JP2009199746A - Heat-generating glass, and its manufacturing method of the same - Google Patents

Heat-generating glass, and its manufacturing method of the same Download PDF

Info

Publication number
JP2009199746A
JP2009199746A JP2008037128A JP2008037128A JP2009199746A JP 2009199746 A JP2009199746 A JP 2009199746A JP 2008037128 A JP2008037128 A JP 2008037128A JP 2008037128 A JP2008037128 A JP 2008037128A JP 2009199746 A JP2009199746 A JP 2009199746A
Authority
JP
Japan
Prior art keywords
filler
conductive
lead
free solder
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008037128A
Other languages
Japanese (ja)
Inventor
Toshio Minowa
俊夫 箕輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakami Corp
Original Assignee
Murakami Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Corp filed Critical Murakami Corp
Priority to JP2008037128A priority Critical patent/JP2009199746A/en
Publication of JP2009199746A publication Critical patent/JP2009199746A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably pass a heavy current by ensuring the junction of fillers of a resin-based conductive adhesive each other to improve reliability of conduction, in heat-generating glass formed with electrode terminals by the resin-based conductive adhesive. <P>SOLUTION: A transparent conductive film 16 is formed on the surface of a glass plate 10. Conductive adhesives 18a, 20a are applied to the facing positions on the surface of the transparent conductive film 16 and are cured to form a pair of feeding electrode terminals 18, 20. A voltage is impressed between the electrode terminals 18, 20 and the transparent conductive film 16 is energized to generate heat in the transparent conductive film 16. The conductive adhesives 18a, 20a contain an organic resin and a conductive filler. The conductive filler is composed of: a main conductive filler 26 formed by plating lead-free solder on a base material; an auxiliary filler 28 having a volume smaller than that of the main conductive filler 26 and a particle diameter of 0.1-1 μm and comprising lead-free solder balls; and a nano particle auxiliary filler 30 having a volume smaller than that of the auxiliary filler 28 with a particle diameter of 1-50 nm and comprising lead-free solder. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は電極端子を樹脂系導電性接着剤で構成した発熱ガラスおよびその製造方法に関し、樹脂系導電性接着剤のフィラーどうしの接合を確実にして導通の信頼性を向上させて大きな電流を安定に流せるようにしたものである。   TECHNICAL FIELD The present invention relates to a heat-generating glass whose electrode terminals are made of a resin-based conductive adhesive and a method for manufacturing the same. The present invention relates to a resin-based conductive adhesive filler that reliably joins fillers to improve conduction reliability and stabilize a large current. It was made to be able to flow.

発熱ガラスはガラス板の表面に透明導電膜を形成し、該透明導電膜に通電し発熱させることによりガラス板を昇温して結露防止等の機能を発現させるようにしたものである。発熱ガラスは例えば発熱複層ガラスとして構成される。発熱複層ガラスの構成例を図2に示す。2枚のガラス板10,12が枠状のスペーサ14を挟んで対向配置され一体化されている。一方(通常は室内側)のガラス板10の他方のガラス板12との対向面にはITO(酸化インジウムスズ)、SnO2(酸化スズ)等による透明導電膜16が形成されている。透明導電膜16の表面の相対向する両端位置に給電端子(バスバー部、集電部)を構成する電極端子対18,20が形成されている。電極端子対18,20は例えば、透明導電膜16の表面の相対向する両端位置にペースト状の導電性接着剤18a,20aをスクリーン印刷等で塗布しその上に平編銅線18b,20bを載せ、導電性接着剤18a,20aを硬化させることで相互に接合して形成する。電極端子対18,20の平編銅線18b,20bにはリード線22,24がそれぞれハンダ付けされる。リード線22,24間に電圧を印加して透明導電膜16に通電することにより該透明導電膜16が発熱しガラス板10が昇温する。 The exothermic glass is formed by forming a transparent conductive film on the surface of a glass plate, and energizing the transparent conductive film to generate heat, thereby raising the temperature of the glass plate and exhibiting functions such as prevention of condensation. The exothermic glass is configured as, for example, an exothermic multi-layer glass. An example of the structure of the heat-generating multilayer glass is shown in FIG. Two glass plates 10 and 12 are arranged opposite to each other with a frame-like spacer 14 therebetween, and are integrated. A transparent conductive film 16 made of ITO (indium tin oxide), SnO 2 (tin oxide), or the like is formed on the surface of one (usually indoor side) glass plate 10 facing the other glass plate 12. Electrode terminal pairs 18 and 20 constituting power supply terminals (a bus bar portion and a current collecting portion) are formed at opposite end positions on the surface of the transparent conductive film 16. For example, the electrode terminal pairs 18 and 20 are formed by applying paste-like conductive adhesives 18a and 20a to the opposite end positions of the surface of the transparent conductive film 16 by screen printing or the like, and then applying flat knitted copper wires 18b and 20b thereon. The conductive adhesives 18a and 20a are cured and bonded to each other. Lead wires 22 and 24 are soldered to the flat knitted copper wires 18b and 20b of the electrode terminal pairs 18 and 20, respectively. When a voltage is applied between the lead wires 22 and 24 and the transparent conductive film 16 is energized, the transparent conductive film 16 generates heat and the glass plate 10 is heated.

導電性接着剤について説明する。導電性接着剤の一例として有機系樹脂よりなるバインダーと、錫および/または錫合金の導電性フィラーと、金および/または銀、またはそれらの合金の粉体、またはそれらの金属をメッキした粉体フィラーからなる導電性接着剤が提案されている(例えば特許文献1参照)。この導電性接着剤は熱硬化性樹脂を配合することにより150〜250℃に加熱することで樹脂成分が収縮するのに伴い、樹脂中の導電性フィラーどうしが接触し導電性を生じるものである。   The conductive adhesive will be described. As an example of a conductive adhesive, a binder made of an organic resin, a conductive filler of tin and / or a tin alloy, a powder of gold and / or silver, or an alloy thereof, or a powder plated with these metals A conductive adhesive made of a filler has been proposed (see, for example, Patent Document 1). This conductive adhesive is made by adding a thermosetting resin and heating it to 150 to 250 ° C., so that the conductive fillers in the resin come into contact with each other as the resin component contracts. .

また鉛フリーハンダを主導電材料として、熱可塑性樹脂と金属粉末および金属繊維とを配合した導電性接着剤が提案されている(例えば特許文献2参照)。この導電性接着剤は鉛フリーハンダの粉末どうしが融着して「接合」するため、「接触」よりも強固に接続することになり、導電性に優れている。   In addition, a conductive adhesive in which a thermoplastic resin, a metal powder, and a metal fiber are blended using lead-free solder as a main conductive material has been proposed (see, for example, Patent Document 2). Since this conductive adhesive is fused and “bonded” between the lead-free solder powders, it is more firmly connected than “contact”, and is excellent in conductivity.

また有機系樹脂と導電性フィラーとからなる導電性接着剤として、導電性フィラーを、基材に鉛フリーハンダをメッキした主導電性フィラーと、主導電性フィラーの体積よりも小さくかつ基材に鉛フリーハンダをメッキした粒径が0.1〜1μmの補助フィラーと、主導電性フィラーの体積よりも小さく粒径が0.1〜1μmの鉛フリーハンダボールとで構成したものが提案されている(例えば特許文献3参照)。この導電性接着剤によれば、補助フィラーおよび鉛フリーハンダボールが主導電性フィラーの間に入り込み、接着時の加熱により、主導電性フィラーの鉛フリーハンダメッキどうしが補助フィラーおよび鉛フリーハンダボールを介して融着しやすくなるので、抵抗を小さくでき、電気的に安定な接続を実現できる。   In addition, as a conductive adhesive composed of an organic resin and a conductive filler, the conductive filler, a main conductive filler obtained by plating lead-free solder on the base material, a volume smaller than the volume of the main conductive filler and the base material Proposed is composed of auxiliary filler plated with lead-free solder having a particle size of 0.1-1 μm and lead-free solder balls smaller than the volume of the main conductive filler and having a particle size of 0.1-1 μm (For example, refer to Patent Document 3). According to this conductive adhesive, the auxiliary filler and the lead-free solder ball enter between the main conductive fillers, and the lead-free solder plating of the main conductive filler becomes between the auxiliary filler and the lead-free solder ball by heating during bonding. Therefore, the resistance can be reduced and an electrically stable connection can be realized.

特開2000−309773号公報JP 2000-309773 A 特開2000−357413号公報JP 2000-357413 A 特開2005−26187号公報JP 2005-26187 A

しかしながら特許文献1記載の導電性接着剤は電子機器やAM、FM、TV等のアンテナ等を形成した自動車用窓ガラスの電極端子に用いる場合等比較的小さな電流を流す場合は問題ないが、発熱ガラスのように5A以上の大きな電流を流す場合は導電性フィラーの接触部が発熱して高温になるため、導電性フィラーの表面の酸化が促進されて接触抵抗値が高くなり、さらに導電性フィラーが高温となる悪循環に陥る。また導電性フィラーが高温になることにより、介在する熱硬化樹脂が燃えて炭化し、接着能力が低下する。そしてこれらの減少を繰り返して最後は短絡する。   However, the conductive adhesive described in Patent Document 1 has no problem when a relatively small current is applied, such as when used for an electrode terminal of an automobile window glass formed with an antenna of an electronic device, AM, FM, TV, etc. When a large current of 5 A or more is applied like glass, the contact portion of the conductive filler generates heat and becomes high temperature, so that the oxidation of the surface of the conductive filler is promoted to increase the contact resistance value. Falls into a vicious circle of high temperatures. Moreover, when a conductive filler becomes high temperature, the thermosetting resin which intervenes burns and carbonizes, and adhesive capability falls. These reductions are repeated and the end is short-circuited.

また特許文献2記載の導電性接着剤は、熱可塑性樹脂が35〜75重量%と導電性接着剤全体に対して重量が大きく抵抗値が大きいため、1A以上の電流に対して特許文献1記載のものと同様の現象が起きる。   In addition, the conductive adhesive described in Patent Document 2 is 35 to 75% by weight of thermoplastic resin, and has a large weight and a large resistance value with respect to the entire conductive adhesive. Therefore, Patent Document 1 describes a current of 1 A or more. The same phenomenon as that occurs.

また特許文献3記載の導電性接着剤は特許文献1,2記載のものに比べて大きな電流を流せるものの、フィラーどうしの接合をより確実にして導通の信頼性をより向上させてより大きな電流を安定に流せるようにすることが望まれる。   In addition, although the conductive adhesive described in Patent Document 3 can flow a larger current than those described in Patent Documents 1 and 2, the filler can be more reliably joined to further improve the reliability of conduction and increase the current. It is desirable to make it flow stably.

この発明は上述の点に鑑みてなされたもので、電極端子を樹脂系導電性接着剤で構成する場合に、フィラーどうしの接合を確実にして導通の信頼性を向上させて大きな電流を安定に流せるようにした発熱ガラスおよびその製造方法を提供しようとするものである。   The present invention has been made in view of the above points. When the electrode terminal is made of a resin-based conductive adhesive, the bonding between the fillers is ensured and the reliability of conduction is improved to stably generate a large current. An object of the present invention is to provide a heat-generating glass that can be flowed and a method for producing the same.

この発明の発熱ガラスはガラス板の表面に透明導電膜を形成し、該透明導電膜の表面の対向位置に導電性接着剤を塗布し硬化させて給電用電極端子対を形成し、該両電極端子間に電圧を印加し前記透明導電膜に通電して該透明導電膜を発熱させる発熱ガラスにおいて、前記導電性接着剤は有機系樹脂と導電性フィラーとを含有し、かつ該導電性フィラーは、基材に鉛フリーハンダをメッキした主導電性フィラーと、該主導電性フィラーよりも体積が小さく粒径が0.1〜1μmの鉛フリーハンダボールからなる補助フィラーと、該補助フィラーよりも体積が小さく粒径が1〜50nmの鉛フリーハンダからなるナノ粒子補助フィラーとで構成されることを特徴とするものである。   The exothermic glass of this invention forms a transparent conductive film on the surface of a glass plate, applies a conductive adhesive to the opposing position of the surface of the transparent conductive film, and cures to form a pair of power supply electrode terminals. In a heat generating glass that applies a voltage between terminals and energizes the transparent conductive film to generate heat, the conductive adhesive contains an organic resin and a conductive filler, and the conductive filler is A main conductive filler in which a lead-free solder is plated on a base material, an auxiliary filler made of lead-free solder balls having a volume smaller than the main conductive filler and a particle size of 0.1 to 1 μm, and the auxiliary filler. It is characterized by comprising a nanoparticle auxiliary filler made of lead-free solder having a small volume and a particle size of 1 to 50 nm.

この発明の発熱ガラスによれば電極端子を構成する導電性接着剤として、特許文献3記載の導電性接着剤から、基材に鉛フリーハンダをメッキした粒径が0.1〜1μmの補助フィラーを削除し代わりに粒径が1〜50nmの鉛フリーハンダからなるナノ粒子補助フィラーを追加した組成のものを用いることにより(この発明の補助フィラーは特許文献3記載の導電性接着剤の鉛フリーハンダボールに相当)、特許文献3記載の導電性接着剤に比べて補助フィラーおよびナノ粒子補助フィラーが主導電性フィラーの間により入り込み易くなり、しかもナノ粒子補助フィラーは鉛フリーハンダの微細粒子であるがゆえに熱により溶融しやすくなり、フィラーどうしの接合を確実にして導通の信頼性を向上させることができる。これにより大きな電流を安定に流すことができる。特にこの発明によれば、特許文献3の補助フィラー(基材に鉛フリーハンダをメッキした粒径が0.1〜1μmのフィラー)を無くしたので、導電性接着剤におけるフィラー全体の含有量を変更せずに分ナノ粒子補助フィラーを含有させることができる。また特許文献3の鉛フリーハンダボール(粒径が0.1〜1μmのフィラー)を補助フィラーとして残したので、主導電性フィラーとナノ粒子補助フィラーだけで導電性フィラーを構成する場合に比べて、導通の信頼性を確保しつつ高価なナノ粒子補助フィラーの使用量を削減することができる。   According to the heat generating glass of the present invention, as a conductive adhesive constituting the electrode terminal, an auxiliary filler having a particle diameter of 0.1 to 1 μm obtained by plating lead-free solder on a base material from the conductive adhesive described in Patent Document 3. Is used instead of a composition in which a nanoparticle auxiliary filler made of lead-free solder having a particle size of 1 to 50 nm is added (the auxiliary filler of the present invention is a lead-free conductive adhesive described in Patent Document 3). Compared to the conductive adhesive described in Patent Document 3, the auxiliary filler and the nanoparticle auxiliary filler are more easily inserted between the main conductive fillers, and the nanoparticle auxiliary filler is fine particles of lead-free solder. Therefore, it becomes easy to melt by heat, and it is possible to improve the reliability of conduction by reliably joining the fillers. Thereby, a large current can flow stably. In particular, according to this invention, since the auxiliary filler of Patent Document 3 (filler having a particle size of 0.1 to 1 μm plated with lead-free solder on the base material) is eliminated, the content of the entire filler in the conductive adhesive is reduced. Minute nanoparticle auxiliary fillers can be included without modification. In addition, since the lead-free solder ball (filler having a particle size of 0.1 to 1 μm) of Patent Document 3 is left as an auxiliary filler, compared to the case where the conductive filler is composed of only the main conductive filler and the nanoparticle auxiliary filler. The amount of expensive nanoparticle auxiliary filler used can be reduced while ensuring the reliability of conduction.

この発明の発熱ガラスにおいて前記主導電性フィラーは鱗片形状または楕円形状をなし、その短径が1〜10μm、好ましくは3〜7μmであるものとすることができる。また前記導電性接着剤は、前記有機系樹脂を10〜20重量%、前記主導電性フィラーを50〜85重量%、前記補助フィラーとナノ粒子補助フィラーとの合計を5〜40重量%好ましくは5〜25重量%の割合で含むものとすることができる。また前記主導電性フィラーは熱伝導率が250〜500W/m℃である前記基材に鉛フリーハンダをメッキしたものとすることができる。また前記主導電性フィラーの鉛フリーハンダメッキは、融点が230℃以下で、主成分がBi−Sn、In−Ag、Sn−Ag−Cu、Sn−Ag、Sn−Cuから選ばれるハンダとすることができる。また前記補助フィラーは、融点が230℃以下で、主成分がBi−Sn、In−Ag、Sn−Ag−Cu、Sn−Ag、Sn−Cu、Agから選ばれるハンダとすることができる。また前記ナノ粒子補助フィラーは、融点が230℃以下で、主成分がBi−Sn、In−Ag、Sn−Ag−Cu、Sn−Ag、Sn−Cu、Agから選ばれるハンダとすることができる。また前記導電性接着剤は、前記有機系樹脂と前記主導電性フィラーと前記補助フィラーと前記ナノ粒子補助フィラーの合計100重量部に対して、分散剤を1〜5重量%の割合で含むことができる。   In the exothermic glass of the present invention, the main conductive filler has a scaly shape or an elliptical shape, and its minor axis may be 1 to 10 μm, preferably 3 to 7 μm. The conductive adhesive is preferably 10 to 20% by weight of the organic resin, 50 to 85% by weight of the main conductive filler, and 5 to 40% by weight of the total of the auxiliary filler and the nanoparticle auxiliary filler. It may be included at a ratio of 5 to 25% by weight. The main conductive filler may be obtained by plating lead-free solder on the base material having a thermal conductivity of 250 to 500 W / m ° C. The lead-free solder plating of the main conductive filler is a solder whose melting point is 230 ° C. or less and whose main component is selected from Bi—Sn, In—Ag, Sn—Ag—Cu, Sn—Ag, and Sn—Cu. be able to. The auxiliary filler may be a solder having a melting point of 230 ° C. or lower and a main component selected from Bi—Sn, In—Ag, Sn—Ag—Cu, Sn—Ag, Sn—Cu, and Ag. The nanoparticle auxiliary filler may be a solder having a melting point of 230 ° C. or lower and a main component selected from Bi—Sn, In—Ag, Sn—Ag—Cu, Sn—Ag, Sn—Cu, and Ag. . In addition, the conductive adhesive contains a dispersant in a proportion of 1 to 5% by weight with respect to a total of 100 parts by weight of the organic resin, the main conductive filler, the auxiliary filler, and the nanoparticle auxiliary filler. Can do.

この発明の発熱ガラスの製造方法はガラス板の表面に透明導電膜を形成し、該透明導電膜の表面の対向位置に導電性接着剤を塗布し硬化させて給電用電極端子対を形成する発熱ガラスの製造方法において、前記導電性接着剤として、有機系樹脂と導電性フィラーとを含有し、かつ該導電性フィラーが、基材に鉛フリーハンダをメッキした主導電性フィラーと、該主導電性フィラーよりも体積が小さく粒径が0.1〜1μmの鉛フリーハンダボールからなる補助フィラーと、該補助フィラーよりも体積が小さく粒径が1〜50nmの鉛フリーハンダからなるナノ粒子補助フィラーとで構成されるものを用いることを特徴とするものである。   In the method for producing a heat generating glass of the present invention, a transparent conductive film is formed on the surface of a glass plate, and a conductive adhesive is applied to the opposite position of the surface of the transparent conductive film and cured to form a pair of power supply electrode terminals. In the glass manufacturing method, the conductive adhesive contains an organic resin and a conductive filler, and the conductive filler includes a main conductive filler obtained by plating a substrate with lead-free solder, and the main conductive material. Auxiliary filler made of lead-free solder balls having a volume smaller than that of the conductive filler and a particle diameter of 0.1 to 1 μm, and a nanoparticle auxiliary filler made of lead-free solder having a volume smaller than that of the auxiliary filler and a particle diameter of 1 to 50 nm It is characterized by using what is comprised by these.

この発明の実施の形態を以下説明する。この発明による発熱ガラスの全体構成は例えば前出の図2の発熱複層ガラスと同様の構成とすることができる。すなわち図2の発熱複層ガラスは2枚のガラス板10,12が枠状のスペーサ14を挟んで対向配置され一体化されている。一方(通常は室内側)のガラス板10の他方のガラス板12との対向面にはITO、SnO2等による透明導電膜16が形成されている。透明導電膜16の表面の相対向する両端位置に給電端子を構成する電極端子対18,20が形成されている。電極端子対18,20は例えば、透明導電膜16の表面の相対向する両端位置にペースト状の導電性接着剤18a,20aをスクリーン印刷等で塗布しその上に平編銅線18b,20bを載せ、導電性接着剤18a,20aを硬化させることで相互に接合して形成する。電極端子対18,20の平編銅線18b,20bにはリード線22,24がそれぞれハンダ付けされる。リード線22,24間に電圧を印加して透明導電膜16に通電することにより該透明導電膜16が発熱しガラス板10が昇温する。 Embodiments of the present invention will be described below. The overall structure of the exothermic glass according to the present invention can be the same as the exothermic multi-layer glass shown in FIG. In other words, the heat-generating multilayer glass of FIG. 2 has two glass plates 10 and 12 arranged opposite to each other with a frame-like spacer 14 interposed therebetween. A transparent conductive film 16 made of ITO, SnO 2 or the like is formed on the surface of one (usually indoor side) glass plate 10 facing the other glass plate 12. Electrode terminal pairs 18 and 20 constituting power supply terminals are formed at opposite end positions on the surface of the transparent conductive film 16. For example, the electrode terminal pairs 18 and 20 are formed by applying paste-like conductive adhesives 18a and 20a to the opposite end positions of the surface of the transparent conductive film 16 by screen printing or the like, and then applying flat knitted copper wires 18b and 20b thereon. The conductive adhesives 18a and 20a are cured and bonded to each other. Lead wires 22 and 24 are soldered to the flat knitted copper wires 18b and 20b of the electrode terminal pairs 18 and 20, respectively. When a voltage is applied between the lead wires 22 and 24 and the transparent conductive film 16 is energized, the transparent conductive film 16 generates heat and the glass plate 10 is heated.

導電性接着剤18a,20aの組成について説明する。導電性接着剤18a,20aを構成する導電性接着剤ペーストは有機系樹脂よりなるバインダー中に3種類の導電性フィラーを混在させて構成される。透明導電膜16の表面に塗布した導電性接着剤ペースト内の状態を図1に模式的に示す。導電性接着剤ペーストのバインダー25中には3種類の導電性フィラーが混在した状態で含まれている。この3種類の導電性フィラーは、基材に鉛フリーハンダをメッキした主導電性フィラー26と、主導電性フィラー26よりも体積が小さい鉛フリーハンダボールからなる補助フィラー28と、補助フィラー28よりも体積が小さい鉛フリーハンダからなるナノ粒子補助フィラー30である。   The composition of the conductive adhesives 18a and 20a will be described. The conductive adhesive paste constituting the conductive adhesives 18a and 20a is configured by mixing three kinds of conductive fillers in a binder made of an organic resin. A state in the conductive adhesive paste applied to the surface of the transparent conductive film 16 is schematically shown in FIG. In the binder 25 of the conductive adhesive paste, three kinds of conductive fillers are included in a mixed state. These three types of conductive fillers are composed of a main conductive filler 26 in which lead-free solder is plated on a base material, an auxiliary filler 28 made of lead-free solder balls having a volume smaller than that of the main conductive filler 26, and an auxiliary filler 28. Is a nanoparticle auxiliary filler 30 made of lead-free solder having a small volume.

上記の組成の導電性接着剤をガラス板10の透明導電膜16の表面の電極端子対18,20を構成する位置に塗布し硬化させて透明導電膜16に接着させる。この接着時の熱(バインダー25が熱硬化性樹脂の場合は加熱炉で加熱して硬化させる際の熱、熱可塑性樹脂の場合は樹脂の溶融熱)により主導電性フィラー26の鉛フリーハンダメッキが溶融し、主導電性フィラー26どうしが融着する。また補助フィラー28、ナノ粒子補助フィラー30も溶融し、主導電性フィラー26どうしの融着を補助する。これにより主導電性フィラー26どうしが電気的に接続される。この融着の際にナノ粒子補助フィラー30は、鉛フリーハンダの微細粒子であるがゆえに主導電性フィラーおよび補助フィラーの間により入り込み易くなり、しかも微細粒子であるがゆえに比較的低温でも溶融しやすくなり、主導電性フィラー26どうしの融着を確実にして導通の信頼性を向上させることができる。これにより大きな電流を安定に流すことができるようになる。   The conductive adhesive having the above composition is applied to the positions of the electrode terminal pairs 18 and 20 on the surface of the transparent conductive film 16 of the glass plate 10 and cured to adhere to the transparent conductive film 16. Lead-free solder plating of the main conductive filler 26 by the heat at the time of bonding (heat when the binder 25 is cured by heating in a heating furnace when the binder 25 is a thermosetting resin, or heat of melting of the resin when the binder 25 is a thermoplastic resin) Melts and the main conductive fillers 26 are fused. Also, the auxiliary filler 28 and the nanoparticle auxiliary filler 30 are melted to assist the fusion of the main conductive fillers 26. Thereby, the main conductive fillers 26 are electrically connected. In this fusion, the nanoparticle auxiliary filler 30 is fine particles of lead-free solder, so that it easily enters between the main conductive filler and the auxiliary filler, and also melts even at a relatively low temperature because of the fine particles. As a result, it becomes easier to fuse the main conductive fillers 26 and to improve the reliability of conduction. As a result, a large current can flow stably.

導電性接着剤に含まれる3種類のフィラー26,28,30の配合割合は、接触抵抗を小さくするため、主導電性フィラー26は50重量%以上、85重量%以下とするのが好ましい。すなわち主導電性フィラー26が50重量%未満になると、主導電性フィラー26どうしが接触し難くなり、導通が悪くなる。また主導電性フィラー26が85重量%より多くなると、有機系樹脂成分が少量となり、接着面(透明導電膜16の表面)との密着強度が低下してしまう。また主導電性フィラー26の表面の鉛フリーハンダメッキの厚さは0.5〜2μmであることが好ましい。すなわち0.5μm未満であると主導電性フィラー26どうしの融着が難しくなり、接触抵抗が高くなる。また2μmより厚くなると主導電性フィラー26の熱伝導率が低くなってしまう。また主導電性フィラー26の形状は鱗片形状または楕円形状が好ましい。鱗片形状または楕円形状とすることにより、球状とした場合よりも主導電性フィラー26どうしの接触面積を大きくすることができ、主導電性フィラー26どうしの融着を促進し、接触抵抗を小さくできる。主導電性フィラー26の鱗片形状または楕円形状の短径は1〜10μm、好ましくは3〜7μmである。   The blending ratio of the three types of fillers 26, 28, and 30 contained in the conductive adhesive is preferably 50% by weight or more and 85% by weight or less for the main conductive filler 26 in order to reduce contact resistance. That is, when the main conductive filler 26 is less than 50% by weight, it becomes difficult for the main conductive fillers 26 to come into contact with each other, resulting in poor conduction. On the other hand, when the amount of the main conductive filler 26 exceeds 85% by weight, the amount of the organic resin component becomes small, and the adhesion strength with the adhesive surface (the surface of the transparent conductive film 16) decreases. The thickness of the lead-free solder plating on the surface of the main conductive filler 26 is preferably 0.5 to 2 μm. That is, if it is less than 0.5 μm, it becomes difficult to fuse the main conductive fillers 26, and the contact resistance becomes high. On the other hand, when the thickness is greater than 2 μm, the thermal conductivity of the main conductive filler 26 is lowered. The shape of the main conductive filler 26 is preferably a scale shape or an elliptical shape. By making the scale shape or the ellipse shape, the contact area between the main conductive fillers 26 can be increased as compared with the case of the spherical shape, the fusion between the main conductive fillers 26 can be promoted, and the contact resistance can be reduced. . The minor axis of the scale-like or elliptical shape of the main conductive filler 26 is 1 to 10 μm, preferably 3 to 7 μm.

主導電性フィラー26の基材としては熱伝導率が高い(250〜500W/m℃)材料が好ましく、例えば銀、金、銅、ニッケル、アルミニウム等の金属材料やSiC(炭化ケイ素)、AlN(窒化アルミニウム)等が挙げられる。主導電性フィラー26の鉛フリーハンダメッキとしては融点が230℃以下で酸化し難いBi−Sn系、In−Ag系、Sn−Ag−Cu系、Sn−Ag系、Sn−Cu系の鉛フリーハンダが挙げられる。主導電性フィラー26の鉛フリーハンダメッキは上記から選ばれた鉛フリーハンダをバレル法により基材にコーティングすることができる。   The base material of the main conductive filler 26 is preferably a material having high thermal conductivity (250 to 500 W / m ° C.), for example, a metal material such as silver, gold, copper, nickel, aluminum, SiC (silicon carbide), AlN ( Aluminum nitride) and the like. Lead-free solder plating of the main conductive filler 26 is Bi-Sn-based, In-Ag-based, Sn-Ag-Cu-based, Sn-Ag-based, Sn-Cu-based lead-free, which has a melting point of 230 ° C. or less and hardly oxidizes. An example is solder. The lead-free solder plating of the main conductive filler 26 can be performed by coating the base material with the lead-free solder selected from the above by the barrel method.

補助フィラー28およびナノ粒子補助フィラーの材料としては融点が230℃以下で酸化し難いBi−Sn系、In−Ag系、Sn−Ag−Cu系、Sn−Ag系、Sn−Cu系、Ag系の鉛フリーハンダが挙げられる。補助フィラー28とナノ粒子補助フィラー30は両者の合計は5〜40重量%とするのが好ましい。すなわち5重量%未満であると主導電性フィラー26どうしが十分に融着することができない。また40重量%より多いと導電接着剤の熱伝導率が小さくなるため、充分な放熱ができず酸化してしまうおそれがある。さらに言えば補助フィラー28およびナノ粒子補助フィラー30は粒径が細かいため酸化が生じやすく、また2次粒子としての凝集があるため両者の合計は特に5〜25重量%が好ましい。補助フィラー28は粒径が0.1〜1μmの球状に形成されている。ナノ粒子補助フィラー30は粒径が1〜50nmの球状に形成されている。   Bi-Sn-based, In-Ag-based, Sn-Ag-Cu-based, Sn-Ag-based, Sn-Cu-based, and Ag-based materials that have a melting point of 230 ° C. or less and hardly oxidize as materials for the auxiliary filler 28 and the nanoparticle auxiliary filler Lead-free solder. The total amount of the auxiliary filler 28 and the nanoparticle auxiliary filler 30 is preferably 5 to 40% by weight. That is, when it is less than 5% by weight, the main conductive fillers 26 cannot be sufficiently fused together. On the other hand, if the amount is more than 40% by weight, the heat conductivity of the conductive adhesive becomes small, so that sufficient heat radiation cannot be performed and oxidation may occur. Furthermore, since the auxiliary filler 28 and the nanoparticle auxiliary filler 30 have small particle diameters, oxidation is likely to occur, and there is agglomeration as secondary particles, so the total of both is particularly preferably 5 to 25% by weight. The auxiliary filler 28 is formed in a spherical shape with a particle size of 0.1 to 1 μm. The nanoparticle auxiliary filler 30 is formed in a spherical shape with a particle size of 1 to 50 nm.

有機系硬化剤を含むバインダー25は10重量%以上、25重量%以下が好ましい。すなわち10重量%未満であるとフィラーの割合が高くなり接着面(透明導電膜16の表面)との密着強度が極端に劣化する。また25重量%より多くなると、主導電性フィラー26相互間にバインダー25が過剰に入り込み、主導電性フィラー26どうしが融着し難くなり、接触抵抗が高まってしまう。バインダー25の材料としては熱硬化性樹脂あるいは熱可塑性樹脂が利用できる。熱硬化性樹脂としてはエポキシ樹脂、フェノール樹脂、アクリル樹脂、ウレタン樹脂等が挙げられる。熱可塑性樹脂としてはポリアミド樹脂、ポリスチレン樹脂、ポリエステル樹脂等が挙げられる。   The binder 25 containing an organic curing agent is preferably 10% by weight or more and 25% by weight or less. That is, if it is less than 10% by weight, the proportion of the filler is increased, and the adhesion strength with the adhesive surface (the surface of the transparent conductive film 16) is extremely deteriorated. On the other hand, if it exceeds 25% by weight, the binder 25 excessively enters between the main conductive fillers 26, making it difficult for the main conductive fillers 26 to be fused together and increasing the contact resistance. As the material of the binder 25, a thermosetting resin or a thermoplastic resin can be used. Examples of the thermosetting resin include an epoxy resin, a phenol resin, an acrylic resin, and a urethane resin. Examples of the thermoplastic resin include polyamide resin, polystyrene resin, and polyester resin.

バインダー25の材料に熱硬化性樹脂を使用する場合、各フィラー26,28,30の鉛フリーハンダとしては、融点が樹脂の硬化温度よりも20〜30℃低いものを選択することが好ましい。これにより導電性接着剤を塗布し硬化させるための加熱によって鉛フリーハンダが溶融し、主導電性フィラー26どうしを良好に融着させることができる。熱硬化性樹脂の硬化温度よりも融点が高い鉛フリーハンダを使用すると、主導電性フィラーどうしを融着させるためには熱硬化性樹脂の硬化温度よりも高い温度での加熱が必要となり、樹脂を劣化させてしまう。また融点が低すぎる鉛フリーハンダを選択すると、電流が流れたときに発生する熱により、低い温度でも溶融してしまうため接触抵抗が不安定になる。   When a thermosetting resin is used as the material of the binder 25, it is preferable to select a lead-free solder for each of the fillers 26, 28, and 30 that has a melting point that is 20 to 30 ° C. lower than the curing temperature of the resin. Thereby, the lead-free solder is melted by heating for applying and curing the conductive adhesive, and the main conductive fillers 26 can be fused well. When lead-free solder with a melting point higher than the curing temperature of the thermosetting resin is used, heating at a temperature higher than the curing temperature of the thermosetting resin is required to fuse the main conductive fillers together. Will deteriorate. If lead-free solder whose melting point is too low is selected, the contact resistance becomes unstable because it melts even at low temperatures due to the heat generated when current flows.

また主導電性フィラー26として粒径が小さいものを選択した場合は、凝集しやすくかつ酸化しやすいため、分散剤、還元剤を添加することが好ましい。その場合バインダー25と主導電性フィラー26と補助フィラー28とナノ粒子補助フィラー30の合計100重量部に対して分散剤を1〜5重量%の割合で添加する。   In addition, when a material having a small particle size is selected as the main conductive filler 26, it is preferable to add a dispersing agent and a reducing agent because they easily aggregate and easily oxidize. In that case, a dispersing agent is added in a ratio of 1 to 5% by weight with respect to a total of 100 parts by weight of the binder 25, the main conductive filler 26, the auxiliary filler 28, and the nanoparticle auxiliary filler 30.

またバインダー25と主導電性フィラー26と補助フィラー28とナノ粒子補助フィラー30の合計100重量部に対して酸化防止剤、酸性物質またはロジン(松脂)からなるフラックスを3〜5重量%の割合で添加してもよい。すなわち樹脂バインダー25の加熱温度で主導電性フィラー26の鉛フリーハンダメッキおよび補助フィラー28、ナノ粒子補助フィラー30は接触から融着過程に入るが、各フィラー26,28,30の表面の鉛フリーハンダが比較的強固な酸化膜を有する場合があり、該表面を化学的に活性化しハンダの濡れ性を助長する必要がある。酸化防止剤、酸化物質またはロジンからなるフラックスは酸化膜の除去能力が大きくハンダの濡れ性もよくなる。特にロジンは127℃で溶融しその活性は約315℃まで持続するので、化学的、物理的にも理想的なフラックスである。ロジンの活性成分であるアビエチン酸は固体では不活性であるがそれが加熱されて溶融状態になると活性を呈し、それが冷却されると再び不活性になり、この発明で利用される導電性接着剤に添加するフラックスとして好適に利用することができる。   Moreover, the flux which consists of antioxidant, an acidic substance, or a rosin (pine resin) with respect to a total of 100 weight part of the binder 25, the main electroconductive filler 26, the auxiliary filler 28, and the nanoparticle auxiliary filler 30 in the ratio of 3 to 5 weight%. It may be added. That is, the lead-free solder plating of the main conductive filler 26 and the auxiliary filler 28 and the nanoparticle auxiliary filler 30 enter the fusion process from the contact at the heating temperature of the resin binder 25, but lead-free on the surface of each filler 26, 28, 30. The solder may have a relatively strong oxide film, and it is necessary to chemically activate the surface to promote the wettability of the solder. A flux composed of an antioxidant, an oxidizing substance, or rosin has a high ability to remove an oxide film and also improves the wettability of solder. In particular, rosin melts at 127 ° C. and its activity lasts up to about 315 ° C., making it an ideal chemical and physical flux. Abietic acid, the active ingredient of rosin, is inactive in solids, but becomes active when it is heated to a molten state, and becomes inactive again when it is cooled. It can be suitably used as a flux to be added to the agent.

以下の材料(a)、(b)、(c)、(d)を混合し(合計100重量%)、さらにロジン系フラックス等を加えて導電性接着剤を調整した。
(a)バインダー25:エポキシ樹脂系バインダー。20重量%
(b)主導電性フィラー26:銀で構成される基材に融点が138℃の60Sn40Biハンダをメッキして構成。短径は3〜5μm。60重量%
(c)補助フィラー28:融点が138℃の60Sn40Biで構成される鉛フリーハンダボール。粒径は1μm。12重量%
(d)ナノ粒子補助フィラー30:融点が138℃の60Sn40Biで構成される鉛フリーハンダボール。粒径は50nm。8重量%。
調整された導電性接着剤をガラス板10(図2)の透明導電膜16の所定箇所に塗布し(導電性接着剤18a,20a)、接続端子として平編銅線18b,20bを導電性接着剤18a,20aの上に搭載して、加熱炉にて230℃で20分間加熱処理した。その後大気中に放置して十分冷却し、十分な密着が確認された後直流電流30Aを印加した。その結果端子部分での樹脂の温度は70℃と低く、抵抗値も0.7mΩと低く、100時間印加後でも短絡しなかった。
The following materials (a), (b), (c) and (d) were mixed (total 100% by weight), and a rosin flux was further added to adjust the conductive adhesive.
(a) Binder 25: Epoxy resin binder. 20% by weight
(b) Main conductive filler 26: A base material composed of silver and plated with 60Sn40Bi solder having a melting point of 138 ° C. The minor axis is 3-5 μm. 60% by weight
(c) Auxiliary filler 28: Lead-free solder ball composed of 60Sn40Bi having a melting point of 138 ° C. The particle size is 1 μm. 12% by weight
(d) Nanoparticle auxiliary filler 30: lead-free solder ball composed of 60Sn40Bi having a melting point of 138 ° C. The particle size is 50 nm. 8% by weight.
The adjusted conductive adhesive is applied to a predetermined portion of the transparent conductive film 16 of the glass plate 10 (FIG. 2) (conductive adhesives 18a and 20a), and the flat knitted copper wires 18b and 20b are conductively bonded as connection terminals. It mounted on the agent 18a and 20a, and heat-processed for 20 minutes at 230 degreeC with the heating furnace. Thereafter, it was left to cool in the atmosphere and sufficiently cooled. After sufficient adhesion was confirmed, a direct current of 30 A was applied. As a result, the temperature of the resin at the terminal portion was as low as 70 ° C., the resistance value was as low as 0.7 mΩ, and no short circuit occurred even after 100 hours of application.

以下の材料(a)、(b)、(c)、(d)を混合し(合計100重量%)、さらにロジン系フラックス等を加えて導電性接着剤を調整した。
(a)バインダー25:エポキシ樹脂系バインダー。12重量%
(b)主導電性フィラー26:銀で構成される基材に融点が117℃の48Sn52Inハンダをメッキして構成。短径は3〜5μm。70重量%
(c)補助フィラー28:融点が117℃の48Sn52Inで構成される鉛フリーハンダボール。粒径は1μm。8重量%
(d)ナノ粒子補助フィラー30:融点が117℃の48Sn52Inで構成される鉛フリーハンダボール。粒径は50nm。8重量%。
調整された導電性接着剤をガラス板10(図2)の透明導電膜16の所定箇所に塗布し(導電性接着剤18a,20a)、接続端子として平編銅線18b,20bを導電性接着剤18a,20aの上に搭載して、加熱炉にて200℃で20分間加熱処理した。その後大気中に放置して十分冷却し、十分な密着が確認された後直流電流30Aを印加した。その結果端子部分での樹脂の温度は70℃と低く、抵抗値も0.7mΩと低く、100時間印加後でも短絡しなかった。
The following materials (a), (b), (c) and (d) were mixed (total 100% by weight), and a rosin flux was further added to adjust the conductive adhesive.
(a) Binder 25: Epoxy resin binder. 12% by weight
(b) Main conductive filler 26: The base material made of silver is plated with 48Sn52In solder having a melting point of 117 ° C. The minor axis is 3-5 μm. 70% by weight
(c) Auxiliary filler 28: Lead-free solder ball composed of 48Sn52In having a melting point of 117 ° C. The particle size is 1 μm. 8% by weight
(d) Nanoparticle auxiliary filler 30: lead-free solder ball composed of 48Sn52In having a melting point of 117 ° C. The particle size is 50 nm. 8% by weight.
The adjusted conductive adhesive is applied to a predetermined portion of the transparent conductive film 16 of the glass plate 10 (FIG. 2) (conductive adhesives 18a and 20a), and the flat knitted copper wires 18b and 20b are conductively bonded as connection terminals. It mounted on agent 18a, 20a, and heat-processed for 20 minutes at 200 degreeC with the heating furnace. Thereafter, it was left to cool in the atmosphere and sufficiently cooled. After sufficient adhesion was confirmed, a direct current of 30 A was applied. As a result, the temperature of the resin at the terminal portion was as low as 70 ° C., the resistance value was as low as 0.7 mΩ, and no short circuit occurred even after 100 hours of application.

比較例Comparative example

以下の材料(a)、(b)、(c)、(d)を混合し(合計100重量%)、さらにロジン系フラックス等を加えて特許文献3記載の導電性接着剤を調整した。
(a)バインダー:エポキシ樹脂系バインダー。20重量%
(b)主導電性フィラー:銀で構成される基材に60Sn40Biハンダをメッキして構成。短径は3〜5μm。60重量%
(c)補助フィラー:銀で構成される基材に60Sn40Biハンダをメッキして構成。粒径1μm。15重量%
(d)鉛フリーハンダボール:60Sn40Biで構成される鉛フリーハンダボール。粒径1μm。5重量%。
調整された導電性接着剤をガラス板10(図2)の透明導電膜16の所定箇所に塗布し(導電性接着剤18a,20a)、接続端子として平編銅線18b,20bを導電性接着剤18a,20aの上に搭載して、加熱炉にて250℃で20分間加熱処理した。その後大気中に放置して十分冷却し、十分な密着が確認された後直流電流30Aを印加した。その結果端子部分での樹脂の温度は105℃と高く、抵抗値も1.5mΩと低く、12時間印加後で短絡した。破壊試験の結果と材料分析結果から、主導電フィラーと補助フィラー間での固着が不十分であり、信頼性が不完全であることが確認できた。
The following materials (a), (b), (c), and (d) were mixed (total 100% by weight), and a rosin flux was further added to adjust the conductive adhesive described in Patent Document 3.
(a) Binder: Epoxy resin binder. 20% by weight
(b) Main conductive filler: constructed by plating 60Sn40Bi solder on a base made of silver. The minor axis is 3-5 μm. 60% by weight
(c) Auxiliary filler: constructed by plating 60Sn40Bi solder on a base material composed of silver. Particle size 1 μm. 15% by weight
(d) Lead-free solder balls: Lead-free solder balls composed of 60Sn40Bi. Particle size 1 μm. 5% by weight.
The adjusted conductive adhesive is applied to a predetermined portion of the transparent conductive film 16 of the glass plate 10 (FIG. 2) (conductive adhesives 18a and 20a), and the flat knitted copper wires 18b and 20b are conductively bonded as connection terminals. It mounted on agent 18a, 20a, and heat-processed for 20 minutes at 250 degreeC with the heating furnace. Thereafter, it was left to cool in the atmosphere and sufficiently cooled. After sufficient adhesion was confirmed, a direct current of 30 A was applied. As a result, the temperature of the resin at the terminal portion was as high as 105 ° C., the resistance value was as low as 1.5 mΩ, and short-circuited after 12 hours of application. From the results of the destructive test and the material analysis results, it was confirmed that the adhesion between the main conductive filler and the auxiliary filler was insufficient and the reliability was incomplete.

この発明で使用される導電性接着剤を構成する導電性接着剤ペースト内の状態を示す模式図である。It is a schematic diagram which shows the state in the conductive adhesive paste which comprises the conductive adhesive used by this invention. この発明の発熱ガラスの実施の形態を示す図で、(a)は断面側面図、(b)は(a)のA−A矢視断面図である。It is a figure which shows embodiment of the heat generating glass of this invention, (a) is a cross-sectional side view, (b) is AA arrow sectional drawing of (a).

符号の説明Explanation of symbols

10,12…ガラス板、14…スペーサ、16…透明導電膜、18,20…電極端子対、18a,20a…導電性接着剤、18b,20b…平編銅線、22,24…リード線、25…バインダー、26…主導電性フィラー、28…補助フィラー、30…ナノ粒子補助フィラー   DESCRIPTION OF SYMBOLS 10,12 ... Glass plate, 14 ... Spacer, 16 ... Transparent electrically conductive film, 18, 20 ... Electrode terminal pair, 18a, 20a ... Conductive adhesive, 18b, 20b ... Flat knitted copper wire, 22, 24 ... Lead wire, 25 ... Binder, 26 ... Main conductive filler, 28 ... Auxiliary filler, 30 ... Nanoparticle auxiliary filler

Claims (9)

ガラス板の表面に透明導電膜を形成し、該透明導電膜の表面の対向位置に導電性接着剤を塗布し硬化させて給電用電極端子対を形成し、該両電極端子間に電圧を印加し前記透明導電膜に通電して該透明導電膜を発熱させる発熱ガラスにおいて、
前記導電性接着剤は有機系樹脂と導電性フィラーとを含有し、かつ該導電性フィラーは、基材に鉛フリーハンダをメッキした主導電性フィラーと、該主導電性フィラーよりも体積が小さく粒径が0.1〜1μmの鉛フリーハンダボールからなる補助フィラーと、該補助フィラーよりも体積が小さく粒径が1〜50nmの鉛フリーハンダからなるナノ粒子補助フィラーとで構成される
ことを特徴とする発熱ガラス。
A transparent conductive film is formed on the surface of the glass plate, a conductive adhesive is applied and cured on the opposite position of the surface of the transparent conductive film to form a pair of power supply electrode terminals, and a voltage is applied between the electrode terminals. In the heat-generating glass that heats the transparent conductive film by energizing the transparent conductive film,
The conductive adhesive contains an organic resin and a conductive filler, and the conductive filler has a main conductive filler in which a lead-free solder is plated on a base material and a volume smaller than the main conductive filler. It is composed of an auxiliary filler made of lead-free solder balls having a particle size of 0.1 to 1 μm and a nanoparticle auxiliary filler made of lead-free solder having a smaller volume than the auxiliary filler and a particle size of 1 to 50 nm. Characteristic exothermic glass.
前記主導電性フィラーは鱗片形状または楕円形状をなし、その短径が1〜10μm、好ましくは3〜7μmである請求項1記載の発熱ガラス。   The exothermic glass according to claim 1, wherein the main conductive filler has a scale shape or an ellipse shape, and a short axis thereof is 1 to 10 µm, preferably 3 to 7 µm. 前記導電性接着剤は、前記有機系樹脂を10〜25重量%、前記主導電性フィラーを50〜85重量%、前記補助フィラーとナノ粒子補助フィラーとの合計を5〜40重量%好ましくは5〜25重量%の割合で含む請求項1または2記載の発熱ガラス。   The conductive adhesive is 10 to 25% by weight of the organic resin, 50 to 85% by weight of the main conductive filler, and 5 to 40% by weight of the total of the auxiliary filler and the nanoparticle auxiliary filler, preferably 5 The exothermic glass according to claim 1 or 2, which is contained at a ratio of -25% by weight. 前記主導電性フィラーは熱伝導率が250〜500W/m℃である前記基材に鉛フリーハンダをメッキしたものである請求項1から3のいずれか1つに記載の発熱ガラス。   The exothermic glass according to any one of claims 1 to 3, wherein the main conductive filler is obtained by plating lead-free solder on the base material having a thermal conductivity of 250 to 500 W / m ° C. 前記主導電性フィラーの鉛フリーハンダメッキは、融点が230℃以下で、主成分がBi−Sn、In−Ag、Sn−Ag−Cu、Sn−Ag、Sn−Cuから選ばれるハンダである請求項1〜4のいずれか1つに記載の発熱ガラス。   The lead-free solder plating of the main conductive filler is a solder whose melting point is 230 ° C. or less and whose main component is selected from Bi—Sn, In—Ag, Sn—Ag—Cu, Sn—Ag, and Sn—Cu. Item 5. The exothermic glass according to any one of Items 1 to 4. 前記補助フィラーは、融点が230℃以下で、主成分がBi−Sn、In−Ag、Sn−Ag−Cu、Sn−Ag、Sn−Cu、Agから選ばれるハンダである請求項1〜5のいずれか1つに記載の発熱ガラス。   The auxiliary filler is a solder having a melting point of 230 ° C. or lower and a main component selected from Bi—Sn, In—Ag, Sn—Ag—Cu, Sn—Ag, Sn—Cu, and Ag. The exothermic glass as described in any one. 前記ナノ粒子補助フィラーは、融点が230℃以下で、主成分がBi−Sn、In−Ag、Sn−Ag−Cu、Sn−Ag、Sn−Cu、Agから選ばれるハンダである請求項1〜5のいずれか1つに記載の発熱ガラス。   The nanoparticle auxiliary filler is a solder having a melting point of 230 ° C or lower and a main component selected from Bi-Sn, In-Ag, Sn-Ag-Cu, Sn-Ag, Sn-Cu, and Ag. The exothermic glass according to any one of 5. 前記導電性接着剤は、前記有機系樹脂と前記主導電性フィラーと前記補助フィラーと前記ナノ粒子補助フィラーの合計100重量部に対して、分散剤を1〜5重量%の割合で含む請求項1から7のいずれか1つに記載の発熱ガラス。   The conductive adhesive includes a dispersant in a proportion of 1 to 5% by weight with respect to a total of 100 parts by weight of the organic resin, the main conductive filler, the auxiliary filler, and the nanoparticle auxiliary filler. The exothermic glass according to any one of 1 to 7. ガラス板の表面に透明導電膜を形成し、該透明導電膜の表面の対向位置に導電性接着剤を塗布し硬化させて給電用電極端子対を形成する発熱ガラスの製造方法において、
前記導電性接着剤として、有機系樹脂と導電性フィラーとを含有し、かつ該導電性フィラーが、基材に鉛フリーハンダをメッキした主導電性フィラーと、該主導電性フィラーよりも体積が小さく粒径が0.1〜1μmの鉛フリーハンダボールからなる補助フィラーと、該補助フィラーよりも体積が小さく粒径が1〜50nmの鉛フリーハンダからなるナノ粒子補助フィラーとで構成されるものを用いる
ことを特徴とする発熱ガラスの製造方法。
In the method for producing exothermic glass, a transparent conductive film is formed on the surface of the glass plate, and a pair of electrode terminals for feeding is formed by applying and curing a conductive adhesive on the opposing position of the surface of the transparent conductive film.
The conductive adhesive contains an organic resin and a conductive filler, and the conductive filler has a volume that is larger than that of the main conductive filler and a main conductive filler obtained by plating a substrate with lead-free solder. It is composed of an auxiliary filler made of lead-free solder balls having a small particle size of 0.1 to 1 μm and a nano-particle auxiliary filler made of lead-free solder having a smaller volume than the auxiliary filler and a particle size of 1 to 50 nm. A method for producing exothermic glass, characterized in that
JP2008037128A 2008-02-19 2008-02-19 Heat-generating glass, and its manufacturing method of the same Pending JP2009199746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008037128A JP2009199746A (en) 2008-02-19 2008-02-19 Heat-generating glass, and its manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008037128A JP2009199746A (en) 2008-02-19 2008-02-19 Heat-generating glass, and its manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2009199746A true JP2009199746A (en) 2009-09-03

Family

ID=41143064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008037128A Pending JP2009199746A (en) 2008-02-19 2008-02-19 Heat-generating glass, and its manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2009199746A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087235A2 (en) * 2010-01-12 2011-07-21 주식회사 엘지화학 Heating glass and manufacturing method thereof
WO2012066664A1 (en) * 2010-11-18 2012-05-24 Dowaホールディングス株式会社 Solder powder and process for producing solder powder
WO2012118203A1 (en) * 2011-03-02 2012-09-07 セントラル硝子株式会社 Method for joining automobile window glass to electricity supply terminal
JP2013125649A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particle and anisotropic conductive material
KR20200050317A (en) * 2018-10-29 2020-05-11 한국전자통신연구원 Solder paste
WO2021124731A1 (en) * 2019-12-19 2021-06-24 日東電工株式会社 Heater

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916805B2 (en) 2010-01-12 2014-12-23 Lg Chem, Ltd. Heating glass and manufacturing method thereof
WO2011087235A3 (en) * 2010-01-12 2011-11-24 주식회사 엘지화학 Heating glass and manufacturing method thereof
WO2011087235A2 (en) * 2010-01-12 2011-07-21 주식회사 엘지화학 Heating glass and manufacturing method thereof
US9018568B2 (en) 2010-01-12 2015-04-28 Lg Chem, Ltd. Heating glass and manufacturing method thereof
US9132514B2 (en) 2010-11-18 2015-09-15 Dowa Holdings Co., Ltd. Solder powder and method of producing solder powder
CN103221164A (en) * 2010-11-18 2013-07-24 同和控股(集团)有限公司 Solder powder and process for producing solder powder
US20130244034A1 (en) * 2010-11-18 2013-09-19 Dowa Holdings Co., Ltd. Solder powder and method of producing solder powder
WO2012066664A1 (en) * 2010-11-18 2012-05-24 Dowaホールディングス株式会社 Solder powder and process for producing solder powder
WO2012118203A1 (en) * 2011-03-02 2012-09-07 セントラル硝子株式会社 Method for joining automobile window glass to electricity supply terminal
JP2013125649A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particle and anisotropic conductive material
KR20200050317A (en) * 2018-10-29 2020-05-11 한국전자통신연구원 Solder paste
KR102357053B1 (en) * 2018-10-29 2022-02-03 한국전자통신연구원 Solder paste
WO2021124731A1 (en) * 2019-12-19 2021-06-24 日東電工株式会社 Heater

Similar Documents

Publication Publication Date Title
JP5342453B2 (en) Conductive paste and electrical and electronic equipment using the same
CN101567228B (en) Conductive paste and mounting structure using the same
EP0331500B1 (en) Brazing paste for bonding metal and ceramic
JP2011054892A (en) Solder bonding using conductive paste
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
US8343383B2 (en) Anisotropic conductive material
KR101086358B1 (en) conductive paste
JP2009199746A (en) Heat-generating glass, and its manufacturing method of the same
JP4722751B2 (en) Powder solder material and bonding material
TWI417399B (en) Composite lead-free solder alloy composition having nano-particles
WO2013047137A1 (en) Electronic device, joining material, and method for producing electronic device
WO2001064807A1 (en) Conductive adhesive, apparatus for mounting electronic component, and method for mounting the same
Li et al. Enhancement of electrical properties of anisotropically conductive adhesive joints via low temperature sintering
JP2007123664A (en) Junction structure between substrate and component and its manufacturing method
JP4244736B2 (en) Conductive adhesive, its bonding method, and automotive window glass using the same
JPH0528829A (en) Conductive coating and conductive film formation thereof
JP4676907B2 (en) Electronic component mounting structure using solder adhesive and solder adhesive
JP2007237212A (en) Solder adhesive and electronic component packaging structure using the solder adhesive
JP6648468B2 (en) Pb-free solder and electronic component built-in module
KR101157515B1 (en) Conductive adhesive and connection method between terminal employing the same
KR20130017511A (en) Low temperature joining method using pb-free solder nanoparticles
George et al. A Review on Electrically Conductive Adhesives in Electronic Packaging
US10625356B2 (en) Electrical connection tape
US20070235844A1 (en) Electronic device mounting structure and method of manufacturing the same
JP5763585B2 (en) Conductive paste material, semiconductor element connection method, and electrode formation method