JPH049590A - Operation control method of cokeless cupola - Google Patents

Operation control method of cokeless cupola

Info

Publication number
JPH049590A
JPH049590A JP2111206A JP11120690A JPH049590A JP H049590 A JPH049590 A JP H049590A JP 2111206 A JP2111206 A JP 2111206A JP 11120690 A JP11120690 A JP 11120690A JP H049590 A JPH049590 A JP H049590A
Authority
JP
Japan
Prior art keywords
exhaust gas
air
contents
cupola
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2111206A
Other languages
Japanese (ja)
Inventor
Masaaki Inatomi
稲富 政昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Chuki Co Ltd
Original Assignee
Taiyo Chuki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Chuki Co Ltd filed Critical Taiyo Chuki Co Ltd
Priority to JP2111206A priority Critical patent/JPH049590A/en
Publication of JPH049590A publication Critical patent/JPH049590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To perform an operation always at a proper air-fuel ratio by analyzing components of CO and CO2 in exhaust gas sampled from a furnace and thereafter automatically controlling a flow control means for air and fuel on real time based on the results of the analysis to operate a burner. CONSTITUTION:Exhaust gas sampled through an exhaust gas sampling tube 13 is sent to a component analysis means 14, where CO and CO2 in the exhaust gas is analyzed to obtain the contents thereof. The results of the analysis are inputted into a control means 15, where said results are compared with desirable reference contents of {CO(0-6%), CO2(10-15%)} to compute correction values. The correction values are outputted to a flow control means 16 for air and fuel to automatically control the means 16 on real time so that a burner is operated at an air-fuel ratio such that contents of CO and CO2 in the exhaust gas are within the reference contents. As a result, stability of atmosphere in the furnace is improved and oxidation of molten bath is reduced, so that metal contents can be stabilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属の溶解に使用されるコークレスキュポラ
の操業コントロール方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the operation of a corkless cupola used for melting metal.

[従来の技術] 例えば、鋳物工場において金属(主として鋼糸金属)の
溶解に使用されているキュポラ(溶解炉)として、コー
クスを燃焼させる方式のコークスキュポラが知られてい
る。
[Prior Art] For example, a coke cupola that burns coke is known as a cupola (melting furnace) used in foundries to melt metal (mainly steel thread metal).

しかし、この種のキュポラによって金属を溶解すると、
溶湯が吸収した硫黄の析出によって金属を脆化させるこ
とになるので、例えば煩雑なダクタイルの脱硫を行わな
ければならない難点があるまた、燃焼生成物に混入して
いる硫黄によって大気を汚染させる重大な欠点がある。
However, when metals are melted by this type of cupola,
The precipitation of sulfur absorbed by the molten metal embrittles the metal, making it difficult to carry out complicated ductile desulfurization, for example.In addition, the sulfur mixed in the combustion products is a serious problem that pollutes the atmosphere. There are drawbacks.

そこで、近年、第2図に示すコークレスキュポラが多用
される傾向になっている。
Therefore, in recent years, the corkless cupola shown in FIG. 2 has been increasingly used.

コークレスキュポラは、鋼製ケーシングIAが耐火材I
Hによって内張すされた垂直筒形本体部lの内部に、所
定間隔を有して複数のグレトパー3を水平に配置し、こ
れらグレトバー3で溶解金属に対して殆んど化学的に反
応しない耐火材によって形成された複数のボール2を支
持し、ポール2の下部における垂直筒形本体部lの外部
に、少なくとも1つ(通常は複数箇所)の燃焼室4を装
備し2この燃焼室4の外端部に備えた/九−す5を操作
して、天然ガス、都市ガス、または液化石油カスなどの
燃ネ4と空気との混合ガスを燃焼させ、この高温ガス生
成物によってポール2を加熱しながら上方に通過させて
、垂直筒形本体部1におけるポール2の上部に投入され
た鋼屑、鉄屑などの金属6を溶解する。
Corkless cupola has a steel casing IA made of fireproof material I
A plurality of gret bars 3 are arranged horizontally at predetermined intervals inside a vertical cylindrical main body l lined with H, and these gret bars 3 hardly react chemically to the molten metal. The combustion chamber 4 supports a plurality of balls 2 made of a refractory material, and is equipped with at least one (usually a plurality of locations) combustion chamber 4 on the outside of the vertical cylindrical main body l at the lower part of the pole 2. A mixture gas of fuel 4 and air, such as natural gas, city gas, or liquefied petroleum scum, is combusted by operating the /9-9 provided at the outer end of the pole 2. is passed upward while being heated to melt metal 6 such as steel scraps and iron scraps thrown into the upper part of the pole 2 in the vertical cylindrical main body part 1.

ポール2の上部で溶解された金属6は、ポール2の隙間
から下方に滴下する際にポール2によって再加熱された
のち、グレトパ−3の隙間を通過して溶融状態で炉底部
7に貯留され、出湯口8から連続的に、才たは間欠的に
取り出される。またスラグ9は出滓口10から取り出さ
れる。
The metal 6 melted at the top of the pole 2 is reheated by the pole 2 as it drips downward from the gap between the poles 2, and then passes through the gap between the grete pars 3 and is stored in the furnace bottom 7 in a molten state. , from the tap 8 continuously or intermittently. Further, the slag 9 is taken out from the slag outlet 10.

このように構成されたコークレスキュポラの使用により
、溶湯が吸収した硫黄の析出による金属の脆化や煩雑な
ダクタイルの脱硫などが回避されるとともに、燃焼生成
物に混入している硫黄によって大気を汚染させる重大な
欠点も解消されることになる。
By using a corkless cupola configured in this way, metal embrittlement due to the precipitation of sulfur absorbed by the molten metal and complicated desulfurization of the ductile can be avoided, and the sulfur mixed in the combustion products can be used to eliminate the atmosphere. The serious drawback of contamination will also be eliminated.

[発明が解決しようとする課題] ところで、従来のコークレスキュポラの操業コントロー
ルは、バーナ5の燃焼をマニュアル制8することのみに
よってなされている。つまり、空燃比を理論混合比に設
定する空気と燃料の流蓋調整をマニュアルによって制御
する方法が採用されている。
[Problems to be Solved by the Invention] Incidentally, the operation of the conventional corkless cupola is controlled only by manually controlling the combustion of the burner 5 . In other words, a method is adopted in which the air and fuel flow lid adjustment, which sets the air-fuel ratio to the stoichiometric mixture ratio, is manually controlled.

このような制御方法では、空燃比か理論混合比よりもリ
ッチミクスチャもしくはリーンミクスチャに移行し易く
、そのために、常時、最適条件の燃焼を確保することが
困難である。
In such a control method, it is easier to shift to a rich mixture or a lean mixture than to an air-fuel ratio or a stoichiometric mixture ratio, and therefore it is difficult to always ensure combustion under optimal conditions.

また、前記リッチミクスチャもしくはリーンミクスチャ
に移行することによって、酸素富化量出湯温度および排
ガス組成などに変動が生じてもこれらの変動検出値に基
づいてフィードバック制御する機能を有していない。
Furthermore, even if changes occur in the oxygen enriched amount, outlet temperature, exhaust gas composition, etc. by shifting to the rich mixture or lean mixture, there is no function to perform feedback control based on the detected values of these changes.

したがって、炉内雰囲気の安定度が低下して溶湯の酸化
を増大させ、その結果、C,Si、Mnなどの溶損が増
して金属成分を不安定にし、かつ鉄の酸化増大によりス
ラグ中のFeOが増量してスラグの流動性を低下させ、
良好な流動性を確保するために石灰石、ドロマイトなど
の添加量が増し、これにより耐火物の溶損被害を増大さ
せるなどの問題点が生しるとともに、最適条件からはみ
出した不適合な燃焼の継続により操業コストの増大を招
くなどの欠点がある。
Therefore, the stability of the atmosphere in the furnace decreases, increasing the oxidation of the molten metal, and as a result, the melt loss of C, Si, Mn, etc. increases, making the metal components unstable, and the increased oxidation of iron causes the oxidation of the molten metal to increase. FeO increases and reduces the fluidity of the slag,
In order to ensure good fluidity, the amount of limestone, dolomite, etc. added increases, which causes problems such as increased damage to refractories by erosion, and the continuation of unsuitable combustion outside of optimal conditions. This has drawbacks such as increased operating costs.

本発明は、このような事情に鑑みなされたもので、常時
、最適条件でバーナを燃焼させ、これにより炉内雰囲気
の安定度の向上を図って溶湯の酸化を減少させ、C,S
i、Mnなどの溶損を少なくして金属成分を安定させる
とともに、鉄の酸化抑制によりスラグ中のFeO量を低
減させて、スラグの流動性向上を図り、良好な流動性確
保のための石灰石、ドロマイトなどの添加量の低減を達
成して、耐火物の溶損被害を少なくし、かつ適正な/<
−す燃焼の継続により操業コストの低減を実現すること
ができるようになされたコークレスキュポラの操業コン
トロール方法の提供を目的とするものである。
The present invention was developed in view of these circumstances, and the burner is constantly combusted under optimal conditions, thereby improving the stability of the atmosphere in the furnace and reducing oxidation of the molten metal.
Limestone is used to stabilize the metal components by reducing erosion loss of i, Mn, etc., and to reduce the amount of FeO in the slag by suppressing the oxidation of iron, improving the fluidity of the slag and ensuring good fluidity. Achieving a reduction in the amount of additives such as dolomite, reducing damage caused by erosion of refractories, and achieving appropriate /<
- It is an object of the present invention to provide a method for controlling the operation of a corkless cupola, which is capable of reducing operating costs by continuing the combustion of the corkscrew.

[課題を解決するための手段] 前記目的を達成するために、本発明は、コークレスキュ
ポラの炉内から排ガスを吸引採取し、採取された枡カス
中のcoおよびCO2を成分分析手段によって分析した
のち、分析結果を制御手段に入力し、分析結果に基づい
て制御手段から出力される制御信号により前記排カス中
のCOおよびC02を所定範囲内の含有率に設定すへく
、リアルタイムで空気および燃料の流量調整手段を自動
制御した適正空燃比で/−−すを燃焼させるようにした
ものである6 [作用] 本発明によれば、排カス中のCOおよびCOこの含有率
を、常時、所定範囲内に設定できる適正空燃比によるバ
ーナ燃焼の継続によって操業できる。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention collects exhaust gas by suction from inside the furnace of a coke les cupola, and analyzes co and CO2 in the collected scum using a component analysis means. After that, the analysis results are input into the control means, and the content of CO and CO2 in the waste gas is set within a predetermined range by a control signal output from the control means based on the analysis results. 6 [Function] According to the present invention, the content of CO and CO in the exhaust gas is constantly controlled. , it can be operated by continuing burner combustion at an appropriate air-fuel ratio that can be set within a predetermined range.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

第1図は本発明を適用したコークレスキュポラの一実施
例を示す概略説明図である。なお、本発明の特徴は、コ
ークレスキュポラの炉内から排ガスを吸引採取し、採取
された排カス中のCOおよびC02を成分分析手段によ
って分析したのち、分析結果を制御手段に入力し、分析
結果に基づいて制御手段から出力される制御信号により
前記排ガス中のCOおよびCO2を所定範囲内の含有率
に設定すべく、リアルタイムで空気および燃料の流量調
整手段奢自動制御した適正空燃比で、バーナ5を燃焼さ
せる構成に係り、これらを除く他の部材およびその構成
は従来例と異ならないので。
FIG. 1 is a schematic explanatory diagram showing an embodiment of a corkless cupola to which the present invention is applied. The feature of the present invention is that exhaust gas is collected by suction from inside the furnace of a corkless cupola, CO and CO2 in the collected exhaust gas are analyzed by a component analysis means, and the analysis results are inputted to a control means and analyzed. In order to set the content of CO and CO2 in the exhaust gas within a predetermined range by a control signal output from the control means based on the result, the air and fuel flow rate adjustment means automatically controls the appropriate air-fuel ratio in real time, Regarding the configuration for burning the burner 5, other members and their configurations other than these are the same as in the conventional example.

第1図において、第2図に相当する部分には、それぞれ
同一の符号を付して、その説明は省略する第1図におい
て、13は排ガス採取管を示し、コークレスキュポラの
炉内から排ガスを吸引採取するために、例えば垂直本体
部1の材料投入口ICの下部の炉壁を貫通して炉内に挿
入されており、排ガス採取管13によって採取された排
ガスが成分分析手段14に送られ、ここで排ガス中のC
OおよびCO2の分析を行って含有率が求められる。
In FIG. 1, parts corresponding to those in FIG. 2 are given the same reference numerals, and their explanations are omitted. In FIG. For example, the material input port IC of the vertical main body 1 is inserted into the furnace by penetrating the furnace wall at the bottom in order to suction and collect the exhaust gas. Here, C in the exhaust gas
The content is determined by analyzing O and CO2.

成分分析手段14によって分析された分析結果は、電気
的信号に変換されたのち制御手段15に入力され、ここ
で、分析結果に基づくCOおよびCO2の含有率と、好
ましいとされる基準含有率(CO (0〜6%)、CO
;(10〜15%))とを比較演算して補正値を求め、
この補正値を制御信号としてバーナ5に付設されている
空気および燃料の流量調整手段16に出力し、リアルタ
イムで流量調整手段16を自動制御して、排ガス中のC
OおよびCO2の含有率を前記基準含有率の範囲内に設
定した空燃比で、八−す5を燃焼させるようになってい
る。
The analysis results analyzed by the component analysis means 14 are converted into electrical signals and then input to the control means 15, where the content rates of CO and CO2 based on the analysis results and the preferred reference content rate ( CO (0-6%), CO
; (10-15%)) to find the correction value,
This correction value is output as a control signal to the air and fuel flow rate adjustment means 16 attached to the burner 5, and the flow rate adjustment means 16 is automatically controlled in real time to reduce the amount of carbon in the exhaust gas.
The eight-gas 5 is combusted at an air-fuel ratio in which the O and CO2 contents are set within the range of the standard content.

このような構成であれば、板金、空燃比がリッチミクス
チャもしくはリーンミクスチャに移行しすることで、排
ガス中のCOおよびCO2の含有率が前述の基準含有率
の範囲外に逸脱したとしても、瞬時に前記基準含有率の
範囲内に補正できる空燃比に設定して、この空燃比によ
り/ヘーナ5を最適条件で燃焼させることができるので
、炉内雰囲気の安定度が向上し、溶湯の酸化を低減させ
、その結果、C,Sf、Mnなどの溶損が抑えられて金
属成分の安定を確保することができる。
With such a configuration, even if the content of CO and CO2 in the exhaust gas deviates from the above-mentioned standard content range due to the shift of the sheet metal and air-fuel ratio to a rich or lean mixture, the The air-fuel ratio is set to an air-fuel ratio that can be corrected within the range of the standard content, and this air-fuel ratio allows /Hena 5 to be combusted under optimal conditions, improving the stability of the furnace atmosphere and preventing oxidation of the molten metal. As a result, melting loss of C, Sf, Mn, etc. can be suppressed and stability of metal components can be ensured.

また、鉄の酸化低減によりスラグ中のFeOが減量され
るので、スラグの流動性が良くなり石灰石、ドロマイト
などの添加量を削減できるため、耐火物の溶損被害を軽
減させることができ、これらの相乗効果によって操業コ
ストの低減を達成できる。
In addition, since the amount of FeO in the slag is reduced by reducing the oxidation of iron, the fluidity of the slag is improved and the amount of limestone, dolomite, etc. added can be reduced, making it possible to reduce damage caused by erosion of refractories. The synergistic effect of these can reduce operating costs.

[発明の効iL] 本発明は、前述のように構成されているがら、つぎに記
載されるような効果を奏する。
[Effects of the Invention] Although the present invention is configured as described above, it produces the following effects.

即ち、排ガス中のCOおよびCO2の含有率を常時、所
定範囲内に設定できる適正なバーナ燃焼の継続により操
業できるから、炉内雰囲気の安定度の向上を図って溶湯
の酸化を減少させ、C1Si、Mnなどの溶損を少なく
して金属成分を安定させるとともに、鉄の膳化抑制によ
りスラグ中のFeO量を低減させて、スラグの流動性向
上を図り、流動性確保のための石灰石、ドロマイトなど
の添加量の低減を達成して、耐火物の溶損被害を少なく
し、かつこれらの相乗効果により操業コストの低減を実
現することができる。
In other words, the CO and CO2 contents in the exhaust gas can be constantly set within a predetermined range, allowing operation to continue with proper burner combustion, which improves the stability of the furnace atmosphere and reduces oxidation of the molten metal. In addition to stabilizing the metal components by reducing the erosion loss of , Mn, etc., the amount of FeO in the slag is reduced by suppressing the oxidation of iron, improving the fluidity of the slag, and adding limestone and dolomite to ensure fluidity. It is possible to achieve a reduction in the amount of additives such as, to reduce damage caused by melting and damage to refractories, and to realize a reduction in operating costs due to the synergistic effect of these.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したコークレスキュポラの一実施
例を示す概略説明図、第2図は従来のコークレスキュポ
ラの概略説明図である。 5・・・バーナ、13・・・排ガス採取管、14・・・
排ガスの成分分析手段、15・・・制御手段、16・・
・空気と燃料の流量調整手段。 第1図 5−バー1−          13−神1スー導f
(14−神γ人の心Aμ州午(d、      15−
驚嘆?5(し16−な旭ζ慾糎伯★1澗1( 第2図
FIG. 1 is a schematic explanatory diagram showing an embodiment of a corkless cupola to which the present invention is applied, and FIG. 2 is a schematic explanatory diagram of a conventional corkless cupola. 5...Burner, 13...Exhaust gas sampling pipe, 14...
Exhaust gas component analysis means, 15...control means, 16...
・Air and fuel flow rate adjustment means. Figure 1 5-Bar 1- 13-God 1 Sue Guidance f
(14- God γ human heart Aμ state go (d, 15-
Amazed? 5 (shi16-na Asahiζ慾糎橎★1澗1( Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (1)コークレスキュポラの炉内から排ガスを吸引採取
し、採取された排ガス中のCOおよびCO_2を成分分
析手段によって分析したのち、分析結果を制御手段に入
力し、分析結果に基づいて制御手段から出力される制御
信号により前記排ガス中のCOおよびCO_2を所定範
囲内の含有率に設定すべく、リアルタイムで空気および
燃料の流量調整手段を自動制御した適正空燃比でバーナ
を燃焼させることを特徴とするコークレスキュポラの操
業コントロール方法。
(1) Exhaust gas is sucked and collected from inside the furnace of Corcle Cupola, and CO and CO_2 in the collected exhaust gas are analyzed by component analysis means.The analysis results are input to the control means, and the control means is based on the analysis results. In order to set the content of CO and CO_2 in the exhaust gas within a predetermined range by a control signal output from the burner, the burner is combusted at an appropriate air-fuel ratio by automatically controlling the air and fuel flow rate adjustment means in real time. A method for controlling the operation of corkless cupola.
JP2111206A 1990-04-26 1990-04-26 Operation control method of cokeless cupola Pending JPH049590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2111206A JPH049590A (en) 1990-04-26 1990-04-26 Operation control method of cokeless cupola

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2111206A JPH049590A (en) 1990-04-26 1990-04-26 Operation control method of cokeless cupola

Publications (1)

Publication Number Publication Date
JPH049590A true JPH049590A (en) 1992-01-14

Family

ID=14555208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2111206A Pending JPH049590A (en) 1990-04-26 1990-04-26 Operation control method of cokeless cupola

Country Status (1)

Country Link
JP (1) JPH049590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089302A (en) * 1996-08-27 2008-04-17 Hitachi Metals Ltd Combustion control method for rotary melting furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391275A (en) * 1977-01-21 1978-08-10 Daifuku Co Ltd Pull-in conveyer
JPS59138512A (en) * 1983-01-25 1984-08-09 Kito Corp Transport-in/out equipment for shelf container
JPH01187112A (en) * 1988-01-21 1989-07-26 Murata Mach Ltd Automated stockroom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391275A (en) * 1977-01-21 1978-08-10 Daifuku Co Ltd Pull-in conveyer
JPS59138512A (en) * 1983-01-25 1984-08-09 Kito Corp Transport-in/out equipment for shelf container
JPH01187112A (en) * 1988-01-21 1989-07-26 Murata Mach Ltd Automated stockroom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089302A (en) * 1996-08-27 2008-04-17 Hitachi Metals Ltd Combustion control method for rotary melting furnace

Similar Documents

Publication Publication Date Title
JPS5687617A (en) Steel making method using arc furnace
JPH07504230A (en) Method for desulfurizing molten iron with minimal slag formation and equipment for carrying out the process
JPH049590A (en) Operation control method of cokeless cupola
US4373949A (en) Method for increasing vessel lining life for basic oxygen furnaces
SU1484297A3 (en) Method of producing steels with low carbon content
CA1089650A (en) Process and device for the manufacture of quality steels
EP0015396A1 (en) A method for increasing vessel lining life for basic oxygen furnaces
RU2333255C1 (en) Method of steel smelting
JP2000129329A (en) Method for dephosphorizing molten iron
EP1190104A1 (en) Method of decarburisation and dephosphorisation of a molten metal
RU2797319C1 (en) Method for smelting corrosion-resistant steel in dc electric arc steelmaking furnace with hollow graphite electrode
JP2515094B2 (en) Operation method of converter exhaust gas treatment equipment
SU1219656A1 (en) Method of producing structural low-alloyed steel
SU594181A1 (en) Method of producing stainless steel
JPS61143505A (en) Refining method of high alloy steel
JPS5931812A (en) Method and device for recovering waste gas from converter
RU2202624C2 (en) Method of performing blast-furnace smelting
SU298213A1 (en) METHOD OF MELTING LOW-CARBON STEEL IN ARC FURNACES
SU583173A1 (en) Method of smelting steel and alloys
JP3371559B2 (en) Heat refining method of molten steel
SU779407A1 (en) Powdered mixture for liquid steel straining
RU2002810C1 (en) Slag-forming composition
RU1782240C (en) Method for melting corrosion-resistant steel in an electric arc furnace
SU1386665A1 (en) Method of desulphurizing slag
JPH09176715A (en) Production of iron having low nitrogen concentration