting structure using solder adhesive and solder adhesive
JP6358535B2 (en) Wiring board connection structure and wiring board connecting method
KR20090045195A (en) Adhesive tape, joint structure, and semiconductor package
JP5802081B2 (en) Anisotropic conductive paste
JP2011192651A (en) Anisotropic conductive film, connection method, and connection structure
JPWO2011077679A1 (en) Conductive connection material, method for manufacturing electronic component, electronic member with conductive connection material, and electronic component
JPWO2011093162A1 (en) Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP3730209B2 (en) Conductive adhesive
JP4522939B2 (en) Bonding structure between substrate and component and manufacturing method thereof
JP6187918B2 (en) Circuit member connection structure, connection method, and connection material
JP5563932B2 (en) Anisotropic conductive film
JP2009199746A (en) Heat-generating glass, and its manufacturing method of the same
JP2007237212A (en) Solder adhesive and electronic component packaging structure using the solder adhesive
JP2011171258A (en) Conductive connection sheet, method of connecting between terminals, method of forming connection terminal, semiconductor device, and electronic apparatus
JP5315031B2 (en) Anisotropic conductive film, joined body and method for producing the same
KR101157599B1 (en) Conductive particle for anisotropic conductive film and anisotropic conductive film including the conductive particle
JP6335588B2 (en) Method for producing anisotropic conductive adhesive
JP5827522B2 (en) Wiring board connection method
JP4010717B2 (en) Electrical contact joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4676907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350