JP4673111B2 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP4673111B2
JP4673111B2 JP2005101816A JP2005101816A JP4673111B2 JP 4673111 B2 JP4673111 B2 JP 4673111B2 JP 2005101816 A JP2005101816 A JP 2005101816A JP 2005101816 A JP2005101816 A JP 2005101816A JP 4673111 B2 JP4673111 B2 JP 4673111B2
Authority
JP
Japan
Prior art keywords
tuner
microwave
reflected wave
transmission waveguide
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005101816A
Other languages
English (en)
Other versions
JP2006286269A (ja
Inventor
信介 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2005101816A priority Critical patent/JP4673111B2/ja
Publication of JP2006286269A publication Critical patent/JP2006286269A/ja
Application granted granted Critical
Publication of JP4673111B2 publication Critical patent/JP4673111B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32247Resonators
    • H01J37/32256Tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32266Means for controlling power transmitted to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32302Plural frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は,プラズマを生成して基板に対して成膜などの処理を施すプラズマ処理装置に関する。
例えばLCD装置などの製造工程においては,マイクロ波を利用して処理室内にプラズマを発生させ,LCD基板に対してCVD処理やエッチング処理等を施す装置が用いられている。かようなプラズマ処理装置の一例として,処理容器の上方に設けた導波管からスロットを通じて誘電体にマイクロ波を伝播させ,処理容器内に供給された処理ガスをマイクロ波のエネルギー(電磁界)によってプラズマ化させる構成が知られている。さらに,このような装置に関して,基板などの大型化に伴って大型化した処理容器に十分なマイクロ波を供給するため,複数のマイクロ波源を備え,各マイクロ波源に接続された導波管からマイクロ波を供給する構成が提案されている(例えば,特許文献1参照。)。また,プラズマ処理装置では,導波管,マイクロ波源と導波管との間を接続する伝送導波管,処理容器等を含む負荷のインピーダンスが,マイクロ波源のインピーダンスと整合していないと,処理容器からマイクロ波源に向かう反射波が生じるため,処理容器内にマイクロ波が効率的に供給されなくなる問題がある。かかる問題を解決すべく,伝送導波管内の反射波を検出する反射波検出部と,反射波検出部の検出値に基づいて伝送導波管のインピーダンスを調整するチューナを備えた構成が提案されている(例えば,特許文献2参照。)。
特開2004−200646号公報 特開平9−190900号公報
しかしながら,従来のプラズマ処理装置にあっては,複数のマイクロ波源を備えた場合,反射波だけでなく,他のマイクロ波源から供給されたマイクロ波も,伝送導波管内に侵入する現象がある。この場合,反射波検出部は,他のマイクロ波源からの侵入波と実際の反射波との合成波を反射波として検出してしまう。そのため,チューナによるインピーダンス整合が正確に行われなくなり,反射波が適切に抑制されず,処理容器にマイクロ波のエネルギーを効率良く供給できなくなる問題があった。
本発明の目的は,複数のマイクロ波源を備えた場合も,処理容器にマイクロ波のエネルギーを効率的に供給できるプラズマ処理装置を提供することにある。
上記課題を解決するため,本発明によれば,基板を収納する処理容器内の処理ガスをマイクロ波によってプラズマ化させ,基板にプラズマ処理を施すプラズマ処理装置であって,前記処理容器にマイクロ波を供給する複数のマイクロ波源を備え,前記各マイクロ波源から処理容器にマイクロ波を伝送させる伝送導波管に,前記伝送導波管のインピーダンスを調整する駆動部材を有するチューナ部をそれぞれ備え,前記各チューナ部における前記駆動部材の駆動範囲は,前記複数のマイクロ波源のうち該チューナ部に対応するマイクロ波源のみから供給されるマイクロ波によって前記処理容器内の処理ガスをプラズマ化させたときに前記処理容器からの反射波が抑制される範囲内でのみ,それぞれ制限されることを特徴とする,プラズマ処理装置が提供される。
このプラズマ処理装置にあっては,前記駆動部材は,EチューナもしくはEHチューナにおけるショート板,又は,スタブチューナのスタブ棒であっても良い
また,前記基板の上方に複数の誘電体が配置され,それら複数の誘電体毎に,前記各マイクロ波源から供給されたマイクロ波を誘電体に伝播させるスロットが設けられていることとしても良い。さらに,前記伝送導波管から供給されたマイクロ波を導入する導波管を複数備え,それら複数の導波管毎に複数の誘電体をそれぞれ設け,かつ各誘電体毎に1または2以上のスロットを設けても良い。
本発明によれば,複数のマイクロ波源から互いに異なる周波数のマイクロ波を供給し,フィルタ部によって他のマイクロ波源からの侵入波が抑制される構成としたので,実際の反射波を反射波検出部で精度良く検出することができる。従って,チューナ部によって実際の反射波を適切に抑制し,処理容器にマイクロ波のエネルギーを効率的に供給することができる。
また,本発明によれば,チューナ部を制限された範囲内で調節する構成としたことにより,他のマイクロ波源からの侵入波が侵入しても,侵入波の影響によりチューナの調節が悪化することを防止できる。従って,チューナ部によって反射波を適切に抑制し,処理容器にマイクロ波のエネルギーを効率的に供給することができる。
以下,本発明の第一の実施の形態を,プラズマ処理の一例であるCVD(Chemical Vapor Deposition)処理を行うプラズマ処理装置1に基づいて説明する。図1は,本発明の実施の形態にかかるプラズマ処理装置1の概略的な構成を示した縦断面図である。図2は,このプラズマ処理装置1が備える蓋体3の下面に支持された複数の誘電体22の配置を示す下面図,及び,マイクロ波源52,54からマイクロ波を伝送させるための伝送導波管51,53の構成を示している。
このプラズマ処理装置1は,上部が開口した有底立方体形状の処理容器2と,この処理容器2の上方を塞ぐ蓋体3を備えている。これら処理容器2と蓋体3は例えばアルミニウム(Al)からなり,いずれも接地された状態になっている。
処理容器2の内部には,基板として例えばガラス基板(以下「基板」という)Gを載置するための載置台としてのサセプタ4が設けられている。このサセプタ4は例えば窒化アルミニウムからなり,その内部には,基板Gを静電吸着すると共に処理容器2の内部に所定のバイアス電圧を印加させるための給電部5と,基板Gを所定の温度に加熱するヒータ6が設けられている。給電部5には,処理容器2の外部に設けられたバイアス印加用の高周波電源7がコンデンサ等を備えた整合器7’を介して接続されると共に,と静電吸着用の高圧直流電源8がコイル8’を介して接続されている。ヒータ6には,同様に処理容器2の外部に設けられた交流電源9が接続されている。
サセプタ4は,処理容器2の外部下方に設けられた昇降プレート10の上に,筒体11を介して支持されており,昇降プレート10と一体的に昇降することによって,処理容器2内におけるサセプタ4の高さが調整される。但し,処理容器2の底面と昇降プレート10との間には,べローズ12が装着してあるので,処理容器2内の気密性は保持されている。
処理容器2の底部には,処理容器2の外部に設けられた真空ポンプなどの排気装置(図示せず)によって処理容器2内の雰囲気を排気するための排気口13が設けられている。また,処理容器2内においてサセプタ4の周囲には,処理容器2内におけるガスの流れを好ましい状態に制御するための整流板14が設けられている。
蓋体3は,蓋本体20の下面に薄板状のスロットアンテナ21を取り付け,更にスロットアンテナ21の下面に,複数枚の誘電体22を取り付けた構成である。なお,蓋本体20とスロットアンテナ21は,一体的に構成される。蓋本体20,スロットアンテナ21は,それぞれ導体,例えばアルミニウム等の金属からなる。図1に示すように処理容器2の上方を蓋体3によって塞いだ状態では,蓋本体20の下面周辺部と処理容器2の上面との間に配置されたOリング23によって,処理容器2内の気密性が保持されている。
蓋本体20の下面には,マイクロ波を導入する複数本の導波管25が形成されている。この実施の形態では,何れも直線上に延びる6本の導波管25を有しており,各導波管25同士が互いに平行となるように並列に配置されている。また各導波管25は,断面形状が矩形状のいわゆる矩形導波管に構成されており,例えばTE10モードの場合であれば,各導波管25の断面形状(矩形状)の長辺方向がH面で水平となり,短辺方向がE面で垂直となるように配置される。なお,長辺方向と短辺方向をどのように配置するかは,モードによって変わる。また各導波管25の内部は,例えばAl,石英,フッ素樹脂などによって充填されている。
その他,蓋本体20の内部には,処理容器2の外部に設けられた冷却水供給源28から冷却水が循環供給される水路29と,同様に処理容器2の外部に設けられた処理ガス供給源30から処理ガスが供給されるガス流路31が設けられている。本実施の形態においては,処理ガス供給源30として,アルゴンガス供給源35,成膜ガスとしてのシランガス供給源36および水素ガス供給源37が用意され,各々バルブ35a,36a,37a,マスフローコントローラ35b,36b,37b,バルブ35c,36c,37cを介して,ガス流路31に接続されている。
蓋本体20の下面に一体的に形成されたスロットアンテナ21には,透孔としての複数のスロット40が,等間隔に配置されている。各スロット40同士の間隔は,例えばλg/2(λgは,各導波管25における管内波長)に設定される。この形態では,各スロット40は,平面視でスリット形状の長孔に形成され,各スロット40の長手方向が導波管25の幅方向に向けられて配置されている。また,各導波管25毎に,それぞれ複数のスロット40が形成され,図示の形態では,6本の各導波管25について,それぞれ6個ずつのスロット40が設けられており,合計で6×6=36箇所のスロット40が,蓋本体20の下面全体に均一に分布して配置されている。
図2に示されるように,この形態では,スロットアンテナ21の下面に対して,正方形の平板状をなす複数枚の誘電体22を取り付けた構成になっている。各誘電体22は,例えば石英ガラス,AlN,Al,サファイア,SiN,セラミックス等からなる。各誘電体22は,スロットアンテナ21に形成された各スロット40毎に一枚ずつ取り付けられている。このため図示の形態では,合計で6×6=36枚の誘電体22が,蓋本体20の下面全体に均一に分布して配置されている。このように,各導波管25毎に複数の誘電体22を設けると,各誘電体22を小型化かつ軽量化することができ,プラズマ処理装置1の製造も容易かつ低コストとなる。また,各誘電体22の面積が小さいため,各誘電体22の表面全体にマイクロ波を確実に伝播させることができる効果がある。
各誘電体22は,格子状に形成された支持部材45によって支持されることにより,スロットアンテナ21の下面に取付けられた状態を維持している。支持部材45は,例えばアルミニウムからなり,スロットアンテナ21と共に接地された状態になっている。この支持部材45によって各誘電体22の下面周辺部を下から支持することにより,各誘電体22の下面の大部分を処理容器2内に露出させた状態にさせている。
このように格子状に形成された支持部材45の各交差点部分には,各誘電体22の周囲において処理容器2内に処理ガスを供給するためのガス噴射口46がそれぞれ設けられており,蓋本体20の下面全体にガス噴射口46が均一に分布して配置されている。先に説明した処理ガス供給源30からガス流路31に供給された処理ガスは,各ガス噴射口46から処理容器2内に噴射されるようになっている。このように支持部材45にガス噴射口46を設けると,処理容器2内の誘電体22と基板Gとの間に処理ガス供給用のシャワヘッドなどを配置する必要がなく,装置を簡略化できる。また,シャワヘッドなどを省略することにより,誘電体22と基板Gとの距離を短くでき,成膜処理やエッチング処理速度の向上,装置の小型化,処理ガスの少量化がはかれる。
図2に示されるように,先に説明した6本の導波管25のうち,左側の3本の導波管25の端部には,マイクロ波を伝送させる伝送導波管51の端部がそれぞれ接続されており,処理容器2の外部に設けられたマイクロ波源52で発生させた周波数f1のマイクロ波が,この伝送導波管51を経て3本の導波管25にそれぞれ分配されて導入される。また,6本の導波管25のうち,右側の3本の導波管25の端部には,マイクロ波を伝送させる伝送導波管53の端部がそれぞれ接続されており,処理容器2の外部に設けられたマイクロ波源54で発生させた周波数f2のマイクロ波が,この伝送導波管53を経て3本の導波管25にそれぞれ分配されて導入される。周波数f1,f2は,互いに異なる周波数である。
マイクロ波源52,54としては,一般に周波数2.45GHzのマイクロ波を供給するマイクロ波供給装置が量産されているので,これを用いることにより安価に製造できる。また,このようなマイクロ波供給装置は,わずかに周波数を変更することが可能であり,マイクロ波源52,54の周波数f1,f2を互いに異なるものに設定することが可能である。周波数f1,f2は,例えばf1=2.4GHz,f2=2.5GHzに設定すれば良い。また,f1=2.4GHz,f2=2.45GHzとしても良い。
伝送導波管51は,断面形状が矩形状に形成されたいわゆる矩形導波管であり,例えばTE10モードの場合であれば,各伝送導波管51の断面形状(矩形状)の長辺方向がH面(磁界面)で水平となり,短辺方向がE面(電界面)で垂直となるように配置される。なお,長辺方向と短辺方向をどのように配置するかは,モードによって変わる。また各伝送導波管51の内面は,例えばAl,石英,フッ素樹脂などによって被覆されている。図2に示すように,伝送導波管51には,処理容器2から反射してマイクロ波源52側に向かう反射波の電力を検出する反射波検出部61,及び,伝送導波管51のインピーダンスを調整するチューナ部62が介設されている。さらに,反射波検出部61と処理容器2との間に,周波数f1のマイクロ波だけを選択的に通過させるフィルタ部63が介設されている。図1に示す例では,マイクロ波源52と3本の導波管25との間において,マイクロ波源52側から反射波検出部61,チューナ部62,フィルタ部63の順に設けられている。反射波検出部61としては,例えば方向性結合器などを用いることができる。
図3に示すように,チューナ部62は,E面を調整する電界面調整器71と,E面に直交するH面を調整する磁界面調整器72とを備えた公知のEHチューナである。電界面調整器71は,伝送導波管51に対して直交した状態でE面から分岐させた断面矩形状の調整管81を備えている。調整管81内にはショート板82(短絡板)が備えられている。ショート板82は,ショート板駆動機構83の駆動により調整管81の長さ方向に沿って移動可能である。磁界面調整器72は,伝送導波管51に対して直交した状態でH面から分岐させた断面矩形状の調整管85を備えている。調整管85内にはショート板86が備えられている。ショート板86は,ショート板駆動機構87の駆動により調整管85の長さ方向に沿って移動可能である。そして,各ショート板82,86を調整管81,85に沿って適宜移動させることにより,電界及び磁界の位相を調整することができ,ひいては,伝送導波管51内のインピーダンスを変化させることができる構成となっている。即ち,伝送導波管51,導波管25,処理容器2を含む負荷全体のインピーダンスを,マイクロ波源52のインピーダンスと整合させることで,反射波の発生を防止できる構成になっている。
チューナ部62におけるショート板82,86の位置,即ち,伝送導波管51のE面とショート板82との間の距離Lと,伝送導波管51のH面とショート板86との間の距離Lとは,制御部90の制御命令によってショート板駆動機構83,87が駆動されることにより調節される。また,制御部90には,反射波検出部61の検出値が送信される。制御部90は,反射波検出部61の検出値に基づいてチューナ部62を制御するようになっている。
図2に示したフィルタ部63は,周波数f1を含む帯域のマイクロ波を通過させ,例えば周波数f2等を含む他の帯域の電磁波を抑制する構成となっている。即ち,マイクロ波源52から供給されるマイクロ波及びその反射波は通過させるが,例えばマイクロ波源54から供給され処理容器2,導波管25を介して伝送導波管51に侵入するマイクロ波は抑制し,反射波検出部61側に侵入させないようになっている。
伝送導波管53は,伝送導波管51とほぼ同様の構成を有している。即ち,断面略矩形状に形成され,処理容器2から反射してマイクロ波源54側に向かう反射波の電力を検出する反射波検出部101,及び,伝送導波管53のインピーダンスを調整するチューナ部102が介設されている。さらに,反射波検出部101と処理容器2との間に,周波数f2のマイクロ波だけを選択的に通過させるフィルタ部103が介設されている。図1に示す例では,マイクロ波源54と導波管25との間において,マイクロ波源54側から反射波検出部101,チューナ部102,フィルタ部103の順に設けられている。反射波検出部101は反射波検出部61とほぼ同様の構成を有する。チューナ部102は,図3に示したチューナ部62とほぼ同様の構成を有するEHチューナであり,伝送導波管53のE面から分岐させた調整管81と調整管81内で移動可能なショート板82とを有する電界面調整器71,及び,伝送導波管53のH面から分岐させた調整管85と調整管85内で移動可能なショート板86とを有する磁界面調整器72を備えている。チューナ部102におけるショート板82,86の位置は,制御部105の制御命令によってチューナ部102のショート板駆動機構83,87が駆動されることにより調節される。制御部105は,反射波検出部101の検出値に基づいてチューナ部102を制御する。
さて,以上のように構成された本発明の実施の形態にかかるプラズマ処理装置1において,例えばアモルファスシリコン成膜する場合について説明する。処理する際には,処理容器2内のサセプタ4上に基板Gを載置し,処理ガス供給源30からガス流路31からガス配管47,ガス噴射口46を経て所定の処理ガス,例えばアルゴンガス/シランガス/水素の混合ガスを処理容器2内に供給しつつ,排気口13から排気して処理容器2内を所定の圧力に設定する。この場合,蓋本体20の下面全体に分布して配置されているガス噴射口46から処理ガスを噴き出すことにより,サセプタ4上に載置された基板Gの表面全体に処理ガスを満遍なく供給することができる。そして,このように処理ガスを処理容器2内に供給する一方で,ヒータ6によって基板Gを所定の温度に加熱する。
また,図2に示したマイクロ波源52,54からそれぞれ周波数f1,f2のマイクロ波が同時に供給される。周波数f1のマイクロ波は,マイクロ波源52から伝送導波管51内に供給され,反射波検出部61,チューナ部62,フィルタ部63を通過して,左側の3本の導波管25にそれぞれ導入され,各スロット40を通じて各誘電体22に伝播される。周波数f2のマイクロ波は,マイクロ波源54から伝送導波管53内に供給され,反射波検出部101,チューナ部102,フィルタ部103を通過して,右側の3本の導波管25にそれぞれ導入され,各スロット40を通じて各誘電体22に伝播される。
こうして,各誘電体22に伝播されたマイクロ波のエネルギーによって,処理容器2内に電磁界が形成され,処理容器2内の前記処理ガスをプラズマ化することにより,基板G上の表面に対して,アモルファスシリコン成膜が行われる。この場合,例えば0.7eV〜2.0eVの低電子温度,1011〜1013cm−3の高密度プラズマによって,基板Gへのダメージの少ない均一な成膜が行える。アモルファスシリコン成膜の条件は,例えば処理容器2内の圧力については,5〜100Pa,好ましくは10〜60Pa,基板Gの温度については,200〜300℃,好ましくは250〜300℃,マイクロ波源の出力については,500〜5000W,好ましくは1500〜2500Wが適当である。
ところで,処理容器2内では,プラズマの状態によってインピーダンスが変動する。この処理容器2と伝送導波管51,導波管25,誘電体22等を含む負荷のインピーダンスがマイクロ波源52,54のインピーダンスと整合していない状態で,マイクロ波源52,54からマイクロ波が供給されると,供給したマイクロ波の一部が処理容器2から反射され,各伝送導波管51,53内に反射波が発生する。かかる反射波を抑制するため,チューナ部62,102によるインピーダンスの調整が以下のように行われる。
先ず,伝送導波管51においては,マイクロ波源52から供給された周波数f1のマイクロ波の反射波が発生する。この反射波は,フィルタ部63,チューナ部62を通過して,反射波検出部61によって検出される。制御部90は,反射波検出部61の検出値を監視しながら,チューナ部62のショート板82,86の位置を調節して,反射波を低減させる制御を行う。チューナ部62が調節されると,伝送導波管51のインピーダンスが変化する。これにより,伝送導波管51,導波管25,誘電体22,処理容器2内を含む負荷のインピーダンス全体が調整され,マイクロ波源52のインピーダンスと整合されると,反射波が抑制される。
また,伝送導波管51内には,周波数f1の反射波の他に,マイクロ波源54から処理容器2内に供給された周波数f2のマイクロ波の一部が,誘電体22,スロット40,導波管25を介して侵入して,マイクロ波源52側に向かって進行する。しかし,この周波数f2の侵入波はフィルタ部63を通過できず,反射波検出部61側には侵入しない。そのため,反射波検出部61では侵入波の電力は検出されず,実際の反射波の電力が精度良く検出される。従って,制御部90は実際の反射波の検出値に基づいてチューナ部62を調節するので,伝送導波管51のインピーダンスが適切に調整される。
同様に,伝送導波管53でも,フィルタ部103が設けられていることにより,インピーダンスが適切に調整される。即ち,伝送導波管53においては,マイクロ波源54から供給された周波数f2のマイクロ波の反射波が発生し,また,マイクロ波源52から処理容器2内に供給された周波数f1のマイクロ波の一部が侵入するが,侵入波はフィルタ部103を通過できず,周波数がf2である反射波はフィルタ部103を通過できる。そのため,反射波検出部101では侵入波の電力は検出されず,実際の反射波の電力が精度良く検出される。制御部105は実際の反射波に基づいてチューナ部102を調節し,伝送導波管53のインピーダンスを適切に調整する。そして,伝送導波管53,導波管25,誘電体22,処理容器2内を含む負荷のインピーダンス全体がマイクロ波源54のインピーダンスと整合されることにより,伝送導波管53内の反射波が抑制される。
かかるプラズマ処理装置1によれば,2個のマイクロ波源52,54から互いに異なる周波数f1,f2のマイクロ波をそれぞれ供給する構成とし,かつ,各マイクロ波源52,54に対応させて各伝送導波管51,53に設けたフィルタ部63,103によって,他のマイクロ波源からの異なる周波数の侵入波が抑制される構成としたので,各伝送導波管51,53における実際の反射波を各反射波検出部61,101で精度良く検出することができる。従って,各伝送導波管51,53において,チューナ部62,102によるインピーダンスの調整が精度良く行われ,反射波を適切に抑制できるので,各マイクロ波源52,54から供給されたマイクロ波の一部が無効電力になることを防止でき,各周波数f1,f2のマイクロ波のエネルギーを処理容器2内の処理ガスに効率的に供給することができる。
次に,本発明の第二の実施の形態を説明する。図4は,第二の実施の形態にかかるプラズマ処理装置120が備える伝送導波管51,53の構成を示している。この第二の実施形態にかかるプラズマ処理装置120は,伝送導波管51,53にフィルタ部63,103が設けられていない点を除けば,図1に示した第一の実施の形態にかかるプラズマ処理装置1とほぼ同様の構成を有する。よって,図4中に共通の符号を付することにより,重複した説明を省略する。
プラズマ処理装置120の伝送導波管51,53には,図3に示したチューナ部62,102がそれぞれ設けられている。制御部90,105は,基板Gのプラズマ処理を行う際,各チューナ部62,102を制限された範囲内で調節するように予め設定される。
チューナ部62の調節の範囲は,以下のような実験による方法で設定しても良い。先ず,マイクロ波源52,54のうち,チューナ部62に対応するマイクロ波源52のみからマイクロ波を供給して処理容器2内の処理ガスをプラズマ化させる試験を行う。即ち,伝送導波管51内に他のマイクロ波源からの侵入波が侵入せず,反射波のみが発生する状態にする。そして,この状態でチューナ部62の調節を行い,反射波が好適に抑制されるときの伝送導波管51のE面とショート板82との間の距離L,及び,伝送導波管51のH面とショート板86との間の距離Lを調べる。この実験結果に基づき,距離L,Lの制約範囲を設定する。例えば,反射波が抑制される最適な距離LEO,LHOを求め,図5に示すように,距離Lの制約範囲は距離LEOを含む範囲LEmin<L<LEmax(LEmin<LEO<LEmax)とし,距離Lの制約範囲は距離LHOを含む範囲LHmin<LH<LHmax(LHmin<LHO<LHmax)と決定する。そして,チューナ部62の調節状態がその制約範囲内にあるとき,即ち,距離L,Lの関係が図5においてLEmin<L<LEmax,LHmin<LH<LHmaxとなる方形の領域A内にあるときのみ,反射波検出部61の検出値に基づいて各ショート板駆動機構83,87の駆動量を調節するように,制御部90の制御条件を設定する。なお,距離LEO,LHOの好ましい制約範囲は,処理容器2内で行われる処理のプロセスによって異なるので,処理容器2内で行われるプロセスの種類ごとに実験を行い,各プロセスにおける距離LEO,LHOの制約範囲をそれぞれ調べることが望ましい。
伝送導波管53のチューナ部102における調節の範囲も,同様にして決定できる。即ち,チューナ部102に対応するマイクロ波源54のみからマイクロ波を供給して処理容器2内の処理ガスをプラズマ化させた状態で,伝送導波管53のチューナ部102の調節を行い,反射波が適切に抑制されるときの伝送導波管53のE面とショート板82との間の距離L,及び,伝送導波管53のH面とショート板86との間の距離Lを調べる。この実験結果より,伝送導波管53のチューナ部102における距離L,Lの制約範囲を決定し,チューナ部102の調節状態が例えばLEmin<L<LEmax,LHmin<LH<LHmaxとなる領域A内にあるときのみ,各ショート板駆動機構83,87の駆動量を調節するように,制御部105の制御条件を設定する。
かかる構成において,基板Gのプラズマ処理を行う際,マイクロ波源52,54からそれぞれマイクロ波が同時に供給され,伝送導波管51において反射波が発生するとともに,マイクロ波源54から処理容器2内に供給されたマイクロ波の一部が侵入すると,反射波検出部61は,実際の反射波と侵入波の合成波の電力を,反射波の電力として検出する。従って,実際の反射波の電力より大きな電力が検出される。制御部90は,予め制限された範囲内でのみ,反射波検出部61の検出値に基づいてチューナ部62の各ショート板駆動機構83,87の駆動量を調節し,これにより,ショート板82,86の距離L,Lが調節される。また,制御部90は,予め制限された範囲から逸脱しなければ検出値に相当する反射波を抑制することができないと判断したときは,ショート板駆動機構83,87の駆動を停止させる。チューナ部62では,停止させたときの調節状態が維持される。
ここで,制御部90に制限を与えない場合は,侵入波の影響により実際より大きく検出された反射波検出部61の検出値に応じて,図5において点線で示すように,チューナ部62における距離L,Lが必要以上に大きく調節されてしまう。この場合,マイクロ波の供給効率が悪化する。しかし,制御部90が上述したような制限を受けている場合は,図5において実線で示すように,距離L,Lが領域A内にあるときだけ,反射波検出部61の検出値に応じて距離L,Lが調節され,距離L,Lが領域Aを逸脱しなければ検出値の反射波を抑制できないと制御部90で判断されたときは,調節が停止され,距離L,Lが領域Aの境界に位置する値にある状態が維持される。従って,距離L,Lが必要以上に調節されないので,マイクロ波の供給効率が良好に維持される。
同様に,伝送導波管53において反射波が発生するとともに,マイクロ波源52から処理容器2内に供給されたマイクロ波の一部が侵入すると,反射波検出部101は,実際の反射波と侵入波の合成波の電力を,反射波の電力として検出する。制御部105は,予め制限された範囲内でのみ,反射波検出部101の検出値に基づいてチューナ部102の各ショート板駆動機構83,87の駆動量を調節するが,予め制限された範囲を逸脱しなければ検出値の反射波を抑制できないと判断したときは,ショート板駆動機構83,87の駆動を停止させる。即ち,図5において実線で示すように,距離L,Lが領域A内にあるときだけ,反射波検出部101の検出値に応じて距離L,Lが調節され,距離L,Lが領域Aを逸脱しなければ検出値の反射波を抑制できないと制御部105で判断されたときは,調節が停止され,領域Aの境界における状態が維持される。従って,チューナ部102の距離L,Lが必要以上に調節されないので,マイクロ波源54からのマイクロ波の供給効率が良好に維持される。
かかるプラズマ処理装置120によれば,ショート板82,86が制限された領域A内にある範囲でチューナ部62,102を調節する構成としたことにより,他のマイクロ波源からの侵入波が侵入しても,侵入波の影響によりチューニングが悪化することを防止できる。従って,各伝送導波管51,53において,チューナ部62,102によるインピーダンスの調整が好適に行われ,反射波を適切に抑制できるので,各マイクロ波源52,54から供給されたマイクロ波の一部が無効電力になることを抑制して,マイクロ波のエネルギーを処理容器2内の処理ガスに効率的に供給することができる。
なお,プラズマ処理装置120においては,マイクロ波源52,54が供給するマイクロ波の周波数は,互いに異なっていても同一であっても良い。いずれの場合も,チューナ部62,102のショート板82,86を制限された範囲A内でチューニングすることにより,チューニングが悪化することを防止できる。
また,上記の第二の実施形態では,距離L,Lが図5に示した方形の領域A内にある範囲でチューナ部62,102を調節する場合を説明したが,チューナ部62,102の調節を制限する方法は,かかるものに限定されない。例えば,図5における領域Aの形状は,距離LEO,LHOを中心とした略円形の領域にしても良い。
また,上記の第二の実施形態では,チューナ部62,102としてEHチューナを用いる場合を説明したが,例えばEチューナ,スタブチューナ等の他のインピーダンス整合器を用いても良い。チューナ部62,102としてEチューナを用いる場合は,EHチューナと同様に,各ショート板の位置を制限することで,チューニングの範囲を制限すれば良い。また,チューナ部62,102としてスタブチューナを用いる場合は,各スタブ棒の挿入長を制限することで,チューニングの範囲を制限すれば良い。また,チューナ部62,102の種類は,互いに異なるものであっても良い。
図6は,EHチューナに代えてチューナ部62’,102’として設けられたEチューナの一例を示している。チューナ部62’は,E面を調整する4つの調整器131A〜131Dを備えた公知のフォーEチューナである。調整器131Aは,伝送導波管51に対して直交した状態でE面から分岐させた断面矩形状の調整管135を備えている。調整管135内には,調整管135の長さ方向に沿って移動可能なショート板136(短絡板)が備えられている。調整器131B,131C,131Dも,調整器131Aとほぼ同様の構成であり,伝送導波管51に対して直交した状態でE面から分岐させた断面矩形状の調整管135と,調整管135内で移動可能なショート板136とをそれぞれ備えている。調整器131A,131B,131C,131Dは,マイクロ波源52側から導波管25側に向かってこの順に並べて設けられている。なお,調整器131Aの調整管135と調整器131Bの調整管135との間の間隔はλg/4(λgは,マイクロ波源52から供給されたマイクロ波の伝送導波管51における管内波長),調整器131Bの調整管135と調整器131Cの調整管135との間の間隔はλg/8,調整器131Cの調整管135と調整器131Dの調整管135との間の間隔はλg/4となっている。マイクロ波源52と調整器131Aとの間には,反射波検出部61’が設けられている。
調整器131A,131Bの各ショート板136は,ショート板駆動機構137の駆動によって移動させられる。調整器131Aのショート板136の動作と,調整器131Aに隣接する調整器131Bのショート板136の動作とは,互いに連動させられており,例えば調整器131Aのショート板136が距離mだけE面から離隔する向きに移動させられたとき,調整器131Bのショート板136がE面に近接する向きに距離1/2mだけ移動させられるようになっている。また,調整器131C,131Dの各ショート板136は,ショート板駆動機構138の駆動によって移動させられる。調整器131Cのショート板136の動作と,調整器131Cに隣接する調整器131Dのショート板136の動作とは,互いに連動させられており,例えば調整器131Cのショート板136が距離nだけE面から離隔する向きに移動させられたとき,調整器131Dのショート板136がE面に近接する向きに距離2nだけ移動させられるようになっている。そして,かかるショート板駆動機構137,138によって各調整器131A〜131Dのショート板136を適宜移動させることにより,電界及び磁界の位相を調整することができ,ひいては,伝送導波管51内のインピーダンスを変化させることができる構成となっている。即ち,伝送導波管51,導波管25,処理容器2を含む負荷全体のインピーダンスを,マイクロ波源52のインピーダンスと整合させることで,反射波の発生を防止できる構成になっている。なお,このように,調整器131A,131B同士,及び,調整器131C,131D同士を連動させることにより,チューナ部の制御を簡単にすることができる。
各調整器131A〜131Dのショート板136の位置は,制御部90’の制御命令によってショート板駆動機構137,138が駆動されることにより調節される。また,制御部90’には,反射波検出部61’の検出値が送信される。制御部90’は,反射波検出部61’の検出値に基づいてチューナ部62’を制御するようになっている。
チューナ部102’は,チューナ部62’とほぼ同様の構成を有するEチューナであり,伝送導波管53のE面から分岐させた調整管135と調整管135内で移動可能なショート板136とを有する4つの調整器131A〜131Dを備えている。チューナ部102’においては,調整器131Aの調整管135と調整器131Bの調整管135との間の間隔はλg/4(λgは,マイクロ波源54から供給されたマイクロ波の伝送導波管53における管内波長),調整器131Bの調整管135と調整器131Cの調整管135との間の間隔はλg/8,調整器131Cの調整管135と調整器131Dの調整管135との間の間隔はλg/4となっている。チューナ部102’における各調整器131A〜131Dのショート板136の位置は,制御部105’の制御命令によってチューナ部102’のショート板駆動機構137,138が駆動されることにより調節される。制御部105’は,反射波検出部101’の検出値に基づいてチューナ部102’を制御する。
制御部90’,105’は,基板Gのプラズマ処理を行う際,各チューナ部62’,102’を制限された範囲内で調節するように予め設定される。チューナ部62’の調節の範囲は,以下のような実験による方法で設定しても良い。先ず,マイクロ波源52,54のうち,チューナ部62’に対応するマイクロ波源52のみからマイクロ波を供給して処理容器2内の処理ガスをプラズマ化させる試験を行う。即ち,伝送導波管51内に他のマイクロ波源からの侵入波が侵入せず,反射波のみが発生する状態にする。そして,この状態でチューナ部62’の調節を行い,反射波が好適に抑制されるときの各調整器131A〜131Dのショート板136の位置関係,例えば,伝送導波管51のE面と調整器131Aのショート板136との間の距離LEA,及び,伝送導波管51のE面と調整器131Cのショート板136との間の距離LECを調べる。この実験結果に基づき,距離LEA,LECの制約範囲を設定する。例えば,反射波が抑制される最適な距離LEA0,LEC0を求め,図5に示すように,距離LEAの制約範囲は距離LEAOを含む範囲LEAmin<LEA<LEAmax(LEAmin<LEAO<LEAmax)とし,距離LECの制約範囲は距離LECOを含む範囲LECmin<LEC<LECmax(LECmin<LECO<LECmax)と決定する。そして,チューナ部62’の調節状態がその制約範囲内にあるとき,即ち,距離LEA,LECの関係が図7においてLEAmin<LEA<LEAmax,LECmin<LEC<LECmaxとなる方形の領域A2内にあるときのみ,反射波検出部61’の検出値に基づいて各ショート板駆動機構137,138の駆動量を調節するように,制御部90’の制御条件を設定する。なお,伝送導波管51のE面と調整器131Bのショート板136との間の距離LEB,伝送導波管51のE面と調整器131Dのショート板136との間の距離LEDは,それぞれ距離LEA,LECと一定の関係にあるので,距離LEA,LECが領域A2に制限されることで,距離LEB,LEDも,領域A2に連関した所定の範囲内に制限されることとなる。
伝送導波管53のチューナ部102’における調節の範囲も,同様にして決定できる。即ち,チューナ部102’に対応するマイクロ波源54のみからマイクロ波を供給して処理容器2内の処理ガスをプラズマ化させた状態で,伝送導波管53のチューナ部102の調節を行い,反射波が適切に抑制されるときの伝送導波管53のE面と調整器131Aのショート板136との間の距離LEA,及び,伝送導波管51のE面と調整器131Cのショート板136との間の距離LECを調べる。この実験結果より,伝送導波管53のチューナ部102’における距離LEA,LECの制約範囲を決定し,チューナ部102’の調節状態が例えばLEAmin<LEA<LEAmax,LECmin<LEC<LECmaxとなる領域A2内にあるときのみ,各ショート板駆動機構137,138の駆動量を調節するように,制御部105’の制御条件を設定する。なお,上記のチューナ部62’,102’の調節を制限する方法は,かかるものに限定されない。例えば,図7における領域A2の形状は,距離LEAO,LECOを中心とした略円形の領域にしても良い。
かかる構成において,基板Gのプラズマ処理を行う際,制御部90’は,予め制限された範囲内でのみ,反射波検出部61’の検出値に基づいてチューナ部62’の各ショート板駆動機構137,138の駆動量を調節し,これにより,調整器131A〜131Dのショート板136の距離LEA,LEB,LEC,LEDが調節される。また,制御部90’は,予め制限された範囲から逸脱しなければ検出値に相当する反射波を抑制することができないと判断したときは,ショート板駆動機構137,138の駆動を停止させる。チューナ部62’では,停止させたときの調節状態が維持される。例えば制御部90’が上述したような制限を受けている場合は,図7において実線で示すように,距離LEA,LECが領域A2内にあるときだけ,反射波検出部61’の検出値に応じて距離LEA,LEB,LEC,LEDが調節され,距離LEA,LECが領域A2を逸脱しなければ検出値の反射波を抑制できないと制御部90’で判断されたときは,距離LEA,LEB,LEC,LEDの調節が停止され,距離LEA,LECが領域A2の境界に位置する値にある状態が維持される。従って,伝送導波管51に他のマイクロ波源54からの侵入波が侵入しても,距離LEA,LEB,LEC,LEDが必要以上に調節されないので,侵入波の影響によりチューニングが悪化することを防止でき,マイクロ波源52からのマイクロ波の供給効率が良好に維持される。
同様に,制御部105’は,予め制限された範囲内でのみ,反射波検出部101’の検出値に基づいてチューナ部102’の各ショート板駆動機構137,138の駆動量を調節するが,予め制限された範囲を逸脱しなければ検出値の反射波を抑制できないと判断したときは,ショート板駆動機構137,138の駆動を停止させる。即ち,図7において実線で示すように,距離LEA,LECが領域A2内にあるときだけ,反射波検出部101の検出値に応じてLEA,LECが調節され,距離LEA,LECが領域A2を逸脱しなければ検出値の反射波を抑制できないと制御部105’で判断されたときは,距離LEA,LEB,LEC,LEDの調節が停止され,領域A2の境界における状態が維持される。従って,伝送導波管53に他のマイクロ波源52からの侵入波が侵入しても,チューナ部102’の距離LEA,LEB,LEC,LEDが必要以上に調節されないので,侵入波の影響によりチューニングが悪化することを防止でき,マイクロ波源54からのマイクロ波の供給効率が良好に維持される。
なお,以上では調整器131A,131Cの各ショート板136の位置に基づいて,チューナ部62’(102’)の調節を制限することとしたが,かかる制限は,他の調整器同士の組み合わせに基づいて設定しても良い。例えば,調整器131A(又は131B)と調整器131Dの各ショート板136の位置に基づいて制限しても良い。
以上,本発明にかかる第一及び第二の実施の形態の好適な例を示したが,本発明はここで説明した形態に限定されない。例えば,上記第一及び第二の実施形態では,6本の導波管25のそれぞれに対して何れも6個ずつの誘電体22とスロット40を設けたが,導波管25は任意の複数本で良く,また,各導波管25毎に設けられる誘電体22やスロット40の個数も,1個又は任意の複数個で良い。また,各導波管25毎に設けられる誘電体22の個数は互いに同じでも異なっていても良い。また,各誘電体22毎にスロット30を一つずつ設けた例を示したが,各誘電体22毎に複数のスロット30をそれぞれ設けても良いし,また,各誘電体22毎に設けられるスロット30の個数が異なっていても良い。
第一及び第二の実施形態では,2個のマイクロ波源52,54を備える構成としたが,マイクロ波源の個数は任意の複数で良い。また,1つのマイクロ波源52(54)から3本の導波管25に対してマイクロ波を導入する構成としたが,1つのマイクロ波源からマイクロ波が導入される導波管の本数は,1本又は任意の複数本であっても良い。各マイクロ波源毎のマイクロ波が導入される導波管の本数は,互いに同じでも異なっていても良い。
第一及び第二の実施形態では,スロットアンテナ21に複数のスロット40を導波管25毎に等間隔に配置した構成としたが,スロットを渦巻状や同心円状に配置したいわゆるラジアルラインスロットアンテナを構成することもできる。また,誘電体22の形状は正方形でなくても良く,例えば長方形,三角形,任意の多角形,円板,楕円等としても良い。また,各誘電体22同士は互いに同じ形状でも,異なる形状でも良い。
以上に示した第一の実施形態では,チューナ部62,102としてはEHチューナを用いることとしたが,例えばEチューナ,スタブチューナ等の他のインピーダンス整合器を用いても良い。Eチューナとしては,例えば第二の実施形態中で説明したフォーEチューナ(図6)を用いても良い。
また,上記第一の実施形態では,伝送導波管51,53においてフィルタ部63,103によって侵入波を抑制することで反射波を精度良く検出し,インピーダンス調整の高精度化を図ることとし,第二の実施形態では,伝送導波管51,53におけるチューナ部62,102(62’,102’)の調節を制限することで,インピーダンス調整の悪化防止を図ることとしたが,伝送導波管51,53は,互いに異なる構成であっても良い。即ち,複数の伝送導波管に対して,第一の実施形態における伝送導波管の構成,第二の実施形態における伝送導波管の構成のいずれかを別々に適用しても良い。例えば,伝送導波管51には第一の実施形態に示したフィルタ部63を有する構成を適用し,他方の伝送導波管53にはフィルタ部103を設けず,制御部105(105’)に対して第二の実施形態に示した制限付きの制御を行うように設定する。なお,この場合,マイクロ波源52,54が供給するマイクロ波の周波数は互いに異なっている必要がある。このような形態にしても,チューナ部62,102(62’,102’)によって反射波を適切に抑制し,処理容器2に各マイクロ波源52,54からのマイクロ波のエネルギーを効率的に供給することができる。逆に,伝送導波管53に第一の実施形態に示したフィルタ部103を有する構成を適用し,他方の伝送導波管51にはフィルタ部63を設けず,制御部90(90’)に対して第二の実施形態に示した制限付きの制御を行うように設定しても良い。また,各伝送導波管51,53に設けるチューナ部は,互いに異なる種類のインピーダンス整合器であっても良い。例えば,伝送導波管51に設けるチューナ部はEHチューナとし,伝送導波管53に設けるチューナ部はEチューナとしても良く,逆に,伝送導波管51に設けるチューナ部をEチューナとし,伝送導波管53に設けるチューナ部をEHチューナとしても良い。
第一及び第二の実施形態では,プラズマ処理の一例であるアモルファスシリコン成膜を行うものについて説明したが,本発明は,アモルファスシリコン成膜の他,酸化膜成膜,ポリシリコン成膜,シランアンモニア処理,シラン水素処理,酸化膜処理,シラン酸素処理,その他のCVD処理の他,エッチング処理にも適用できる。
本発明は,例えばCVD処理,エッチング処理に適用できる。
第一の実施形態にかかるプラズマ処理装置の概略的な構成を示した縦断面図である。 第一の実施形態にかかる蓋体の下面に支持された複数の誘電体,及び,マイクロ波源,伝送導波管の構成を説明する説明図である。 チューナ部の構成を示した斜視図である。 第二の実施形態にかかるプラズマ処理装置における蓋体の下面に支持された複数の誘電体,及び,マイクロ波源,伝送導波管の構成を説明する説明図である。 電界面調整器のショート板の位置(距離L)を横軸とし,磁界面調整器のショート板の位置(距離L)を縦軸として示し,各ショート板の位置に関する制約範囲の一例を説明したグラフである。 Eチューナの一例の構成を示した概略断面図である。 Eチューナにおける調整器のショート板の位置(距離LEA)を横軸とし,他の調整器のショート板の位置(距離LEC)を縦軸として示し,各ショート板の位置に関する制約範囲の一例を説明したグラフである。
符号の説明
A 領域
f1,f2 マイクロ波の周波数
G 基板
伝送導波管のE面とショート板との間の距離
伝送導波管のH面とショート板との間の距離
1 プラズマ処理装置
2 処理容器
3 蓋体
4 サセプタ
13 排気口
20 蓋本体
21 スロットアンテナ
22 誘電体
25 導波管
40 スロット
46 ガス噴射口
51,53 伝送導波管
52,54 マイクロ波源
61,101 反射波検出部
62,102 チューナ部
63,103 フィルタ部
71 電界面調整器
72 磁界面調整器
82,86 ショート板
90,105 制御部

Claims (4)

  1. 基板を収納する処理容器内の処理ガスをマイクロ波によってプラズマ化させ,基板にプラズマ処理を施すプラズマ処理装置であって,
    前記処理容器にマイクロ波を供給する複数のマイクロ波源を備え,
    前記各マイクロ波源から処理容器にマイクロ波を伝送させる伝送導波管に,前記伝送導波管のインピーダンスを調整する駆動部材を有するチューナ部をそれぞれ備え,
    前記各チューナ部における前記駆動部材の駆動範囲は,前記複数のマイクロ波源のうち該チューナ部に対応するマイクロ波源のみから供給されるマイクロ波によって前記処理容器内の処理ガスをプラズマ化させたときに前記処理容器からの反射波が抑制される範囲内でのみ,それぞれ制限されることを特徴とする,プラズマ処理装置。
  2. 前記駆動部材は,EチューナもしくはEHチューナにおけるショート板,又は,スタブチューナのスタブ棒であることを特徴とする,請求項1に記載のプラズマ処理装置。
  3. 前記基板の上方に複数の誘電体が配置され,それら複数の誘電体毎に,前記各マイクロ波源から供給されたマイクロ波を誘電体に伝播させるスロットが設けられていることを特徴とする,請求項1又は2に記載のプラズマ処理装置。
  4. 前記伝送導波管から供給されたマイクロ波を導入する導波管を複数備え,それら複数の導波管毎に複数の誘電体をそれぞれ設け,かつ各誘電体毎に1または2以上のスロットを設けたことを特徴とする,請求項3に記載のプラズマ処理装置。
JP2005101816A 2005-03-31 2005-03-31 プラズマ処理装置 Expired - Fee Related JP4673111B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101816A JP4673111B2 (ja) 2005-03-31 2005-03-31 プラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101816A JP4673111B2 (ja) 2005-03-31 2005-03-31 プラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2006286269A JP2006286269A (ja) 2006-10-19
JP4673111B2 true JP4673111B2 (ja) 2011-04-20

Family

ID=37407980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101816A Expired - Fee Related JP4673111B2 (ja) 2005-03-31 2005-03-31 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP4673111B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5058084B2 (ja) * 2007-07-27 2012-10-24 株式会社半導体エネルギー研究所 光電変換装置の作製方法及びマイクロ波プラズマcvd装置
GB201021860D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for diamond synthesis
GB201021865D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021870D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021913D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave plasma reactors and substrates for synthetic diamond manufacture
MY173889A (en) 2010-12-23 2020-02-26 Element Six Ltd Controlling doping of synthetic diamond material
GB201021853D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021855D0 (en) * 2010-12-23 2011-02-02 Element Six Ltd Microwave power delivery system for plasma reactors
JP5955520B2 (ja) * 2011-09-09 2016-07-20 東京エレクトロン株式会社 マイクロ波処理装置およびその制御方法
TWI739335B (zh) * 2015-05-12 2021-09-11 日商東京威力科創股份有限公司 電漿處理裝置及電漿處理方法
JP7097793B2 (ja) * 2018-10-17 2022-07-08 株式会社Kelk 検出装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272897A (ja) * 1994-03-31 1995-10-20 Sumitomo Metal Ind Ltd マイクロ波プラズマ装置
JPH09190900A (ja) * 1996-11-20 1997-07-22 Tokyo Electron Ltd プラズマ処理装置
JP2001284331A (ja) * 2000-01-25 2001-10-12 Sharp Corp プラズマプロセス装置
JP2003073836A (ja) * 2001-08-28 2003-03-12 Canon Inc 真空処理方法及び真空処理装置
JP2003179030A (ja) * 2001-12-10 2003-06-27 Tokyo Electron Ltd 高周波電源及びその制御方法
JP2004266268A (ja) * 2003-02-14 2004-09-24 Tokyo Electron Ltd プラズマ発生装置およびプラズマ発生方法ならびにリモートプラズマ処理装置
JP2005044793A (ja) * 2003-07-04 2005-02-17 Advanced Lcd Technologies Development Center Co Ltd プラズマ処理装置およびプラズマ処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552140B2 (ja) * 1987-07-03 1996-11-06 新日本無線株式会社 プラズマ発生反応装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272897A (ja) * 1994-03-31 1995-10-20 Sumitomo Metal Ind Ltd マイクロ波プラズマ装置
JPH09190900A (ja) * 1996-11-20 1997-07-22 Tokyo Electron Ltd プラズマ処理装置
JP2001284331A (ja) * 2000-01-25 2001-10-12 Sharp Corp プラズマプロセス装置
JP2003073836A (ja) * 2001-08-28 2003-03-12 Canon Inc 真空処理方法及び真空処理装置
JP2003179030A (ja) * 2001-12-10 2003-06-27 Tokyo Electron Ltd 高周波電源及びその制御方法
JP2004266268A (ja) * 2003-02-14 2004-09-24 Tokyo Electron Ltd プラズマ発生装置およびプラズマ発生方法ならびにリモートプラズマ処理装置
JP2005044793A (ja) * 2003-07-04 2005-02-17 Advanced Lcd Technologies Development Center Co Ltd プラズマ処理装置およびプラズマ処理方法

Also Published As

Publication number Publication date
JP2006286269A (ja) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4673111B2 (ja) プラズマ処理装置
KR102167868B1 (ko) 플라즈마 균일성의 방사상 및 방위각 제어를 위한 시스템들 및 방법들
JP5013393B2 (ja) プラズマ処理装置と方法
KR101736070B1 (ko) 플라즈마 처리 장치 및 샤워 플레이트
US9552966B2 (en) Antenna for plasma generation, plasma processing apparatus and plasma processing method
KR101711713B1 (ko) 마이크로파 방사 기구, 마이크로파 플라즈마원 및 표면파 플라즈마 처리 장치
KR101560122B1 (ko) 표면파 플라즈마 처리 장치
KR100960424B1 (ko) 마이크로파 플라즈마 처리 장치
JP5376816B2 (ja) マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置
US20110150719A1 (en) Microwave introduction mechanism, microwave plasma source and microwave plasma processing apparatus
US9548187B2 (en) Microwave radiation antenna, microwave plasma source and plasma processing apparatus
JP4756540B2 (ja) プラズマ処理装置と方法
US9704693B2 (en) Power combiner and microwave introduction mechanism
US20110018651A1 (en) Power combiner and microwave introduction mechanism
KR20120028331A (ko) 플라즈마 처리 장치 및 플라즈마 처리 장치용 냉각 장치
US20120326592A1 (en) Transmission Line RF Applicator for Plasma Chamber
US20170236690A1 (en) Plasma processing apparatus
JP4910396B2 (ja) プラズマ処理装置
JP5483245B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP7488464B2 (ja) プラズマ処理装置
JP4600928B2 (ja) マイクロ波方向性結合器、プラズマ発生装置及びプラズマ処理装置
JP2010277969A (ja) プラズマ処理装置及びプラズマ処理装置の給電方法
KR101722307B1 (ko) 마이크로파 방사 안테나, 마이크로파 플라즈마원 및 플라즈마 처리 장치
WO2013124898A1 (ja) プラズマ処理装置およびプラズマ処理方法
US20230238217A1 (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees