JPH09202910A - Method for controlling combustion in melting furnace - Google Patents

Method for controlling combustion in melting furnace

Info

Publication number
JPH09202910A
JPH09202910A JP959796A JP959796A JPH09202910A JP H09202910 A JPH09202910 A JP H09202910A JP 959796 A JP959796 A JP 959796A JP 959796 A JP959796 A JP 959796A JP H09202910 A JPH09202910 A JP H09202910A
Authority
JP
Japan
Prior art keywords
gas
oxygen
furnace
raw material
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP959796A
Other languages
Japanese (ja)
Inventor
Yoichi Kimura
洋一 木村
Yuichi Kusada
祐一 草田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP959796A priority Critical patent/JPH09202910A/en
Publication of JPH09202910A publication Critical patent/JPH09202910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a combustion control method for shortening melting time by effectively utilizing chemical reaction between combustion gas in a melting furnace and raw material to be melted to rise the thermal efficiency. SOLUTION: In the combustion control of the melting furnace by beforehand charging the iron raw material and a component adjusting material and burning with gaseous fuel and gaseous oxygen and heating and melting, the chemical reaction model between the combustion gas and the charged iron raw material and component adjusting material is inclined and the iron raw material temp. during melting is detected, and the detected value is used and inputted to the chemical reaction model to execute the operation and the supplying quantity of at least one side of the gaseous fuel and the gaseous oxygen is decided. Further, the supplying quantity of at least one side of the gaseous fuel or the gaseous oxygen is operated and decided so that carbon monoxide concn. minimizes in the chemical reaction model.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は溶解炉における燃焼
を制御する方法に関するものであり、特に酸素ガスと燃
料ガスを炉内で燃焼し、その燃焼熱にて炉内に装入した
被溶解原材料を加熱溶解する回転溶解炉の燃焼制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling combustion in a melting furnace, and more particularly, to a raw material to be melted, which is prepared by burning oxygen gas and fuel gas in the furnace and charging the combustion heat into the furnace. The present invention relates to a combustion control method for a rotary melting furnace, which heats and melts.

【0002】[0002]

【従来の技術】溶解炉の1つに回転炉がある。これは横
置きにされた円筒状の炉本体、炉体駆動装置、バーナー
から構成され、装入原材料がバーナーで生じた火炎から
の熱伝達と、火炎により加熱蓄熱された回転する耐火壁
の保有熱量の伝導と対流で加熱溶解するものである。近
年、バーナー燃料としてプロパン等の流体燃料に純酸素
を併用したものが、エネルギー効率向上、排ガスの問
題、原材料の制約低減の観点から普及が進みつつある。
前記回転溶解炉におけるバーナーの燃焼調整方法とし
て、原材料を装入したのち、溶湯が目標の成分範囲と出
湯温度となるように、バーナーに接続されている燃料ガ
ス又は酸素ガスバルブの開度を調節することが行なわれ
ている。鋳鉄用溶湯の場合、従来は装入する被溶解原材
料、すなわち鉄原材料及び副資材の配合割合から、操業
を通じて経験的に得た流量となるように燃料ガスと酸素
ガスの各バルブ開度を調整していた。ここで副資材と
は、溶湯の成分および炉内雰囲気を調整するために鉄原
材料と共に装入するものである。燃料ガスと酸素ガスの
各流量の調整は、全溶解過程を通じて一定とする場合も
あれば、変化させる場合もあるが、変化させても数段階
であり、予め定めた状態にステップ的に変化させるもの
であった。
2. Description of the Related Art A rotary furnace is one of melting furnaces. It consists of a horizontally placed cylindrical furnace body, a furnace body drive, and a burner.Heat transfer from the flame generated by the burner as raw material for charging and possessing a rotating refractory wall that is heated and stored by the flame. It is heated and melted by conduction of heat and convection. In recent years, a combination of pure oxygen and a fluid fuel such as propane as a burner fuel has been popularized from the viewpoint of improving energy efficiency, exhaust gas problems, and restriction of raw materials.
As a combustion adjustment method for a burner in the rotary melting furnace, after charging raw materials, the opening of a fuel gas or oxygen gas valve connected to the burner is adjusted so that the melt has a target component range and a tapping temperature. Is being done. In the case of molten iron for cast iron, conventionally, the valve openings of fuel gas and oxygen gas were adjusted so that the flow rates obtained empirically through the operation could be obtained from the blending ratio of the raw materials to be melted, that is, the iron raw materials and auxiliary materials. Was. Here, the auxiliary material is charged together with the iron raw material in order to adjust the composition of the molten metal and the atmosphere in the furnace. The adjustment of each flow rate of the fuel gas and the oxygen gas may be constant throughout the entire melting process or may be changed, but even if it is changed, it is in several steps and is changed stepwise to a predetermined state. It was a thing.

【0003】[0003]

【発明が解決しようとする課題】図3に、本発明の対象
である回転溶解炉における装入鉄原材料、および副資材
全体に含まれていたFe、C、Si、Mn各成分の重量
と、溶解完了後の溶湯内に残ったこれら成分ならびに損
失した重量の例を示す。図3にてCの装入重量21kg
は、鉄原材料に含まれていたC成分量8kgと、副資材
の一つである加炭材に含まれていたC成分量13kgか
ら成っている。そして溶解の結果、溶湯に含まれていた
Cは7kgであり、残り14kgが損失したことを示し
ている。図3から明らかなように、本発明の対象である
回転溶解炉では、特にCの損失割合が大きく、前述した
ようにほぼ装入した加炭材の全量に匹敵する重量が損失
する。関連する化学反応については後で詳述するが、損
失分は一酸化炭素あるいは二酸化炭素として排出され、
関連反応の吸熱量と発熱量が溶解効率に大きな影響を与
える。したがって、この加炭材の反応を考慮して燃料ガ
ス又は酸素ガスの流量を調整し、バーナーの燃焼を調整
することが重要である。
FIG. 3 shows the weights of the Fe, C, Si and Mn components contained in the raw material of the charged iron in the rotary melting furnace which is the object of the present invention and all the auxiliary materials, An example of these components remaining in the melt after the completion of dissolution and the weight lost is shown. In Fig. 3, the charging weight of C is 21 kg.
Consists of 8 kg of C component contained in the iron raw material and 13 kg of C component contained in the carburizing material which is one of the auxiliary materials. As a result of melting, C contained in the molten metal was 7 kg, indicating that the remaining 14 kg was lost. As is clear from FIG. 3, in the rotary melting furnace which is the object of the present invention, the loss ratio of C is particularly large, and as described above, a weight equivalent to the total amount of the charged carburizing material is lost. Although the related chemical reactions will be described in detail later, the loss is discharged as carbon monoxide or carbon dioxide,
The endothermic and exothermic amounts of the related reactions have a great influence on the dissolution efficiency. Therefore, it is important to adjust the flow rate of the fuel gas or oxygen gas and the combustion of the burner in consideration of the reaction of the carburizing material.

【0004】しかし、反応形態と反応速度は温度や炉内
雰囲気ガスの組成で大きく変化するため、従来の燃焼調
整方法では、次のような問題点があった。 基準の燃料ガスを完全燃焼させるのに必要な酸素ガス
の流量と、実際に供給する酸素ガスの流量比(以下混合
比と称する)が1.0以下の酸素が不足する雰囲気で
は、加炭材は燃焼ガス成分の二酸化炭素および水蒸気と
吸熱反応するため熱効率が低下し、溶解時間が長くな
る。 逆に、ただ単に混合比を高めて酸素を過剰に与える
と、酸素の一部は反応することなく無駄に加温されて排
出されてしまい、その分熱損失となる。また、被溶解原
材料の酸化損失が増え、被溶解原材料の歩留まりが低下
する。そこで、本発明は前記した回転溶解炉の特性から
くる燃焼制御上の課題を解決し、バーナーに供給する酸
素不足による熱効率の低下、あるいは酸素過多からくる
同じく熱効率の低下と被溶解原材料の酸化損失を極力少
なくする溶解炉の燃焼制御方法を提供することを目的と
する。
However, since the reaction form and reaction rate greatly change depending on the temperature and the composition of the atmosphere gas in the furnace, the conventional combustion adjusting method has the following problems. In an atmosphere in which the flow rate of oxygen gas required to completely burn the reference fuel gas to the flow rate of oxygen gas actually supplied (hereinafter referred to as a mixing ratio) is 1.0 or less and oxygen is insufficient, the carburizing material is used. Since it undergoes an endothermic reaction with carbon dioxide and water vapor which are combustion gas components, the thermal efficiency is reduced and the dissolution time becomes longer. On the contrary, if the mixing ratio is simply increased and oxygen is excessively supplied, a part of the oxygen is wastefully heated and discharged without reacting, resulting in a heat loss. Further, the oxidation loss of the melted raw material increases, and the yield of the melted raw material decreases. Therefore, the present invention solves the above-mentioned problems in combustion control due to the characteristics of the rotary melting furnace, lowers the thermal efficiency due to lack of oxygen supplied to the burner, or lowers the thermal efficiency due to excess oxygen and the oxidation loss of the raw material to be melted. An object of the present invention is to provide a combustion control method for a melting furnace that minimizes the amount of combustion.

【0005】[0005]

【課題を解決するための手段】本発明は、鉄原材料材及
び成分調整材を予め装入して燃料ガス及び酸素ガスで燃
焼して加熱溶解する溶解炉の燃焼制御において、燃焼ガ
スと前記装入した鉄原材料及び成分調整材の化学反応モ
デルを内蔵し、溶解中の被溶解原材料温度を検出し、当
該検出量を用いて、前記化学反応モデルに入力して演算
を行い、溶解炉の操作量を決定することを特徴とする。
DISCLOSURE OF THE INVENTION The present invention relates to combustion control of a melting furnace in which an iron raw material and a component adjusting material are charged in advance and burned with a fuel gas and an oxygen gas to be heated and melted. The built-in chemical reaction model of the iron raw material and the component adjusting material entered, the temperature of the raw material to be melted during melting is detected, and the detected amount is used to input to the chemical reaction model for calculation, and the operation of the melting furnace Characterized by determining the amount.

【0006】さらに、内蔵した化学反応モデルを用いて
炉内の一酸化炭素濃度が最小となるように、燃料ガスあ
るいは酸素ガスの少なくとも一方の供給量を演算し、流
量を決定することを特徴とする。
Further, the flow rate is determined by calculating the supply amount of at least one of the fuel gas and the oxygen gas so as to minimize the carbon monoxide concentration in the furnace by using the built-in chemical reaction model. To do.

【0007】[0007]

【発明の実施の形態】以下、図面に基づいて本発明の実
施例を詳説する。図1は、本発明の実施に係る溶解炉の
横断面とガスバーナーの燃焼制御系を示しており、この
溶解炉は各種鋳鉄溶湯の製造に用いられる。図1に示し
た溶解炉は円筒状胴部1及びその両端に連設された円錐
状部2、3を有する炉体5と、酸素で流体燃料を燃焼さ
せて炉体5内に装入された被溶解原材料を溶解させるバ
ーナー6と、燃焼排ガスを外部に逃がす煙突状排気路7
と、炉体5内に被溶解原材料8等を装入する投入機(図
示せず)を備えている。バーナー燃料は、本実施例では
プロパンと酸素であるが、プロパンの代わりにメタン、
ブタン、灯油でも良い。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a cross section of a melting furnace and a combustion control system of a gas burner according to an embodiment of the present invention, and this melting furnace is used for manufacturing various cast iron melts. The melting furnace shown in FIG. 1 is a furnace body 5 having a cylindrical body 1 and conical portions 2 and 3 connected to both ends thereof, and a fluid fuel is burned with oxygen to be charged into the furnace body 5. A burner 6 for melting raw materials to be melted, and a chimney-shaped exhaust passage 7 for discharging combustion exhaust gas to the outside.
And a charging device (not shown) for charging the melted raw material 8 and the like into the furnace body 5. The burner fuel is propane and oxygen in this example, but methane instead of propane,
Butane or kerosene may be used.

【0008】炉体5の一端開口部9はバーナー取付口と
なり、炉体5の他端開口部10は、被溶解原材料8の装
入口、排ガス出口となる。11は、炉体5の円錐状部3
に設けられた出湯孔であり、出湯時以外は閉栓されてい
る。また、炉体壁面には温度検出端子16が埋め込まれ
ている。
The opening 9 at one end of the furnace body 5 serves as a burner mounting opening, and the opening 10 at the other end of the furnace body 5 serves as an inlet for the raw material 8 to be melted and an exhaust gas outlet. 11 is a conical portion 3 of the furnace body 5.
It is a tap hole provided in the and is closed except when tapping. A temperature detecting terminal 16 is embedded in the wall surface of the furnace body.

【0009】ここでは、バーナー6としては、中央に燃
料吹き込み口を有し、外周に酸素供給口を設けた構造の
ものを使用している。バーナー6の上流側に燃料及び酸
素の供給系統が接続されており、各々酸素供給系統の酸
素用バルブ30と燃料供給系統の燃料用バルブ31とが
接続されている。酸素用バルブ30の上流側には酸素供
給源32が、燃料用バルブ31の上流側には燃料供給源
33が接続されている。
Here, the burner 6 has a structure having a fuel injection port in the center and an oxygen supply port on the outer periphery. A fuel and oxygen supply system is connected upstream of the burner 6, and an oxygen valve 30 of the oxygen supply system and a fuel valve 31 of the fuel supply system are connected to each other. An oxygen supply source 32 is connected upstream of the oxygen valve 30, and a fuel supply source 33 is connected upstream of the fuel valve 31.

【0010】燃焼制御装置は、化学反応モデルを内蔵し
て、酸素及び燃料ガスの供給量を算出するコンピュータ
20と、炉に供給する酸素量及び燃料ガス量を制御する
流量制御バルブ調整器34、35、酸素量及び燃料ガス
量を検出する検出端子38、39、被溶解原材料の温度
検出端子16を備えている。コンピュータ20は前述の
温度検出端子16と信号線18で接続されており、検出
された温度および内蔵した化学反応モデルをもとに炉に
供給する酸素量及び燃料ガス量を算出する。そして酸素
用バルブ30、燃料用バルブ31には各々流量制御バル
ブ調整器34、35が接続されており、各流量制御バル
ブ調整器にはコンピュータ20からの流量指示信号線3
6、37が接続されている。流量制御バルブ調整器3
4、35は、コンピュータ20からの流量指令値に対
し、各流量検出器38、39で酸素配管40と燃料ガス
配管41内の実際の流量値をフィードバックし、酸素用
バルブ30及び燃料用バルブ31の開度を制御してい
る。そして、かかる開度の制御によって、バーナー6へ
供給する酸素量及び燃料ガス量を高精度に制御し、ひい
ては炉内のバーナーの燃焼発熱量と燃焼ガス組成を制御
しているのである。
The combustion control device has a built-in chemical reaction model to calculate a supply amount of oxygen and fuel gas, a flow control valve adjuster 34 for controlling the oxygen amount and fuel gas amount supplied to the furnace, 35, detection terminals 38 and 39 for detecting the amount of oxygen and the amount of fuel gas, and a temperature detection terminal 16 for the raw material to be melted. The computer 20 is connected to the temperature detection terminal 16 and the signal line 18, and calculates the amount of oxygen and the amount of fuel gas supplied to the furnace based on the detected temperature and the built-in chemical reaction model. Flow rate control valve adjusters 34 and 35 are connected to the oxygen valve 30 and the fuel valve 31, respectively, and the flow rate instruction signal line 3 from the computer 20 is connected to each flow rate control valve adjuster.
6, 37 are connected. Flow control valve regulator 3
Reference numerals 4 and 35 feed back the actual flow rate values in the oxygen pipe 40 and the fuel gas pipe 41 in the flow rate detectors 38 and 39 to the flow rate command value from the computer 20, and the oxygen valve 30 and the fuel valve 31. The opening of is controlled. By controlling the opening degree, the oxygen amount and the fuel gas amount supplied to the burner 6 are controlled with high accuracy, and the combustion calorific value and the combustion gas composition of the burner in the furnace are controlled.

【0011】次に本発明の燃焼制御装置を用いた溶解炉
を使用して鋳鉄用溶湯を得る溶解工程と炉内の反応につ
いて説明する。最初に所定量の鋳鉄や鋼屑等の鉄原材料
及び副資材を炉体5内に装入する。例えば3トン溶解で
は、配合比が鋳鉄60%、鋼屑30%、銑鉄10%の鉄
原材料が3トン、副資材として加炭材160kg、加珪
材35kg、加Mn材5kg、加硫材2.4kgが装入
される。そして炉体5の一端の開口部9にバーナー6を
セットして点火し、溶解を開始する。
Next, the melting process for obtaining the molten metal for cast iron using the melting furnace using the combustion control device of the present invention and the reaction in the furnace will be described. First, a predetermined amount of iron raw materials such as cast iron and steel scraps and auxiliary materials are charged into the furnace body 5. For example, when melting 3 tons, 3 tons of iron raw material having a mixing ratio of 60% cast iron, 30% steel scrap, and 10% pig iron, 160 kg of a carburizing material, 35 kg of a silicifying material, 5 kg of a adding Mn material, and a vulcanizing material 2 as auxiliary materials. 0.4 kg is charged. Then, the burner 6 is set in the opening 9 at one end of the furnace body 5 and ignited to start melting.

【0012】鉄原材料はバーナー6で加熱された耐火材
12からの伝熱と輻射熱、バーナー火炎からの輻射熱で
加熱されることにより溶解する。基本的なバーナー発熱
量の設定は、燃料ガスの流量パターンを与えることで行
う。
The iron raw material is melted by being heated by heat transfer and radiant heat from the refractory material 12 heated by the burner 6 and radiant heat from the burner flame. The basic setting of the calorific value of the burner is performed by giving the flow pattern of the fuel gas.

【0013】バーナー燃焼制御では以下に述べるよう
に、被溶解原材料の温度を検出し、内蔵した化学反応モ
デルに基づいて、炉内ガスの一酸化炭素濃度が最小とな
るように混合比を制御する。燃料ガスがプロパンでは、
混合比が1.0の完全燃焼の場合、燃料ガスと酸素ガス
の反応は数1で表される。
In burner combustion control, as described below, the temperature of the raw material to be melted is detected, and the mixing ratio is controlled based on the built-in chemical reaction model so that the carbon monoxide concentration in the furnace gas is minimized. . If the fuel gas is propane,
In the case of complete combustion with a mixing ratio of 1.0, the reaction between the fuel gas and the oxygen gas is expressed by equation 1.

【数1】 C3H8+5O2=3CO2+4H2O+[+Q1] ここで[ ]内は反応熱を示し、+は発熱反応、−は吸
熱反応であることを示す。
## EQU1 ## C3H8 + 5O2 = 3CO2 + 4H2O + [+ Q1] Here, [] indicates reaction heat, + indicates exothermic reaction, and − indicates endothermic reaction.

【0014】一方、本発明の対象である回転溶解炉の場
合、燃焼ガスすなわちCO2およびH2Oと、図3で示
した副資材の1つである加炭材との間で数2〜3で示す
反応が活発に起こる。
On the other hand, in the case of the rotary melting furnace which is the subject of the present invention, the combustion gas, that is, CO2 and H2O, and the carburizing material which is one of the auxiliary materials shown in FIG. The reaction is active.

【数2】C+CO2=2CO+[−Q2][Equation 2] C + CO2 = 2CO + [-Q2]

【数3】C+H2O=CO+H2+[−Q3] 数2、数3の反応は吸熱反応である。すなわち、周囲か
ら熱を奪うため、熱効率を低下させるように作用する。
## EQU3 ## C + H2O = CO + H2 + [-Q3] The reactions of the expressions 2 and 3 are endothermic reactions. That is, since heat is taken from the surroundings, the heat efficiency is reduced.

【0015】ここで、混合比が1.0以下の酸素不足の
場合は、一部のC3H8が未反応となるため、燃料ガス
燃焼の全発熱量が少なくなり、併せて燃焼ガスと加炭材
が数2、数3の吸熱反応を起こすため、さらに熱効率が
低下し、溶解時間が長くなる。
Here, when the mixing ratio is 1.0 or less and the oxygen is deficient, a part of C3H8 becomes unreacted, so that the total calorific value of the fuel gas combustion becomes small, and at the same time, the combustion gas and the carburizing material are also reduced. Causes an endothermic reaction of the formulas 2 and 3, so that the thermal efficiency is further lowered and the dissolution time is prolonged.

【0016】一方、混合比を1.0以上にすると、燃料
ガスとの燃焼反応で残った余剰酸素が炉内に混流するよ
うになる。この酸素が加炭材に達すると、加炭材表面で
は前記数2、数3の反応と同時に数4に示す発熱反応が
起こるようになる。
On the other hand, if the mixing ratio is set to 1.0 or more, the excess oxygen remaining in the combustion reaction with the fuel gas will be mixed in the furnace. When this oxygen reaches the carburized material, on the surface of the carburized material, the exothermic reaction shown in the expression 4 simultaneously occurs with the reactions of the expressions 2 and 3.

【数4】2C+O2=2CO+[+Q4] さらに、高温状態の炉内では数2〜数4で発生したC
O、H2と余剰酸素との間で数5、数6の発熱反応が起
こる。
[Equation 4] 2C + O2 = 2CO + [+ Q4] Further, in the high temperature furnace, the C generated in the equations 2 to 4
Exothermic reactions of several 5 and several 6 occur between O and H2 and excess oxygen.

【数5】2CO+O2=2CO2+[+Q5][Equation 5] 2CO + O2 = 2CO2 + [+ Q5]

【数6】2H2+O2=2H2O+[+Q6][Equation 6] 2H2 + O2 = 2H2O + [+ Q6]

【0017】前記数5にてCOがO2と反応してCO2
に変化するときに発生する熱量Q5は、数2の反応で同
一モル容積のCOが生成される際に吸収する熱量Q2よ
りも大きい。また、数6にてH2がH2O に変化する
ときに発生する熱量Q6は、数3の反応で同一モル容積
のH2が生成される際に吸収する熱量Q3よりも大き
い。したがって、燃料ガスと酸素ガスの混合比を1.0
より大きくした場合、加炭材表面では数4の発熱反応を
促し、さらに数2、数3、数4の反応で生成されるCO
とH2が酸素と反応し、数5、数6の発熱反応を積極的
に起こす。
In the above equation 5, CO reacts with O2 to produce CO2.
The amount Q5 of heat generated when the reaction changes to 2 is larger than the amount Q2 of heat absorbed when CO of the same molar volume is generated in the reaction of Equation 2. Further, the heat quantity Q6 generated when H2 changes to H2O in the equation 6 is larger than the heat quantity Q3 absorbed when the same molar volume of H2 is produced in the reaction of the equation 3. Therefore, the mixing ratio of fuel gas and oxygen gas should be 1.0.
When it is made larger, the exothermic reaction of the equation 4 is promoted on the surface of the carburized material, and the CO generated by the reaction of the equations 2, 3, and 4 is further generated.
And H2 react with oxygen to positively cause the exothermic reactions of the equations (5) and (6).

【0018】しかし、バーナー6から数5、数6の反応
に必要以上の酸素を供給することは、無駄に排出される
酸素の加熱に熱を消費することになるため、混合比を高
め過ぎると熱効率が低下する。また、被溶解原材料の余
分な酸化反応が発生するため、被溶解原材料の歩留が低
下することにもなる。すなわち、炉内の状況に応じて溶
解時間を最短にする燃料ガスと酸素ガスの最適な混合比
が存在する。
However, if more oxygen than necessary is supplied from the burner 6 to the reactions of the number 5 and the number 6, the heat is consumed for heating the oxygen discharged in vain, so if the mixing ratio is too high. Thermal efficiency decreases. Further, since an excessive oxidation reaction of the melted raw material occurs, the yield of the melted raw material is reduced. That is, there is an optimum mixing ratio of the fuel gas and the oxygen gas that minimizes the melting time depending on the situation in the furnace.

【0019】実際の炉内反応は化学反応速度や物質移動
速度で律速される。しかし、本発明が対象とする回転溶
解炉では炉内ガス成分の変動が緩やかであること、さら
に昇温、溶解過程は化学反応速度に比してはるかに長時
間の現象であることから、数2から数6の化学反応速度
は化学熱力学的平衡論を用いて近似的にモデル化でき
る。本来の化学熱力学的平衡論は、ある温度における関
係物質の反応の方向と最終的な平衡状態を与えるもので
あるが、単位時間あたりの反応率を規定することにより
反応速度にすることができる。
The actual reaction in the furnace is limited by the chemical reaction rate and the mass transfer rate. However, in the rotary melting furnace targeted by the present invention, the fluctuation of the gas components in the furnace is gradual, and the temperature rising and melting processes are phenomena that take much longer than the chemical reaction rate. The chemical reaction rates of 2 to 6 can be approximately modeled by using the chemical thermodynamic equilibrium theory. The original theory of chemical thermodynamic equilibrium gives the direction of reaction and the final equilibrium state of related substances at a certain temperature, but the reaction rate can be set by defining the reaction rate per unit time. .

【0020】次に内蔵させる化学反応モデルと、その反
応モデルを用いて数5、数6の発熱反応に必要な酸素流
量を決定する原理について説明する。数2から数6の炉
内反応に関係するガス成分の平衡状態を求める上で必要
な独立な反応式は下記の3つとなる。
Next, the chemical reaction model to be incorporated and the principle of determining the oxygen flow rate required for the exothermic reaction of equations (5) and (6) using the reaction model will be described. The following three independent reaction equations are necessary for obtaining the equilibrium state of the gas components related to the in-reactor in the equations 2 to 6.

【数7】C+CO2=2CO[Equation 7] C + CO2 = 2CO

【数8】C+O2=CO2[Equation 8] C + O2 = CO2

【数9】H2+1/2・O2=H2O 数7、数8、数9の各反応の平衡定数をK1、K2、K
3、また対象ガスCO2、H2O、O2、CO、H2の
ガス分圧をPCO2、PH2O、PO2、PCO、PH
2で表わすと、ファント・ホッフの等温式と標準自由エ
ネルギー変化から次の関係式が成り立つ。
[Equation 9] H2 + 1/2 · O2 = H2O Equilibrium constants of the reactions of Eqs. 7, 8, and 9 are K1, K2, K
3, the target gas CO2, H2O, O2, CO, H2 gas partial pressure PCO2, PH2O, PO2, PCO, PH
Expressed by 2, the following relational expression holds from the van der Hoff's isotherm and standard free energy change.

【数10】 K1=PCO2/PCO2 =log-1{−(170710−174.5T)/2.303RT}[Expression 10] K1 = PCO2 / PCO2 = log-1 {-(170710-174.5T) /2.303RT}

【数11】 K2=PCO2/PO2 =log-1{−(−394577−1.13T)/2.303RT}[Expression 11] K2 = PCO2 / PO2 = log-1 {-(-394577-1.13T) /2.303RT}

【数12】 K3=PH2O2/(PH22・PO2) =log-1{−(−492698+109.84T)/2.303RT} ここでRは気体定数、Tは絶対温度である。すなわち温
度が決定されれば、その温度における平衡定数が求ま
る。
## EQU12 ## K3 = PH2O2 / (PH22.PO2) = log-1 {-(-492698 + 109.84T) /2.303RT} where R is a gas constant and T is an absolute temperature. That is, once the temperature is determined, the equilibrium constant at that temperature is determined.

【0021】PCO2、PH2O、PO2、PCO、P
H2は炉内全圧が1atmであることと、燃料ガスの供
給流量の初期条件から以下の方法で決定する。CO2、
H2O、O2、CO、H2の各ガスの炉内モル数を各々
A、B、C、D、Eで表わし、反応モデルで扱う計算周
期間に反応する炉内ガスの割合をαとする。そして、C
O2、H2O、O2、CO、H2の反応前のモル数を各
々a(=α・A)、b(=α・B)、c(=α・C)、d(=
α・D)、e(=α・E)とし、数7、数8、数9の反応
の方向と反応量(モル数)を数13、数14、数15のよ
うに定めると、反応後の各ガスの分圧とモル数の関係は
数16〜数20となる。
PCO2, PH2O, PO2, PCO, P
H2 is determined by the following method from the fact that the total pressure in the furnace is 1 atm and the initial condition of the supply flow rate of the fuel gas. CO2,
The in-furnace mole numbers of H2O, O2, CO, and H2 gases are represented by A, B, C, D, and E, respectively, and the proportion of in-reactor gas that reacts during the calculation cycle handled by the reaction model is α. And C
The molar numbers of O2, H2O, O2, CO, and H2 before the reaction are a (= α · A), b (= α · B), c (= α · C), d (=
If α · D) and e (= α · E) are set and the reaction direction and the reaction amount (mol number) of Equations 7, 8 and 9 are determined as in Equations 13, 14 and 15, after the reaction The relationship between the partial pressure of each gas and the number of moles is from several 16 to several 20.

【数13】C+CO2 → 2CO xモル[Equation 13] C + CO 2 → 2CO x mol

【数14】C+O2 ← CO2 yモル[Equation 14] C + O2 ← CO2 y mol

【数15】H2+1/2・O2 ← H2O zモル[Equation 15] H2 + 1/2 · O2 ← H2O z mol

【数16】PCO2=(a−x−y)/(a+b+c+d
+e+1/2・z+x)
PCO2 = (a−x−y) / (a + b + c + d)
+ E + 1 / 2.z + x)

【数17】PH2O=(b−z)/(a+b+c+d+e
+1/2・z+x)
## EQU17 ## PH2O = (b−z) / (a + b + c + d + e
+ 1 / 2.z + x)

【数18】PO2=(c+y+1/2・z)/(a+b+c+
d+e+1/2・z+x)
[Equation 18] PO2 = (c + y + 1/2 · z) / (a + b + c +
d + e + 1/2 ・ z + x)

【数19】PCO=(d+2x)/(a+b+c+d+e
+1/2・z+x)
PCO = (d + 2x) / (a + b + c + d + e)
+ 1 / 2.z + x)

【数20】PH2=(e+z)/(a+b+c+d+e+1
/2・z+x) 数16〜数20を数10〜数12に代入することにより
数21〜数23の関係が求まる。
[Formula 20] PH2 = (e + z) / (a + b + c + d + e + 1)
/ 2 · z + x) By substituting the equations 16 to 20 into the equations 10 to 12, the relationships of the equations 21 to 23 can be obtained.

【数21】K1=(d+2x)2/{(a+b+c+d+e
+1/2・z+x)(a−x−y)}
[Expression 21] K1 = (d + 2x) 2 / {(a + b + c + d + e
+ 1 / 2.z + x) (a-xy)}

【数22】K2=(a−x−y)/(c+y+1/2・z)[Equation 22] K2 = (a−x−y) / (c + y + 1/2 · z)

【数23】K3=(b−z)2(a+b+c+1/2・z+x)
/{(e+z)2(c+y+1/2・z)} 以上により変数がx、y、zの3つに対し関係式が3つ
であることから解が求まり、平衡状態でのCO2、H2
O、O2、CO、H2のモル数と分圧が求まる。最後
に、上記平衡状態に達した反応ガスと、炉内の未反応ガ
スとが均一混合した場合の炉内全体の各ガスのモル数と
分圧を求めることで炉内全体の化学反応をモデルでき
る。すなわち、バーナーへの燃料供給量と被溶解原材料
の温度から、炉内に発生するCOとH2のモル数が求ま
り、数5、数6の発熱反応に必要なO2の流量を導くこ
とができる。
[Equation 23] K3 = (b−z) 2 (a + b + c + 1/2 · z + x)
/ {(E + z) 2 (c + y + 1/2 · z)} As described above, the solution is obtained from the three relational expressions for the three variables x, y, and z, and CO2 and H2 in the equilibrium state are obtained.
The number of moles of O, O2, CO and H2 and the partial pressure can be obtained. Finally, the chemical reaction in the entire furnace is modeled by obtaining the number of moles and partial pressure of each gas in the entire furnace when the reaction gas that has reached the equilibrium state and the unreacted gas in the furnace are uniformly mixed. it can. That is, the number of moles of CO and H2 generated in the furnace can be obtained from the amount of fuel supplied to the burner and the temperature of the raw material to be melted, and the flow rate of O2 required for the exothermic reaction of Formulas 5 and 6 can be derived.

【0022】反応モデルで扱う計算周期間に反応する炉
内ガスの割合αは、実際のモデル操業における排ガス組
成を計測することで決定する。実際に実施例で述べた3
トン溶解に上記考えを適用した場合、計算周期が10m
secではαを0.02とすれば被溶解原材料の温度と
排ガス組成の関係が比較的一致する結果が得られ、上記
した考えで炉内全体の加炭材に拘る化学反応をモデル化
できることが分かった。
The ratio α of the in-furnace gas that reacts during the calculation cycle handled by the reaction model is determined by measuring the exhaust gas composition in the actual model operation. 3 described in the embodiment
When the above idea is applied to the ton melting, the calculation cycle is 10m.
In the case of sec, if α is 0.02, it is possible to obtain a result in which the relationship between the temperature of the raw material to be melted and the composition of the exhaust gas is relatively consistent, and it is possible to model the chemical reaction related to the carburizing material in the entire furnace by the above idea. Do you get it.

【0023】次に、内蔵した化学反応モデルを用いて検
出した被溶解原材料の温度から炉内ガス組成を演算し、
CO濃度が最小となるように酸素流量制御する方法につ
いて、図2のフローチャートを用いて説明する。まず開
始にあたり、コンピュータ20に対して、装入した鉄原
材料と加炭材の量、および原材料の量から定めているバ
ーナーの燃料ガスと酸素ガスの基準流量を入力、記憶さ
せる。自動燃焼制御をスタートさせると、コンピュータ
20は温度検出端子16からの被溶解原材料の温度値を
取り込む(ステップ101)。当該時点での燃料ガスと
酸素ガス流量、および原材料温度を化学反応モデルに適
用して炉内のCO、H2のモル数を求め(ステップ10
2)、これらの酸化反応に必要な増加酸素ガス流量を計
算し、新たな酸素流量値として酸素流量制御バルブ調整
器34に出力する(ステップ103)。そして、次回の
温度検出に備えて操作結果が安定するに必要なTsだけ
タイムカウントし(ステップ104)、最初の処理に戻
る。
Next, the gas composition in the furnace is calculated from the temperature of the raw material to be melted detected using the built-in chemical reaction model,
A method of controlling the oxygen flow rate so as to minimize the CO concentration will be described with reference to the flowchart of FIG. First, upon starting, the computer 20 inputs and stores the amounts of the iron raw material and the carburized material and the reference flow rates of the fuel gas and the oxygen gas of the burner determined from the amounts of the raw materials. When the automatic combustion control is started, the computer 20 takes in the temperature value of the raw material to be melted from the temperature detection terminal 16 (step 101). The flow rates of the fuel gas and oxygen gas at that time and the raw material temperature are applied to the chemical reaction model to determine the number of moles of CO and H2 in the furnace (step 10
2) The increased oxygen gas flow rate required for these oxidation reactions is calculated and output as a new oxygen flow rate value to the oxygen flow rate control valve regulator 34 (step 103). Then, in preparation for the next temperature detection, time counting is performed for Ts required for stabilizing the operation result (step 104), and the process returns to the first process.

【0024】タイムカウント値Tsは、対象溶解炉に合
わせて例えばTs=1minなどとし、酸素用バルブ3
0からの酸素流量が、コンピュータ20が酸素流量制御
バルブ調整器34に与えた流量値に達し、炉内ガスの状
態が操作結果の反映された定常状態に達する時間にす
る。
The time count value Ts is set to, for example, Ts = 1 min according to the target melting furnace, and the oxygen valve 3 is used.
The time when the oxygen flow rate from 0 reaches the flow rate value given to the oxygen flow rate control valve regulator 34 by the computer 20, and the state of the gas in the furnace reaches the steady state in which the operation result is reflected.

【0025】以上説明した処理を、温度検出端子16で
検出される被溶解原材料の温度が鉄が溶解して出湯可能
な温度、例えば1520℃になるまで繰り返す。次に、
溶湯の一部を取り出して成分分析を行ない、必要に応じ
て成分調整を行なう。そして、温度と成分が満足されれ
ばバーナー6を停止し、出湯口11を開栓して出湯す
る。以上のように被溶解原材料の温度を検出して燃焼バ
ーナーの酸素ガスの流量を制御することにより、炉内の
化学反応状態に合わせて最大の熱効率を実現するバーナ
ーの燃焼制御ができる。
The above-described processing is repeated until the temperature of the raw material to be melted detected by the temperature detecting terminal 16 reaches a temperature at which iron can be melted and tapped out, for example, 1520 ° C. next,
Take out a part of the molten metal, analyze the components, and adjust the components as necessary. When the temperature and the components are satisfied, the burner 6 is stopped, the hot water outlet 11 is opened, and hot water is discharged. By detecting the temperature of the raw material to be melted and controlling the flow rate of the oxygen gas in the combustion burner as described above, it is possible to perform combustion control of the burner that achieves maximum thermal efficiency in accordance with the chemical reaction state in the furnace.

【0026】なお、実施例では化学反応モデルに平衡論
を適用したが、チャーあるいはコークスに対して報告さ
れているように、化学反応抵抗と流体境膜内拡散抵抗の
総括反応速度からなるモデルを用いても良い。また、本
実施例では制御する酸素ガスはバーナーに供給している
もので説明したが、別に制御酸素供給経路を設けてもよ
い。また、燃料ガス流量、あるいは酸素ガスと燃料ガス
両方を制御することもできる。さらに、温度検出器は炉
体壁面に埋め込まれたものではなく、放射温度計のよう
なものでもよい。さらに、化学反応モデルには加炭材の
反応量追跡を追加して、加炭材が全て反応したことを判
定し、適用する反応モデルを加炭材のないものに切替え
てもよい。以上、鋳鉄溶湯を得る溶解炉の熱効率を高め
る燃焼制御方法について説明した。
Although the equilibrium theory was applied to the chemical reaction model in the examples, a model consisting of the overall reaction rate of the chemical reaction resistance and the diffusion resistance in the fluid film as described for char or coke was used. You may use. Further, although the oxygen gas to be controlled is supplied to the burner in this embodiment, a control oxygen supply path may be separately provided. It is also possible to control the fuel gas flow rate or both the oxygen gas and the fuel gas. Further, the temperature detector may not be embedded in the wall surface of the furnace body but may be something like a radiation thermometer. Further, the reaction amount tracing of the carburizing material may be added to the chemical reaction model to determine that all the carburizing material has reacted, and the reaction model to be applied may be switched to the one without the carburizing material. The combustion control method for increasing the thermal efficiency of the melting furnace for obtaining the cast iron melt has been described above.

【0027】[0027]

【発明の効果】本発明を用いた溶解炉では、副資材の加
炭材が燃料ガスの燃焼の結果発生する二酸化炭素、水蒸
気と吸熱反応しても、その結果発生する一酸化炭素及び
水素と、酸素の発熱反応を最大効率で行わせるため、総
合的な熱効率を高めることができる。その結果、溶解時
間が短縮し、原材料の余分な酸化が防止され歩留が向上
する。また、溶解開始時の炉体の温度条件や装入鉄原材
料および副資材等の影響で、被溶解原材料の昇温速度が
毎回変動する操業条件にも対応できる。
In the melting furnace using the present invention, even if the carburizing material as an auxiliary material undergoes an endothermic reaction with carbon dioxide and water vapor generated as a result of combustion of fuel gas, carbon monoxide and hydrogen generated as a result Since the exothermic reaction of oxygen is performed at the maximum efficiency, the overall thermal efficiency can be increased. As a result, the dissolution time is shortened, excessive oxidation of the raw material is prevented, and the yield is improved. Further, it is possible to cope with operating conditions in which the temperature rising rate of the melted raw material changes every time due to the influence of the temperature condition of the furnace body at the start of melting and the charged iron raw material and auxiliary materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を略示する鋳鉄用溶解炉の横
断面と燃焼制御装置の系統図
FIG. 1 is a cross-sectional view of a melting furnace for cast iron and a system diagram of a combustion control device schematically showing an embodiment of the present invention.

【図2】本発明の燃焼制御方法を説明するためのフロー
チャート
FIG. 2 is a flowchart illustrating a combustion control method according to the present invention.

【図3】本発明対象の回転溶解炉での装入成分、溶湯成
分、および損失成分の重量例
FIG. 3 shows examples of weights of charged components, molten metal components, and loss components in a rotary melting furnace according to the present invention.

【符号の説明】[Explanation of symbols]

5…溶解炉本体 6…バーナー 16…温度検出端子 20…コンピュータ 30…酸素用バルブ 31…燃料用バルブ 5 ... Melting furnace main body 6 ... Burner 16 ... Temperature detection terminal 20 ... Computer 30 ... Oxygen valve 31 ... Fuel valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉄原材料材及び成分調整材を予め装入し
て燃料ガス及び酸素ガスで燃焼して加熱溶解する溶解炉
の燃焼制御方法において、燃料ガスと酸素ガスの供給量
と被溶解原材料の温度を入力として、炉内の平衡状態に
達した反応ガスのモル数と分圧を求める化学反応モデル
を作成し、サンプリング時間毎に、前記化学反応モデル
の出力を基に炉内全体の反応ガスのモル数と分圧を求
め、発熱反応になるように、燃料ガスおよび酸素ガスの
少なくとも一方の供給量を決定することを特徴とする溶
解炉の燃焼制御方法。
1. A method for controlling combustion in a melting furnace in which an iron raw material and a component adjusting material are charged in advance and burned with a fuel gas and an oxygen gas to be heated and melted, and a supply amount of the fuel gas and the oxygen gas and a raw material to be melted. With the temperature of the input as a input, a chemical reaction model for obtaining the number of moles and partial pressure of the reaction gas that has reached the equilibrium state in the furnace is created, and the reaction of the entire furnace is made based on the output of the chemical reaction model at each sampling time. A combustion control method for a melting furnace, which comprises determining the number of moles of gas and the partial pressure, and determining the supply amount of at least one of fuel gas and oxygen gas so that an exothermic reaction occurs.
【請求項2】 前記化学反応モデルの出力から得られる
一酸化炭素と水素のモル数と発熱反応式をもとにして、
一酸化炭素濃度が最小となるように酸素流量比を求め、
燃料ガスあるいは酸素ガスの少なくとも一方の供給量を
決定することを特徴とする請求項1記載の溶解炉の燃焼
制御方法。
2. Based on the number of moles of carbon monoxide and hydrogen and the exothermic reaction equation obtained from the output of the chemical reaction model,
Obtain the oxygen flow rate ratio to minimize the carbon monoxide concentration,
The combustion control method for a melting furnace according to claim 1, wherein the supply amount of at least one of the fuel gas and the oxygen gas is determined.
JP959796A 1996-01-23 1996-01-23 Method for controlling combustion in melting furnace Pending JPH09202910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP959796A JPH09202910A (en) 1996-01-23 1996-01-23 Method for controlling combustion in melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP959796A JPH09202910A (en) 1996-01-23 1996-01-23 Method for controlling combustion in melting furnace

Publications (1)

Publication Number Publication Date
JPH09202910A true JPH09202910A (en) 1997-08-05

Family

ID=11724739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP959796A Pending JPH09202910A (en) 1996-01-23 1996-01-23 Method for controlling combustion in melting furnace

Country Status (1)

Country Link
JP (1) JPH09202910A (en)

Similar Documents

Publication Publication Date Title
US4642047A (en) Method and apparatus for flame generation and utilization of the combustion products for heating, melting and refining
EP0671595B1 (en) Electric arc fusion furnace with controlled oxygen blast
US3602487A (en) Blast furnace stove control
CN107429915B (en) For controllably running method, regulation device and the industrial furnace of the industrial furnace of heating
JPS60228665A (en) Steel gas cementation and device
KR910004557B1 (en) Gas carburizing method and apparatus
US3416470A (en) Method of controlling and/or regulating induced draught fans for waste heat boilers
JP4671136B2 (en) Combustion control method for rotary melting furnace
EP0183284A1 (en) Arc furnace burner control method and apparatus
JPH09202910A (en) Method for controlling combustion in melting furnace
JPH1019470A (en) Combustion control method for fusion furnace
JPH10310808A (en) Operation of blast furnace
KR20020020268A (en) Apparatus For Controlling Introduced Air In Metal Oxide Reducing Furnace
JPH09194925A (en) Device for controlling combustion of melting furnace
US7648558B2 (en) Method for the treatment of aluminum in a furnace
JPH0979755A (en) Combustion control method of melting furnace
CN104755867B (en) The oxygen blast combustion control device of heating furnace
JP2004191047A (en) Combustion control system and method for furnace
JPH10122753A (en) Combustion control method of melting furnace, and rotary melting furnace
JP2002157023A (en) Furnace pressure control system
JPS60121235A (en) Method for melting nonferrous metal in gas firing reverberatory furnace
SU1735382A1 (en) Method of measuring quantity of thermal losses with waste gases
JP2005249354A (en) Combustion control method for reduced iron manufacturing plant and its device
JPH09125122A (en) Method for controlling oxygen concentration corresponding to molten metal tapping temperature in vertical type quick melting furnace
JPS5956508A (en) Method for controlling combustion in hot stove for blast furnace