JP4676370B2 - Bonding failure detection device and bonding failure detection method - Google Patents
Bonding failure detection device and bonding failure detection method Download PDFInfo
- Publication number
- JP4676370B2 JP4676370B2 JP2006099848A JP2006099848A JP4676370B2 JP 4676370 B2 JP4676370 B2 JP 4676370B2 JP 2006099848 A JP2006099848 A JP 2006099848A JP 2006099848 A JP2006099848 A JP 2006099848A JP 4676370 B2 JP4676370 B2 JP 4676370B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- temperature
- electronic component
- component
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 91
- 239000000758 substrate Substances 0.000 claims description 141
- 238000010438 heat treatment Methods 0.000 claims description 99
- 238000012360 testing method Methods 0.000 claims description 31
- 230000005611 electricity Effects 0.000 claims description 6
- 230000002950 deficient Effects 0.000 claims 2
- 229910000679 solder Inorganic materials 0.000 description 54
- 239000000523 sample Substances 0.000 description 23
- 239000007789 gas Substances 0.000 description 20
- 238000005259 measurement Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Description
本発明は、基板に設けられた導電部と電子部品との接合不良の検知に使用される接合不良検知装置、並びに、基板の導電部と電子部品との接合不良検知方法に関する。 The present invention relates to a bonding failure detection device used for detecting a bonding failure between a conductive portion provided on a substrate and an electronic component, and a method for detecting a bonding failure between a conductive portion of a substrate and an electronic component.
近年、基板に対して多数の電子部品が実装されたり、電子部品を実装するためのハンダとして鉛を含まない、いわゆる鉛フリーハンダが使用される傾向にあり、これに起因する接合不良が懸念されている。一般的に前記した鉛フリーハンダは、鉛を含有したハンダに比べて基板等に対する濡れ性が悪く、その分だけ接合強度が低くなる可能性がある。そのため、鉛フリーハンダを用いて基板に電子部品を実装すると、基板と電子部品との接合不良が発生する可能性が高い。さらに、近年は、電子部品を基板に対して高密度に実装すべく、ハンダ接合部の面積が縮小する傾向にあり、これによる接合不良の可能性も高まりつつある。 In recent years, a large number of electronic components are mounted on a substrate, or so-called lead-free solder that does not contain lead has been used as a solder for mounting electronic components. ing. In general, the above-described lead-free solder has poor wettability with respect to a substrate or the like as compared with lead-containing solder, and there is a possibility that the joint strength is lowered accordingly. Therefore, when an electronic component is mounted on a substrate using lead-free solder, there is a high possibility that a bonding failure between the substrate and the electronic component will occur. Furthermore, in recent years, the area of solder joints tends to be reduced in order to mount electronic components with high density on a substrate, and the possibility of poor bonding due to this tends to increase.
また、近年は、上記したように電子部品が基板に対して高密度に実装されたり、半導体が高集積化される傾向にあり、これに伴って基板への通電時の発熱量が高くなる傾向にある。そのため、電子部品を高密度に実装した基板や、高集積化された半導体が取り付けられた基板では、基板と電子部品との線膨張係数の差に起因してハンダによる接合部に亀裂が入る等の不具合が発生する可能性が高い。 In recent years, as described above, electronic components are mounted on a substrate at a high density, and semiconductors tend to be highly integrated. Accordingly, the amount of heat generated when the substrate is energized tends to increase. It is in. For this reason, on a board on which electronic components are mounted at a high density or a board on which a highly integrated semiconductor is mounted, a solder joint is cracked due to a difference in linear expansion coefficient between the board and the electronic parts. There is a high possibility that this problem will occur.
そこで、かかる事態の発生を想定し、従来より下記特許文献1,2に開示されているインサーキットテスタと称されるような接合不良検知装置を用いて、基板に設けられた導電部と電子部品との接合不良が検知されている。下記特許文献1,2に開示されているインサーキットテスタは、基板に実装された電子部品を加熱することにより通電に伴う電子部品の発熱状態の再現を試み、電子部品の発熱に伴う接合不良の発生を検知する構成とされている。
しかし、上記特許文献1,2に開示されているようなインサーキットテスタは、電子部品を加熱手段によって加熱してもハンダ接合部に大きな温度差を与えることができず、実際に電子部品に通電を行った場合にハンダ接合部において接合不良が起こる可能性を正確に把握したり、ハンダ接合不良の発生状態を的確に再現することができないという問題があった。
However, in-circuit testers such as those disclosed in
かかる知見に基づき、本発明は、電子部品と基板との接合部に大きな温度差を与えることにより接合不良が発生する可能性を正確に把握したり、接合不良の発生状態を的確に再現可能な接合不良検知装置、並びに、接合不良検知方法の提供を目的とする。 Based on this knowledge, the present invention can accurately grasp the possibility of occurrence of bonding failure by giving a large temperature difference to the bonding portion between the electronic component and the substrate, or can accurately reproduce the occurrence state of the bonding failure. An object of the present invention is to provide a bonding failure detection device and a bonding failure detection method.
そこで、上記した課題を解決すべく提供される請求項1に記載の発明は、電気を導通可能な導電部を有する基板に対して実装された電子部品と、前記導電部との接合部の接合不良を検知可能な接合不良検知装置であって、電子部品に対して電気的に接触可能な部品側接触手段と、基板の導電部に対して電気的に接触可能な基板側接触手段と、電子部品を所定の加熱設定温度に加熱可能な部品加熱手段と、前記基板の温度を前記加熱設定温度よりも低温の温度範囲内に維持可能な恒温手段とを有し、部品側接触手段と基板側接触手段との間の電気的な導通状態を検知し、基板の温度を所定の温度範囲内に調整した状態における前記電子部品と前記基板の導電部との間の電気的な導通状態と、部品加熱手段により電子部品を所定の加熱設定温度に加熱しつつ基板を加熱設定温度以下の所定の温度範囲内に維持した状態における前記電子部品と前記基板の導電部との間の電気的な導通状態とを比較し、当該比較結果に基づいて導電部に対する電子部品の接合不良を検知可能な検知手段を備えていることを特徴とする接合不良検知装置である。
Accordingly, the invention according to
かかる構成によれば、電子部品と基板の導電部とが接合された部分に大きな温度差を与えることができ、基板に実装された電子部品が通電され発熱した場合に接合不良が発生する可能性を正確に把握したり、接合不良の発生状態を的確に再現可能な接合不良検知装置を提供できる。 According to such a configuration, a large temperature difference can be given to a portion where the electronic component and the conductive portion of the substrate are joined, and a bonding failure may occur when the electronic component mounted on the substrate is energized and generates heat. It is possible to provide a bonding failure detection device that can accurately grasp the occurrence of the failure and accurately reproduce the occurrence state of the bonding failure.
また、上記請求項1に記載の接合不良検知装置は、基板の温度を所定の温度範囲内に調整した状態における前記電子部品と前記基板の導電部との間の電気的な導通状態と、基板が所定の温度範囲内に維持され、基板を部品加熱手段による加熱設定温度以下の所定の温度範囲内に調整された状態における前記電子部品と前記基板の導電部との間の電気的な導通状態とを比較し、当該比較結果に基づいて接合不良を検知可能な検知手段を備えた構成とすることも可能である。
In addition, the bonding failure detection device according to
かかる構成によれば、電子部品への通電に伴って電子部品と基板の導電部との接合部に熱的ストレスが作用する前後における電子部品と前記基板の導電部との間の電気的な導通状態を再現することができる。従って、本発明によれば、電子部品と導電部との接合不良の発生の可能性の把握や、接合不良の発生状態の再現を的確に実施可能な接合不良検知装置を提供できる。 According to this configuration, electrical continuity between the electronic component and the conductive portion of the substrate before and after thermal stress acts on the joint between the electronic component and the conductive portion of the substrate as the electronic component is energized. The state can be reproduced. Therefore, according to the present invention, it is possible to provide a bonding failure detection device capable of accurately grasping the possibility of occurrence of a bonding failure between an electronic component and a conductive part and accurately reproducing the occurrence state of the bonding failure.
上記請求項1に記載の接合不良検知装置は、所定の平面上に基板を配置可能であり、部品加熱手段および部品側接触手段が、前記平面内の第1方向、当該第1方向に交差する第2方向、並びに、前記所定平面に対して交差する第3方向に移動可能であり、電子部品が非加熱状態であり且つ基板の温度を所定の温度範囲内に調整した状態における前記電子部品と前記基板の導電部との間の電気的な導通状態と、部品加熱手段により電子部品を所定の加熱設定温度に加熱しつつ基板を加熱設定温度以下の所定の温度範囲内に維持した状態における前記電子部品と前記基板の導電部との間の電気的な導通状態とを比較することを特徴とするものであってもよい(請求項2)。 In the bonding failure detection apparatus according to the first aspect, the substrate can be arranged on a predetermined plane, and the component heating unit and the component side contact unit intersect the first direction and the first direction in the plane. the second direction, and the electronic component in a state where the predetermined plane Ri movable der in a third direction crossing the electronic component while a temperature at and and substrate unheated state within a predetermined temperature range In a state where the substrate is maintained within a predetermined temperature range equal to or lower than the heating set temperature while the electronic component is heated to a predetermined heating set temperature by the component heating means. the may be one which is characterized that you compare the electrical conduction state between the electronic component and the conductive portion of the substrate (claim 2).
かかる構成によれば、多数の電子部品が基板上に実装されているなどして多数の接合部分を持つ基板についてもスムーズに接合不良の発生の可能性を正確に把握したり、接合不良の発生状態を的確に再現可能な接合不良検知装置を提供できる。 According to such a configuration, it is possible to accurately grasp the possibility of occurrence of poor bonding even on a board having a large number of joints, such as a large number of electronic components mounted on the board, or occurrence of poor bonding. It is possible to provide a bonding failure detection device capable of accurately reproducing the state.
ここで、上記請求項1又は2に記載の接合不良検知装置は、基板を部品加熱手段による加熱設定温度以下の所定の温度範囲内に維持可能な構成とされている。そのため、基板を収容可能な試験室内に存在する気体の露点が基板保持温度以上である場合は、恒温手段やこの近傍において結露が発生し、接合不良を正確に検知できなくなるおそれがある。
Here, the bonding failure detection device according to
そこで、かかる問題に鑑み、上記請求項1又は2に記載の接合不良検知装置は、基板を収容可能な試験室を有し、当該試験室内に存在する気体の露点が基板保持温度以上であることを条件として、露点が基板保持温度未満の気体を試験室内に導入する構成とすることが望ましい(請求項3)。
Therefore, in view of such a problem, the bonding failure detection apparatus according to
かかる構成によれば、恒温手段やこの近傍において結露が発生するのを抑制でき、電子部品と基板の導電部との接合不良を正確に検知可能な接合不良検知装置を提供できる。 According to such a configuration, it is possible to suppress the occurrence of condensation in the constant temperature means or in the vicinity thereof, and it is possible to provide a bonding failure detection device that can accurately detect a bonding failure between the electronic component and the conductive portion of the substrate.
請求項4に記載の発明は、電気を導通可能な導電部を有する基板に対して実装された電子部品と、前記導電部との接合部の接合不良を検知する接合不良検知方法であって、電子部品に対して電気的に接触可能な部品側接触手段と、基板の導電部に対して電気的に接触可能な基板側接触手段との間の電気的な導通状態を検知し、基板の温度を所定の温度範囲内に調整した初期状態において前記電子部品と前記基板の導電部との間の電気的な導通状態を検知すると共に、部品加熱手段により電子部品を所定の加熱設定温度に加熱しつつ、基板を加熱設定温度以下の所定の温度範囲内に維持した部品加熱状態における前記電子部品と前記基板の導電部との間の電気的な導通状態を検知し、初期状態における非加熱状態の電子部品と前記基板の導電部との間の電気的な導通状態と、部品加熱状態における電子部品と前記基板の導電部との間の電気的な導通状態とを比較し、当該比較結果に基づいて導電部に対する電子部品の接合不良を検知することを特徴とする接合不良検知方法である。 The invention according to claim 4 is a bonding failure detection method for detecting a bonding failure of a bonding portion between an electronic component mounted on a substrate having a conductive portion capable of conducting electricity and the conductive portion, The temperature of the substrate is detected by detecting an electrical conduction state between the component-side contact means that can be electrically contacted with the electronic component and the substrate-side contact means that can be electrically contacted with the conductive portion of the substrate. In an initial state where the electronic component is adjusted within a predetermined temperature range, an electrical conduction state between the electronic component and the conductive portion of the substrate is detected, and the electronic component is heated to a predetermined heating set temperature by the component heating means. While detecting the electrical conduction state between the electronic component and the conductive part of the substrate in the component heating state in which the substrate is maintained within a predetermined temperature range below the heating set temperature, the non-heating state in the initial state is detected . Electronic parts and conductive parts of the substrate The electrical conduction state between the electronic component and the electrical conduction state between the electronic component in the component heating state and the conductive portion of the substrate is compared, and the electronic component is poorly bonded to the conductive portion based on the comparison result. This is a bonding failure detection method characterized by detecting the above.
本発明の接合不良検知方法によれば、電子部品と基板の導電部との接合部に大きな温度差を与えることができ、基板に実装された電子部品が通電され発熱した場合に接合不良が発生する可能性を正確に把握したり、接合不良の発生状態を的確に再現することができる。 According to the bonding failure detection method of the present invention, a large temperature difference can be given to the bonding portion between the electronic component and the conductive portion of the substrate, and the bonding failure occurs when the electronic component mounted on the substrate is energized and generates heat. It is possible to accurately grasp the possibility of occurrence and accurately reproduce the occurrence state of the bonding failure.
また、本発明の接合不良検知方法によれば、電子部品への通電に伴い、電子部品と導電部との接合部に熱的ストレスが作用する前後における電子部品と前記基板の導電部との間の電気的な導通状態を再現し、確認することができる。従って、本発明の接合不良検知方法によれば、電子部品への通電に伴う接合不良の発生の可能性を正確に把握したり、接合不良の発生状態を忠実に再現することができる。 In addition, according to the bonding failure detection method of the present invention, between the electronic component and the conductive portion of the substrate before and after the thermal stress acts on the bonded portion between the electronic component and the conductive portion as the electronic component is energized. It is possible to reproduce and confirm the electrical continuity state. Therefore, according to the bonding failure detection method of the present invention, it is possible to accurately grasp the possibility of occurrence of a bonding failure accompanying energization of an electronic component, or to faithfully reproduce the state of occurrence of a bonding failure.
上記請求項4に記載の接合不良検知方法は、基板を所定の試験室内に収容して実施され、当該試験室内に存在する気体の露点が基板保持温度以上であることを条件として、露点が基板保持温度未満の気体を試験室内に導入するものであってもよい(請求項5)。 The bonding failure detection method according to claim 4 is carried out by accommodating the substrate in a predetermined test chamber, and the dew point is the substrate, provided that the dew point of the gas present in the test chamber is equal to or higher than the substrate holding temperature. A gas having a temperature lower than the holding temperature may be introduced into the test chamber (claim 5).
かかる方法によれば、電子部品と基板の導電部との接合不良を検知する際に恒温手段やこの近傍において結露が発生するのを抑制でき、接合不良を正確に検知することができる。 According to this method, it is possible to suppress the occurrence of dew condensation in the constant temperature means or in the vicinity thereof when detecting a bonding failure between the electronic component and the conductive portion of the substrate, and the bonding failure can be detected accurately.
本発明によれば、電子部品と基板の導電部との接合部に大きな温度差を与えることが可能であり、電子部品への通電時に接合不良が発生する可能性を正確に把握したり、接合不良の発生状態を的確に再現可能な接合不良検知装置、並びに、接合不良検知方法を提供できる。 According to the present invention, it is possible to give a large temperature difference to the joint between the electronic component and the conductive portion of the substrate, and it is possible to accurately grasp the possibility of occurrence of a joint failure when energizing the electronic component, It is possible to provide a bonding failure detection device and a bonding failure detection method that can accurately reproduce the state of occurrence of a failure.
続いて、本発明の一実施形態にかかる接合不良検知装置、並びに、接合不良検知方法について図面を参照しながら詳細に説明する。図1において、1は本実施形態の接合不良検知装置である。本実施形態の接合不良検知装置1は、基板SにICやコンデンサ、抵抗といったようなピンp1を持つ電子部品Pを実装し、ハンダを用いて接合したものを検査対象物とする。
Subsequently, a bonding failure detection apparatus and a bonding failure detection method according to an embodiment of the present invention will be described in detail with reference to the drawings. In FIG. 1,
ここで、基板Sは、従来公知のものと同様にベークライトやエポキシ樹脂、セラミックスなどの電気を通さない非導電性材料からなる基材s1の表面に銅板や銅箔等のような導電性を有するものを接合して導電部s2を設けた構成とされている。導電部s2を構成する銅板等は、必要に応じてエッチング処理を施して回路を形成したり、メッキ処理を施した構成とされている。 Here, the board | substrate S has electroconductivity like a copper plate, a copper foil, etc. on the surface of the base material s1 which consists of nonelectroconductive materials which do not conduct electricity like bakelite, an epoxy resin, ceramics like a conventionally well-known thing. The conductive part s2 is provided by bonding the objects. The copper plate or the like constituting the conductive portion s2 is configured such that a circuit is formed by performing an etching process as necessary, or a plating process is performed.
電子部品Pは、ピンp1と、半導体材料等の材料をパッケージングしたパッケージ部p2とを有し、ピンp1を基板Sの導電部s2にハンダを用いて接合することにより基板Sに接合されている。電子部品Pは、ピンp1を介して通電すると、主としてパッケージ部p2が発熱する。 The electronic component P has a pin p1 and a package part p2 in which a material such as a semiconductor material is packaged. The electronic part P is joined to the substrate S by joining the pin p1 to the conductive part s2 of the substrate S using solder. Yes. When the electronic component P is energized through the pin p1, the package part p2 mainly generates heat.
図1に示すように、接合不良検知装置1は、試験室2を有し、この底部に恒温手段3が設けられ、部品加熱手段5や温度検知手段6、ピンプローブ7a,7bが試験室2内で自由に移動可能なように支持された構成とされている。また、接合不良検知装置1は、試験室2の外部に恒温手段3や部品加熱手段5の動作を制御するための温度制御手段8と、ピンプローブ7a,7bに電気的に接続された判定手段10とを備えた構成とされている。
As shown in FIG. 1, the bonding
試験室2は、電子部品Pをハンダ接合した基板Sを収容可能な空間を形成している。また、試験室2には、気体導入口15が設けられている。試験室2は、気体導入口15を有し、気体導入口15を閉止することにより気密状態に維持することが可能であると共に、気体導入口15を介して外部から気体を導入し、この気体によって試験室2内に存在していた空気等の気体を置換することができる構成とされている。
The
恒温手段3は、平坦で基板Sを配置可能な基板配置面20を有する。恒温手段3は、基板配置面20が試験室2の底部側に露出するように配置されている。恒温手段3は、基板配置面20の表面温度を適宜調整することができる構成とされている。本実施形態では、恒温手段3として、基板配置面20の表面温度を室温から−65℃の範囲内において温度調整可能であり、設定温度Thに対して±3℃程度の範囲内で維持可能なものが採用されている。そのため、恒温手段3の基板配置面20上に基板Sを配置すると、基板Sをほぼ恒温状態に維持することができる。
The constant temperature means 3 has a
恒温手段3には、基板配置面20の表面温度を検知可能な温度センサ21が設けられている。恒温手段3および温度センサ21は、試験室2の外部に設けられた温度制御手段8に電気的に接続されている。恒温手段3の出力は、温度制御手段8により温度センサ21の検知温度に基づき、基板配置面20の表面温度が設定温度Thに対して±3℃程度の範囲内となるようにフィードバック制御される。
The constant temperature means 3 is provided with a
部品加熱手段5は、上記したように試験室2内を自由に移動することができる構成とされている。すなわち、部品加熱手段5は、基板配置面20のように基板Sを試験室2内に配置した際に基板Sに対して平行な平面Lを想定した場合に、この平面内の第1方向(以下、必要に応じてX方向と称す)と、このX方向に対して直交する第2方向(以下、必要に応じてY方向と称す)と、前記平面Lに対して垂直な第3方向(以下、必要に応じてZ方向と称す)に自由に移動可能な構成とされている。そのため、本実施形態の接合不良検知装置1は、部品加熱手段5を基板Sに実装されている所定の電子部品Pに相当する位置に移動させ、この電子部品Pのみを加熱することができる。
The component heating means 5 is configured to be able to move freely within the
部品加熱手段5には、電子部品Pを上方に離れた位置から加熱可能なものが採用されている。さらに具体的には、部品加熱手段5は、例えば電熱線による加熱方式や、赤外線による加熱方式を採用したもの等、適宜のものを採用することができる。さらに詳細には、部品加熱手段5として電熱線による加熱方式を採用した場合は、内部に電熱線(電熱ヒータ)を備え、温度検知手段6によって検知される温度に基づいて電熱ヒータの出力や電熱ヒータを通過して基板Sに吹き付けられる気流の流量や流速を調整可能な構成のものを採用できる。また、部品加熱手段5として赤外線による加熱方式を採用する場合は、例えば内部にハロゲンランプヒータを備えたものを採用し、温度検知手段6によって検知される温度に基づいてハロゲンランプヒータのオン、オフや出力を調整する構成のものを採用することができる。 As the component heating means 5, one capable of heating the electronic component P from a position away from the upper side is adopted. More specifically, the component heating means 5 may employ an appropriate device such as a heating method using a heating wire or a heating method using infrared rays. More specifically, when a heating method using a heating wire is adopted as the component heating means 5, a heating wire (electric heating heater) is provided inside, and the output of the heating heater and the electric heating are based on the temperature detected by the temperature detection means 6. The thing of the structure which can adjust the flow volume and flow velocity of the airflow which pass a heater and are sprayed on the board | substrate S is employable. Further, when an infrared heating method is employed as the component heating means 5, for example, an apparatus having a halogen lamp heater inside is adopted, and the halogen lamp heater is turned on / off based on the temperature detected by the temperature detection means 6. In addition, a configuration that adjusts the output can be adopted.
部品加熱手段5は、下方に存在する部分を局所的に室温から180℃の範囲内で加熱することが可能である。そのため、接合不良検知装置1は、部品加熱手段5を電子部品Pのパッケージ部p2の上方に移動させた状態で部品加熱手段5を作動状態とすると、パッケージ部p2を昇温させ、電子部品Pに通電を行った際の発熱状態や伝熱状態を忠実に再現することができる。部品加熱手段5は、上記した温度制御手段8に電気的に接続されている。
The component heating means 5 can locally heat a portion existing below in the range of room temperature to 180 ° C. For this reason, when the component heating means 5 is brought into an operating state with the component heating means 5 being moved above the package portion p2 of the electronic component P, the bonding
温度検知手段6は、従来公知の非接触式の温度計によって構成されている。温度検知手段6は、部品加熱手段5に対して隣接する位置に設けられており、部品加熱手段5の直下の部分の温度を検知可能な構成とされている。また、温度検知手段6は、部品加熱手段5に追従して試験室2内をX,Y,Z方向に移動できる。そのため、部品加熱手段5が電子部品Pの上方に移動すると、温度検知手段6もこれに追従して電子部品Pの上方に移動し、部品加熱手段5による電子部品Pの加熱状態を確認することができる。
The temperature detection means 6 is comprised by the conventionally well-known non-contact-type thermometer. The temperature detection unit 6 is provided at a position adjacent to the
温度検知手段6は、上記した温度制御手段8に電気的に接続されている。温度検知手段6によって検知された温度データは、温度制御手段8に送信される。温度制御手段8は、温度検知手段6によって検知された温度に基づき、部品加熱手段5の出力をフィードバック制御する。
The temperature detection means 6 is electrically connected to the temperature control means 8 described above. The temperature data detected by the temperature detection means 6 is transmitted to the temperature control means 8. The temperature control unit 8 feedback-controls the output of the
ピンプローブ7a,7bは、それぞれ針状の電極であり、温度検知手段6と同様に部品加熱手段5に追従して試験室2内をX,Y,Z方向に移動可能な構成とされている。ピンプローブ7aは電子部品Pのピンp1に接触させるための電極であり、ピンプローブ7bは基板Sの表面に設けられた導電部s2に接触させるための電極である。ピンプローブ7a,7bは、共に判定手段10に電気的に接続されている。
The pin probes 7a and 7b are needle-like electrodes, respectively, and are configured to be able to move in the
判定手段10は、ピンプローブ7a,7b間の導通状態を測定したり判定するために設けられたものである。判定手段10は、定電圧電源25と電流計26と判定部27とを備えている。判定手段10は、電流計26により定電圧電源25をオン状態とした際にピンプローブ7a,7b間を流れる電流を検知し、この検知結果に基づいて判定部27によりピンプローブ7a,7b間の導通状態を判定できる構成とされている。
The determination means 10 is provided for measuring or determining the conduction state between the pin probes 7a and 7b. The
続いて、本実施形態の接合不良検知装置1により、恒温手段3の基板配置面20に配された基板Sにおける接合不良を検知する検知方法について図2に示すタイムチャートや、図3に示すフローチャートを参照しながら詳細に説明する。
Subsequently, a detection method for detecting a bonding failure in the substrate S arranged on the
接合不良検知装置1により電子部品Pと基板Sの導電部s2との接合不良を検知する場合は、図3に示すように、先ずステップ1で制御手段(図示せず)に、基板Sの導電部s2上において接合不良を検知すべき部分(検知ポイント)に関する情報が入力される。さらに具体的には、図1に示す例では基板Sの導電部s2上にピンP1がハンダ接合されている部分(ハンダ接合部A1,A2)の位置情報や、検知ポイントの数(図1の例では2箇所)等のデータが入力される。さらに詳細には、部品Pが実装されている基板Sの回路図やCADデータ、基板Sの厚み等のデータを何らかの入力手段(図示せず)を用いて入力することにより検知ポイントに関するX,Y,Z方向の位置情報を特定したり、検知ポイントに関するX,Y,Z方向の位置情報を任意に入力することにより、前記した制御手段に検知ポイントの位置情報や検知ポイントの数が入力される。その後、制御フローがステップ2に移行する。
When the bonding
制御フローがステップ2に移行すると、制御手段は、所定のタイミング(図2(a)において時刻t1)に、恒温手段3を作動状態とする。この際、恒温手段3は、基板配置面20の表面温度が設定温度Thとなるように出力調整される。また、設定温度Thは、室温よりも低温(室温〜−65℃)の任意の温度に設定される。これにより、図2(c)に示すように、基板配置面20に配置されている基板Sの温度(基板温度Ts)や、電子部品Pのパッケージ部p2の温度(パッケージ部温度Tp2)が時刻t1〜t2にかけて徐々に室温よりも低温になっていく。
When the control flow shifts to step 2, the control means brings the thermostatic means 3 into an operating state at a predetermined timing (time t1 in FIG. 2A). At this time, the output of the constant temperature means 3 is adjusted so that the surface temperature of the
一方、制御手段は、ステップ2において図1に示すように部品加熱手段5および温度検知手段6を接合不良の検知対象となる電子部品Pのパッケージ部p2の上方に移動させる。この際、基板Sに対して電子部品Pが複数取り付けられている場合は、複数の電子部品Pから1つの電子部品Pが選ばれ、この上方に部品加熱手段5および温度検知手段6が移動した状態とされる。
On the other hand, in
また、制御手段は、ピンプローブ7a,7bをステップ1で設定された検知ポイントのうちの一つに相当する位置に移動させる。さらに具体的には、ステップ2において、ピンプローブ7a,7bは、ハンダ接合部A1近傍まで移動した状態とされる。そして、ピンプローブ7aは、ハンダ接合部A1において接合されている電子部品PのピンP1に接触し、ピンP1との間で通電可能な状態とされる。また、ピンプローブ7bは、ハンダ接合部A1近傍の基板Sの導電部s2に接触した状態とされ、導電部s2との間で通電可能な状態とされる。
Further, the control means moves the pin probes 7a and 7b to a position corresponding to one of the detection points set in
上記したように部品加熱手段5や温度検知手段6、ピンプローブ7a,7bが所定の位置にセットされると、電子部品Pと導電部s2とのハンダ接合部A1について、ハンダ接合不良の有無を検知可能な状態になる。このようにして準備が整うと制御フローがステップ3に移行し、基板温度Tsやパッケージ部温度Tp2が設定温度Th付近(Th±3℃の範囲内)で恒温状態になっているか否かが確認される。ここで、基板温度Tsやパッケージ部温度Tp2が設定温度Th付近で恒温状態になっていることが確認されると、その時点(図2(c)において時刻t2)で制御フローがステップ4およびステップ5に移行し、判定手段10により時刻t2から時刻t3までの期間M1(本実施形態では5秒間)にわたってハンダ接合部A1についての電気的特性が確認される。
As described above, when the component heating means 5, the temperature detection means 6, and the pin probes 7a and 7b are set at predetermined positions, the presence or absence of a solder joint failure is determined for the solder joint portion A1 between the electronic component P and the conductive portion s2. Detectable state. When the preparation is completed in this way, the control flow shifts to
さらに具体的には、図2(c)に示すように時刻t2において基板Sの温度Tsやパッケージ部p2の温度Tp2が設定温度Th付近で恒温状態になると、図2(d)に示すように判定手段10に設けられた定電圧電源25が時刻t2〜t3の期間M1(本実施形態では5秒間)にわたってオン状態とされる。この際、判定手段10の判定部27により、電流計26が検知する電流値に基づき、電子部品Pが非加熱状態である場合のピンプローブ7a,7b間の導通状態が確認される。
More specifically, as shown in FIG. 2C, when the temperature Ts of the substrate S and the temperature Tp2 of the package part p2 reach a constant temperature near the set temperature Th at time t2, as shown in FIG. The constant
期間M1が経過して時刻t3になると、電気特性の計測を終了する。そして、制御フローがステップ6に移行し、部品加熱手段5がオン状態とされる。これにより、電子部品Pのパッケージ部p2が、所定の加熱設定温度Tpとなるように加熱される(図2(b)参照)。これに伴い、図2(c)に示すようにパッケージ部温度Tp2が上昇する。この際、基板温度Tsもパッケージ部温度Tp2と同様にある程度上昇する。しかし、図2(a)に示すように、部品加熱手段5がオン状態となった後も恒温手段3はオン状態のままであり、基板Sの冷却が継続されている。そのため、部品加熱手段5がオン状態となっても、基板Sの温度上昇はパッケージ部p2の温度上昇よりも緩やかである。従って、図2(c)に示すように、部品加熱手段5がオン状態となった後、パッケージ部p2の温度が前記した加熱設定温度Tpに到達した頃にはパッケージ部温度Tp2と基板温度Tsとの温度差Dが大きく開いた状態になる。 When the period M1 elapses and time t3 is reached, the measurement of electrical characteristics is terminated. Then, the control flow moves to step 6 and the component heating means 5 is turned on. Thereby, the package part p2 of the electronic component P is heated to a predetermined heating set temperature Tp (see FIG. 2B). As a result, the package temperature Tp2 rises as shown in FIG. At this time, the substrate temperature Ts also rises to some extent like the package part temperature Tp2. However, as shown in FIG. 2A, the constant temperature means 3 remains on even after the component heating means 5 is turned on, and the cooling of the substrate S is continued. Therefore, even when the component heating means 5 is turned on, the temperature rise of the substrate S is more gradual than the temperature rise of the package part p2. Therefore, as shown in FIG. 2C, after the component heating means 5 is turned on, the package portion temperature Tp2 and the substrate temperature Ts are reached when the temperature of the package portion p2 reaches the heating set temperature Tp. And the temperature difference D is greatly opened.
上記したようにしてパッケージ部p2の加熱が開始されると、制御フローがステップ7に移行し、パッケージ部温度Tp2が加熱設定温度Tpに到達して安定しているか否かが確認される。そして、パッケージ部温度Tp2が所定の加熱設定温度Tpに到達し、安定したことが確認されると、図2(d)に示すように、その時刻t4から時刻t5までの期間M2(本実施形態では5秒間)にわたって定電圧電源25がオン状態とされる。これにより、上記したのと同様にしてハンダ接合部A1についての電気的特性が確認される(ステップ8〜ステップ9)。
When the heating of the package part p2 is started as described above, the control flow moves to step 7, and it is confirmed whether or not the package part temperature Tp2 reaches the heating set temperature Tp and is stable. When it is confirmed that the package part temperature Tp2 reaches the predetermined heating set temperature Tp and is stable, as shown in FIG. 2D, a period M2 from time t4 to time t5 (this embodiment) The constant
上記した期間M2の経過後、時刻t6になると、制御フローがステップ10に移行し、図2(b)に示すように部品加熱手段5によるパッケージ部p2の加熱が停止される。これに伴い、図2(c)に示すように、パッケージ部温度Tp2および基板温度Tsが徐々に冷却され、基板配置面20の設定温度Thに近づいていく。
At time t6 after the elapse of the above-described period M2, the control flow proceeds to step 10 and heating of the package part p2 by the component heating means 5 is stopped as shown in FIG. Accordingly, as shown in FIG. 2C, the package portion temperature Tp2 and the substrate temperature Ts are gradually cooled, and approach the set temperature Th of the
ステップ10で部品加熱手段5によるパッケージ部p2の加熱が停止すると、制御フローがステップ11に移行し、ステップ1で設定された全ての検知ポイントについて上記ステップ2〜ステップ10に至る一連の制御フローによるハンダ接合不良の検知が実施されたか否かが確認される。ここで、ハンダ接合不良を未だ検知していない検知ポイントがある場合は、制御フローがステップ2に戻され、上記したのとは別の検知ポイントについてハンダ接合不良が検知される。
When heating of the package part p2 by the component heating means 5 is stopped in
さらに具体的には、図1に示す例のように検知ポイント(ハンダ接合部A1,A2)が2箇所ある場合は、図2において時刻t6の時点では未だハンダ接合部A2についてハンダ接合不良の検知が完了していない。そのため、この場合は制御フローがステップ2に戻され、上記したのと同様にしてハンダ接合部A2についてハンダ接合不良が検知される。
More specifically, when there are two detection points (solder joints A1 and A2) as in the example shown in FIG. 1, detection of a solder joint failure at the solder joint A2 at time t6 in FIG. Is not complete. Therefore, in this case, the control flow is returned to
すなわち、制御フローがステップ2に戻ると、ピンプローブ7a,7bがハンダ接合部A2の位置まで移動し、それぞれハンダ接合部A2に接合されたピンp1と、ハンダ接合部A2近傍の導通部s2に接触した状態とされる。この際、図2(a)に示すように恒温手段3についてはオン状態のまま維持される。また、部品加熱手段5および温度検知手段6についても、必要に応じて検知対象となる電子部品P上に移動される。図1に示す例では、ハンダ接合部A1,A2共に同一の電子部品Pについてハンダ接合不良が検知されるため、部品加熱手段5および温度検知手段6については電子部品P上から移動しない。 That is, when the control flow returns to step 2, the pin probes 7a and 7b move to the position of the solder joint A2, and the pin p1 joined to the solder joint A2 and the conduction part s2 near the solder joint A2 respectively. It will be in contact. At this time, as shown in FIG. 2A, the constant temperature means 3 is maintained in the ON state. The component heating means 5 and the temperature detection means 6 are also moved onto the electronic component P to be detected as necessary. In the example shown in FIG. 1, since the solder joint failure is detected for the same electronic component P in both the solder joint portions A1 and A2, the component heating means 5 and the temperature detection means 6 do not move from the electronic component P.
ステップ2でピンプローブ7a,7bや部品加熱手段5、温度検知手段6が所定の位置にセットされると、制御フローがステップ3に移行する。そして、ステップ3でパッケージ部温度Tp2および基板温度TsがTh±3[℃]の範囲で安定したことが確認されると、その時点(時刻t8)から時刻t9までの期間M3(5秒間)にハンダ接合部A1についての電気的特性が計測される(ステップ4〜ステップ5)。その後、時刻t9になると制御フローがステップ6に移行し、部品加熱手段5がオン状態とされる。これにより、ステップ7でパッケージ部温度Tp2が設定温度Tpに到達し、安定したことが確認されると、その時点(時刻t10)から時刻t11までの期間M4(5秒間)にハンダ接合部A1についての電気的特性が計測される(ステップ8〜ステップ9)。期間M4における電気的特性の計測後、時刻t12になると、図2(b)に示すように部品加熱手段5がオフ状態とされ、制御フローがステップ11に移行する。
When the pin probes 7a and 7b, the component heating means 5 and the temperature detection means 6 are set at predetermined positions in
ここで、図1に示す例では、検知ポイントがハンダ接合部A1,A2の2箇所であり、時刻t12に制御フローがステップ11に移行した時点で全ての検知ポイントについてハンダ接合不良の検知が完了した状態となる。そのため、ステップ11において、先に設定された全検知ポイントについてハンダ接合不良の検知が完了したことが確認されると、制御フローがステップ12に移行して恒温手段3がオフ状態とされ、一連の計測動作が完了する。 Here, in the example shown in FIG. 1, there are two detection points of the solder joints A1 and A2, and the detection of the solder joint failure is completed for all the detection points when the control flow moves to step 11 at time t12. It will be in the state. Therefore, in step 11, when it is confirmed that the detection of the solder joint failure is completed for all previously set detection points, the control flow moves to step 12 and the thermostatic means 3 is turned off. The measurement operation is completed.
図3に示す一連の計測動作が完了すると、これにより期間M1,M3に計測された電気的特性に関するデータと、期間M2,M4に計測された電気的特性に関するデータとを比較してハンダ接合部A1が接合不良を起こしているか否かを判定する。 When the series of measurement operations shown in FIG. 3 is completed, the solder joint portion is compared by comparing the data on the electrical characteristics measured in the periods M1 and M3 with the data on the electrical characteristics measured in the periods M2 and M4. It is determined whether or not A1 causes a bonding failure.
さらに具体的には、判定手段10は、上記した期間M1,M2において電流計26によって計測された電流値(I1,I2)、あるいは、これに基づいて導出される抵抗値(R1,R2)を比較する。判定手段10は、期間M2において計測された電流値I2が期間M1において計測された電流値I1に対して極端に小さい場合や、期間M2において導出された抵抗値R2が期間M1において導出された抵抗値R1に対して極端に大きいことを条件として、基板Sの導電部s2とピンP1とがハンダ接合されている部分(ハンダ接合部A1)において接合不良が発生しているものと判断する。さらに詳細には、判定手段10は、電流値I1や抵抗値R2が電流値I2や抵抗値R1の200%以上(2倍以上)であることを条件としてハンダ接合部A1においてハンダ接合不良が発生しているものと判断する。
More specifically, the determination means 10 uses the current values (I1, I2) measured by the
また同様に、判定手段10は、期間M3,M4において電流計26によって計測された電流値(I3,I4)、あるいは、これに基づいて導出される抵抗値(R3,R4)を比較する。判定手段10は、電流値I3や抵抗値R4が電流値I4や抵抗値R3の200%以上(2倍以上)であることを条件としてハンダ接合部A1においてハンダ接合不良が発生しているものと判断する。
Similarly, the
上記したようにしてハンダ接合部A1について計測動作が完了した時点、あるいは、接合不良の有無についての判定が完了した時点で、電子部品Pの別のピンp1が接合されている部分(ハンダ接合部A2)について計測動作が完了していない場合や、基板Sに実装されている別の電子部品Pのピンp1が接合されている部分について計測動作が完了していない場合は、そのピンp1のハンダ接合部についても上記したのと同様にして計測動作や接合不良の判定を行うことができる。このようにして判定する場合であって、上記したのと同一の電子部品Pの別のピンp1についての接合不良を検知する場合は、検知対象となるピンp1の位置にあわせてピンプローブ7a,7bが移動する。また、上記したのと別の電子部品Pのピンp1についての接合不良を検知する場合は、ピンプローブ7a,7bに加えて部品加熱手段5や温度検知手段6が検査対象となる電子部品Pに相当する位置に移動する。
When the measurement operation is completed for the solder joint portion A1 as described above, or when the determination about the presence or absence of the joint failure is completed, another portion where the other pin p1 of the electronic component P is joined (solder joint portion) When the measurement operation is not completed for A2), or when the measurement operation is not completed for the portion where the pin p1 of another electronic component P mounted on the substrate S is joined, the solder of the pin p1 As for the joint portion, the measurement operation and the determination of the joint failure can be performed in the same manner as described above. When the determination is made in this way, and when a bonding failure with respect to another pin p1 of the same electronic component P as described above is detected, the
上記したように、本実施形態の接合不良検知装置1によれば、部品加熱手段5により電子部品Pを所定の加熱設定温度Tpに加熱し、基板Sを加熱設定温度Tp以下の温度範囲内に維持した状態において、ピンプローブ7a,7b間の電気的な導通状態を検知し、この検知結果に基づいて導電部s2に対する電子部品Pの接合不良を検知することができる。そのため、接合不良検知装置1によれば、電子部品Pと基板Sの導電部s2とが接合された部分に大きな温度差を与えることができ、基板Sに実装された電子部品Pが通電され発熱した状況を忠実に再現し、この場合にハンダ接合部A1等において接合不良が発生する可能性を正確に把握したり、接合不良の発生状態を的確に再現することができる。
As described above, according to the bonding
上記したように、本実施形態の接合不良検知装置1では、部品加熱手段5やピンプローブ7a,7bがX,Y,Z方向に自由に移動することができる。そのため、接合不良検知装置1によれば、多数の電子部品Pが基板S上に実装されていたり、多数の接合部分を持つ基板Sについてもスムーズに接合不良の発生の可能性を正確に把握したり、接合不良の発生状態を的確に再現することができる。
As described above, in the bonding
上記したように、本実施形態では、上記した期間M1,M3のように基板Sの温度を所定の温度範囲内に調整した状態と、期間M2,M4のように電子部品Pを高温に加熱しつつ基板Sを低温に維持した状態の双方で電子部品Pと導電部s2との間の電気的な導通状態を比較し、この比較結果に基づいて接合不良を検知している。そのため、接合不良検知装置1によれば、電子部品Pへの通電に伴って電子部品Pと基板Sの導電部s2との接合部に熱的ストレスが作用する前後における電子部品Pと前記基板Sの導電部s2との間の電気的な導通状態を忠実に再現しつつ、電子部品Pと導電部s2との接合不良の発生の可能性の把握や、接合不良の発生状態を的確に再現することができる。
As described above, in this embodiment, the temperature of the substrate S is adjusted within a predetermined temperature range as in the above-described periods M1 and M3, and the electronic component P is heated to a high temperature as in the periods M2 and M4. Meanwhile, the electrical continuity between the electronic component P and the conductive portion s2 is compared in both of the states where the substrate S is maintained at a low temperature, and a bonding failure is detected based on the comparison result. Therefore, according to the bonding
上記したように、本実施形態では1箇所のハンダ接合部A1の接合不良を検知するために、図2のタイミングチャートや図3のフローチャートに示すように2度にわたって電子部品Pのピンp1と基板Sの導電部s2との間における電気的な導通状態を検知する構成とされている。そのため、本実施形態のようにして接合不良を検知すれば、ハンダ接合部A1等の接合不良を正確に検知できる。 As described above, in this embodiment, the pin p1 of the electronic component P and the substrate are used twice as shown in the timing chart of FIG. 2 and the flowchart of FIG. 3 in order to detect a bonding failure at one solder joint A1. It is configured to detect an electrical continuity state with the conductive portion s2 of S. Therefore, if a bonding failure is detected as in this embodiment, a bonding failure such as the solder bonding portion A1 can be accurately detected.
なお、上記実施形態では、一連のフローにおいて1箇所のハンダ接合部A1について2度にわたって接合不良を検知する構成を例示したが、本発明はこれに限定されるものではなく、1箇所につき1回だけ接合不良を検知する構成としても、さらに多数回にわたって接合不良を検知する構成としてもよい。 In the above-described embodiment, a configuration in which a bonding failure is detected twice for one solder joint A1 in a series of flows is exemplified, but the present invention is not limited to this, and once per location. Even if it is the structure which detects a joining failure only, it is good also as a structure which detects a joining failure many times.
上記したように、本実施形態の接合不良検知装置1では、ハンダ接合部A1,A2等の接合不良を検知する際に恒温手段3を作動させ、基板配置面20やこれに配置される基板S等の温度を室温よりも低温の設定温度Thとする。そのため、試験室2内に存在する空気等の気体の露点によっては、基板配置面20や基板Sが結露し、接合不良の検知精度が低下する可能性がある。そのため、接合不良検知装置1を使用して接合不良を検知する場合に、設定温度Thを試験室2内に存在する気体の露点以下の低温に設定する場合は、気体導入口15から例えば窒素ガスやドライエアといったような露点が設定温度Thよりも低温の気体を導入し、試験室2内に存在する気体を置換することが望ましい。
As described above, in the bonding
なお、上記実施形態では、試験室2に気体導入口15を設けた例を例示したが、本発明はこれに限定されるものではなく、気体導入口15を持たない構成のものであってもよい。かかる構成とした場合は、接合不良の検知を行う際に結露が生じる可能性があるが、気体導入口15を設けない分だけ装置構成を簡略化することができる。
In the above embodiment, an example in which the
1 接合不良検知装置
2 試験室
3 恒温手段
5 部品加熱手段
6 温度検知手段
7a ピンプローブ(部品側接触手段)
7b ピンプローブ(基板側接触手段)
10 判定手段
15 気体導入口
20 基板配置面
S 基板
s2 導電部
P 電子部品
p1 ピン
L 平面
Tp 加熱設定温度
A1,A2 ハンダ接合部
DESCRIPTION OF
7b Pin probe (substrate side contact means)
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006099848A JP4676370B2 (en) | 2006-03-31 | 2006-03-31 | Bonding failure detection device and bonding failure detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006099848A JP4676370B2 (en) | 2006-03-31 | 2006-03-31 | Bonding failure detection device and bonding failure detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007273875A JP2007273875A (en) | 2007-10-18 |
JP4676370B2 true JP4676370B2 (en) | 2011-04-27 |
Family
ID=38676332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006099848A Active JP4676370B2 (en) | 2006-03-31 | 2006-03-31 | Bonding failure detection device and bonding failure detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4676370B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5966114B1 (en) | 2015-01-26 | 2016-08-10 | オリンパス株式会社 | Leak tester and endoscope reprocessor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61283453A (en) * | 1985-06-10 | 1986-12-13 | Mitsubishi Metal Corp | Inspection method for joining part of plate like joining member |
JPH1019958A (en) * | 1996-07-02 | 1998-01-23 | Hioki Ee Corp | Detecting method of loose connection by in-circuit tester of ic, and contact type heater probe |
JPH10321683A (en) * | 1997-05-19 | 1998-12-04 | Tokyo Electron Ltd | Probe equipment and low temperature inspection method |
-
2006
- 2006-03-31 JP JP2006099848A patent/JP4676370B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61283453A (en) * | 1985-06-10 | 1986-12-13 | Mitsubishi Metal Corp | Inspection method for joining part of plate like joining member |
JPH1019958A (en) * | 1996-07-02 | 1998-01-23 | Hioki Ee Corp | Detecting method of loose connection by in-circuit tester of ic, and contact type heater probe |
JPH10321683A (en) * | 1997-05-19 | 1998-12-04 | Tokyo Electron Ltd | Probe equipment and low temperature inspection method |
Also Published As
Publication number | Publication date |
---|---|
JP2007273875A (en) | 2007-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI797267B (en) | Check device | |
CN112119487A (en) | Inspection apparatus and temperature control method | |
JP5294954B2 (en) | Probe card manufacturing method | |
JP2017063092A (en) | Evaluation device and evaluation method of semiconductor device | |
US10959339B2 (en) | Manufacturing a product using a soldering process | |
TW201740121A (en) | Inspection jig, inspection jig set, and substrate inspecting apparatus | |
JP4676370B2 (en) | Bonding failure detection device and bonding failure detection method | |
JP4514787B2 (en) | Electronic component testing apparatus and temperature control method in electronic component testing apparatus | |
JP2011096836A (en) | Method and device for inspecting printed board | |
JP5466043B2 (en) | Method for inspecting printed circuit board used in electronic equipment and inspection apparatus used therefor | |
JP2008008773A (en) | Substrate inspection method and substrate inspecting device | |
JP7474678B2 (en) | Mounting table, inspection device, and inspection method | |
JP7416439B2 (en) | Electronic component testing equipment | |
JP2005347612A (en) | Wafer tray, wafer burn-in unit, wafer-level burn-in apparatus using same unit, and temperature controlling method of semiconductor wafer | |
US11307223B2 (en) | Inspection device and method of controlling temperature of probe card | |
JP7345320B2 (en) | Temperature adjustment method for inspection equipment and probe card | |
JP6313131B2 (en) | Humidity sensor inspection device | |
JP2012256799A (en) | Semiconductor inspection device | |
JP5390779B2 (en) | Connection quality inspection device and connection quality inspection method | |
WO2024154614A1 (en) | Inspection system and temperature control method | |
TWI461711B (en) | Device and method of determing properties of an electrical device | |
JP2009097860A (en) | Electrical connection method and electrical connecting device | |
KR100557991B1 (en) | Probing apparatus and the method | |
JP2008004730A (en) | Chuck for prober | |
Reitz et al. | Automated early damage detection for power MOSFETs using on-board thermal spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100729 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101116 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20101224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110120 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110127 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140204 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4676370 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |