JP3730209B2 - Conductive adhesive - Google Patents

Conductive adhesive Download PDF

Info

Publication number
JP3730209B2
JP3730209B2 JP2002330459A JP2002330459A JP3730209B2 JP 3730209 B2 JP3730209 B2 JP 3730209B2 JP 2002330459 A JP2002330459 A JP 2002330459A JP 2002330459 A JP2002330459 A JP 2002330459A JP 3730209 B2 JP3730209 B2 JP 3730209B2
Authority
JP
Japan
Prior art keywords
adhesive
weight
tin
melting point
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002330459A
Other languages
Japanese (ja)
Other versions
JP2004160508A (en
Inventor
和利 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Togo Seisakusho Corp
Original Assignee
Togo Seisakusho Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Togo Seisakusho Corp filed Critical Togo Seisakusho Corp
Priority to JP2002330459A priority Critical patent/JP3730209B2/en
Publication of JP2004160508A publication Critical patent/JP2004160508A/en
Application granted granted Critical
Publication of JP3730209B2 publication Critical patent/JP3730209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低融点金属粒子を含む通電可能な接着剤に関する。
【0002】
【従来の技術】
家電製品などの電機部品を、プリント基板等へ接着したり、自動車部品などの配線を導電部へ接着する場合に、ハンダで接合されることが多い。ハンダは鉛と錫との合金で、通常はこの合金粒子にフラックスを加えたクリームハンダとして使用されている。しかし、最近の電子機器の鉛フリー化の傾向を受けてハンダ代替の接合材として導電接着剤を一般電子機器基板の組立に利用しようとする試みがなされている。この導電接着剤は、銀、金、ニッケル、カーボンなどを導電性を発現するフィラーとし、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂、アクリル樹脂などをバインダとして、これらのフィラーとバインダを硬化剤や溶剤と共に目的に合わせて適当に配合して、所望の導電接着剤とするものである。また、導電接着剤の耐湿性の問題を改善するためにハンダ含有導電接着剤も提案されている(特許文献1参照)。
【0003】
【特許文献1】
特開2001−143529号公報
【0004】
【発明が解決しようとする課題】
従来のハンダは鉛と錫の合金にフラックスを加えたものであり、昨今の鉛フリー化の傾向には適当ではない。錫−銀−銅合金を利用した鉛フリーハンダも使用されているが、現状では高コストである、溶融温度が高い、濡れ性が悪く手ハンダが困難である、などといった問題がある。また、導電性フィラーを含有する導電接着剤は、ハンダに比べて抵抗や熱伝導が大きい、この抵抗は金属粉同士の接触抵抗であるため温度上昇により抵抗値が変化する、さらに、1A程度の電流を通電すると、抵抗発熱による温度上昇で、抵抗値が大きくなり通電不可能となることがある、などの問題がある。さらに、ハンダ含有導電接着剤では、ハンダの溶融温度よりも30℃以上高い温度でないとハンダ溶融による抵抗値の低下が生じない、導電性フィラーとして、錫、銀、銅等のハンダと濡れやすい金属しか使用できない、剥離強度が必要な用途では、導電性フィラーである高融点金属粉末が剥離強度を低下させる、などの問題があり、いずれの方法も未だ十分とはいえないものである。
【0005】
本発明はかかる問題点を解決するもので、溶融温度が低く、濡れ性が良好で接着強度の高い安価な通電可能な接着剤を提供することを課題とする。
【0006】
【課題を解決するための手段】
発明者らは以上の多くの問題を解決するに当たって、低融点金属の融解により通電性を確保し、有機接着剤によって接着性を担保する組成物に思い至った。そしてこの新規な組成物を通電接着剤と名付けて本発明を完成したものである。
【0009】
すなわち、本発明の通電接着剤は、錫−ビスマス合金又は錫−銅合金からなる低融点金属粒子と、低融点金属粒子の表面に形成されている酸化被膜を加熱状態で除去するハロゲン元素を含む溶融促進剤と、銀、銅、ニッケル、錫、亜鉛のうち少なくとも1種である導電性フィラーと、熱硬化性のエポキシ樹脂を主剤とする有機接着剤と、からなり、加熱により低融点金属が溶融促進剤の作用を受けて該導電性フィラーと共に通電路を形成し、さらに有機接着剤が接着硬化することを特徴とする
【0010】
【発明の実施の形態】
本発明の通電接着剤において、低融点金属粒子は通電路を形成する基本成分である。低融点金属粒子としては通常ハンダとして知られている錫合金を使用できる。具体的には、錫−ビスマス合金、あるいは、錫−銅合金などが好ましい。錫−ビスマス合金は、共晶点(質量比で、錫:ビスマス=42:58)における融点は139℃と低く好適である。また、高い耐熱性が必要な用途などの場合には、99.3%錫−0.7%銅合金(融点:220℃)の使用も好ましい。低融点金属粒子の好ましい粒径は10〜100μmである。粒径が10μm未満では酸化物皮膜が厚くなるため融解しにくくなり、100μmを越えると有機接着剤中で粒子が分離しやすくなって均一に分散しない。このため、接触抵抗値や強度のバラツキが大きくなって適当ではない。
【0011】
低融点金属粒子の配合は、通電接着剤全体を100重量%としたとき、10〜90重量%である。低融点金属粒子が10重量%未満では通電性が得られなくなり、90重量%を越えると通電接着剤の粘度が上昇して塗布性が低下する、といった問題を生じる。より好ましくは20〜80重量%である。
【0012】
有機接着剤は、加熱により接着硬化する熱硬化性樹脂に硬化剤を加えて混合したものを使用することができる。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、レゾール樹脂、ポリウレタン樹脂、ポリアロマティック樹脂、ユリア樹脂、メラミン樹脂、アクリル樹脂、アルギド樹脂、不飽和ポリエステル樹脂、シリコン樹脂、などを、また、硬化剤としては二液硬化型のポリアミン系硬化剤や一液硬化型の酸無水物系硬化剤、又は、潜在硬化剤などを例示することができる。
【0013】
さらに、有機接着剤には所望によりゴム系の添加物を加えることができる。例えば、強度を向上させるためには、コア−シェル型アクリルゴム、アクリルゴムあるいはCTBNなどのゴム類を添加することができる。また、接着剤の剥離性能を向上させるためには、ゴムベースの有機接着剤である、クロロブレンゴム、ニトリルゴム、ポリサルファイド、ブチルゴム、シリコンゴム、アクリルゴム、ウレタンゴム、などを使用することができる。
【0014】
また、必要に応じてメチルセロソルブやメチルカルビトールなどの溶剤を加えることにより、有機接着剤の粘度を調整することができる。
【0016】
有機接着剤の配合量は通電接着剤全体を100重量%としたとき、10〜90重量%である。有機接着剤が10重量%未満では強度が低下し、90重量%を越えると通電性が得られないといった問題を生じるため好ましくない。より好ましくは15〜80重量%である。
【0018】
本発明の通電接着剤に使用される低融点金属粒子は、低温で溶融することができる。しかし、低融点金属粒子の表面に酸化皮膜が形成されていると、金属粒子が溶融温度に到達しても、表面の酸化皮膜により金属粒子が断熱されて接触しないために、溶融金属同士の合体による流動化が生じない。従って、高酸化皮膜除去能力を有する溶融促進剤を用いることで、低温で流動化する通電接着剤を得ることができる。
【0019】
低融点金属粒子としては粒子径44μm以下(#325)の錫−ビスマス合金(Sn:42質量%、ビスマス:58質量%、融点:139℃)を、また、溶融促進剤としては、塩素を0.35%含有し、ロジン、ロジンエステル、重合ロジン、水添加ロジン、ポリブデンなどを含む樹脂系液体フラックスを用いて低融点金属粒子の溶融条件を確認した。すなわち、錫メッキ銅板上に低融点金属粒子のみと、低融点金属粒子と溶融促進剤とを混合した組成物とを塗布して、150℃×2分、160℃×2分、200℃×2分の3水準で炉中加熱し、各加熱条件での溶融の有無を目視観察した。結果を表1に示す。
【0020】
【表1】

Figure 0003730209
【0021】
150℃×2分の加熱では、低融点金属粒子も組成物も溶融しない。しかし、160℃×2分の加熱では、金属粒子のみでは溶融しないものの、溶融促進剤を含む組成物は溶融した。また、金属粒子のみでは200℃×2分の加熱でも溶融は認められなかった。これは、低融点金属粒子の融点は139℃であるが、金属粒子表面に酸化皮膜が形成されているために、金属粒子のみでは200℃に加熱されても溶融した粒子が合体して流動化しないために、目視状態での溶融が認められなかったものである。しかし、溶融促進剤を混合した組成物では、溶融促進剤が金属粒子表面の酸化皮膜を分解するために、160℃でも溶融した金属同士が合体して流動化することができるわけである。
【0022】
溶融促進剤は、塩素、フッ素、臭素などのハロゲン元素の化合物を含むものが望ましい。具体的には、テトラブロモエタンなどのブロモ化合物、メチルアミン塩酸塩、エチルアミン塩酸塩、ジメチルアミン塩酸塩、ジエチルアミン塩酸塩、などのアミン塩酸塩、2−ブロモエチルアミン臭化水素酸塩、ジヒドロキシベンジルアミン臭化水素酸塩などのアミン臭化水素酸塩を例示することができる。
【0023】
これらのハロゲン元素を含む化合物は、常温では液体又は固体であるが、できれば加熱接合温度で融解して低融点金属粒子の表面に形成されている酸化物皮膜を除去することが可能な常温では固体の化合物であることが好ましい。また、溶融促進剤は、従来のハンダに使用されるフラックスと同様に、低融点金属粒子と有機接着剤と共に混練して組成物とすることができる。つまり併用する有機接着剤に使用されている樹脂と相溶するタイプのもの、例えば、有機接着剤の樹脂と同様に有機溶剤に溶解可能な化合物系の樹脂であることが望ましい。具体的には、塩素系フラックスやフッ素系フラックスなどを例示することができる。
【0024】
溶融促進剤のハロゲン元素、例えば塩素の含有量は、溶融促進剤全体を100重量%としたとき、0.1〜40重量%である。塩素の含有量が0.1重量%未満では、低融点金属粒子の酸化皮膜除去能力が十分ではなく、40重量%を越えると、保存安定性が低下するので好ましくない。
【0025】
また、溶融促進剤は、JIS Z 3197「はんだ付用フラックス試験方法」で規定されている広がり率試験で、広がり率が95%以上であることが好ましい。この広がり率が95%以下では低融点金属粒子の表面を十分に濡らすことができないため酸化皮膜の除去が不十分となることがあるからである。
【0026】
以上のような溶融促進剤の配合量は、通電接着剤全体を100重量%としたとき、0.5〜30重量%である。配合量が0.5重量%未満では酸化皮膜除去効果がなく、30重量%を越えると有機接着剤と反応して好ましくない。より好ましくは1.0〜25重量%である。
【0027】
低融点金属粒子の酸化を防止するために、例えばモノステアリルアシッドホスフェートなどのリン系酸化防止剤を用いることも好ましい。これらは、ハロゲン元素を含む溶融促進剤のように溶融温度で酸化膜を除去する効果は少ないが、混練された通電接着剤中の低融点金属粒子の酸化を抑制する効果がある。リン系酸化防止剤の配合量は、通電接着剤全体を100重量%として、1〜15重量%が適当である。
【0029】
導電性フィラーは、通電接着剤の接着時の加熱温度より高い融点を持つ金属であり、銀、銅、ニッケル、錫、亜鉛の少なくとも1種であることが望ましい。これらの金属のうちで亜鉛は安価であるので好ましい。亜鉛は低融点金属、特に錫に対してよく濡れるばかりでなく錫と合金化しにくい。このため亜鉛の表面に濡れて付着した錫が、亜鉛と合金化して亜鉛に吸収される程度が低く、長く亜鉛表面で溶融した錫あるいは錫合金として存在する。このため亜鉛の金属粒子を互いに接合するのに好都合である。
【0030】
導電性フィラーの形状は球状が好ましく、平均粒子径は10〜100μmであることが望ましい。粒子径が10μm未満では酸化皮膜が多くなって通電性が低下する。また、100μmを越えると分散性が低下して接着部の強度が低下することがあり好ましくない。より好ましくは20〜80μmである。
【0031】
また、導電性フィラーの配合量は、通電接着剤全体を100体積%としたとき、15〜60体積%であることが望ましい。配合量が15体積%未満では長さ方向に導電性フィラーの配線ができないので、導電性フィラーを加えた効果を得ることができない。また、60体積%を越えて配合すると接着部の強度が低下することがあり好ましくない。より好ましくは20〜50体積%である。
【0032】
従来のハンダなどの接合材は一般的にはペースト状で塗布可能な形状であることが多い。しかし、本発明の通電接着剤は、例えばテープ状として、必要に応じてまた、必要箇所に貼付することができる。このように、通電接着剤をテープ状またはシート状に成形することにより、接着作業の生産性の向上や作業環境の改善を図ることができる。
【0033】
本発明の通電接着剤をテープ状にして使用する場合には、テープとしての成形性や、その後の取り扱いなどを考慮して以下の配合が望ましい。すなわち、通電接着剤全体を100重量%として、低融点金属粒子は、10〜90重量%、また、有機接着剤は、90〜10重量%、さらに、溶融促進剤は、1〜15重量%が適当である。なお、常温における成形性や形状安定性を考慮すると、有機接着剤はエポキシ樹脂、フェノール樹脂などが好ましく、溶融促進剤としては、塩素系フラックスなどが好ましい。
【0034】
さらに、本発明の通電接着剤をシートとする場合には、補強材としてポリアミド、ポリエステル、テフロン(登録商標)などのプラスティックフィルムやポリエステル、ポリプロピレン、ガラスなどのクロスを使用することができる。また、離型紙に挟んで保管し、必要に応じて裁断して使用できるようにすることも望ましい。
【0035】
なお、本発明の通電接着剤をテープまたはシート状で使用する場合には、0.05〜0.5mmの厚さが適当である。厚さが0.05mm未満のシートやテープは形成することが困難であり、一方、0.5mmを越えて厚いと厚さ方向の回路を形成し難いために接続抵抗が高くなるので好ましくない。
【0036】
本発明の通電接着剤の用途は、通電接着のみに限定されるものではない。例えば導電性フィラーを含有する通電接着剤は、線状に成形しても通電可能であるので、フレキシブル基板の印刷配線やチップ部品の電極形成など、通電接着剤以外の用途にも好適に使用することができる。
【0037】
【試験例】
(試験例1)
表2に示す10種類の通電接着剤を調整した。低融点金属粒子としては粒子径44μm以下(#325)の錫−ビスマス合金(Sn:42質量%、ビスマス:58質量%、融点:139℃)を用い、有機接着剤としては、主剤がアクリルゴム微粒子分散樹脂で、硬化剤は酸無水系硬化剤を、主剤:硬化剤=6:1(重量比)で混合した樹脂(試料No.1〜8はエポキシ樹脂、試料No.9はフェノール樹脂、試料No.10はポリエステル樹脂)を用い、また、溶融促進剤としては、塩素を0.35%含有する樹脂系液体フラックス(石川金属(株)製 フラストR50、広がり率:95%)を用いた。
【0038】
通電接着剤は表2に示す試料No.1〜10の各配合(重量部)で混練して供試組成物とした。各供試組成物を錫メッキ銅板(厚さ:0.6mm、幅:25mm、長さ:40mm)のほぼ中央に、15mm×15mmの面積で厚さ約0.2mmで塗布した。塗布した供試組成物の上に、0.6mm厚さの錫メッキ銅板を図1のようにL字型とした試片13(x:15mm、y:15mm、z:15mm、なおpは引張り試験用の治具の係合穴である)を載置して、加圧接着後クリップで錫メッキ銅板に固定して図2の接着試験片10を得た。すなわち、接着試験片10は、錫メッキ銅板11の表面に塗布した供試組成物12でL字型の試片13を接着して得られたものである。次に、接着試験片10を加熱炉で170℃×20分加熱して取り出し、a,b間の抵抗をミリオームテスタ3220(日置電気(株)製)で測定して供試組成物12の接続抵抗値を求めた。また、試片13を矢印X方向にプッシュプルゲージ((株)イマダ製 DPX−50)で引っ張ることにより供試組成物12の剥離強度を測定した。結果を表2に併記した。
【0039】
【表2】
Figure 0003730209
【0040】
表2に示すように試料No.2〜No.7は、接続抵抗値が0.2〜0.3mΩと極めて小さく通電性の優れていることが分かる。また、有機接着剤の増量につれて剥離強度は高くなる。試料No.1は、低融点金属粒子と有機接着剤との混練組成物で溶融促進剤を含有していないために、通電はあるものの他の試料に比べて接続抵抗は高くなっている。しかし、この試料No.1に0.5重量部の溶融促進剤を添加した試料No.2では、接続抵抗が0.2mΩと極めて低くなり溶融促進剤の酸化皮膜除去効果の大きいことが分かる。
【0041】
試料No.8は、低融点金属粒子と、有機接着剤とは試料No.3と同様とし、溶融促進剤に代えて従来のクリームハンダに用いられるノンハロゲンのロジンフラックス(石川金属(株)製 RM53、広がり率:90%)を使用した参考例である。接続抵抗値は45mΩと、試料No.1の溶融促進剤なしの場合に近い値となり低融点金属粒子が溶融して流動化していないことが分かった。
【0042】
試料N0.9は、供試組成物の構成比率は試料No.2と同様であるが、有機接着剤としてフェノール樹脂を用いた場合である。接続抵抗値は0.1mΩと、試験例中最も低い値が得られた。しかし、剥離強度は試料No.2よりも低く40Nであった。
【0043】
試料No.10は、供試組成物の構成比率は試料No.2と同様であるが、有機接着剤としてポリエステル樹脂を用いた場合である。接続抵抗値は0.2mΩと、試料No.2と同等の値が得られた。しかし、剥離強度は試料No.2よりも高く60Nであった。
(試験例2)
低融点金属粒子として、粒子径44μm以下(#325)の錫−ビスマス合金(Sn:42質量%、ビスマス:58質量%、融点:139℃)を、また、有機接着剤としては、主剤がアクリルゴム微粒子分散エポキシ樹脂で、硬化剤が酸無水系硬化剤を、主剤:硬化剤=6:1(重量比)で混合したエポキシ樹脂を、さらに、溶融促進剤としては、表3の11種類の化合物を用いた。
【0044】
各成分の配合割合を重量比率で、低融点金属粒子:有機接着剤:溶融促進剤=50:49:1として混練し11種類の通電接着剤(供試組成物)を得た。得られた供試組成物を用いて試験例1と同様の接着試験片10を作成し、加熱炉で170℃×20分加熱して取り出し、試験例1と同様の方法で供試組成物の接続抵抗値と剥離強度とを測定した。結果を表3に併記した。
【0045】
【表3】
Figure 0003730209
【0046】
11種類の供試組成物の接続抵抗値は、溶融促進剤の種類に関係なく0.6〜0.8mΩであった。また、引張り強度は60〜100Nであった。
(試験例3)
低融点金属粒子として、粒子径44μm以下(#325)の錫−ビスマス合金(Sn:42質量%、ビスマス:58質量%、融点:139℃)を、また、有機接着剤としては、主剤が汎用エポキシ樹脂で、硬化剤が酸無水系硬化剤を、主剤:硬化剤=100:85(重量比)で混合したエポキシ樹脂を、さらに、溶融促進剤としては、塩素を0.35%含有する樹脂系液体フラックス(石川金属(株)製 フラストR50、広がり率:95%)を用いた。
【0047】
各成分の配合割合を重量比率で、低融点金属粒子:有機接着剤:溶融促進剤=60:30:10として混練し通電接着剤を得た。
【0048】
錫メッキ銅板上にテープで0.2mmの隙間を形成し、得られた通電接着剤を0.2mmの厚さで10mm×18mmの面積に塗布した。さらに、塗布した通電接着剤の上に錫メッキ銅板を重ね図3の接着試験片を作成した。すなわち、接着試験片20は通電接着剤(供試組成物)12をテープ21の厚さを保持して錫メッキ銅板11,11で挟んで得られたものである。接着を安定化するため接着部22をクリップ(図示せず)で挟み、炉中で170℃×10分の加熱を施した。
【0049】
加熱後の接着試験片20について、a,b間の抵抗をミリオームハイテスタ3220(日置電気(株)製)で測定して通電接着剤12の接続抵抗値を求めた。また、接着試験片20を引張試験機で、矢印X−X方向に引張り、引張り剪断強度を測定した。なお、引張り速度は5mm/minとした。
【0050】
通電接着剤の接続抵抗値は0.8mΩであり、この部分での引張り剪断強度は8.16N/mm2であった。
【0051】
本試験例の通電接着剤は、例えば、図5に示す車両のリヤガラス上に形成されるガラスヒータの銀電極とターミナルとの接続に好適に使用できる。すなわち、図5は、ガラスヒータの構成を示す模式図であるが、リヤガラス51の表面に一体的に形成された銀ペーストからなる電極52とワイヤハーネス54に接続したターミナル53とを本試験例の供試組成物(通電接着剤)12で好適に接着することができるわけである。
(試験例4)
低融点金属粒子として、粒子径44μm以下(#325)の錫−ビスマス合金(Sn:42質量%、ビスマス:58質量%、融点:139℃)を、また、有機接着剤としては、主剤が汎用エポキシ樹脂、硬化剤が酸無水系硬化剤で、主剤:硬化剤=100:85(重量比)で混合したエポキシ樹脂を、さらに、溶融促進剤としては、塩素を0.35%含有する樹脂系液体フラックス(石川金属(株)製 フラストR50、広がり率:95%)を用いた。
【0052】
各成分の配合割合は重量比率で、低融点金属粒子:有機接着剤:溶融促進剤=64:35.7:0.3として混練し供試組成物(通電接着剤)を得た。
【0053】
0.75sq自動車用低圧電線を錫メッキ銅板上にクリップで固定し、得られた供試組成物で電線端部を錫メッキ銅板と接着し、図4の接着試験片30を得た。すなわち、接着試験片30は錫メッキ銅板11により線(0.75sq自動車用低圧電線)31をクリップ32で固定してその電線33の端部を供試組成物12で錫メッキ銅板11に接着して得られたものである。
【0054】
次に、接着試験片30を170℃×10分加熱硬化させて、供試組成物の接続抵抗と引張り強度とを測定した。接続抵抗は接着試験片30のa(錫メッキ銅板11端部)とb(より線31の被覆を剥がした部分)との間の抵抗をミリオームテスタ3220(日置電気(株)製)で測定して求めた。また、引張り試験はプッシュプルメータ((株)イマダ製、DPX−50)で錫メッキ銅板11と平行に引張って実施した。
【0055】
また、比較のために、有機接着剤を用いない低融点金属と溶融促進剤のみからなる接着組成物を調製して、同様に0.75sq自動車用低圧電線を錫メッキ銅板上に接着して160℃×2分加熱した接着試験片を作成し、試験例と同様に評価して参考例とした。結果を表4に示す。
(試験例5)
通電接着剤の形状をテープ状とした以外は試験例4と全く同様にして、より線31を錫メッキ銅板11に接着して、接着試験片30を得た。試験例4と同様に、加熱硬化し接続抵抗と引張り強度とを測定した。結果を表4に併記する。
【0056】
【表4】
Figure 0003730209
【0057】
試験例4の接続抵抗値は0.9mΩと、参考例の0.6mΩとほぼ同等の低い抵抗値であった。また、引張り強度は55Nであり、有機接着剤を含まない参考例に比べて2倍以上の高い値が得られた。すなわち、試験例4の供試組成物(通電接着剤)は、接続抵抗は低く接着力が高いことが分かる。
【0058】
また、テープ状の供試組成物を使用した試験例5は、接続抵抗値は1.0mΩと試験例4とほぼ同様の値であったが、引張り強さは80Nと試験例4の55Nに比べて大きな値が得られた。
【0059】
試験例4では塗布した供試組成物部分に荷重を付与していないが、この状態でも十分低い接続抵抗を得ることができるので、例えば、図6のLEDやチップ部品などの電子部品の接合には好適に使用することができる。図6はLEDとバスバ−との接合を示す模式図である。LED61の端子62をバスバ−63のスルーホール64に接着する。バスバー63のスルーホール64には予め通電接着剤が塗布されており、組立後加熱することによって接着剤がリフローされてLED61はバスバー63と通電接着することができる。
(試験例6)
本発明の導電性フィラーを含有する通電接着剤は、線状に成形しても通電可能であるので、フレキシブル基板の印刷配線として好適である。
【0060】
低融点金属粒子として、粒子径44μm以下(#325)の錫−ビスマス合金(Sn:42質量%、ビスマス:58質量%、融点:139℃)を用い、また、有機接着剤としては、主剤がアクリルゴム微粒子分散エポキシ樹脂で、硬化剤が酸無水系硬化剤を、主剤:硬化剤=6:1(重量比)で混合したエポキシ樹脂を用い、また、溶融促進剤としては、塩素を33.4%含有する水溶性フラックス(石川金属(株)製 フラストA、広がり率:95%)を用いた。
【0061】
さらに、表5の導電性フィラー(亜鉛、錫、銅、銀、ニッケル)を添加して5種類の通電接着剤である供試組成物を得た。 なお、各成分の配合割合は体積比率で、低融点金属粒子:有機接着剤:溶融促進剤:導電性フィラー=10:49:1:40として混練した。
【0062】
得られた供試組成物を厚さ:0.6mm、幅:100mm、長さ:100mmのポリエステルフィルム表面に5mm×50mmの面積に0.1mmの厚さで塗布した。その後、160℃×30分間加熱して取り出した。塗布した供試組成物の長さ(50mm)の両端で抵抗値を測定し、体積抵抗を求めた。結果を表5に併記した。
【0063】
また、比較のために通常用いられる銀粒子のみを含有する印刷配線を試験例6の供試組成物と同様にポリエステルフィルム表面に形成し、体積抵抗を求めて参考例とした。結果を表5に併記した。なお、参考例の配合割合は、体積比率で、有機接着剤:銀フィラー=49:51であった。
【0064】
【表5】
Figure 0003730209
【0065】
参考例として示した、通常使用されている印刷配線の体積抵抗値は、3.0×10-4Ω・cmであった。また、本試験例の5種類の導電性フィラーを含む通電接着剤では、体積抵抗値は、導電性フィラーが亜鉛粉末である供試組成物が最も高くて7.0×10-4Ω・cmであり、一方、銅粉末を含む供試組成物が最も低くて、4.0×10-5Ω・cmであった。このように、本試験例の供試組成物(通電接着剤)は、従来使用されている銀粒子のみからなる印刷配線とほぼ同等の体積抵抗値であり、フレキシブル基板などの印刷配線として好適に使用できることが分かった。
【0066】
【発明の効果】
本発明の通電接着剤は、低融点金属粒子の融点近傍で溶融し、硬化又は冷却凝固するので、プリント基板への電機部品や自動車部品などの配線を低温で容易に接着することができ、組み立てコスト低減に大きく寄与することができる。
【図面の簡単な説明】
【図1】試験例1の引張り試片の形状を示す斜視図である。
【図2】試験例1の接着試験片を示す説明図である。
【図3】試験例2の接着試験片を示す説明図である。
【図4】試験例3の接着試験片を示す説明図である。
【図5】車両のガラスヒータの構成を示す模式図である。
【図6】LEDとバスバーとの接着を示す説明図である。
【符号の説明】
11:錫メッキ銅板 12:通電接着剤(供試組成物) 21:テープ 31:より線 51:ガラス 52:電極 53:ターミナル 54:ワイヤハーネス
61:LED 62:端子 63:バスバー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energizable adhesive containing low melting point metal particles.
[0002]
[Prior art]
In many cases, an electrical component such as a home appliance is bonded to a printed circuit board or the like, or a wiring such as an automobile component is bonded to a conductive portion with solder. Solder is an alloy of lead and tin, and is usually used as cream solder in which flux is added to the alloy particles. However, in response to the recent trend toward lead-free electronic devices, attempts have been made to use conductive adhesives for assembling general electronic device substrates as a solder substitute. This conductive adhesive uses silver, gold, nickel, carbon, etc. as fillers that exhibit conductivity, and epoxy resin, phenol resin, polyester resin, acrylic resin, etc. as binders, and these fillers and binders together with curing agents and solvents. According to the purpose, it is appropriately blended to obtain a desired conductive adhesive. A solder-containing conductive adhesive has also been proposed in order to improve the moisture resistance problem of the conductive adhesive (see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-143529 A
[0004]
[Problems to be solved by the invention]
Conventional solder is an alloy of lead and tin added with a flux, and is not suitable for the recent trend toward lead-free soldering. Although lead-free solder using a tin-silver-copper alloy is also used, there are problems such as high cost, high melting temperature, poor wettability and difficulty in hand soldering. In addition, the conductive adhesive containing a conductive filler has higher resistance and heat conduction than solder, and this resistance is a contact resistance between metal powders, so the resistance value changes due to temperature rise. When a current is applied, there is a problem that the resistance value increases due to a temperature rise due to resistance heat generation and the current cannot be supplied. Furthermore, in the solder-containing conductive adhesive, the resistance value due to solder melting does not decrease unless the temperature is higher by 30 ° C. than the melting temperature of the solder. As the conductive filler, solder, such as tin, silver, copper, etc. However, there is a problem that the high melting point metal powder as a conductive filler lowers the peel strength in applications that require only peel strength, and none of these methods are sufficient.
[0005]
An object of the present invention is to solve such problems, and an object of the present invention is to provide an inexpensive electrically conductive adhesive having a low melting temperature, good wettability and high adhesive strength.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned many problems, the inventors have come up with a composition that ensures electrical conductivity by melting a low-melting-point metal and ensures adhesiveness with an organic adhesive. And this novel composition is named an electrically conductive adhesive, and this invention is completed.
[0009]
That is, The current-carrying adhesive of the present invention is Made of tin-bismuth alloy or tin-copper alloy Remove low melting point metal particles and oxide film formed on the surface of low melting point metal particles under heating Contains halogen elements A melting accelerator; At least one of silver, copper, nickel, tin, and zinc A conductive filler; Mainly thermosetting epoxy resin The low melting point metal is subjected to the action of a melting accelerator by heating to form a current path with the conductive filler. Turn into It is characterized by
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Current-carrying adhesive of the present invention In Low-melting-point metal particles are basic components that form a current path. As the low melting point metal particles, a tin alloy generally known as solder can be used. Specifically, a tin-bismuth alloy or a tin-copper alloy is preferable. A tin-bismuth alloy is suitable because it has a low melting point of 139 ° C. at the eutectic point (mass ratio, tin: bismuth = 42: 58). In addition, in applications that require high heat resistance, it is also preferable to use 99.3% tin-0.7% copper alloy (melting point: 220 ° C.). The preferred particle size of the low melting point metal particles is 10 to 100 μm. If the particle size is less than 10 μm, the oxide film becomes thick and difficult to melt, and if it exceeds 100 μm, the particles are easily separated in the organic adhesive and are not uniformly dispersed. For this reason, variations in contact resistance value and strength are not suitable.
[0011]
The blending of the low melting point metal particles is 10 to 90% by weight when the total amount of the current-carrying adhesive is 100% by weight. When the low melting point metal particles are less than 10% by weight, the electric conductivity cannot be obtained. When the low melting point metal particles exceed 90% by weight, the viscosity of the electric adhesive increases and the coating property is lowered. More preferably, it is 20 to 80% by weight.
[0012]
As the organic adhesive, a mixture obtained by adding a curing agent to a thermosetting resin that is adhesively cured by heating can be used. As the thermosetting resin, epoxy resin, phenol resin, resol resin, polyurethane resin, polyaromatic resin, urea resin, melamine resin, acrylic resin, alginide resin, unsaturated polyester resin, silicone resin, etc. are also cured. Examples of the agent include a two-component curable polyamine-based curing agent, a one-component curable acid anhydride-based curing agent, and a latent curing agent.
[0013]
Further, a rubber-based additive can be added to the organic adhesive as desired. For example, in order to improve strength, rubbers such as core-shell type acrylic rubber, acrylic rubber, or CTBN can be added. Moreover, in order to improve the peeling performance of the adhesive, rubber-based organic adhesives such as chlorobrene rubber, nitrile rubber, polysulfide, butyl rubber, silicon rubber, acrylic rubber, urethane rubber, etc. can be used. .
[0014]
Moreover, the viscosity of an organic adhesive agent can be adjusted by adding solvents, such as methyl cellosolve and methyl carbitol, as needed.
[0016]
The compounding amount of the organic adhesive is 10 to 90% by weight when the entire conductive adhesive is 100% by weight. If the organic adhesive is less than 10% by weight, the strength is lowered, and if it exceeds 90% by weight, there is a problem in that electric conductivity cannot be obtained. More preferably, it is 15 to 80% by weight.
[0018]
The low melting point metal particles used in the current-carrying adhesive of the present invention can be melted at a low temperature. However, if an oxide film is formed on the surface of the low melting point metal particles, even if the metal particles reach the melting temperature, the metal particles are insulated by the oxide film on the surface and do not come into contact with each other. There is no fluidization. Therefore, by using a melting accelerator having a high oxide film removing ability, it is possible to obtain an electrically conductive adhesive that can be fluidized at a low temperature.
[0019]
As the low melting point metal particles, a tin-bismuth alloy (Sn: 42% by mass, bismuth: 58% by mass, melting point: 139 ° C.) having a particle size of 44 μm or less (# 325) is used. The melting conditions of the low-melting-point metal particles were confirmed using a resin-based liquid flux containing 35% and containing rosin, rosin ester, polymerized rosin, water-added rosin, polybutene and the like. That is, only low melting point metal particles and a composition in which low melting point metal particles and a melting accelerator are mixed are applied onto a tin-plated copper plate, and 150 ° C. × 2 minutes, 160 ° C. × 2 minutes, 200 ° C. × 2 The sample was heated in a furnace at three levels, and the presence or absence of melting under each heating condition was visually observed. The results are shown in Table 1.
[0020]
[Table 1]
Figure 0003730209
[0021]
Heating at 150 ° C. × 2 minutes does not melt the low melting point metal particles or the composition. However, heating at 160 ° C. × 2 minutes did not melt only with metal particles, but the composition containing a melting accelerator melted. In addition, melting was not observed with metal particles alone even when heated at 200 ° C. for 2 minutes. This is because the melting point of the low melting point metal particles is 139 ° C., but since the oxide film is formed on the surface of the metal particles, the molten particles coalesce and fluidize even when heated to 200 ° C. alone. Therefore, melting in the visible state was not recognized. However, in the composition in which the melting accelerator is mixed, the melting accelerator decomposes the oxide film on the surface of the metal particles, so that the molten metals can be united and fluidized even at 160 ° C.
[0022]
The melting accelerator preferably contains a halogen element compound such as chlorine, fluorine or bromine. Specifically, bromo compounds such as tetrabromoethane, amine hydrochlorides such as methylamine hydrochloride, ethylamine hydrochloride, dimethylamine hydrochloride, diethylamine hydrochloride, 2-bromoethylamine hydrobromide, dihydroxybenzylamine An amine hydrobromide such as hydrobromide can be exemplified.
[0023]
These halogen-containing compounds are liquid or solid at room temperature, but if possible, they are solid at room temperature, which can be melted at the heat bonding temperature to remove the oxide film formed on the surface of the low melting point metal particles. It is preferable that it is a compound of these. Further, the melting accelerator can be kneaded together with the low melting point metal particles and the organic adhesive in the same manner as the flux used in the conventional solder. That is, it is desirable that the resin is of a type compatible with the resin used in the organic adhesive used in combination, for example, a compound resin that can be dissolved in an organic solvent in the same manner as the organic adhesive resin. Specifically, a chlorine-type flux, a fluorine-type flux, etc. can be illustrated.
[0024]
The content of a halogen element, for example, chlorine, in the melting accelerator is 0.1 to 40% by weight when the entire melting accelerator is 100% by weight. If the chlorine content is less than 0.1% by weight, the ability to remove the oxide film of the low melting point metal particles is not sufficient, and if it exceeds 40% by weight, the storage stability is lowered, which is not preferable.
[0025]
Moreover, it is preferable that a spreading | diffusion rate is 95% or more by the spreading | diffusion rate test prescribed | regulated by JIS Z3197 "Flux test method for soldering" as a melting accelerator. This is because if the spreading ratio is 95% or less, the surface of the low-melting-point metal particles cannot be sufficiently wetted, so that the removal of the oxide film may be insufficient.
[0026]
The blending amount of the melting accelerator as described above is 0.5 to 30% by weight when the entire current-carrying adhesive is 100% by weight. If the blending amount is less than 0.5% by weight, there is no effect of removing the oxide film, and if it exceeds 30% by weight, it reacts with the organic adhesive, which is not preferable. More preferably, it is 1.0-25 weight%.
[0027]
In order to prevent the low melting point metal particles from being oxidized, it is also preferable to use a phosphorus-based antioxidant such as monostearyl acid phosphate. These have little effect of removing the oxide film at the melting temperature like the melting accelerator containing a halogen element, but have the effect of suppressing the oxidation of the low melting point metal particles in the kneaded current-carrying adhesive. The blending amount of the phosphorus-based antioxidant is suitably 1 to 15% by weight with respect to 100% by weight of the entire current-carrying adhesive.
[0029]
The conductive filler is a metal having a melting point higher than the heating temperature at the time of adhesion of the energizing adhesive, and is preferably at least one of silver, copper, nickel, tin, and zinc. Of these metals, zinc is preferred because it is inexpensive. Zinc not only wets well with low melting point metals, especially tin, but also is difficult to alloy with tin. For this reason, tin that has wetted and adhered to the surface of zinc is less likely to be alloyed with zinc and absorbed by zinc, and is present as tin or a tin alloy that has melted long on the surface of zinc. This is advantageous for joining zinc metal particles together.
[0030]
The shape of the conductive filler is preferably spherical, and the average particle size is desirably 10 to 100 μm. When the particle diameter is less than 10 μm, the oxide film increases and the conductivity is reduced. On the other hand, if it exceeds 100 μm, the dispersibility is lowered and the strength of the bonded portion is lowered, which is not preferable. More preferably, it is 20-80 micrometers.
[0031]
In addition, the blending amount of the conductive filler is desirably 15 to 60% by volume when the entire conductive adhesive is 100% by volume. When the blending amount is less than 15% by volume, wiring of the conductive filler cannot be performed in the length direction, so that the effect of adding the conductive filler cannot be obtained. Moreover, when it mixes exceeding 60 volume%, the intensity | strength of an adhesion part may fall and it is unpreferable. More preferably, it is 20-50 volume%.
[0032]
Conventional bonding materials such as solder generally have a paste-like shape that can be applied. However, the current-carrying adhesive of the present invention can be attached to a necessary part as necessary, for example, in the form of a tape. Thus, by forming the energizing adhesive into a tape shape or a sheet shape, it is possible to improve the productivity of the bonding work and the work environment.
[0033]
When the current-carrying adhesive of the present invention is used in the form of a tape, the following blending is desirable in consideration of the formability as a tape and subsequent handling. That is, the entire current-carrying adhesive is 100% by weight, the low melting point metal particles are 10 to 90% by weight, the organic adhesive is 90 to 10% by weight, and the melting accelerator is 1 to 15% by weight. Is appropriate. In consideration of moldability and shape stability at room temperature, the organic adhesive is preferably an epoxy resin or a phenol resin, and the melting accelerator is preferably a chlorine-based flux.
[0034]
Furthermore, when the current-carrying adhesive of the present invention is used as a sheet, a plastic film such as polyamide, polyester, or Teflon (registered trademark) or a cloth such as polyester, polypropylene, or glass can be used as a reinforcing material. It is also desirable to store the paper in a release paper so that it can be cut and used as necessary.
[0035]
When the current-carrying adhesive of the present invention is used in a tape or sheet form, a thickness of 0.05 to 0.5 mm is appropriate. It is difficult to form a sheet or tape having a thickness of less than 0.05 mm. On the other hand, if the thickness exceeds 0.5 mm, it is difficult to form a circuit in the thickness direction, which increases the connection resistance.
[0036]
The application of the energizing adhesive of the present invention is not limited to energizing adhesion. For example, since an energizing adhesive containing a conductive filler can be energized even if it is formed into a linear shape, it can be suitably used for applications other than energizing adhesives such as printed wiring on flexible boards and electrode formation on chip components. be able to.
[0037]
[Test example]
(Test Example 1)
Ten kinds of energizing adhesives shown in Table 2 were prepared. Tin-bismuth alloy (Sn: 42% by mass, bismuth: 58% by mass, melting point: 139 ° C.) having a particle size of 44 μm or less (# 325) is used as the low melting point metal particles, and the main component is an acrylic rubber as the organic adhesive. It is a fine particle-dispersed resin, and a curing agent is an acid anhydride curing agent mixed in a base agent: curing agent = 6: 1 (weight ratio) (sample Nos. 1 to 8 are epoxy resins, sample No. 9 is a phenol resin, Sample No. 10 was a polyester resin), and a resin-based liquid flux containing 0.35% chlorine (Fast R50, spread rate: 95%, manufactured by Ishikawa Metal Co., Ltd.) was used as a melting accelerator. .
[0038]
The current-carrying adhesive is sample No. shown in Table 2. Each composition (parts by weight) 1 to 10 was kneaded to prepare a test composition. Each test composition was applied to a substantially center of a tin-plated copper plate (thickness: 0.6 mm, width: 25 mm, length: 40 mm) with an area of 15 mm × 15 mm and a thickness of about 0.2 mm. A test piece 13 (x: 15 mm, y: 15 mm, z: 15 mm, p is a tensile member) having a 0.6 mm thick tin-plated copper plate as shown in FIG. The test piece 10 of FIG. 2 was obtained by placing a test jig) and fixing it to a tin-plated copper plate with a clip after pressure bonding. That is, the adhesion test piece 10 is obtained by bonding the L-shaped test piece 13 with the test composition 12 applied to the surface of the tin-plated copper plate 11. Next, the adhesion test piece 10 is taken out by heating at 170 ° C. for 20 minutes in a heating furnace, and the resistance between a and b is measured by a milliohm tester 3220 (manufactured by Hioki Electric Co., Ltd.) to connect the test composition 12. The resistance value was determined. Moreover, the peeling strength of the test composition 12 was measured by pulling the test piece 13 in the arrow X direction with a push-pull gauge (manufactured by Imada Co., Ltd., DPX-50). The results are shown in Table 2.
[0039]
[Table 2]
Figure 0003730209
[0040]
As shown in Table 2, Sample No. 2-No. 7 shows that the connection resistance value is as small as 0.2 to 0.3 mΩ and is excellent in electrical conductivity. Also, the peel strength increases as the amount of organic adhesive increases. Sample No. No. 1 is a kneaded composition of low-melting-point metal particles and an organic adhesive and does not contain a melting accelerator. Therefore, the connection resistance is higher than that of other samples that are energized. However, this sample No. No. 1 to which 0.5 part by weight of a melting accelerator was added was sample No. 2 shows that the connection resistance is as extremely low as 0.2 mΩ, and the effect of removing the oxide film of the melting accelerator is large.
[0041]
Sample No. No. 8 is a sample having a low melting point metal particle and an organic adhesive. 3 is a reference example using a non-halogen rosin flux (RM53 manufactured by Ishikawa Metal Co., Ltd., spread rate: 90%) used in conventional cream solder instead of the melt accelerator. The connection resistance value is 45 mΩ, and sample No. It became a value close to the case of no melting accelerator 1 and it was found that the low melting point metal particles were not melted and fluidized.
[0042]
Sample N0.9 is composed of sample No. This is the same as 2 except that a phenol resin is used as the organic adhesive. The connection resistance value was 0.1 mΩ, which was the lowest value among the test examples. However, the peel strength was measured according to Sample No. It was 40 N lower than 2.
[0043]
Sample No. No. 10 is the sample No. This is the same as 2 except that a polyester resin is used as the organic adhesive. The connection resistance value is 0.2 mΩ, sample No. A value equivalent to 2 was obtained. However, the peel strength was measured according to Sample No. It was 60 N higher than 2.
(Test Example 2)
Tin-bismuth alloy (Sn: 42% by mass, bismuth: 58% by mass, melting point: 139 ° C.) having a particle diameter of 44 μm or less (# 325) is used as the low melting point metal particle, and the main agent is acrylic as the organic adhesive. An epoxy resin obtained by mixing a rubber fine particle-dispersed epoxy resin with an acid anhydride-based curing agent as a main agent: curing agent = 6: 1 (weight ratio), and 11 types of melting accelerators shown in Table 3 The compound was used.
[0044]
The blending ratio of each component was kneaded as a low-melting-point metal particle: organic adhesive: melting accelerator = 50: 49: 1 to obtain 11 types of current-carrying adhesives (test compositions). Using the obtained test composition, an adhesion test piece 10 similar to that in Test Example 1 is prepared, and is taken out by heating at 170 ° C. for 20 minutes in a heating furnace, and the test composition is tested in the same manner as in Test Example 1. The connection resistance value and peel strength were measured. The results are also shown in Table 3.
[0045]
[Table 3]
Figure 0003730209
[0046]
The connection resistance value of the 11 types of test compositions was 0.6 to 0.8 mΩ regardless of the type of the melting accelerator. Moreover, the tensile strength was 60-100N.
(Test Example 3)
Tin-bismuth alloy (Sn: 42% by mass, bismuth: 58% by mass, melting point: 139 ° C.) having a particle diameter of 44 μm or less (# 325) is used as the low melting point metal particle, and the main agent is generally used as the organic adhesive. An epoxy resin in which an curing agent is an acid anhydride curing agent mixed in a main agent: curing agent = 100: 85 (weight ratio), and a melting accelerator is a resin containing 0.35% of chlorine. System liquid flux (Ishikawa Metal Co., Ltd. product Frust R50, spreading rate: 95%) was used.
[0047]
The blending ratio of each component was kneaded as a low-melting-point metal particle: organic adhesive: melting accelerator = 60: 30: 10 to obtain a current-carrying adhesive.
[0048]
A 0.2 mm gap was formed with a tape on a tin-plated copper plate, and the obtained energizing adhesive was applied to an area of 10 mm × 18 mm with a thickness of 0.2 mm. Further, a tin-plated copper plate was laminated on the applied current-carrying adhesive to prepare an adhesion test piece shown in FIG. That is, the adhesion test piece 20 was obtained by holding the current-carrying adhesive (test composition) 12 between the tin-plated copper plates 11 and 11 while maintaining the thickness of the tape 21. In order to stabilize the bonding, the bonding portion 22 was sandwiched between clips (not shown) and heated in a furnace at 170 ° C. for 10 minutes.
[0049]
About the adhesion test piece 20 after a heating, the resistance between a and b was measured with the milliohm high tester 3220 (made by Hioki Electric Co., Ltd.), and the connection resistance value of the electrically conductive adhesive 12 was calculated | required. Moreover, the adhesion test piece 20 was pulled in the arrow XX direction with a tensile tester, and the tensile shear strength was measured. The pulling speed was 5 mm / min.
[0050]
The connection resistance of the current-carrying adhesive is 0.8 mΩ, and the tensile shear strength at this part is 8.16 N / mm. 2 Met.
[0051]
The energizing adhesive of this test example can be suitably used, for example, for connecting the silver electrode of the glass heater formed on the rear glass of the vehicle shown in FIG. 5 and the terminal. That is, FIG. 5 is a schematic diagram showing the configuration of the glass heater. In this test example, an electrode 52 made of silver paste integrally formed on the surface of the rear glass 51 and a terminal 53 connected to the wire harness 54 are used. The test composition (electrical adhesive) 12 can be suitably bonded.
(Test Example 4)
Tin-bismuth alloy (Sn: 42% by mass, bismuth: 58% by mass, melting point: 139 ° C.) having a particle diameter of 44 μm or less (# 325) is used as the low melting point metal particle, and the main agent is generally used as the organic adhesive. Epoxy resin, curing agent is an acid anhydride curing agent, epoxy resin mixed in main agent: curing agent = 100: 85 (weight ratio), and further a resin system containing 0.35% chlorine as a melting accelerator The liquid flux (Ishikawa Metal Co., Ltd. product Frust R50, spreading rate: 95%) was used.
[0052]
The blending ratio of each component was a weight ratio, and kneaded as low melting point metal particles: organic adhesive: melting accelerator = 64: 35.7: 0.3 to obtain a test composition (electrical adhesive).
[0053]
A 0.75 sq low-voltage electric wire for automobiles was fixed on a tin-plated copper plate with a clip, and the end portion of the wire was bonded to the tin-plated copper plate with the obtained test composition to obtain an adhesion test piece 30 of FIG. That is, the adhesion test piece 30 is fixed to the tin-plated copper plate 11 with the test composition 12 by fixing the wire (0.75 sq low-voltage electric wire for automobile) 31 with the clip 32 by the tin-plated copper plate 11. It was obtained.
[0054]
Next, the adhesion test piece 30 was cured by heating at 170 ° C. for 10 minutes, and the connection resistance and tensile strength of the test composition were measured. The connection resistance was measured with a milliohm tester 3220 (manufactured by Hioki Electric Co., Ltd.) between the resistance a (the end of the tinned copper plate 11) and b (the portion where the coating of the stranded wire 31 was removed) of the adhesion test piece 30. Asked. The tensile test was carried out by pulling in parallel with the tin-plated copper plate 11 using a push-pull meter (manufactured by Imada Co., Ltd., DPX-50).
[0055]
For comparison, an adhesive composition consisting only of a low-melting-point metal and a melting accelerator without using an organic adhesive was prepared, and a 0.75 sq automotive low-voltage electric wire was similarly adhered onto a tin-plated copper plate. An adhesion test piece heated at 2 ° C. for 2 minutes was prepared and evaluated in the same manner as in the test example to obtain a reference example. The results are shown in Table 4.
(Test Example 5)
A stranded wire 31 was bonded to the tin-plated copper plate 11 in exactly the same manner as in Test Example 4 except that the shape of the energizing adhesive was changed to a tape shape, and an adhesive test piece 30 was obtained. In the same manner as in Test Example 4, it was cured by heating and the connection resistance and tensile strength were measured. The results are also shown in Table 4.
[0056]
[Table 4]
Figure 0003730209
[0057]
The connection resistance value of Test Example 4 was 0.9 mΩ, which was a low resistance value substantially equivalent to 0.6 mΩ of the reference example. Moreover, the tensile strength was 55 N, and a value more than twice as high as that of the reference example containing no organic adhesive was obtained. That is, it can be seen that the test composition (electrical adhesive) of Test Example 4 has low connection resistance and high adhesive strength.
[0058]
Further, in Test Example 5 using the tape-shaped test composition, the connection resistance value was 1.0 mΩ, which was almost the same value as Test Example 4, but the tensile strength was 80 N, which was 55 N of Test Example 4. Larger values were obtained.
[0059]
In Test Example 4, no load was applied to the applied test composition portion, but a sufficiently low connection resistance can be obtained even in this state. For example, for joining electronic components such as LEDs and chip components in FIG. Can be preferably used. FIG. 6 is a schematic diagram showing the bonding between the LED and the bus bar. The terminal 62 of the LED 61 is bonded to the through hole 64 of the bus bar 63. An energizing adhesive is applied to the through hole 64 of the bus bar 63 in advance, and the adhesive is reflowed by heating after assembly, so that the LED 61 can be energized and bonded to the bus bar 63.
(Test Example 6)
Since the energizing adhesive containing the conductive filler of the present invention can be energized even if it is formed into a linear shape, it is suitable as a printed wiring of a flexible substrate.
[0060]
As the low melting point metal particles, a tin-bismuth alloy (Sn: 42% by mass, bismuth: 58% by mass, melting point: 139 ° C.) having a particle size of 44 μm or less (# 325) is used. An acrylic rubber fine particle-dispersed epoxy resin, an epoxy resin obtained by mixing an acid anhydride-based curing agent with a main agent: curing agent = 6: 1 (weight ratio) as a curing agent, and chlorine as a melting accelerator, 33. A 4% water-soluble flux (Ishikawa Metal Co., Ltd., Frust A, spreading rate: 95%) was used.
[0061]
Furthermore, the conductive filler (zinc, tin, copper, silver, nickel) of Table 5 was added, and the test composition which is five types of electrically conductive adhesives was obtained. In addition, the compounding ratio of each component was a volume ratio, and knead | mixed as low melting metal particle: organic adhesive agent: melting accelerator: conductive filler = 10: 49: 1: 40.
[0062]
The obtained test composition was applied to the surface of a polyester film having a thickness of 0.6 mm, a width of 100 mm, and a length of 100 mm in an area of 5 mm × 50 mm with a thickness of 0.1 mm. Thereafter, it was heated and taken out at 160 ° C. for 30 minutes. The resistance value was measured at both ends of the length (50 mm) of the applied test composition to determine the volume resistance. The results are also shown in Table 5.
[0063]
Moreover, the printed wiring containing only the silver particle normally used for a comparison was formed in the polyester film surface similarly to the test composition of Test Example 6, and volume resistance was calculated | required and it was set as the reference example. The results are also shown in Table 5. In addition, the mixture ratio of the reference example was a volume ratio, and was organic adhesive agent: silver filler = 49: 51.
[0064]
[Table 5]
Figure 0003730209
[0065]
The volume resistance value of the printed wiring that is usually used as a reference example is 3.0 × 10 -Four It was Ω · cm. Further, in the current-carrying adhesive containing five kinds of conductive fillers in this test example, the volume resistance value is the highest in the test composition in which the conductive filler is zinc powder, and 7.0 × 10. -Four Ω · cm, while the test composition containing copper powder is the lowest, 4.0 × 10 -Five It was Ω · cm. As described above, the test composition (electrical adhesive) of this test example has a volume resistance value almost equal to that of a conventionally used printed wiring composed only of silver particles, and is suitable as a printed wiring such as a flexible substrate. It turns out that it can be used.
[0066]
【The invention's effect】
The current-carrying adhesive of the present invention melts in the vicinity of the melting point of the low-melting-point metal particles, and cures or cools and solidifies, so that it is possible to easily bond wires such as electrical parts and automobile parts to the printed circuit board at low temperature. This can greatly contribute to cost reduction.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the shape of a tensile specimen in Test Example 1. FIG.
2 is an explanatory view showing an adhesion test piece of Test Example 1. FIG.
3 is an explanatory view showing an adhesion test piece of Test Example 2. FIG.
4 is an explanatory view showing an adhesion test piece of Test Example 3. FIG.
FIG. 5 is a schematic diagram showing a configuration of a glass heater of a vehicle.
FIG. 6 is an explanatory diagram showing adhesion between an LED and a bus bar.
[Explanation of symbols]
11: Tin-plated copper plate 12: Current-carrying adhesive (test composition) 21: Tape 31: Strand 51: Glass 52: Electrode 53: Terminal 54: Wire harness
61: LED 62: Terminal 63: Bus bar

Claims (8)

錫−ビスマス合金又は錫−銅合金からなる低融点金属粒子と、
該低融点金属粒子の表面に形成されている酸化被膜を加熱状態で除去するハロゲン元素を含む溶融促進剤と、
銀、銅、ニッケル、錫、亜鉛のうち少なくとも1種である導電性フィラーと、熱硬化性のエポキシ樹脂を主剤とする有機接着剤と、からなり、加熱により該低融点金属が該溶融促進剤の作用を受けて融解して該導電性フィラーと共に通電路を形成し、さらに該有機接着剤が接着硬化することを特徴とする通電接着剤。
Low melting point metal particles comprising a tin-bismuth alloy or a tin-copper alloy ;
A melting accelerator containing a halogen element for removing the oxide film formed on the surface of the low melting point metal particles in a heated state;
It consists of a conductive filler that is at least one of silver, copper, nickel, tin, and zinc, and an organic adhesive mainly composed of a thermosetting epoxy resin. energization adhesive the electric path is formed, further organic adhesive is characterized Rukoto turn into hard adhesive melts with conductive filler under the action of.
前記低融点金属粒子はその粒径が10〜100μmである請求項1に記載の通電接着剤。The energizing adhesive according to claim 1, wherein the low melting point metal particles have a particle size of 10 to 100 μm. 前記低融点金属粒子の配合量は、通電接着剤全体を100重量%として10〜90重量%である請求項1又は2に記載の通電接着剤。The current-carrying adhesive according to claim 1 or 2, wherein the blending amount of the low melting point metal particles is 10 to 90% by weight with respect to 100% by weight of the whole current-carrying adhesive. 前記溶融促進剤の配合量は、通電接着剤全体を100重量%として0.5〜30重量%である請求項1〜のいずれかに記載の通電接着剤。The current-carrying adhesive according to any one of claims 1 to 3 , wherein the blending amount of the melting accelerator is 0.5 to 30% by weight with respect to 100% by weight of the whole current-carrying adhesive. 前記有機接着剤の配合量は、通電接着剤全体を100重量%として10〜90重量%である請求項1〜のいずれかに記載の通電接着剤。The current-carrying adhesive according to any one of claims 1 to 4 , wherein a blending amount of the organic adhesive is 10 to 90% by weight with respect to 100% by weight of the whole current-carrying adhesive. 前記導電性フィラーの配合量は、通電接着剤全体を100体積%として15〜60体積%である請求項1〜5のいずれかに記載の通電接着剤。The conductive adhesive according to any one of claims 1 to 5 , wherein a blending amount of the conductive filler is 15 to 60% by volume with respect to 100% by volume of the entire conductive adhesive. 前記導電性フィラーは、その粒径が10〜100μmである請求項1〜6のいずれかに記載の通電接着剤。The conductive filler is energized adhesive according to any one of claims 1 to 6 the particle size of 10 to 100 [mu] m. 前記通電接着剤の形状がテープ又はシートである請求項1〜のいずれかに記載の通電接着剤。Energization adhesive according to any one of claims 1 to 7 the shape of the current adhesive is a tape or sheet.
JP2002330459A 2002-11-14 2002-11-14 Conductive adhesive Expired - Fee Related JP3730209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330459A JP3730209B2 (en) 2002-11-14 2002-11-14 Conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330459A JP3730209B2 (en) 2002-11-14 2002-11-14 Conductive adhesive

Publications (2)

Publication Number Publication Date
JP2004160508A JP2004160508A (en) 2004-06-10
JP3730209B2 true JP3730209B2 (en) 2005-12-21

Family

ID=32808143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330459A Expired - Fee Related JP3730209B2 (en) 2002-11-14 2002-11-14 Conductive adhesive

Country Status (1)

Country Link
JP (1) JP3730209B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9247652B2 (en) 2007-10-03 2016-01-26 Hitachi Chemical Company, Ltd. Adhesive composition, electronic-component-mounted substrate and semiconductor device using the adhesive composition

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109369A1 (en) * 2005-04-12 2006-10-19 Murata Manufacturing Co., Ltd Electronic component module
EP2052805B1 (en) * 2006-08-04 2016-09-28 Panasonic Intellectual Property Management Co., Ltd. Bonding material, bonded portion and circuit board
JP5468199B2 (en) * 2006-11-22 2014-04-09 日立化成株式会社 Conductive adhesive composition, electronic component mounting substrate, and semiconductor device
JP5093766B2 (en) * 2007-01-31 2012-12-12 株式会社タムラ製作所 Manufacturing method of semiconductor package substrate mounted with conductive balls, etc.
KR101230195B1 (en) 2009-02-25 2013-02-06 아사히 가세이 이-매터리얼즈 가부시키가이샤 Metal filler, low-temperature-bonding lead-free solder and bonded structure
TWI510594B (en) 2011-01-27 2015-12-01 Hitachi Chemical Co Ltd Conductive adhesive paste, metal wire with conductive adhesive composition connecting body and solar battery module and fabricating method thereof
JP6382228B2 (en) 2014-08-29 2018-08-29 古河電気工業株式会社 Conductive adhesive film
JP6452002B2 (en) * 2015-12-11 2019-01-16 Dic株式会社 Thermosetting material for reinforcing flexible printed wiring board, flexible printed wiring board with reinforcing portion, manufacturing method thereof, and electronic device
CN108353496B (en) * 2015-12-11 2021-09-14 Dic株式会社 Thermosetting material for reinforcing flexible printed wiring board, flexible printed wiring board with reinforcing portion, method for producing same, and electronic device
JP6005312B1 (en) 2016-02-10 2016-10-12 古河電気工業株式会社 Conductive adhesive film and dicing die bonding film using the same
JP6005313B1 (en) 2016-02-10 2016-10-12 古河電気工業株式会社 Conductive adhesive film and dicing die bonding film using the same
JP5972489B1 (en) 2016-02-10 2016-08-17 古河電気工業株式会社 Conductive adhesive film and dicing die bonding film using the same
JP5972490B1 (en) * 2016-02-10 2016-08-17 古河電気工業株式会社 Conductive adhesive composition, and conductive adhesive film and dicing / die bonding film using the same
JP5989928B1 (en) 2016-02-10 2016-09-07 古河電気工業株式会社 Conductive adhesive film and dicing die bonding film using the same
CN107825001B (en) * 2017-11-22 2020-05-12 张家港市东大工业技术研究院 Silver powder particle modified tin-bismuth jet printing soldering paste and preparation method thereof
JP2020048277A (en) * 2018-09-18 2020-03-26 アイシン・エィ・ダブリュ株式会社 Manufacturing method of armature, and armature
WO2020189359A1 (en) 2019-03-15 2020-09-24 古河電気工業株式会社 Metal particle-containing composition, and conductive adhesive film
KR102024575B1 (en) * 2019-03-25 2019-09-24 에이에프더블류 주식회사 Manufacturing method of a bus bar using Linear friction welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9247652B2 (en) 2007-10-03 2016-01-26 Hitachi Chemical Company, Ltd. Adhesive composition, electronic-component-mounted substrate and semiconductor device using the adhesive composition
US10504864B2 (en) 2007-10-03 2019-12-10 Hitachi Chemical Company, Ltd. Adhesive composition, electronic-component-mounted substrate and semiconductor device using the adhesive composition

Also Published As

Publication number Publication date
JP2004160508A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP3730209B2 (en) Conductive adhesive
JP5090349B2 (en) Bonding material, bonding part and circuit board
JP3476464B2 (en) Tin-bismuth solder paste and a method for forming a connection with improved high-temperature characteristics using the paste
Gilleo Assembly with conductive adhesives
JP5802081B2 (en) Anisotropic conductive paste
JP6226424B2 (en) Bonding material and method for manufacturing electronic component
JP6359499B2 (en) Cold-heat shock flux composition, solder paste composition, and electronic circuit board
JP2006199937A (en) Conductive adhesive and conductive part and electronic part module using the same
JP2012216770A (en) Anisotropic conductive paste, and connection method of electronic component using the same
WO2015174299A1 (en) Conductive paste, production method for conductive paste, connection structure, and production method for connection structure
JP2005194306A (en) Conducting adhesive and platy member for window using the same
JP6731034B2 (en) Lead-free solder alloy, solder joint material, electronic circuit mounting board and electronic control device
JP2016026879A (en) Lead-free solder alloy containing solder paste composition, solder joint body structure, and electronic circuit board
WO2007052661A1 (en) Conductive adhesive
JP4910876B2 (en) Solder paste and bonded article
JP5140038B2 (en) Thermosetting resin composition and circuit board
JP6170376B2 (en) Conductive bonding composition, conductive bonding sheet, electronic component and method for producing the same
JP2016010818A (en) Solder paste composition containing lead-free solder alloy, soldered body structure, and electronic circuit board
JP4676907B2 (en) Electronic component mounting structure using solder adhesive and solder adhesive
JP2007237284A (en) Soldering method and electronic component
JP4244736B2 (en) Conductive adhesive, its bonding method, and automotive window glass using the same
JPH10279903A (en) Electroconductive adhesive
JP6335588B2 (en) Method for producing anisotropic conductive adhesive
JP5580729B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP5827522B2 (en) Wiring board connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees