JP4671136B2 - Combustion control method for rotary melting furnace - Google Patents

Combustion control method for rotary melting furnace Download PDF

Info

Publication number
JP4671136B2
JP4671136B2 JP2007293578A JP2007293578A JP4671136B2 JP 4671136 B2 JP4671136 B2 JP 4671136B2 JP 2007293578 A JP2007293578 A JP 2007293578A JP 2007293578 A JP2007293578 A JP 2007293578A JP 4671136 B2 JP4671136 B2 JP 4671136B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
fuel
furnace
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007293578A
Other languages
Japanese (ja)
Other versions
JP2008089302A (en
Inventor
洋一 木村
祐一 草田
良二 向井
正博 佐藤
幸平 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007293578A priority Critical patent/JP4671136B2/en
Publication of JP2008089302A publication Critical patent/JP2008089302A/en
Application granted granted Critical
Publication of JP4671136B2 publication Critical patent/JP4671136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は溶解炉に関するものであり、特に酸素と燃料を炉内で燃焼し、その燃焼熱にて炉内に装入した溶解原材料を加熱溶解する回転溶解炉に適した燃焼制御方法に関するものである。   The present invention relates to a melting furnace, and more particularly to a combustion control method suitable for a rotary melting furnace in which oxygen and fuel are combusted in the furnace and the melting raw material charged in the furnace is heated and melted by the combustion heat. is there.

溶解炉の1つに回転溶解炉がある。これは横置きにされ中心軸まわりに回転する円筒状の炉本体、炉体駆動装置、バーナーから主として構成され、装入された原材料がバーナーで生じた火炎と、火炎により加熱蓄熱された回転する耐火壁からの伝熱で加熱溶解されるものである。近年バーナー燃料として、プロパン等の流体燃料に純酸素を併用したものが、エネルギー効率向上、排ガス問題、原材料の使用範囲拡大という点で普及しつつある。前記回転溶解炉におけるバーナーの燃焼調整は、バーナーに接続されている燃料又は酸素バルブの開度を調節することで行なわれる。例えば鋳鉄用溶解の場合、装入する溶解原材料のうち鉄原材料と副資材の配合割合から、操業を通じて経験的に得た流量となるように燃料と酸素の各バルブ開度を調整している。燃料と酸素の流量は、全溶解過程を通じて一定とする場合もあれば、変化させる場合もあるが、変化させても数段階であり、予め定めた状態にステップ的に変化させる程度のものである。ここで副資材とは、溶湯の成分および炉内雰囲気を調整するために鉄原材料と共に装入されるものを言う。   One type of melting furnace is a rotary melting furnace. This is mainly composed of a cylindrical furnace body that is placed horizontally and rotates around the central axis, a furnace body drive unit, and a burner. The raw material that is loaded rotates with the flame generated by the burner and the heat and heat stored by the flame. It is heated and melted by heat transfer from the refractory wall. In recent years, burner fuels that use pure oxygen in combination with fluid fuels such as propane are becoming widespread in terms of improving energy efficiency, exhaust gas problems, and expanding the range of use of raw materials. Combustion adjustment of the burner in the rotary furnace is performed by adjusting the opening of the fuel or the oxygen valve is connected to the burner. For example, in the case of melting for cast iron, the valve openings of the fuel and oxygen are adjusted so that the flow rate obtained through operation is empirically determined from the blending ratio of the iron raw material and the auxiliary material in the molten raw material to be charged. The flow rate of fuel and oxygen may be constant or may be changed throughout the entire dissolution process, but it can be changed in several steps and is changed stepwise to a predetermined state. . Here, the secondary materials refers to those charged with iron raw material to adjust the components and the inner atmosphere of the molten metal.

図5に鋳鉄溶解の場合の回転溶解炉に装入した鉄原材料及び副資材全体に含まれていたFe、C、Si、Mn各成分の重量と、溶解完了後の溶湯内に残ったこれら成分ならびに損失した重量の例を示す。特にCの損失割合が大きく、ほぼ装入した副資材中の加炭材の全量に匹敵する重量が燃料及び酸素と反応した結果消費される。関連する化学反応については後述するが、消費分はCOあるいはCO2として排出され、この時の吸熱反応と発熱反応の程度が溶解効率に大きな影響を与えることになる。したがって溶解効率を高めるには、この加炭材の反応が発熱反応を促すように燃料又は酸素流量をバーナーに供給することが重要である。しかし、反応形態と反応速度は温度や炉内雰囲気ガスの組成で大きく変化するため、従来の燃焼調整方法では対応できない。本発明は、溶解炉内の燃焼状況に応じて、燃焼効率を高く維持する燃焼制御方法およびこれを用いる回転溶解炉を提供することを目的とする。 Fig. 5 shows the weight of each of the Fe, C, Si, and Mn components contained in the iron raw materials and sub-materials charged in the rotary melting furnace in the case of melting cast iron, and these components remaining in the molten metal after melting is completed. As well as examples of lost weight. In particular, the loss ratio of C is large, and a weight equivalent to the total amount of the carburized material in the sub-material charged is consumed as a result of reaction with fuel and oxygen. Although a related chemical reaction will be described later, the consumed amount is discharged as CO or CO 2 , and the degree of endothermic reaction and exothermic reaction at this time greatly affects the dissolution efficiency. Therefore, in order to increase the dissolution efficiency, it is important to supply the fuel or oxygen flow rate to the burner so that the reaction of the carburized material promotes an exothermic reaction. However, since the reaction mode and reaction rate vary greatly depending on the temperature and the composition of the atmospheric gas in the furnace, the conventional combustion adjustment method cannot cope. An object of the present invention is to provide a combustion control method for maintaining high combustion efficiency in accordance with the combustion state in the melting furnace and a rotary melting furnace using the same.

本発明は、溶解原材料を装入して燃料及び酸素を燃焼して加熱溶解する回転溶解炉の燃焼制御方法において、炉体から排出されて大気が混入可能状態の燃焼ガス(排出ガス)の濃度をもとに、燃料または酸素の少なくとも一方の供給流量を決定する燃焼制御方法であって、炉体内の燃焼ガス(炉内ガス)および溶解原材料の間で起こる化学反応に対し関係物質の量論的関係を示した数式と炉内ガスが前記溶解原材料と反応する割合(反応率)とを有し、燃料と酸素が燃焼して生じるガスを、溶解原材料と反応する反応ガスと未反応ガスとに分け、均一に混合されたとした後の炉内ガスが如何なる組成となるかを溶解原材料の温度を関数として算出できる化学反応モデルを予め作成し、排出ガス中のCOとCOとOの濃度を検出し、CO濃度をもとに酸素流量の算出方法を選択し、CO濃度が設定値以上ある場合は、予め規定されているCO濃度とCO2濃度の比と溶解原材料温度との関係から溶解原材料の温度を求め、前記化学反応モデルをもとに炉内ガス中の少なくともCO濃度を算出し、燃料と酸素の供給流量と算出されたCOガス濃度をもとに炉内の反応が発熱反応になるように燃料供給量に対するOの増加流量を算出し、燃料または酸素の少なくとも一方の供給流量を決定することを特徴としている。なお、高温状態ではCOとH2が発生し、COのガス濃度はH2のガス濃度よりも大きくなる関係があるため、相対的に濃度の大きなCOのみの濃度を算出して用いてもよいが、COとH2ガスの両方の濃度を算出し、これをもとに炉内の反応が発熱反応になるように燃料または酸素の少なくとも一方の供給流量を決定することが好ましい。 The present invention relates to a combustion control method of a rotary melting furnace in which a melting raw material is charged and fuel and oxygen are burned and heated to melt, and the concentration of combustion gas (exhaust gas) that is discharged from the furnace body and can be mixed with the atmosphere A combustion control method for determining a supply flow rate of at least one of fuel and oxygen based on the above, and a stoichiometry of related substances with respect to a chemical reaction occurring between a combustion gas (in-furnace gas) in a furnace body and a dissolved raw material And a ratio (reaction rate) in which the gas in the furnace reacts with the dissolved raw material, and a gas generated by combustion of fuel and oxygen includes a reactive gas that reacts with the molten raw material and an unreacted gas. A chemical reaction model that can calculate the composition of the in-furnace gas after being uniformly mixed as a function of the temperature of the dissolved raw material is created in advance, and the CO, CO 2, and O 2 in the exhaust gas are created. Concentration is detected and CO Select the oxygen flow rate calculation method based on the temperature, and if the CO concentration is greater than or equal to the set value, obtain the dissolved raw material temperature from the relationship between the predefined ratio of CO concentration and CO2 concentration and the dissolved raw material temperature. Calculating at least the CO concentration in the furnace gas based on the chemical reaction model, and the fuel so that the reaction in the furnace becomes an exothermic reaction based on the supply flow rate of fuel and oxygen and the calculated CO gas concentration An increase flow rate of O 2 with respect to the supply amount is calculated, and a supply flow rate of at least one of fuel or oxygen is determined. Since CO and H 2 are generated in a high temperature state and the CO gas concentration is higher than the H 2 gas concentration, the concentration of CO having a relatively high concentration may be calculated and used. However, it is preferable to calculate the concentrations of both CO and H 2 gas and to determine the supply flow rate of at least one of the fuel and oxygen so that the reaction in the furnace becomes an exothermic reaction.

また本発明は、前記の燃焼制御方法において、排出ガス中のCO濃度が設定値以下の場合は、O濃度が設定値以上あるか否かをチェックし、設定値以上ある場合は、燃料と酸素の供給流量と前記O濃度と排出ガスへの空気混入率とから未反応O量を求めて燃料供給量に対するOの減少流量を算出し、燃料または酸素の少なくとも一方の供給流量を決定することを特徴としている。前記空気混入率は、排出ガス中の乾きガスのCO2濃度とO2濃度から規定されることが望ましい。なお、上記説明ではCO濃度の判定を最初に行い、CO濃度が判定基準値を下回っていたときにO2濃度の判定の処理を行うよう述べているが、ガス濃度計の応答特性がガスの種類により異なり、O2濃度検出の方が早いような場合等にはO2濃度の判定を最初に行うようにしても良い。
また本発明は、溶解開始からの一連の燃料と酸素の供給過程を記憶装置に記憶しておき、その後の溶解では前記記憶した燃料と酸素の供給過程を再生して燃料または酸素を供給するようにすることが好ましい。
また、本発明においては、前記溶解原材料は鉄原材料と少なくとも加炭材を含んでいる副資材であることが望ましい。
In the combustion control method described above, when the CO concentration in the exhaust gas is less than or equal to the set value, it is checked whether or not the O 2 concentration is greater than or equal to the set value. The amount of unreacted O 2 is calculated from the oxygen supply flow rate, the O 2 concentration and the air mixing rate in the exhaust gas, and the decrease flow rate of O 2 with respect to the fuel supply amount is calculated. It is characterized by deciding. The air mixing rate is preferably defined from the CO2 concentration and O2 concentration of the dry gas in the exhaust gas. In the above description, the determination of the CO concentration is performed first, and the determination process of the O 2 concentration is performed when the CO concentration is lower than the determination reference value. It varies with the type, O 2 in such case the concentration detection of the direction is earlier such may be performed first determination of the O 2 concentration.
Further, according to the present invention, a series of fuel and oxygen supply processes from the start of melting is stored in a storage device, and in the subsequent melting, the stored fuel and oxygen supply processes are regenerated to supply fuel or oxygen. It is preferable to make it.
In the present invention, it is desirable that the melting raw material is an auxiliary material containing an iron raw material and at least a carburized material.

本発明によれば、回転溶解炉内部のガス成分や溶解原材料の温度を直接計測することが困難な場合において、燃焼ガスと溶解原材料の化学反応モデルを予め作成することにより、採取後に水蒸気分が結露、除湿されたあとの排ガスのCO、CO2およびO2の検出濃度値から炉内部の水蒸気を含めたガス組成の推定が可能になり、最大熱効率を実現するバーナーへの燃料と酸素の供給流量を決定することができる。また、溶解条件が同一の場合は、前に行ったガス濃度検出による燃焼制御溶解でのバーナーへの燃料と酸素供給流量パターンを再生して溶解することが可能になることから、最適な溶解条件での繰返し操業、ならびに溶湯成分と原材料歩留の安定化を図ることができる。 According to the present invention, in the case where it is difficult to directly measure the temperature of the gas component and the melting raw material inside the rotary melting furnace, the chemical reaction model of the combustion gas and the melting raw material is created in advance, so that the water vapor content is reduced after sampling. Supply of fuel and oxygen to the burner that achieves maximum thermal efficiency by enabling estimation of gas composition including water vapor inside the furnace from the detected concentration values of CO, CO 2 and O 2 in the exhaust gas after dew condensation and dehumidification The flow rate can be determined. In addition, when the dissolution conditions are the same, it is possible to regenerate and dissolve the fuel and oxygen supply flow rate pattern to the burner in the combustion control dissolution by the gas concentration detection performed previously, so the optimal dissolution conditions Can be operated repeatedly, and the molten metal components and raw material yield can be stabilized.

以下、鋳鉄を回転溶解炉で溶解する場合を例に実施の形態を説明する。
(実施の形態1)
図1は、回転溶解炉の横断面とガスバーナーの燃焼制御系を示している。円筒状胴部1及びその両端に連接された円錐状部2、3を有し、中心軸まわりに回転する炉体5と、炉体5内に装入された溶解原材料を酸素で流体燃料を燃焼させて溶解させるバーナー6と、燃焼排ガスを外部に逃がす煙突状排気路7と、炉体5内に溶解原材料8等を装入する投入機(図示せず)を備えている。本説明ではバーナー燃料はプロパンガスと酸素とするが、プロパンガスの代わりにメタンガス、ブタンガス、灯油を用いることもできる。
Hereinafter, an embodiment will be described by taking as an example the case of melting cast iron in a rotary melting furnace.
(Embodiment 1)
FIG. 1 shows a cross section of a rotary melting furnace and a combustion control system of a gas burner. A cylindrical body 1 and conical parts 2 and 3 connected to both ends thereof, a furnace body 5 that rotates around the central axis, and a molten raw material charged in the furnace body 5 with fluid fuel with oxygen A burner 6 for burning and melting, a chimney-like exhaust passage 7 for releasing combustion exhaust gas to the outside, and a charging machine (not shown) for charging the melting raw material 8 and the like into the furnace body 5 are provided. In this description, the burner fuel is propane gas and oxygen, but methane gas, butane gas, and kerosene may be used instead of propane gas.

炉体5の一端開口部9はバーナー取付口となり、炉体5の他端開口部10は溶解原材料8の装入口、排ガス出口となる。11は、炉体5の円錐状部3に設けられた出湯孔であり、出湯時以外は閉栓されている。また、他端開口部10側には炉内のCO、H2、およびO2のガス濃度を検出する検出部40が取り付けられ、信号線41で変換器42に接続されている。変換器42は検出部40と組み合わせてガス濃度計を構成するもので、検出部40で検出された信号をガスの濃度値に変換し、外部に出力する。 One end opening 9 of the furnace body 5 serves as a burner mounting opening, and the other end opening 10 of the furnace body 5 serves as an inlet for the melting raw material 8 and an exhaust gas outlet. 11 is a tapping hole provided in the conical portion 3 of the furnace body 5 and is closed except during tapping. Further, a detection unit 40 for detecting gas concentrations of CO, H 2 and O 2 in the furnace is attached to the other end opening 10 side, and is connected to the converter 42 by a signal line 41. The converter 42 constitutes a gas concentration meter in combination with the detection unit 40, converts the signal detected by the detection unit 40 into a gas concentration value, and outputs it to the outside.

ここでは、バーナー6としては、中央に燃料吹き込み口を有し、外周に酸素供給口を設けた構造のものを使用している。バーナー6の上流側に燃料及び酸素の供給系統が接続されており、各々酸素供給系統の酸素用流量制御バルブ30と燃料供給系統の燃料用流量制御バルブ31とが接続されている。酸素用流量制御バルブ30の上流側には酸素供給源32が、燃料用流量制御バルブ31の上流側には燃料供給源33が接続されている。   Here, as the burner 6 has a fuel blowing port in the center, using those oxygen supply port is provided a structure on the outer periphery. A fuel and oxygen supply system is connected to the upstream side of the burner 6, and an oxygen flow control valve 30 of the oxygen supply system and a fuel flow control valve 31 of the fuel supply system are respectively connected. On the upstream side of the oxygen flow control valve 30 the oxygen supply source 32, upstream of the fuel flow control valve 31 is a fuel supply source 33 is connected.

酸素用流量制御バルブ30、燃料用流量制御バルブ31には各々流量制御バルブ調整器34、35が接続されており、各流量制御バルブ調整器34、35には演算制御装置20からの流量指示信号線36、37が接続されている。演算制御装置20は、ガス濃度計の変換器42と信号線43で接続されており、検出されたガス濃度をもとに後述する方法にて回転溶解炉に供給する酸素流量及び燃料流量の指令値を算出し出力する。流量制御バルブ調整器34、35は、演算制御装置20からの流量指令値に対し、酸素配管40と燃料ガス配管41に設けた各流量検出器38、39からの実際の流量値をフィードバックし、酸素用流量制御バルブ30及び燃料用流量制御バルブ31の開度を制御している。そして、かかる開度の制御によって、バーナー6へ供給する酸素流量及び燃料ガス流量を高精度に制御し、ひいては炉内のバーナーへの燃焼発熱量と燃焼ガス組成を制御しているのである。   Flow rate control valve adjusters 34 and 35 are connected to the oxygen flow control valve 30 and the fuel flow control valve 31, respectively. The flow rate control signals from the arithmetic control unit 20 are connected to the flow control valve adjusters 34 and 35, respectively. Lines 36 and 37 are connected. The arithmetic and control unit 20 is connected to a gas concentration meter converter 42 through a signal line 43, and commands for the oxygen flow rate and fuel flow rate supplied to the rotary melting furnace based on the detected gas concentration by a method described later. Calculate and output the value. The flow rate control valve regulators 34 and 35 feed back the actual flow rate values from the flow rate detectors 38 and 39 provided in the oxygen pipe 40 and the fuel gas pipe 41 in response to the flow rate command value from the arithmetic and control unit 20. The openings of the oxygen flow control valve 30 and the fuel flow control valve 31 are controlled. By controlling the opening degree, the flow rate of oxygen and the flow rate of fuel gas supplied to the burner 6 are controlled with high accuracy, and the combustion heat value and combustion gas composition to the burner in the furnace are controlled.

次に上述した回転溶解炉を使用して鋳鉄用溶湯を得るための溶解工程と回転溶解炉内の燃焼ガスの反応について述べる。まず溶解工程について説明する。最初に所定量の鋳鉄や鋼屑等の鉄原材料及び副資材を開口部10より炉体5内に装入する。開口部10に煙突状排気路7を取り付けた後、炉体5の一端の開口部9にバーナー6をセットして点火し、溶解を開始する。鉄原材料はバーナー火炎で加熱された耐火材12からの主として輻射熱と伝導熱、及びバーナー火炎からの輻射熱等で加熱されることにより溶解する。溶解開始時のバーナーの設定は、炉に応じて定められた基準燃料ガス流量とそれを完全燃焼する酸素流量とする。   Described below for the reaction of the combustion gas in the rotary furnace in the melting step for obtaining a cast iron for molten metal using a rotary furnace as described above. First, the dissolution process will be described. Initially charged into the furnace body 5 from the opening 10 of the iron raw materials and auxiliary materials, such as a predetermined amount of cast iron or steel scrap. After the opening 10 fitted with a chimney exhaust passage 7, to set the burner 6 to ignite the opening 9 at one end of the furnace body 5, it starts dissolving. The iron raw material is dissolved by being heated mainly by radiant heat and conduction heat from the refractory material 12 heated by the burner flame, and by radiant heat from the burner flame. The setting of the burner at the start of melting is a reference fuel gas flow rate determined according to the furnace and an oxygen flow rate for complete combustion.

次に、回転溶解炉内の溶解に関連する燃焼ガスの反応について述べる。燃料がプロパンガスでは、混合比が1.0すなわち完全燃焼の場合、燃料と酸素の反応は数1で表される。

Figure 0004671136
回転溶解炉の場合、溶解原材料の温度が上昇するにつれて、副資材の1つである加炭材と、燃焼ガスすなわちCO2および水蒸気との間で数2〜3で示す可逆反応の右方向への反応が活発に起こるようになる。
Figure 0004671136
Figure 0004671136
数2、数3の右方向への反応は吸熱反応である。すなわち、周囲から熱を奪うため、熱効率を低下させるように作用する。 Next, the reaction of the combustion gas related to melting in the rotary melting furnace will be described. When the fuel is propane gas and the mixing ratio is 1.0, that is, complete combustion, the reaction between the fuel and oxygen is expressed by Equation 1.
Figure 0004671136
In the case of a rotary melting furnace, as the temperature of the melting raw material rises, the reversible reaction shown in Equations 2 to 3 between the carburized material, which is one of the auxiliary materials, and the combustion gas, that is, CO 2 and water vapor, proceeds to the right. The reaction becomes active.
Figure 0004671136
Figure 0004671136
The reactions in the right direction in Equations 2 and 3 are endothermic reactions. That is, since heat is taken away from the surroundings, the heat efficiency is lowered.

ここで、バーナー燃料の混合比が1.0以下の酸素不足の場合は、一部のプロパンガスが未反応となるため、燃料が燃焼して発生する全発熱量が少なくなり、併せて燃焼ガスと加炭材が数2、数3の吸熱反応を起こすため、さらに熱効率が低下し、溶解時間が長くなる。一方、混合比を1.0以上にすると、前記数2、数3の反応と同時に燃料との燃焼反応で残った余剰酸素が炉内に混流するようになり、この酸素が加炭材に達すると数4に示す反応の右方向の発熱反応が起こるようになる。

Figure 0004671136
さらに、高温状態の炉内では数2〜数4で発生したCO、H2と余剰酸素との間で数5、数6の反応の右方向の発熱反応が起こる。
Figure 0004671136
Figure 0004671136
前記数5にてCOがO2と反応してCO2に変化するときに発生する熱量Q5は、数2の反応で同一モル容積のCOが生成される際に吸収する熱量Q2よりも大きい。また、数6にてH2が水蒸気に変化するときに発生する熱量Q6は、数3の反応で同一モル容積のH2が生成される際に吸収する熱量Q3よりも大きい。したがって、燃料ガスと酸素ガスの混合比を1.0より大きくした場合、加炭材近傍では数4の発熱反応を促し、さらに加炭材から離れたガス領域では、数2〜数4の反応で生成されるCOとH2がO2と反応して、数5、数6の発熱反応が起こるようになる。 Here, when the mixing ratio of the burner fuel is 1.0 or less, a part of the propane gas becomes unreacted, so that the total calorific value generated by the combustion of the fuel is reduced, and the combustion gas And the carburized material cause endothermic reactions of Formulas 2 and 3, further reducing the thermal efficiency and increasing the melting time. On the other hand, when the mixing ratio is 1.0 or more, the surplus oxygen remaining in the combustion reaction with the fuel simultaneously with the reactions of Equations 2 and 3 is mixed into the furnace, and this oxygen reaches the carburized material. Then, an exothermic reaction in the right direction of the reaction shown in Equation 4 occurs.
Figure 0004671136
Further, in the furnace in a high temperature state, the exothermic reaction in the right direction of the reactions of Formulas 5 and 6 occurs between the CO and H 2 generated in Formulas 2 to 4 and the surplus oxygen.
Figure 0004671136
Figure 0004671136
The amount of heat Q5 that is generated when CO reacts with O 2 to change to CO 2 in Equation 5 is greater than the amount of heat Q2 that is absorbed when CO of the same molar volume is generated in the reaction of Equation 2. Further, the amount of heat Q6 generated when H 2 changes to water vapor in Equation 6 is larger than the amount of heat Q3 absorbed when H 2 having the same molar volume is generated in the reaction of Equation 3. Therefore, when the mixing ratio of the fuel gas and the oxygen gas is larger than 1.0, the exothermic reaction of Formula 4 is promoted near the carburized material, and the reaction of Formula 2 to Formula 4 is further performed in the gas region away from the carburized material. The CO and H 2 produced in (5) react with O 2 to cause exothermic reactions of Formulas 5 and 6.

数2〜数6の反応の方向と速度は、後述するように溶解原材料温度、ガスの温度及びガス分圧の影響を受ける。一方、バーナー6から数5、数6の反応に対して必要以上の酸素を供給することは、無駄に排出される酸素の加熱に熱を消費することになるため、混合比を高め過ぎた場合も熱効率が低下する。また、溶解原材料の余分な酸化反応が発生するため、溶解原材料の歩留が低下することにもなる。   Number Direction and speed of reaction of 2 6, the dissolution raw materials temperature as will be described later, affected by the temperature and the gas partial pressure of the gas. On the other hand, supplying excessive oxygen from the burner 6 to the reactions of Formulas 5 and 6 consumes heat for heating wasteful oxygen, and therefore the mixing ratio is excessively increased. However, the thermal efficiency decreases. In addition, since an excessive oxidation reaction of the dissolved raw material occurs, the yield of the dissolved raw material is also reduced.

燃焼効率を上げるには、温度およびガス組成と共に変化する炉内の反応特性に合せて、数4から数6の発熱反応を有効に利用できる最適な燃料と酸素量を供給する必要がある。炉内に発生したCOとH2ガスに対し、数5、数6の化学反応を起こすのに必要な酸素流量は、その時点でのプロパンガスと酸素の供給流量、および炉内のCOとH2のガス濃度が分かれば求まる。前記したように、燃焼ガスと加炭材の反応により炉内ガス中にCOとH2が発生する場合には、CO濃度とH2濃度を検出して数5、数6の発熱反応に必要な酸素の増加流量を決定するが、加炭材が消失あるいは酸素供給流量が過剰となって未反応酸素が残存するようになった場合には、酸素の減少流量を決定し、バーナーに常に最適な燃料と酸素を供給する。以下その考え方について述べる。 In order to increase the combustion efficiency, it is necessary to supply an optimal amount of fuel and oxygen that can effectively use the exothermic reactions of Equations 4 to 6 in accordance with the reaction characteristics in the furnace that change with temperature and gas composition. The oxygen flow rate necessary to cause the chemical reactions of Formulas 5 and 6 to the CO and H 2 gas generated in the furnace is the supply flow rate of propane gas and oxygen at that time, and the CO and H in the furnace. If the gas concentration of 2 is known, it can be obtained. As described above, when CO and H 2 are generated in the furnace gas due to the reaction between the combustion gas and the carburized material, the CO concentration and the H 2 concentration are detected and necessary for the exothermic reactions of Formulas 5 and 6. If the carburized material disappears or the oxygen supply flow rate becomes excessive and unreacted oxygen remains, the oxygen decrease flow rate is determined and is always optimal for the burner. The right fuel and oxygen. The concept is described below.

酸素が全て反応して未反応酸素が存在しない状態では、プロパンガスの供給流量、酸素ガスの供給流量を各々g、wモル/sとすると、炉内を流れる総合ガス流量Vモル/sは化学量論的に概ね数7で表わされる。

Figure 0004671136
バーナーへの酸素ガスの修正増加量Δwは、炉内ガス中のCOガス濃度[CO]とH2ガス濃度[H2]をもとに、数8で求めることができる。
Figure 0004671136
したがって、現在の酸素ガス供給流量に、数8で計算された修正増加量を加えた値に、酸素用流量制御バルブ30の開度を制御すれば良い。なお、鋳鉄用回転炉において数2および数3の反応にてCOとH2が発生する高温状態では、COのガス濃度はH2のガス濃度よりも大きくなる関係がある。このため、相対的に濃度の大きなCOのみの濃度を用いて数8を計算して酸素供給流量を増加しても発熱反応の効果を得ることができる。この時はH2ガス濃度の項は0にすればよい。 In the state where all the oxygen has reacted and there is no unreacted oxygen, assuming that the supply flow rate of propane gas and the supply flow rate of oxygen gas are g and wmol / s, respectively, the total gas flow rate Vmol / s flowing in the furnace is chemical. Quantitatively, it is approximately expressed by Equation 7.
Figure 0004671136
The corrected increase amount Δw of the oxygen gas to the burner can be obtained by Equation 8 based on the CO gas concentration [CO] and the H 2 gas concentration [H 2 ] in the furnace gas.
Figure 0004671136
Therefore, the opening degree of the oxygen flow control valve 30 may be controlled to a value obtained by adding the corrected increase calculated in Equation 8 to the current oxygen gas supply flow rate. In a cast iron rotary furnace, CO gas concentration is higher than H 2 gas concentration in a high temperature state where CO and H 2 are generated by the reactions of Equations 2 and 3. For this reason, the effect of the exothermic reaction can be obtained even if the oxygen supply flow rate is increased by calculating Equation 8 using the concentration of CO having a relatively high concentration. At this time, the H 2 gas concentration term may be set to zero.

また、溶解途中で加炭材が反応の結果消失、あるいは燃料ガスと酸素ガスの混合比が大きくなりすぎてCOが無くなり、過剰O2が排出されるようになった状態での酸素供給流量の減少方法について述べる。プロパンガスの供給流量、加炭材の反応量、未反応O2流量を各々g、u、vモル/sとすると、酸素が過剰状態では炉内の反応は化学量論的に数9〜数11の関係で表わされる。

Figure 0004671136
Figure 0004671136
Figure 0004671136
プロパンガスと燃焼反応しない酸素流量(u+v)モル/sは、プロパンガスの供給量gとバーナー燃料の混合比λを用いると数12で表わされる。
Figure 0004671136
炉内ガスに占めるO2の割合[O2]は、数9〜数12の関係から数13となる。
Figure 0004671136
未反応O2量vモル/sは、既知であるバーナー燃料供給量と排ガス中のO2濃度検出値をもとに数14で求めることができる。
Figure 0004671136
In addition, the carbonized material disappears as a result of the reaction in the middle of melting, or the mixing ratio of the fuel gas and the oxygen gas becomes too large so that the CO is eliminated and excess O 2 is discharged. The reduction method is described. Assuming that the supply flow rate of propane gas, the reaction amount of the carburized material, and the unreacted O 2 flow rate are g, u, and v mol / s, respectively, the reaction in the furnace is stoichiometrically several to several tens when oxygen is in excess. 11 relationships.
Figure 0004671136
Figure 0004671136
Figure 0004671136
The oxygen flow rate (u + v) mol / s at which combustion reaction does not occur with propane gas is expressed by Equation 12 using the propane gas supply amount g and the mixing ratio λ of the burner fuel.
Figure 0004671136
The proportion of O 2 occupying the furnace gas [O 2] is a number 13 on the relationship number 9 number 12.
Figure 0004671136
The amount of unreacted O 2 vmol / s can be obtained from Equation 14 based on the known burner fuel supply amount and the detected O 2 concentration in the exhaust gas.
Figure 0004671136

次に、実際の溶解作業において、ガス濃度計で検出された炉内ガスのCO、H2、およびO2濃度をもとに、酸素ガス供給流量を修正調整して燃焼制御する方法について、図2のフローチャートを用いて説明する。まず開始にあたり、演算制御装置20に対して、装入した鉄原材料と加炭材の量から定めているバーナーの燃料ガスの基準流量、およびCO濃度とO2濃度の判定基準値p1、p2を入力、記憶させる。自動燃焼制御をスタートさせると、演算制御装置20はスタート前に入力された基準の燃料流量値と、燃料に対して混合比が1.0の酸素の流量値を、燃料流量制御バルブ調整器35と酸素流量制御バルブ調整器34に出力する(ステップ101)。そして制御周期Tcに相当する時間タイムカウントする(ステップ102)。次いで、検出部40と変換器42からなるガス濃度計を用いて炉内ガス中のCO、H2、O2の濃度を計測し(ステップ103)、最初にCOが判定基準値p1以上存在しているかを判断する(ステップ104)。 Next, a method for performing combustion control by correcting and adjusting the oxygen gas supply flow rate based on the CO, H 2 , and O 2 concentrations of the in-furnace gas detected by the gas concentration meter in the actual melting operation will be described. This will be described with reference to the flowchart of FIG. First, at the start, the reference flow rate of the burner fuel gas determined from the amount of the iron raw material and the carburized material charged, and the judgment reference values p1 and p2 of the CO concentration and the O 2 concentration are given to the arithmetic control device 20. Input and memorize. When the automatic combustion control is started, the arithmetic and control unit 20 uses the reference fuel flow rate value input before the start and the flow rate value of oxygen having a mixing ratio of 1.0 with respect to the fuel as the fuel flow control valve regulator 35. And output to the oxygen flow control valve regulator 34 (step 101). Then, the time corresponding to the control cycle Tc is counted (step 102). Next, the concentration of CO, H 2 , and O 2 in the furnace gas is measured using a gas concentration meter including the detection unit 40 and the converter 42 (step 103). First, CO is present at a determination reference value p1 or more. (Step 104).

COが判定基準値p1以上検出された場合は以下の処理を行う。前ステップで計測されたCOとH2のガス濃度、およびバーナーへの燃料と酸素の供給流量を用いて、数5、数6の反応に必要な酸素流量、すなわち現在の酸素供給量に対する増加流量を計算し(ステップ105)、酸素流量制御バルブ調整器34への出力値を修正する(ステップ106)。 When CO is detected to be greater than or equal to the determination reference value p1, the following processing is performed. Using the gas concentrations of CO and H 2 measured in the previous step and the fuel and oxygen supply flow rates to the burner, the oxygen flow rates required for the reactions of Equations 5 and 6, ie, increased flow rates relative to the current oxygen supply amount Is calculated (step 105), and the output value to the oxygen flow control valve regulator 34 is corrected (step 106).

一方、ステップ104にて判定基準値p1以上のCO濃度が検出されなかった場合は、未反応O2が判定基準値p2以上存在するかを判定する(ステップ107)。O2濃度が判定基準値p2以上検出された場合は、O2濃度、およびバーナーへの燃料と酸素の供給流量値を用いて数9〜数14にて過剰酸素流量を計算し(ステップ108)、酸素流量制御バルブ調整器34への出力値を修正する(ステップ106)。他方、ステップ107にてO2濃度が判定基準値p2以上検出されなかった場合は、現在の燃料と酸素の供給流量を維持する。そして、制御周期であるタイムカウント処理に戻る。 On the other hand, when the CO concentration equal to or higher than the determination reference value p1 is not detected in step 104, it is determined whether or not unreacted O 2 exists above the determination reference value p2 (step 107). When the O 2 concentration is detected to be equal to or higher than the judgment reference value p2, the excess oxygen flow rate is calculated by the formulas 9 to 14 using the O 2 concentration and the fuel and oxygen supply flow rates to the burner (step 108). Then, the output value to the oxygen flow control valve regulator 34 is corrected (step 106). On the other hand, if the O 2 concentration is not detected at the determination reference value p2 or more in step 107, the current fuel and oxygen supply flow rates are maintained. And it returns to the time count process which is a control period.

なお、制御周期Tcは、対象溶解炉に合わせて例えばTc=1minなどとし、酸素用流量制御バルブ30からの酸素流量が、演算制御装置20が酸素流量制御バルブ調整器34に与えた流量値に達し、炉内ガスの状態が操作結果の反映された定常状態に達する時間にする。また、CO濃度とO2濃度の判定基準値p1、p2は例えば1%および2%などとし、ガス濃度計が安定に検出できる値を考慮した値にする。また、COに比して濃度が低くはなるが、ステップ104の判定をH2濃度で行っても良い。 The control cycle Tc is set to, for example, Tc = 1 min in accordance with the target melting furnace, and the oxygen flow rate from the oxygen flow control valve 30 is set to the flow rate value given to the oxygen flow control valve regulator 34 by the arithmetic control device 20. It is time to reach the steady state in which the state of the gas in the furnace reflects the operation result. Further, the determination reference values p1 and p2 of the CO concentration and the O 2 concentration are set to 1% and 2%, for example, and are set in consideration of values that can be stably detected by the gas concentration meter. Further, although the concentration is lower than that of CO, the determination in step 104 may be performed based on the H 2 concentration.

図2のフローチャートで説明した処理を、溶解原材料の温度が鉄が溶解して出湯可能な温度、例えば1520℃になるまで繰り返す。次に、溶湯の一部を取り出して成分分析を行ない、必要に応じて成分調整を行なう。そして、温度と成分が満足されればバーナー6を停止し、出湯口11を開栓して出湯する。   The process described in the flowchart of FIG. 2, possible tapping temperature of the dissolution raw materials dissolved iron temperature, for example repeated until 1520 ° C.. Next, a part of the molten metal is taken out, component analysis is performed, and component adjustment is performed as necessary. And if temperature and a component are satisfied, the burner 6 will be stopped, the hot water outlet 11 will be opened, and hot water will be discharged.

(実施の形態2)
前記実施の形態1では、炉内に発生しているガスの濃度を検出してこれをもとに燃料または酸素の少なくとも一方の供給流量を決定する方法を説明したが、以下実施の形態2では、炉内のガスの代わりに排出ガスの濃度を検出して、予め作成した化学反応モデルをもとに炉内に発生するガスの組成を計算し、これをもとに燃料または酸素の少なくとも一方の供給流量を決定する方法を説明する。図3に本実施の形態における回転溶解炉と燃焼制御系を示す。排ガス出口開口部10から出たところにガス採取管16が取り付けられ、パイプ17を介してCO、CO2、およびO2のガス濃度計19に接続されている。ガス濃度計19は、ガス採取管16から取り入れた排ガスから水分を冷却除湿し、乾き状態での各ガスの濃度を計測する。演算制御装置20は後述する化学反応モデルを内蔵し、前述のガス濃度計19と信号線18で接続されており、化学反応モデル及び検出されたガス濃度をもとに回転溶解炉に供給する酸素流量及び燃料流量を算出する。その他の構成は実施の形態1と同じであり、同一記号で示す。
(Embodiment 2)
In the first embodiment, the method of detecting the concentration of gas generated in the furnace and determining the supply flow rate of at least one of fuel and oxygen based on this is described. Detecting the concentration of the exhaust gas instead of the gas in the furnace, calculating the composition of the gas generated in the furnace based on a chemical reaction model created in advance, and based on this, at least one of fuel or oxygen A method for determining the supply flow rate will be described. FIG. 3 shows a rotary melting furnace and a combustion control system in the present embodiment. A gas sampling pipe 16 is attached at a position exiting from the exhaust gas outlet opening 10, and connected to a CO, CO 2 , and O 2 gas concentration meter 19 via a pipe 17. The gas concentration meter 19 cools and dehumidifies moisture from the exhaust gas taken in from the gas sampling tube 16, and measures the concentration of each gas in a dry state. The arithmetic and control unit 20 incorporates a chemical reaction model, which will be described later, and is connected to the gas concentration meter 19 and the signal line 18, and oxygen supplied to the rotary melting furnace based on the chemical reaction model and the detected gas concentration. Calculate flow rate and fuel flow rate. Other configurations are the same as those of the first embodiment, and are denoted by the same symbols.

CO2とCOの大気中の濃度は低いため、ガス採取管16に入る排ガスが大気で薄められ、あるいは全体採取ガスから水蒸気分が除去されても、その比はほとんど変化しない。そこで、実施の形態2では、加炭材と燃焼ガスとの反応が始まり、O2が不足してCOが検出されている状態では、排ガス中のCO濃度とCO2濃度を検出してその比を求め、後述する化学反応モデルから同一比の状態になる炉内の原材料温度と真の炉内ガスの全組成を求めることにより、必要な酸素の供給流量を演算補正し、修正出力する。また、加炭材が消失あるいは燃料ガスと酸素ガスの混合比を大きくしすぎてCOが無くなり、過剰O2が検出されるようになった状態では排ガス中のO2、CO2濃度の検出値から、サンプルガスへの空気の混入を考慮して過剰酸素供給流量を演算し、修正出力する。以下、化学反応モデル、及び化学反応モデルと排ガス中のCO濃度とCO2濃度を検出してその比を用い、数5、数6の発熱反応に必要な酸素流量を決定する方法、および酸素過剰時にはCO2とO2の濃度検出値を用いて酸素供給流量を減少する方法について具体的に説明する。 Since the concentration of CO 2 and CO in the atmosphere is low, the ratio hardly changes even if the exhaust gas entering the gas sampling tube 16 is diluted in the atmosphere or the water vapor content is removed from the entire sampling gas. Therefore, in the second embodiment, in the state where the reaction between the carburized material and the combustion gas has started and CO is detected due to the lack of O 2 , the CO concentration and the CO 2 concentration in the exhaust gas are detected and the ratio thereof is detected. Is calculated, and the supply flow rate of the necessary oxygen is calculated and corrected by obtaining the raw material temperature in the furnace and the total composition of the true in-furnace gas from the chemical reaction model described later. Further, when the carburized material disappears or the mixing ratio of the fuel gas and the oxygen gas is excessively increased and CO is eliminated, and excess O 2 is detected, the detected values of the O 2 and CO 2 concentrations in the exhaust gas are detected. From this, the excess oxygen supply flow rate is calculated in consideration of the mixing of air into the sample gas, and is corrected and output. Hereinafter, a chemical reaction model, a method of determining the oxygen flow rate necessary for the exothermic reactions of Equations 5 and 6, using the chemical reaction model, the CO concentration and the CO 2 concentration in the exhaust gas, and using the ratios, and oxygen excess A method for reducing the oxygen supply flow rate using the CO 2 and O 2 concentration detection values will be specifically described.

まず化学反応モデルについて述べる。化学反応モデルは、炉内の燃焼ガスおよび溶解原材料の間で起る化学反応に対し、関係物質の量論的関係を数式化したものである。対象となる化学反応は、基本的には数2〜数6で示す通りであるが、各化学反応の反応進行速度は各々の化学反応速度や物質移動速度で律速されるため、個別の化学反応をもとにして炉内全体の化学反応を数式化することは単純にはできない。しかし,本説明における回転溶解炉では、バーナーで燃料が燃焼して発生する燃焼ガスは、常にバーナー側から出口に向かっての流動状態にあり、炉内で加炭材と反応しても絶えず撹袢混合されて流出していくため、炉内ガス成分の変動はきわめて緩やかである。このため、炉内の雰囲気は化学熱力学平衡状態への過渡状態の一時期として捉えられること、さらに昇温・溶解過程は化学反応速度に比してはるかに長時間の現象であり、炉内ガス成分の変化は溶解材料の温度の関数として関係付けられることから,燃焼ガスと加炭材の炉内全体の化学反応を化学熱力学的平衡論を用いて近似的に数式化する。本来の化学熱力学的平衡論は、ある温度における関係物質の反応の最終的な平衡状態を与えるものであり、反応の進行速度を規定するものではないが、バーナーから燃焼流入して炉内を流動している燃焼ガス全量に対し、溶解原材料と反応するガスの割合(以降、反応率と称す)を規定することにより、反応が平衡状態に至る過渡段階の関係物質の量論的関係を決定できる。なお、反応率は実際の溶解炉の反応状態を計測すれば同定できる。すなわち,化学反応モデルとは,燃料ガスと酸素ガスが回転溶解炉内のバーナーで燃焼し,前記各ガスの流量に応じたCO2,H2O,O2の組成となって炉内の一端側からに流入したあと、反対側から流れ出ていく間に溶解原材料,特に加炭材と全体のどれだけの量が反応して,最終的に如何なるガス組成の状態に変化するかの関係を溶解原材料の温度の関数として,対象とする回転溶解炉およびその使用する溶解原材料の配合状態に適合するように表わしたものである。 First, the chemical reaction model is described. The chemical reaction model is a mathematical expression of the quantitative relationship of the related substances with respect to the chemical reaction occurring between the combustion gas in the furnace and the dissolved raw material. The target chemical reactions are basically as shown in Equations 2 to 6, but the reaction progress rate of each chemical reaction is limited by the respective chemical reaction rate and mass transfer rate, so individual chemical reaction It is not simply possible to formulate the chemical reaction of the entire furnace based on the above. However, in the rotary melting furnace in this description, the combustion gas generated by the combustion of fuel in the burner is always in a flowing state from the burner side to the outlet, and is continuously stirred even if it reacts with the carburized material in the furnace. Because the soot is mixed and flows out, the fluctuation of the gas components in the furnace is very gradual. For this reason, the atmosphere in the furnace can be regarded as a period of transition to a chemical thermodynamic equilibrium state, and the temperature rising / dissolution process is a much longer phenomenon than the chemical reaction rate. Since the change in the components is related as a function of the temperature of the dissolved material, the chemical reaction of the combustion gas and the carburized material in the furnace is approximated using chemical thermodynamic equilibrium theory. The original chemical thermodynamic equilibrium theory gives the final equilibrium state of the reaction of related substances at a certain temperature, and does not regulate the rate of progress of the reaction. By determining the ratio of the gas that reacts with the dissolved raw material (hereinafter referred to as the reaction rate) to the total amount of combustion gas that is flowing, the quantitative relationship of the related substances at the transient stage where the reaction reaches an equilibrium state is determined. it can. The reaction rate can be identified by measuring the actual reaction state of the melting furnace. That is, the chemical reaction model is that a fuel gas and an oxygen gas are burned by a burner in a rotary melting furnace, and a composition of CO 2 , H 2 O, O 2 corresponding to the flow rate of each gas becomes one end in the furnace. After flowing in from one side, while melting out from the other side, the melting raw material, especially the carburized material, and how much of the whole reacts, and finally the relationship of the gas composition state is dissolved. As a function of the temperature of the raw material, it is expressed so as to suit the blending state of the target rotary melting furnace and the melting raw material used.

次に化学反応モデルにより、炉内ガス組成を求める方法について述べる。化学反応モデルでは、炉内をガス層と原材料層との2つの層で考える。回転溶解炉の場合は、炉内容積に反応率を掛けた底部側領域を原材料層、残りをガス層と見なし、各層が雰囲気温度と初期存在ガスの分圧に応じた化学熱力学平衡状態になると考える。具体的には次の処理を行う。
(1)層内のガスと原材料の温度tg1を与える。
(2)バーナーへ供給している流量の燃料と酸素の燃焼ガスが炉内に入り、均一混合した場合の炉内のO2、H2O、CO2、CO、H2のガス量、モル分率を求める。
(3)炉内全体の燃焼ガスから一定割合α(反応率)を原材料層に移動し、温度tg1におけるガス−加炭材間の化学反応の化学熱力学平衡状態を求める。
(4)上記化学熱力学平衡状態に達した反応ガスをガス層に戻し、未反応ガスと均一混合した場合の各ガスの中間モル数を求める。
(5)(4)の組成ガスの、温度tg1における化学反応の化学熱力学平衡状態を求める。
以上の処理により、炉内温度tg1と燃焼バーナーへの燃料と酸素の供給流量および反応率に応じた炉内ガスの組成が求まる。
Next, a method for determining the gas composition in the furnace using a chemical reaction model will be described. In the chemical reaction model, the inside of the furnace is considered as two layers, a gas layer and a raw material layer. In the case of a rotary melting furnace, the bottom area, which is the reaction rate multiplied by the furnace volume, is regarded as a raw material layer and the rest as a gas layer, and each layer is in a chemical thermodynamic equilibrium state according to the ambient temperature and the partial pressure of the initial gas. I think. Specifically, the following processing is performed.
(1) The temperature tg1 of the gas and raw material in a layer is given.
(2) The amount of gas and moles of O 2 , H 2 O, CO 2 , CO, and H 2 in the furnace when the fuel and oxygen combustion gas supplied to the burner enter the furnace and are mixed uniformly Find the fraction.
(3) A constant ratio α (reaction rate) is transferred from the combustion gas in the entire furnace to the raw material layer, and the chemical thermodynamic equilibrium state of the chemical reaction between the gas and the carburized material at the temperature tg1 is obtained.
(4) The reaction gas that has reached the above-mentioned chemical thermodynamic equilibrium state is returned to the gas layer, and the intermediate mole number of each gas when uniformly mixed with the unreacted gas is determined.
(5) The chemical thermodynamic equilibrium state of the chemical reaction at the temperature tg1 of the composition gas of (4) is determined.
By the above processing, the composition of the furnace gas corresponding to the furnace temperature tg1, the supply flow rate of fuel and oxygen to the combustion burner, and the reaction rate is obtained.

次に、化学反応モデルの基本的考えである化学熱力学平衡について述べる。まず、原材料層の反応モデル(前記(3)項)について述べる。化学熱力学的平衡論からは、数2から数6の炉内反応に関係するガス成分の、ガス分圧を求める上で必要な独立な反応式は数15から数17で示したの3つに集約できる。なお、関係ガス成分の独立な関係が得られる組合わせであれば、下記3式の組合わせに限定されないことは言うまでもない。

Figure 0004671136
Figure 0004671136
Figure 0004671136
数15、数16、数17の各反応の平衡定数をK1、K2、K3、また対象ガスCO2、H2O、O2、CO、H2のガス分圧をPco2、Ph2o、Po2、Pco、Ph2で表わすと、ファント・ホッフの等温式と標準自由エネルギー変化から数18〜数20の関係式が成り立つ。
Figure 0004671136
Figure 0004671136
Figure 0004671136
すなわち温度が決定されれば、その温度における平衡定数が求まる。 Next, chemical thermodynamic equilibrium, which is the basic idea of the chemical reaction model, will be described. First, the reaction model of the raw material layer (item (3) above) will be described. From the chemical thermodynamic equilibrium theory, the independent reaction equations necessary for obtaining the gas partial pressures of the gas components related to the in-furnace reactions of Equations 2 to 6 are shown in Equations 15 to 17. Can be consolidated. Needless to say, the combination is not limited to the combination of the following three formulas as long as an independent relationship of the related gas components is obtained.
Figure 0004671136
Figure 0004671136
Figure 0004671136
The equilibrium constants of the reactions of Equations 15, 16, and 17 are K1, K2, and K3, and the gas partial pressures of the target gases CO 2 , H 2 O, O 2 , CO, and H 2 are Pco 2 , Ph 2 o, When expressed by Po 2 , Pco, and Ph 2 , the relational expressions of Expressions 18 to 20 are established from the Phanto-Hoff isotherm and the standard free energy change.
Figure 0004671136
Figure 0004671136
Figure 0004671136
That is, when the temperature is determined, the equilibrium constant at that temperature is obtained.

Pco2、Ph2o、Po2、Pco、Ph2は炉内全圧が1atmであること、及び燃料ガスの供給流量の初期条件から以下の方法で決定する。CO2、H2O、O2、CO、H2の各ガスの炉内モル数を各々A、B、C、D、Eで表わし、化学反応モデルにて炉内ガスの原材料層に移動すると見なす割合(反応率)をαとする。そして、CO2、H2O、O2、CO、H2の反応前のモル数を各々a(=α・A)、b(=α・B)、c(=α・C)、d(=α・D)、e(=α・E)とし、数15、数16、数17の反応の方向と反応量(モル数)を数21、数22、数23のように定めると、反応後の各ガスの分圧とモル数の関係は数24〜数28となる。

Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
数24〜数28を数18〜数20に代入することにより数29〜数31の関係が求まる。
Figure 0004671136
Figure 0004671136
Figure 0004671136
温度が決まればK1、K2、K3は数18〜数20から一義的に定まる。したがって、変数がx、y、zの3つに対し関係式が3つであることから解が求まり、平衡状態でのCO2、H2O、O2、CO、H2のモル数と分圧の関係が求まる。 Pco 2 , Ph 2 o, Po 2 , Pco, and Ph 2 are determined by the following method from the fact that the total pressure in the furnace is 1 atm and the initial condition of the fuel gas supply flow rate. When the number of moles of CO 2 , H 2 O, O 2 , CO, and H 2 in the furnace is represented by A, B, C, D, and E, respectively, the chemical reaction model moves to the raw material layer of the furnace gas. The rate (reaction rate) to be considered is α. The number of moles of CO 2 , H 2 O, O 2 , CO, and H 2 before the reaction is set to a (= α · A), b (= α · B), c (= α · C), d (, respectively). = Α · D), e (= α · E), and the reaction direction and reaction amount (number of moles) of Equations 15, 16, and 17 are defined as Equations 21, 22, and 23, the reaction The relationship between the partial pressure of each subsequent gas and the number of moles is expressed by several 24 to 28.
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
By substituting Equations 24 to 28 into Equations 18 to 20, the relationship of Equations 29 to 31 is obtained.
Figure 0004671136
Figure 0004671136
Figure 0004671136
If the temperature is determined, K1, K2, and K3 are uniquely determined from Equations 18 to 20. Therefore, since there are three relational expressions for three variables x, y, and z, a solution is obtained, and the number of moles and minutes of CO 2 , H 2 O, O 2 , CO, and H 2 in the equilibrium state are obtained. The relationship of pressure is obtained.

次に、ガス層での反応モデル(前記(4)項)について述べる。対象反応式は数5と数6の2つである。数5、数6の各反応の平衡定数をK4、K5で表わすと、原材料層と同様にして次の関係式が成り立つ。

Figure 0004671136
Figure 0004671136
Pco2、Ph2o、Po2、Pco、Ph2は炉内全圧が1atmであることと、燃料ガスの供給流量の初期条件から以下の方法で決定する。CO2、H2O、O2、CO、H2の反応前のモル数は各々a1(=(1−α)・A+(a−x−y))、b1(=(1−α)・B+(b−z))、c1(=(1−α)・C+(c+y+1/2・z))、d1(=(1−α)・D+(d+2・x))、e1(=(1−α)・E+(e+z))とし、数5、数6の反応の方向と反応量(モル数)を数34、数35のように定めると、反応後の各ガスの分圧とモル数の関係は数36〜数40となる。
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
ただし、数36から数40においてAは炉内ガスの反応後の総モル数であり、数41である。
Figure 0004671136
数36〜数40を数32、数33に代入することにより数42、数43の関係が求まる。
Figure 0004671136
Figure 0004671136
温度が決まればK4、K5は数32、数33から一義的に定まる。以上により変数がx1、y1の2つに対し関係式が2つあることから解が求まり、炉内の最終的なCO2、H2O、O2、CO、H2のモル数と分圧が求まる。炉内圧は全圧が1atmであるから、分圧はガス濃度に等しい。 Next, the reaction model in the gas layer (item (4) above) will be described. There are two target reaction equations, Equation 5 and Equation 6. When the equilibrium constants of the reactions of Equations 5 and 6 are expressed by K4 and K5, the following relational expression is established in the same manner as the raw material layer.
Figure 0004671136
Figure 0004671136
Pco 2 , Ph 2 o, Po 2 , Pco, and Ph 2 are determined by the following method from the fact that the total pressure in the furnace is 1 atm and the initial condition of the fuel gas supply flow rate. The number of moles of CO 2 , H 2 O, O 2 , CO, and H 2 before the reaction is a1 (= (1−α) · A + (a−xy)) and b1 (= (1−α) · B + (b−z)), c1 (= (1−α) · C + (c + y + 1/2 · z)), d1 (= (1−α) · D + (d + 2 · x)), e1 (= (1− α) · E + (e + z)), and the reaction direction and reaction amount (number of moles) of Equations 5 and 6 are determined as in Equations 34 and 35, the partial pressure and the number of moles of each gas after the reaction The relationship is expressed by Equation 36 to Equation 40.
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
Figure 0004671136
However, in Equations 36 to 40, A is the total number of moles after the reaction of the in-furnace gas, and is Equation 41.
Figure 0004671136
By substituting Equations 36 to 40 into Equations 32 and 33, the relationship between Equations 42 and 43 is obtained.
Figure 0004671136
Figure 0004671136
If the temperature is determined, K4 and K5 are uniquely determined from Equations 32 and 33. From the above, there are two relational expressions for the two variables x1 and y1, and the solution is obtained. The final number of moles and partial pressure of CO 2 , H 2 O, O 2 , CO, and H 2 in the furnace Is obtained. Since the internal pressure of the furnace is 1 atm, the partial pressure is equal to the gas concentration.

炉内全体のガスに対して原材料層のガス量を決定する化学反応モデルの反応率αは、実炉のモデル操業におけるCOとCO2のガス濃度と原材料の温度変化を計測することで同定できる。実炉モデル操業の燃料ガス供給条件に対し、前記化学反応モデルの反応率を変動パラメータとして、原材料温度と水蒸気分を除去したCOとCO2のガス濃度の関係を計算で求め、実際の計測値変化と最も近い反応率を、その燃料ガス供給条件での反応率とするのである。実際の回転溶解炉の原材料について、異なる燃料の混合比に対してモデル溶解を行った結果、原材料の温度、加炭材の装入量、および反応率の関係を図6のようにすれば、設置した回転溶解炉の炉内の反応をモデル化できることが分かった。一旦化学反応モデルが作成できれば、燃料と酸素の供給過程が変化しても、溶解原材料の温度に対応した炉内のガス組成を計算で求めることが可能になる。 The reaction rate α of the chemical reaction model that determines the amount of gas in the raw material layer relative to the gas in the entire furnace can be identified by measuring the CO and CO 2 gas concentrations and the temperature change of the raw material in the model operation of the actual furnace. . Using the reaction rate of the chemical reaction model as a variable parameter for the fuel gas supply conditions of the actual furnace model operation, the relationship between the raw material temperature and the gas concentration of CO and CO 2 with the water vapor content removed is calculated, and the actual measured value The reaction rate closest to the change is set as the reaction rate under the fuel gas supply conditions. As a result of model melting with respect to the mixing ratio of different fuels for the raw material of the actual rotary melting furnace, the relationship between the temperature of the raw material, the amount of charging of the carburized material, and the reaction rate is as shown in FIG. It was found that the reaction in the installed rotary melting furnace can be modeled. Once the chemical reaction model can be created, the gas composition in the furnace corresponding to the temperature of the molten raw material can be obtained by calculation even if the supply process of fuel and oxygen changes.

次に、化学反応モデルをもとにCOとCO2の濃度比を用い、数5、数6の発熱反応に必要な酸素流量を決定する方法について説明する。図7に燃料のプロパンガスと酸素の混合比が1.0の場合について、実際の溶解実験結果から同定した反応率を用いて、化学反応モデルをもとに求めたCOガス濃度[CO]とCO2ガス濃度[CO2]の比と原材料温度の関係を示す。[CO]/[CO2]比は、原材料温度の上昇とともに0から増加する。すなわち、混合比が1.0の場合は、最初COは存在せず、原材料の温度が上昇して燃焼ガスと加炭材との反応が盛んになる発生するようになり、温度上昇と共に増加する。プロパンガスに対して酸素が過剰の混合比でも、値は異なるが右上がりの変化に違いはなく、原材料温度と[CO]/[CO2]比は1:1の対応関係がある。したがって、検出したガス濃度から[CO]/[CO2]比が求めれば炉内の原材料の温度を推定することができ、化学反応モデルからCOガスとH2ガスの炉内のモル容積、分圧、およびガス濃度を求めることができる。すなわち、数5、数6の反応に必要な酸素量が求まる。 Next, a method for determining the oxygen flow rate necessary for the exothermic reactions of Equations 5 and 6 using the concentration ratio of CO and CO 2 based on the chemical reaction model will be described. FIG. 7 shows the CO gas concentration [CO] obtained based on the chemical reaction model using the reaction rate identified from the actual dissolution experiment results when the mixing ratio of propane gas to oxygen is 1.0. The relationship between the ratio of the CO 2 gas concentration [CO 2 ] and the raw material temperature is shown. The [CO] / [CO 2 ] ratio increases from 0 with increasing raw material temperature. That is, when the mixing ratio is 1.0, there is no CO at first, the temperature of the raw material rises, and the reaction between the combustion gas and the carburized material starts to occur and increases with the temperature rise. . Even when the mixing ratio of oxygen is excessive with respect to propane gas, the value is different but there is no difference in upward change, and there is a 1: 1 correspondence between the raw material temperature and the [CO] / [CO 2 ] ratio. Therefore, if the [CO] / [CO 2 ] ratio is obtained from the detected gas concentration, the temperature of the raw material in the furnace can be estimated, and the molar volume of the CO gas and H 2 gas in the furnace can be estimated from the chemical reaction model. Pressure and gas concentration can be determined. That is, the amount of oxygen necessary for the reactions of Equations 5 and 6 is obtained.

次いで、溶解途中で加炭材が反応の結果消失、あるいは燃料ガスと酸素ガスの混合比が大きくなりすぎてCOが無くなり、過剰O2が排出されるようになった状態での酸素供給量の減少方法について述べる。プロパンガスの供給流量、加炭材の反応量、未反応O2流量を各々g、u、vモル/sとすると、O2が過剰状態では炉内の反応は化学量論的に前記数9〜数11の関係で表わされる。 Next, the amount of oxygen supply in the state where the carburized material disappears as a result of the reaction in the middle of melting, or the mixing ratio of the fuel gas and the oxygen gas becomes too large to eliminate CO and exhaust excess O 2 . The reduction method is described. Assuming that the supply flow rate of propane gas, the reaction amount of the carburized material, and the unreacted O 2 flow rate are g, u, and v mol / s, respectively, the reaction in the furnace stoichiometrically occurs when the O 2 is excessive. ˜Expression 11

ガス採取管への空気の混入率をβとするとすると、混入率βは乾きガスのCO2濃度[CO2]とO2濃度[O2]から数44で求まる。

Figure 0004671136
これより、空気の混入を考慮した未反応O2量vモルは、空気の混入率βとO2濃度[O2]から数45で求められる。
Figure 0004671136
したがって、数45で計算された酸素量をバーナー燃料から減ずれば、過剰酸素を無くすことができる。 Assuming that the mixing rate of air into the gas sampling tube is β, the mixing rate β can be obtained from the CO 2 concentration [CO 2 ] and the O 2 concentration [O 2 ] of the dry gas by Equation 44.
Figure 0004671136
From this, the unreacted O 2 amount v mol considering the air mixing can be obtained from the air mixing ratio β and the O 2 concentration [O 2 ] by the formula 45.
Figure 0004671136
Therefore, excess oxygen can be eliminated by reducing the amount of oxygen calculated in Equation 45 from the burner fuel.

次に、実際の溶解作業において、ガス濃度計19で検出された排ガスのCO、CO2、およびO2濃度をもとに、内蔵した化学反応モデルを用い、酸素ガス供給量を修正調整して燃焼制御する方法について、図4のフローチャートを用いて説明する。まず開始にあたり、演算制御装置20に対して、装入した鉄原材料と加炭材の量、および原材料の量から定めているバーナーの燃料ガスの基準流量、およびCO濃度とO2濃度の判定基準値p1、p2を入力、記憶させる。自動燃焼制御をスタートさせると、演算制御装置20はスタート前に入力された基準の燃料流量値と、燃料に対して混合比が1.0の酸素の流量値を、燃料流量制御バルブ調整器35と酸素流量制御バルブ調整器34に出力する(ステップ201)。そして制御周期Tcに相当する時間タイムカウントする(ステップ202)。次いで、ガス濃度計19を用いて排ガス中のCO、CO2、O2の濃度を計測し(ステップ203)、最初にCOが判定基準値p1以上存在しているかを判断する(ステップ204)。 Next, in the actual melting operation, the oxygen gas supply amount is corrected and adjusted using the built-in chemical reaction model based on the CO, CO 2 and O 2 concentrations of the exhaust gas detected by the gas concentration meter 19. A method for controlling combustion will be described with reference to the flowchart of FIG. First, at the start, the reference flow rate of the burner fuel gas determined from the amount of the iron raw material and the carburized material charged, and the amount of the raw material, and the determination criteria for the CO concentration and the O 2 concentration are given to the arithmetic and control unit 20. The values p1 and p2 are input and stored. When the automatic combustion control is started, the arithmetic and control unit 20 uses the reference fuel flow rate value input before the start and the flow rate value of oxygen having a mixing ratio of 1.0 with respect to the fuel as the fuel flow control valve regulator 35. And output to the oxygen flow control valve regulator 34 (step 201). Then, the time corresponding to the control cycle Tc is counted (step 202). Next, the concentration of CO, CO 2 , and O 2 in the exhaust gas is measured using the gas concentration meter 19 (step 203), and it is first determined whether or not CO is present above the determination reference value p1 (step 204).

COが判定基準値p1以上検出された場合は以下の処理を行う。まずCO濃度とCO2の濃度比[CO]/[CO2]=rを計算する(ステップ205)。そして、内蔵させた化学反応モデルに基づき、現在の燃料と酸素供給流量の混合比から適用する反応率αを決定後、CO濃度とCO2の濃度比がrとなる原材料温度trを求め、そのときの炉内のH2Oをも含んだCOとH2のガス濃度を計算する(ステップ206)。そして、前ステップで計算されたCOとH2のガス濃度、およびバーナーへの燃料と酸素の供給流量を用いて、数5、数6の反応に必要な酸素流量、すなわち現在の酸素供給量に対する増加流量を計算し(ステップ207)、酸素流量制御バルブ調整器34への出力値を修正する(ステップ208)。 When CO is detected to be greater than or equal to the determination reference value p1, the following processing is performed. First, the CO / CO 2 concentration ratio [CO] / [CO 2 ] = r is calculated (step 205). Then, after determining the reaction rate α to be applied from the mixing ratio of the current fuel and oxygen supply flow rate based on the built-in chemical reaction model, the raw material temperature tr at which the CO / CO 2 concentration ratio is r is obtained, The gas concentration of CO and H 2 including H 2 O in the furnace is calculated (step 206). Then, using the gas concentrations of CO and H 2 calculated in the previous step and the fuel and oxygen supply flow rates to the burner, the oxygen flow rates necessary for the reactions of Equations 5 and 6, that is, the current oxygen supply amount The increased flow rate is calculated (step 207), and the output value to the oxygen flow rate control valve regulator 34 is corrected (step 208).

一方、ステップ204にて判定基準値p1以上のCO濃度が検出されなかった場合は、未反応O2が判定基準値p2以上存在するかを判定する(ステップ209)。O2が判定基準値p2以上検出された場合は、O2濃度、およびバーナーへの燃料と酸素の供給流量値を用いて数44〜数45にて過剰酸素流量を計算し(ステップ210)、酸素流量制御バルブ調整器34への出力値を修正する(ステップ208)。他方、ステップ209にてO2濃度が判定基準値p2以上検出されなかった場合は、現在の燃料と酸素の供給量を維持する。そして、制御周期であるタイムカウント処理に戻る。 On the other hand, when the CO concentration equal to or higher than the determination reference value p1 is not detected in step 204, it is determined whether or not unreacted O 2 exists above the determination reference value p2 (step 209). When O 2 is detected to be equal to or greater than the determination reference value p2, the excess oxygen flow rate is calculated using Equations 44 to 45 using the O 2 concentration and the fuel and oxygen supply flow rate values to the burner (Step 210). The output value to the oxygen flow control valve regulator 34 is corrected (step 208). On the other hand, if the O 2 concentration is not detected at the determination reference value p2 or more in step 209, the current supply amount of fuel and oxygen is maintained. And it returns to the time count process which is a control period.

なお、制御周期Tc、CO濃度とO2濃度の判定基準値p1、p2は実施の形態1と同様に、燃料と酸素の流量制御バルブ系の応答、ガス濃度計の安定検出、あるいはガス採取管への大気の混入の影響等を考慮した値にする。図4のフローチャートで説明した処理を、溶解原材料の温度が鉄が溶解して出湯可能な温度になるまで繰り返し、必要に応じて成分調整を行なって、温度と成分が満足されればバーナー6を停止し、出湯口11を開栓して出湯する。以上のように化学反応モデルを適用し、排ガス中のCOとCO2の濃度を検出して燃焼バーナーの酸素の供給流量を制御することにより、炉内の化学反応状態に合わせて最大の熱効率が得られるバーナーの燃焼制御が実現できる。なお、前記説明では化学反応モデルに熱力学平衡論を適用したが、チャーあるいはコークスに対して報告されているように、化学反応抵抗と流体境膜内拡散抵抗の総括反応速度からなるモデルを用いても良い。 The control cycle Tc, the determination reference values p1 and p2 of the CO concentration and the O 2 concentration are the same as in the first embodiment, the response of the flow control valve system of the fuel and oxygen, the stable detection of the gas concentration meter, or the gas sampling tube Set the value to take into account the effects of air contamination. The process described in the flowchart of FIG. 4 is repeated until the temperature of the melting raw material reaches a temperature at which iron can be melted and can be discharged, and the components are adjusted as necessary. Stop and open the tap 11 to pour out hot water. By applying the chemical reaction model as described above and detecting the concentration of CO and CO 2 in the exhaust gas and controlling the oxygen supply flow rate of the combustion burner, the maximum thermal efficiency is achieved according to the chemical reaction state in the furnace. Combustion control of the resulting burner can be realized. Although the thermodynamic equilibrium theory is applied to the chemical reaction model in the above explanation, as reported for char or coke, a model consisting of the overall reaction rate of the chemical reaction resistance and the diffusion resistance in the fluid film is used. May be.

実施の形態1および2において、制御する酸素はバーナーに供給しているもので説明したが、別に補助の酸素供給経路を設けてもよい。また、バーナーへの酸素の最大供給量に制限があり、酸素供給量を最大値にしてもCOが残存する場合は、燃料の流量を減少してもよい。さらには、常に酸素流量は一定にして燃料を増減しても良い。いずれも数1の燃料と酸素の関係を用いれば、本発明で述べた方法で容易に実施できる。また、本実施の形態1および2ではCO濃度の判定を最初に行い、CO濃度が判定基準値を下回っていたときにO2濃度の判定の処理を行うようにしているが、ガス濃度計の応答特性がガスの種類により異なり、O2濃度検出の方が早いような場合等にはO2濃度の判定を最初に行うようにしても良い。 In Embodiments 1 and 2, the oxygen to be controlled has been described as being supplied to the burner, but an auxiliary oxygen supply path may be provided separately. In addition, when the maximum supply amount of oxygen to the burner is limited and the CO remains even when the oxygen supply amount is set to the maximum value, the flow rate of the fuel may be reduced. Furthermore, the fuel may be increased or decreased with the oxygen flow rate kept constant. Any of them can be easily implemented by the method described in the present invention, if the relationship between the fuel and oxygen of Formula 1 is used. In the first and second embodiments, the determination of the CO concentration is performed first, and the determination process of the O 2 concentration is performed when the CO concentration is lower than the determination reference value. If the response characteristics differ depending on the type of gas and the O 2 concentration detection is faster, the O 2 concentration may be determined first.

さらに、装入する溶解原材料の配合が同じである溶解が繰り返される場合には、最初は実施の形態1あるいは2で説明のガス濃度検出を用いた燃焼制御方法で溶解を行うと同時に、そのときの燃焼バーナーへの燃料と酸素の供給過程を演算制御装置20のメモリに記憶しておき、その後の溶解は、溶解原材料の配合が同じである記憶した燃料と酸素の供給過程のデータを溶解時間の経過に合せて逐次読出し、燃料と酸素の流量制御を行う方法を用いても良い。本方法によれば、ガス濃度計測を常時行う必要がなくなるため、耐熱性を要求されるため高価になるガス採取管の熱損耗の低減、およびガス濃度計のダストフィルタや基準ガスの保守、点検作業の低減を図ることができる。   Furthermore, when dissolution with the same composition of the raw material to be charged is repeated, the dissolution is initially performed by the combustion control method using the gas concentration detection described in the first or second embodiment, and at that time The fuel and oxygen supply process to the combustion burner is stored in the memory of the arithmetic and control unit 20, and the subsequent melting is performed by using the stored fuel and oxygen supply process data having the same composition of the melting raw material as the dissolution time. It is also possible to use a method of sequentially reading and controlling the flow rate of fuel and oxygen as the time elapses. According to this method, it is not necessary to constantly measure the gas concentration, so that heat resistance is required, which reduces the cost of heat loss of the gas sampling pipe, and maintenance and inspection of the gas concentration meter dust filter and reference gas. The work can be reduced.

本発明の実施の形態1を説明する鋳鉄用溶解炉略図と燃焼制御装置の系統図A schematic diagram of a melting furnace for cast iron and a combustion control system for explaining the first embodiment of the present invention 本発明の実施の形態1の燃焼制御方法を説明するためのフローチャートFlowchart for explaining the combustion control method of Embodiment 1 of the present invention 本発明の実施の形態2を説明する鋳鉄用溶解炉略図と燃焼制御装置の系統図Schematic diagram of a melting furnace for cast iron and a system diagram of a combustion control device for explaining Embodiment 2 of the present invention 本発明の実施の形態2の燃焼制御方法を説明するためのフローチャートThe flowchart for demonstrating the combustion control method of Embodiment 2 of this invention. 本発明対象の回転溶解炉での装入成分、溶湯成分、および損失成分の重量例Weight examples of charging components, molten metal components, and loss components in the rotary melting furnace subject to the present invention 本発明対象の回転溶解炉での燃料の混合比と反応率の関係Relationship between fuel mixing ratio and reaction rate in the rotary melting furnace of the present invention 本発明対象の回転溶解炉での原材料温度と(COガス濃度)/(CO2ガス濃度)の関係の一例Example of relationship between raw material temperature and (CO gas concentration) / (CO 2 gas concentration) in the rotary melting furnace of the present invention

符号の説明Explanation of symbols

5…溶解炉本体
6…バーナー
19…ガス濃度計
20…演算制御装置
30…酸素用流量制御バルブ
31…燃料用流量制御バルブ
34…酸素流量制御バルブ調整器
35…燃料流量制御バルブ調整器
38…酸素流量検出器
39…燃料流量検出器
40…ガス濃度計の検出部
42…ガス濃度計の変換器
DESCRIPTION OF SYMBOLS 5 ... Melting furnace main body 6 ... Burner 19 ... Gas concentration meter 20 ... Arithmetic control device 30 ... Flow control valve for oxygen 31 ... Flow control valve for fuel 34 ... Oxygen flow control valve regulator 35 ... Fuel flow control valve regulator 38 ... Oxygen flow detector 39 ... Fuel flow detector 40 ... Gas concentration meter detector 42 ... Gas concentration meter converter

Claims (5)

溶解原材料を装入して燃料及び酸素を燃焼して加熱溶解する回転溶解炉の燃焼制御方法において、炉体から排出されて大気が混入可能状態の燃焼ガス(排出ガス)の濃度をもとに、燃料または酸素の少なくとも一方の供給流量を決定する燃焼制御方法であって、
炉体内の燃焼ガス(炉内ガス)および溶解原材料の間で起こる化学反応に対し関係物質の量論的関係を示した数式と炉内ガスが前記溶解原材料と反応する割合(反応率)とを有し、燃料と酸素が燃焼して生じるガスを、溶解原材料と反応する反応ガスと未反応ガスとに分け、均一に混合されたとした後の炉内ガスが如何なる組成となるかを溶解原材料の温度を関数として算出できる化学反応モデルを予め作成し、
排出ガス中のCOとCOとOの濃度を検出し、CO濃度をもとに酸素流量の算出方法を選択し、CO濃度が設定値以上ある場合は、予め規定されているCO濃度とCO2濃度の比と溶解原材料温度との関係から溶解原材料の温度を求め、前記化学反応モデルをもとに炉内ガス中の少なくともCO濃度を算出し、燃料と酸素の供給流量と算出されたCOガス濃度をもとに炉内の反応が発熱反応になるように燃料供給量に対するOの増加流量を算出し、燃料または酸素の少なくとも一方の供給流量を決定することを特徴とする回転溶解炉の燃焼制御方法。
In a combustion control method for a rotary melting furnace in which melting raw materials are charged and fuel and oxygen are burned to heat and melt, based on the concentration of the combustion gas (exhaust gas) that is discharged from the furnace body and can be mixed with the atmosphere A combustion control method for determining a supply flow rate of at least one of fuel and oxygen,
A mathematical expression showing the stoichiometric relationship of the substances concerned with the chemical reaction that occurs between the combustion gas (in-furnace gas) and the melting raw material in the furnace and the rate (reaction rate) at which the in-furnace gas reacts with the melting raw material. The gas generated by the combustion of fuel and oxygen is divided into a reaction gas that reacts with the dissolved raw material and an unreacted gas, and the composition of the gas in the furnace after it has been uniformly mixed is determined. Create a chemical reaction model that can calculate temperature as a function in advance,
The concentration of CO, CO 2 and O 2 in the exhaust gas is detected, and the oxygen flow rate calculation method is selected based on the CO concentration. The temperature of the dissolved raw material is obtained from the relationship between the ratio of the CO2 concentration and the dissolved raw material temperature, and at least the CO concentration in the furnace gas is calculated based on the chemical reaction model, and the supply flow rate of the fuel and oxygen is calculated. A rotary melting furnace characterized in that an increase flow rate of O 2 with respect to a fuel supply amount is calculated so that a reaction in the furnace becomes an exothermic reaction based on a gas concentration, and a supply flow rate of at least one of fuel or oxygen is determined. Combustion control method.
請求項1記載の回転溶解炉の燃焼制御方法において、排出ガス中のCO濃度が設定値以下の場合は、O濃度が設定値以上あるか否かをチェックし、設定値以上ある場合は、燃料と酸素の供給流量と前記O濃度と排出ガスへの空気混入率とから未反応O量を求めて燃料供給量に対するOの減少流量を算出し、燃料または酸素の少なくとも一方の供給流量を決定することを特徴とする回転溶解炉の燃焼制御方法。 In the combustion control method of the rotary melting furnace according to claim 1, when the CO concentration in the exhaust gas is equal to or lower than a set value, it is checked whether or not the O 2 concentration is equal to or higher than the set value. The amount of unreacted O 2 is calculated from the supply flow rate of fuel and oxygen, the O 2 concentration and the air mixing rate in the exhaust gas, and the decrease flow rate of O 2 with respect to the fuel supply amount is calculated. A combustion control method for a rotary melting furnace characterized by determining a flow rate. 前記空気混入率は、排出ガス中の乾きガスのCO2濃度とO2濃度から規定されることを特徴とする請求項2記載の回転溶解炉の燃焼方法。 The aeration rate, combustion method of the rotary furnace according to claim 2, wherein the defined from CO2 concentrations and O2 concentrations in the dry gas in the exhaust gas. 溶解開始からの一連の燃料と酸素の供給過程を記憶装置に記憶しておき、その後の溶解では前記記憶した燃料と酸素の供給過程を再生して燃料または酸素を供給することを特徴とする前記請求項1乃至3のいずれかに記載の回転溶解炉の燃焼制御方法。 A series of fuel and oxygen supply processes from the start of dissolution are stored in a storage device, and the subsequent fuel and oxygen supply processes are regenerated to supply fuel or oxygen in the subsequent melting. The combustion control method for a rotary melting furnace according to any one of claims 1 to 3. 前記溶解原材料は鉄原材料と少なくとも加炭材を含んでいる副資材であることを特徴とする請求項1乃至4のいずれかに記載の回転溶解炉の燃焼方法。 The combustion method for a rotary melting furnace according to any one of claims 1 to 4, wherein the melting raw material is an auxiliary material containing an iron raw material and at least a carburizing material.
JP2007293578A 1996-08-27 2007-11-12 Combustion control method for rotary melting furnace Expired - Fee Related JP4671136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293578A JP4671136B2 (en) 1996-08-27 2007-11-12 Combustion control method for rotary melting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22503296 1996-08-27
JP2007293578A JP4671136B2 (en) 1996-08-27 2007-11-12 Combustion control method for rotary melting furnace

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5567897A Division JPH10122753A (en) 1996-08-27 1997-03-11 Combustion control method of melting furnace, and rotary melting furnace

Publications (2)

Publication Number Publication Date
JP2008089302A JP2008089302A (en) 2008-04-17
JP4671136B2 true JP4671136B2 (en) 2011-04-13

Family

ID=39373629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293578A Expired - Fee Related JP4671136B2 (en) 1996-08-27 2007-11-12 Combustion control method for rotary melting furnace

Country Status (1)

Country Link
JP (1) JP4671136B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105074B2 (en) * 2008-06-30 2012-01-31 Praxair Technology, Inc. Reliable ignition of hot oxygen generator
CN102809283B (en) * 2012-09-14 2014-05-14 中南大学 Method for determining material temperature field in rotary kiln
KR101538034B1 (en) * 2014-03-11 2015-07-22 한국세라믹기술원 oxidation reaction system for oxidating waste super hard metal scrap and driving method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101727A (en) * 1977-02-17 1978-09-05 Kawasaki Steel Corp Combustion controller
JPS55155184A (en) * 1979-05-21 1980-12-03 Kawasaki Steel Co Combustion control method of heating furnace and others
JPS6149928A (en) * 1984-08-15 1986-03-12 Kawasaki Steel Corp Combustion controlling method for combustion device and apparatus thereof
JPH01296081A (en) * 1988-05-23 1989-11-29 Osaka Gas Co Ltd Control of operational condition of cupola
JPH049590A (en) * 1990-04-26 1992-01-14 Taiyo Chuki Co Ltd Operation control method of cokeless cupola
JPH07146072A (en) * 1993-11-24 1995-06-06 Nippon Steel Corp Cupola type scrap melting furnace
JPH07278624A (en) * 1994-04-07 1995-10-24 Nippon Steel Corp Operation method to blow large amount of pulverized carbon to blast furnace

Also Published As

Publication number Publication date
JP2008089302A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
US4362499A (en) Combustion control system and method
US3602487A (en) Blast furnace stove control
US6190160B1 (en) Process for combustion of a fuel with an oxygen-rich oxidant
JP2007524003A5 (en)
KR20130051506A (en) Method and device for controlling furnace pressure of continuous annealing furnace
JP4671136B2 (en) Combustion control method for rotary melting furnace
US4950334A (en) Gas carburizing method and apparatus
JP2002267159A (en) Air-fuel ratio control method and device
CN108826989A (en) A kind of radiant tube combustibility thermal modeling test furnace and method
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
US3416470A (en) Method of controlling and/or regulating induced draught fans for waste heat boilers
JP2004191047A (en) Combustion control system and method for furnace
JPH10122753A (en) Combustion control method of melting furnace, and rotary melting furnace
CN114459033A (en) Ammonia combustion control system based on oxygen enrichment and hydrogen combustion supporting
US7648558B2 (en) Method for the treatment of aluminum in a furnace
JPH1019470A (en) Combustion control method for fusion furnace
JPS6257693B2 (en)
CN1963307A (en) Furnace combustion power control method
JPH09202910A (en) Method for controlling combustion in melting furnace
JPH028213B2 (en)
JPS604724A (en) Combustion method by oxygen-enriched air for combustion
SU1520343A1 (en) Method of measuring carbon monoxide in flue gases
RU2003928C1 (en) Method of control over tubular furnace
JPS6030415B2 (en) Control method for preventing black smoke generation from combustion furnace
JPS6115393Y2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees