JP2005249354A - Combustion control method for reduced iron manufacturing plant and its device - Google Patents

Combustion control method for reduced iron manufacturing plant and its device Download PDF

Info

Publication number
JP2005249354A
JP2005249354A JP2004063054A JP2004063054A JP2005249354A JP 2005249354 A JP2005249354 A JP 2005249354A JP 2004063054 A JP2004063054 A JP 2004063054A JP 2004063054 A JP2004063054 A JP 2004063054A JP 2005249354 A JP2005249354 A JP 2005249354A
Authority
JP
Japan
Prior art keywords
furnace
heating zone
zone
amount
furnace temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004063054A
Other languages
Japanese (ja)
Inventor
Shinji Shima
真司 嶋
Yukihisa Fukuda
幸久 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP2004063054A priority Critical patent/JP2005249354A/en
Publication of JP2005249354A publication Critical patent/JP2005249354A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Control Of Combustion (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion control method and its device capable of carrying out stable mass product reducing operation by completely burning unburnt gas generated in a heating zone and a reducing zone while controlling a furnace temperature in the heating zone. <P>SOLUTION: In combustion control of a reduced iron manufacturing plant, mass products formed with metal oxide and reducing agent mixed and granulated are loaded into a rotary hearth furnace and heated and reduced by burners 4, 5 provided in the heating zone 2 and the reducing zone 3, respectively, and the reduced mass products are collected. A difference between the furnace temperature detected by a furnace temperature meter 6 installed in the heating zone 2 for controlling the furnace temperature in the heating zone 2 and a target set temperature in heating zone is computed, and in accordance with a computation result obtained by the computation, a fuel amount calculated by a fuel amount computing device 12 is increased/decreased to a fuel amount to be output at the furnace temperature detected by a furnace temperature meter 7 installed in the reducing zone 3 to control the fuel amount of the burner 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属酸化物を回転炉床炉にて還元し回収する還元鉄製造設備の燃焼制御方法および燃焼制御装置に関する。   The present invention relates to a combustion control method and a combustion control apparatus for reduced iron production equipment for reducing and recovering metal oxides in a rotary hearth furnace.

製鋼ダストや粉鉱等に含まれる酸化鉄を再利用するため、製鋼ダスト等にバインダや還元剤を混入させて混練し、造粒して塊成化物を作り、この塊成化物を回転炉床炉に装入して、加熱・還元により還元塊成化物を製造することが行われている。   In order to reuse the iron oxide contained in steelmaking dust and fine ore, etc., a binder and a reducing agent are mixed into the steelmaking dust and kneaded, and granulated to form an agglomerated material. A reduced agglomerate is produced by charging in a furnace and heating and reducing.

図2は回転炉床炉の概略図である。回転炉床炉1は、塊成化物を炉内へ装入する装入装置1aと装入された塊成化物を加熱する加熱ゾーン2と加熱された塊成化物を還元する還元ゾーン3および還元された塊成化物を炉外へ排出する排出装置1bとから構成されている。加熱ゾーン2及び還元ゾーン3ではそれぞれバーナ4、5が回転炉床炉1の側壁に設置され、装入された塊成化物を回転炉床の回転により加熱ゾーン2から還元ゾーン3を通過させて加熱・還元することにより還元鉄を製造する。   FIG. 2 is a schematic view of a rotary hearth furnace. The rotary hearth furnace 1 includes a charging device 1a for charging the agglomerate into the furnace, a heating zone 2 for heating the agglomerated material, a reduction zone 3 for reducing the heated agglomerated material, and a reduction. And a discharge device 1b for discharging the agglomerated material out of the furnace. In the heating zone 2 and the reduction zone 3, burners 4 and 5 are installed on the side walls of the rotary hearth furnace 1, respectively, and the charged agglomerates are passed from the heating zone 2 to the reduction zone 3 by the rotation of the rotary hearth. Reduced iron is produced by heating and reducing.

加熱ゾーン2に装入された塊成化物は加熱ゾーン2に設置したバーナ4の空気比を1.0以上の過剰空気で燃焼させ、塊成化物に含まれる水分や未燃ガス等および還元ゾーンで発生する未燃ガスを同時燃焼し、所定の温度に加熱し、還元ゾーンに設置したバーナは空気比1.0以下で燃焼させて還元化する構成となっている。   The agglomerated material charged in the heating zone 2 is burned with excess air with an air ratio of the burner 4 installed in the heating zone 2 of 1.0 or more, and moisture, unburned gas, etc. contained in the agglomerated material and the reduction zone The unburned gas generated in is burned simultaneously, heated to a predetermined temperature, and the burner installed in the reduction zone is burned at an air ratio of 1.0 or less to be reduced.

回転炉床炉1では加熱ゾーン2と還元ゾーン3が炉内で連通状態にあるため、還元ゾーン3で発生した還元性ガスが加熱ゾーン2を通って排ガス排出口2aへ排出される。このため加熱ゾーン2では、還元ゾーン3で発生した還元性ガスを燃焼させ、その燃焼熱を利用すべく充分な空気を導入している。   In the rotary hearth furnace 1, since the heating zone 2 and the reduction zone 3 are in communication with each other in the furnace, the reducing gas generated in the reduction zone 3 is discharged through the heating zone 2 to the exhaust gas discharge port 2a. For this reason, in the heating zone 2, the reducing gas generated in the reduction zone 3 is combusted, and sufficient air is introduced to use the heat of combustion.

回転炉床炉の燃焼制御方法として、特許文献1には、加熱ゾーンの炉内ガスのO濃度またはCO濃度を測定し、測定濃度に従い加熱ゾーンに空気を導入して還元ゾーンで発生する未燃ガスを加熱ゾーンで燃焼させる燃焼方法が開示されている。 As a combustion control method for a rotary hearth furnace, Patent Document 1 discloses that the O 2 concentration or CO concentration of the in-furnace gas in the heating zone is measured, and air is introduced into the heating zone in accordance with the measured concentration to generate in the reduction zone. A combustion method for burning a combustion gas in a heating zone is disclosed.

また、特許文献2には、所定量の燃料に適量の一次燃焼用空気を混合した燃焼ガスを供給する燃焼ガス供給手段と設定量の二次燃焼用空気を供給する二次燃焼用空気供給手段と前記炉床上に供給されたペレットの投入量を検出するペレット投入量検出手段と、該ペレツト投入量に応じて前記二次燃焼用空気の設定量を調整する二次燃焼用空気流量調整手段を備えた還元鉄の製造装置が開示されている。
特開平11−248359号公報 特開2001−115204号公報
Patent Document 2 discloses a combustion gas supply means for supplying a combustion gas obtained by mixing a predetermined amount of fuel with an appropriate amount of primary combustion air, and a secondary combustion air supply means for supplying a predetermined amount of secondary combustion air. And a pellet input amount detecting means for detecting an input amount of pellets supplied onto the hearth, and a secondary combustion air flow rate adjusting means for adjusting a set amount of the secondary combustion air according to the pellet input amount. An apparatus for producing reduced iron is disclosed.
JP 11-248359 A JP 2001-115204 A

しかし、特許文献1のように、加熱ゾーンに還元ゾーンで発生する未燃ガスの発生量に応じて空気量を調整する方法では、未燃ガスの発生量に左右され、未燃ガスが多いときは空気を増加して燃焼を活発に行わせるため加熱ゾーンの炉温が上昇し、逆に発生する未燃ガスが少ないときは炉温が低下するという問題があり、加熱ゾーンにおいて所定温度に加熱する制御が出来ない。   However, as in Patent Document 1, in the method of adjusting the air amount according to the amount of unburned gas generated in the reduction zone in the heating zone, when the amount of unburned gas is large depending on the amount of unburned gas generated Has a problem that the furnace temperature in the heating zone rises because air is increased and combustion is actively performed, and the furnace temperature decreases when there is little unburned gas generated. Control is not possible.

このため加熱ゾーンの炉温が低い場合は、塊成化物の温度も低いことから還元ゾーンへ侵入する塊成化物の還元作用を遅らせることとなり、回転炉床炉を1回転させる間での還元が出来ないという問題も発生する。また、未燃ガスが多くて加熱ゾーンに空気を増量して吹き込んで活発な燃焼を行うと、加熱ゾーンでの炉温が上昇し、塊成化物の温度が上昇し、酸化雰囲気での塊成化物の加熱となり還元剤が揮発し、強固な酸化鉄として還元ゾーンに侵入し、還元鉄の製造が出来なくなるという問題も発生する。   For this reason, when the furnace temperature in the heating zone is low, the agglomerate temperature is also low, so the reduction action of the agglomerate entering the reduction zone is delayed, and the reduction during one rotation of the rotary hearth furnace is reduced. There is also a problem that it cannot be done. In addition, if there is a large amount of unburned gas and air is blown into the heating zone and blown into the heating zone for active combustion, the furnace temperature in the heating zone rises, the temperature of the agglomerate rises, and agglomeration in an oxidizing atmosphere occurs. There is also a problem that the reducing agent volatilizes due to the heating of the chemical and enters the reduction zone as strong iron oxide, making it impossible to produce reduced iron.

また、特許文献2のように、炉内に装入される塊成化物の量に応じて2次燃焼用空気の設定量を調整するものでは、投入される塊成化物が多いと還元ゾーンでの未燃ガスの発生も多くなることを前提としている。従って、本技術では、回転炉床炉に装入される塊成化物の性状、つまり、塊成化物に含まれる水分の量やバインダの量および還元剤の量を一定量に調整したもののみを装入しなければならない。   Further, as in Patent Document 2, in the case of adjusting the set amount of secondary combustion air according to the amount of agglomerated material charged in the furnace, if there is a large amount of agglomerated material being charged, It is assumed that the generation of unburned gas will increase. Therefore, in the present technology, only the properties of the agglomerated material charged into the rotary hearth furnace, that is, the amount of moisture contained in the agglomerated material, the amount of binder, and the amount of reducing agent are adjusted to a constant amount. Must be charged.

しかし、現実は、装入される塊成化物の性状にバラツキがあり、塊成化物の量に比例して未燃ガスが発生するとは限らない。このため2次燃焼用空気量を装入される塊成化物の量に応じて調節するだけでは、未燃ガスを完全燃焼させることは出来ない。   However, in reality, there are variations in the properties of the agglomerated material to be charged, and unburned gas is not always generated in proportion to the amount of agglomerated material. For this reason, unburned gas cannot be completely burned only by adjusting the amount of air for secondary combustion according to the amount of agglomerated material to be charged.

そこで、本発明は、還元鉄製造設備において、加熱ゾーンでの炉温を制御しながら加熱ゾーン及び還元ゾーンで発生する未燃ガスを完全に燃焼させ、塊成化物の還元化作用を安定して行うことが出来る燃焼制御方法及び燃焼制御装置を提供するものである。   Therefore, in the reduced iron production facility, the present invention is to completely burn the unburned gas generated in the heating zone and the reduction zone while controlling the furnace temperature in the heating zone, thereby stabilizing the agglomerate reduction action. A combustion control method and a combustion control device that can be performed are provided.

本発明の還元鉄製造設備の燃焼制御方法は、金属酸化物と還元剤を混合し造粒して塊成化物とし、この塊成化物を回転炉床炉に装入して該回転炉床炉の加熱ゾーン及び還元ゾーンに設けられたバーナによって加熱・還元することにより前記塊成化物を還元し回収する還元鉄製造設備の燃焼制御方法において、前記加熱ゾーンに設置された該加熱ゾーンの炉温を制御する炉温計で検知した炉温と加熱ゾーン目標設定温度との差を演算し、この演算により得られた演算結果に基づいて燃料量演算装置により算出された燃料量を、前記還元ゾーンに設置された炉温計で検知した炉温により出力される燃料量に加減して前記バーナの燃料量を制御することを特徴とする。   The combustion control method of the reduced iron production facility of the present invention comprises mixing a metal oxide and a reducing agent and granulating it into an agglomerate, and charging the agglomerate into a rotary hearth furnace. In the combustion control method of the reduced iron production facility for reducing and recovering the agglomerate by heating and reducing with a burner provided in the heating zone and the reduction zone, the furnace temperature of the heating zone installed in the heating zone The difference between the furnace temperature detected by the furnace thermometer that controls the heating zone and the target set temperature of the heating zone is calculated, and the fuel amount calculated by the fuel amount calculation device based on the calculation result obtained by this calculation is calculated as the reduction zone. The fuel amount of the burner is controlled by adjusting the fuel amount output by the furnace temperature detected by the furnace thermometer installed in the burner.

また、本発明の還元鉄製造設備の燃焼制御装置は、金属酸化物と還元剤を混合して造粒した塊成化物とし、この塊成化物を回転炉床炉に装入して該回転炉床炉の加熱ゾーン及び還元ゾーンに設けられたバーナによって加熱・還元することにより前記塊成化物を還元し回収する還元鉄製造設備であって、前記加熱ゾーンの炉温を制御する炉温計を設置し、該炉温計で検知した炉温と加熱ゾーン目標設定温度との差を演算する演算装置を配設し、該演算装置により得られた演算結果に基づいて燃料量を算出する燃料量演算装置と該演算装置により得られた燃料量を、前記還元ゾーンに設置した炉温計で検知した炉温より出力される燃料量に加減する演算装置を配設したことを特徴とする。   Further, the combustion control device of the reduced iron production facility of the present invention is an agglomerated product obtained by mixing and granulating a metal oxide and a reducing agent, and charging the agglomerated product into a rotary hearth furnace. A reduced iron production facility for reducing and recovering the agglomerate by heating and reducing with a burner provided in a heating zone and a reduction zone of a floor furnace, and a furnace thermometer for controlling the furnace temperature in the heating zone A fuel quantity that is installed and that calculates a fuel quantity based on a calculation result obtained by calculating a difference between a furnace temperature detected by the furnace thermometer and a heating zone target set temperature An arithmetic unit and an arithmetic unit for adjusting the amount of fuel obtained by the arithmetic unit to a fuel amount output from a furnace temperature detected by a furnace thermometer installed in the reduction zone are provided.

本発明により加熱ゾーンのバーナの燃料量を制御して加熱ゾーンでの炉温を制御しながら加熱ゾーン及び還元ゾーンで発生する未燃ガスを完全に燃焼させることができるので塊成化物の還元化作用を安定して行うことが出来る。   According to the present invention, it is possible to completely burn the unburned gas generated in the heating zone and the reduction zone while controlling the furnace temperature in the heating zone by controlling the fuel amount of the burner in the heating zone. The action can be performed stably.

図1は本発明の燃焼制御を示すフローである。図1において、回転炉床炉1を模式的に側面図として図示し、装入装置及び排出装置については省略している。   FIG. 1 is a flow showing combustion control of the present invention. In FIG. 1, the rotary hearth furnace 1 is schematically shown as a side view, and the charging device and the discharging device are omitted.

装入装置(図示しない)より塊成化物は加熱ゾーン2に装入される。加熱ゾーン2には回転炉床内で発生する排ガスの排出口2aが設置されている。加熱ゾーン2及び還元ゾーン3にそれぞれ設置されたバーナ4、5の燃焼排ガスは加熱ゾーン2の排出口2aを通って排ガス処理装置を経て屋外に放散される。   The agglomerated material is charged into the heating zone 2 from a charging device (not shown). The heating zone 2 is provided with an exhaust port 2a for exhaust gas generated in the rotary hearth. The combustion exhaust gas of the burners 4 and 5 installed in the heating zone 2 and the reduction zone 3 is dissipated outside through the exhaust port 2a of the heating zone 2 and the exhaust gas treatment device.

加熱ゾーン2および還元ゾーン3にはそれぞれ炉温計6、7を設置している。加熱ゾーン2は予め目標温度SVを設定器10により設定し演算器9へ送る。また、炉温計6で検知した温度調節計8により検知温度を演算器9へ送る。そして演算器9で設定された目標温度SVと検知された実績温度PVとの差ΔtをΔt=SV−PVにより演算させ、燃料量に換算する演算器12に送る。   Furnace thermometers 6 and 7 are installed in the heating zone 2 and the reduction zone 3, respectively. In the heating zone 2, the target temperature SV is set in advance by the setting device 10 and sent to the calculator 9. Further, the detected temperature is sent to the calculator 9 by the temperature controller 8 detected by the furnace thermometer 6. Then, the difference Δt between the target temperature SV set by the calculator 9 and the detected actual temperature PV is calculated by Δt = SV−PV and sent to the calculator 12 which converts it into a fuel amount.

演算器12では前記演算器9で算出した温度差Δtに見合う係数Kを予め設定した補正係数テーブル11から選択し、温度差Δtに補正係数Kを乗じて補正燃料量ΔFをΔF=Δt×Kにより算出する。   The computing unit 12 selects a coefficient K corresponding to the temperature difference Δt calculated by the computing unit 9 from a preset correction coefficient table 11 and multiplies the temperature difference Δt by the correction coefficient K to obtain a corrected fuel amount ΔF as ΔF = Δt × K. Calculated by

一方、還元ゾーン3では還元ゾーン3に設置した炉温計7で還元ゾーン3の炉温を温度調節器14によって所定の温度に調節する。還元ゾーン3の炉温は1100℃〜1300℃で調節されている。還元ゾーン3では、この炉温になるように流量調節器15によって燃料の流量調節弁19の感度を調節して制御される。   On the other hand, in the reduction zone 3, the furnace temperature in the reduction zone 3 is adjusted to a predetermined temperature by the temperature controller 14 using the furnace thermometer 7 installed in the reduction zone 3. The furnace temperature of the reduction zone 3 is adjusted to 1100 ° C to 1300 ° C. In the reduction zone 3, the sensitivity of the fuel flow control valve 19 is adjusted by the flow controller 15 so that the furnace temperature is reached.

また、燃料の実流量は、燃料配管20に設置された流量計17、18で測定され、流量調節計15で指示される。ここで、加熱ゾーン2の目標温度SVと実績温度PVとの差Δtより演算した補正燃料量ΔFを流量調節計15から流量調節弁19間に設置した演算器13に入れて流量調節計15から流量調節弁19に指示される流量に補正を掛けて流量調節弁19の開度を設定する。併せて、補正燃料量ΔFを流量計17、18と流量調節計15間に設置した演算器16にも入力して演算させ、演算後の流量値を流量調節計15で指示させる。   Further, the actual flow rate of the fuel is measured by flow meters 17 and 18 installed in the fuel pipe 20 and is instructed by the flow rate controller 15. Here, the corrected fuel amount ΔF calculated from the difference Δt between the target temperature SV of the heating zone 2 and the actual temperature PV is put into the calculator 13 installed between the flow rate control valve 15 and the flow rate control valve 19, and from the flow rate controller 15. The opening of the flow control valve 19 is set by correcting the flow rate instructed by the flow control valve 19. At the same time, the corrected fuel amount ΔF is also inputted to the calculator 16 installed between the flow meters 17 and 18 and the flow rate controller 15 for calculation, and the flow rate value after the calculation is indicated by the flow rate controller 15.

例えば、加熱ゾーン2での目標炉温SVが900℃、炉温計6で検知した実績温度PVが800℃と仮定すると、演算器9で温度差Δtを算出すると温度差Δtは100℃で、この温度差100℃のときの補正燃料を演算器12で算出して100Nm/Hの燃料量を得たとする。この演算器12で得た100Nm/Hの補正燃料量を演算器13にインプットして流量調節計15で指示される燃料量に加算して、流量調節弁19の開度を設定する。一方、実流量を測定して流量調節計15へ指示する流量計17、18と流量調節計15の間に設置した演算器16には補正燃料ΔFを減じる演算を行い、その演算結果を流量調節計15で指示させる。 For example, assuming that the target furnace temperature SV in the heating zone 2 is 900 ° C. and the actual temperature PV detected by the furnace thermometer 6 is 800 ° C., the temperature difference Δt is 100 ° C. when the temperature difference Δt is calculated by the calculator 9. It is assumed that the corrected fuel when the temperature difference is 100 ° C. is calculated by the calculator 12 to obtain a fuel amount of 100 Nm 3 / H. The corrected fuel amount of 100 Nm 3 / H obtained by the calculator 12 is input to the calculator 13 and added to the fuel amount indicated by the flow rate controller 15 to set the opening degree of the flow rate control valve 19. On the other hand, the arithmetic unit 16 installed between the flow meters 17 and 18 that measure the actual flow rate and instruct the flow rate controller 15 and the flow rate controller 15 performs an operation to reduce the correction fuel ΔF, and the calculation result is adjusted to the flow rate. Instruct 15 in total.

燃焼用空気量については燃料量に応じて設定器21で空気比を設定し、燃焼用空気の実流量は、燃焼用空気配管26に設置された流量計23、25で測定され、流量調節計22で自動的に設定され指示されて流量調節弁24の開度を設定する。   For the combustion air amount, the air ratio is set by the setting device 21 in accordance with the fuel amount, and the actual flow rate of the combustion air is measured by the flow meters 23 and 25 installed in the combustion air pipe 26, and the flow rate controller. 22 is automatically set and instructed to set the opening of the flow control valve 24.

本発明の燃焼制御フローである。It is a combustion control flow of the present invention. 回転炉床炉の概略図である。It is the schematic of a rotary hearth furnace.

符号の説明Explanation of symbols

1:回転炉床炉
1a:装入装置
1b:排出装置
2:加熱ゾーン
2a:排ガス排出口
3:還元ゾーン
4:加熱ゾーンバーナ
5:還元ゾーンバーナ
6:炉温計
7:炉温計
8:温度調節計
9:演算器
10:設定器
11:燃料補正テーブル
12:演算器
13:演算器
14:温度調節計
15:流量調節計
16:演算器
17:流量計
18:流量計
19:流量調節弁
20:燃料配管
21:設定器
22:流量調節計
23:流量計
24:流量調節弁
25:流量計
26:燃焼用空気配管
1: rotary hearth furnace 1a: charging device 1b: discharge device 2: heating zone 2a: exhaust gas discharge port 3: reduction zone 4: heating zone burner 5: reduction zone burner 6: furnace thermometer 7: furnace thermometer 8: Temperature controller 9: Calculator 10: Setter 11: Fuel correction table 12: Calculator 13: Calculator 14: Temperature controller 15: Flow controller 16: Calculator 17: Flow meter 18: Flow meter 19: Flow control Valve 20: Fuel piping 21: Setting device 22: Flow controller 23: Flow meter 24: Flow control valve 25: Flow meter 26: Combustion air piping

Claims (2)

金属酸化物と還元剤を混合し造粒して塊成化物とし、この塊成化物を回転炉床炉に装入して該回転炉床炉の加熱ゾーン及び還元ゾーンに設けられたバーナによって加熱・還元することにより前記塊成化物を還元し回収する還元鉄製造設備の燃焼制御方法において、
前記加熱ゾーンに設置された該加熱ゾーンの炉温を制御する炉温計で検知した炉温と加熱ゾーン目標設定温度との差を演算し、この演算により得られた演算結果に基づいて燃料量演算装置により算出された燃料量を、前記還元ゾーンに設置された炉温計で検知した炉温により出力される燃料量に加減して前記バーナの燃料量を制御することを特徴とする還元鉄製造設備の燃焼制御方法。
A metal oxide and a reducing agent are mixed and granulated to form an agglomerated material. The agglomerated material is charged into a rotary hearth furnace and heated by a burner provided in the heating zone and the reduction zone of the rotary hearth furnace. In the combustion control method of the reduced iron production facility that reduces and recovers the agglomerates by reducing,
Calculate the difference between the furnace temperature detected by a furnace thermometer that controls the furnace temperature of the heating zone installed in the heating zone and the heating zone target set temperature, and based on the calculation result obtained by this calculation, the amount of fuel Reduced iron characterized by controlling the amount of fuel in the burner by adjusting the amount of fuel calculated by an arithmetic unit to the amount of fuel output by the furnace temperature detected by a furnace thermometer installed in the reduction zone Combustion control method for manufacturing equipment.
金属酸化物と還元剤を混合して造粒して塊成化物とし、この塊成化物を回転炉床炉に装入して該回転炉床炉の加熱ゾーン及び還元ゾーンに設けられたバーナによって加熱・還元することにより前記塊成化物を還元し回収する還元鉄製造設備であって、
前記加熱ゾーンの炉温を制御する炉温計を設置し、該炉温計で検知した炉温と加熱ゾーン目標設定温度との差を演算する演算装置を配設し、該演算装置により得られた演算結果に基づいて燃料量を算出する燃料量演算装置と該演算装置により得られた燃料量を、前記還元ゾーンに設置した炉温計で検知した炉温より出力される燃料量に加減する演算装置を配設したことを特徴とする還元鉄製造設備の燃焼制御装置。
A metal oxide and a reducing agent are mixed and granulated to form an agglomerated material. The agglomerated material is charged into a rotary hearth furnace and is heated by a burner provided in the heating zone and the reduction zone of the rotary hearth furnace. A reduced iron production facility that reduces and recovers the agglomerates by heating and reducing,
A furnace thermometer that controls the furnace temperature in the heating zone is installed, and an arithmetic device that calculates the difference between the furnace temperature detected by the furnace thermometer and the heating zone target set temperature is provided, and is obtained by the arithmetic device. The fuel amount calculation device for calculating the fuel amount based on the calculation result and the fuel amount obtained by the calculation device are adjusted to the fuel amount output from the furnace temperature detected by the furnace thermometer installed in the reduction zone. A combustion control device for reduced iron manufacturing equipment, characterized in that an arithmetic device is provided.
JP2004063054A 2004-03-05 2004-03-05 Combustion control method for reduced iron manufacturing plant and its device Pending JP2005249354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063054A JP2005249354A (en) 2004-03-05 2004-03-05 Combustion control method for reduced iron manufacturing plant and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063054A JP2005249354A (en) 2004-03-05 2004-03-05 Combustion control method for reduced iron manufacturing plant and its device

Publications (1)

Publication Number Publication Date
JP2005249354A true JP2005249354A (en) 2005-09-15

Family

ID=35029987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063054A Pending JP2005249354A (en) 2004-03-05 2004-03-05 Combustion control method for reduced iron manufacturing plant and its device

Country Status (1)

Country Link
JP (1) JP2005249354A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096592A1 (en) * 2007-02-08 2008-08-14 Nippon Steel Engineering Co., Ltd. Rotary hearth reducing furnace and method of operating the same
JP2020125513A (en) * 2019-02-04 2020-08-20 日本製鉄株式会社 Control method and control device
CN115406260A (en) * 2022-08-02 2022-11-29 重庆赛迪热工环保工程技术有限公司 Method and system applied to intelligent control of combustion of rotary hearth furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096592A1 (en) * 2007-02-08 2008-08-14 Nippon Steel Engineering Co., Ltd. Rotary hearth reducing furnace and method of operating the same
JP2008196717A (en) * 2007-02-08 2008-08-28 Nippon Steel Engineering Co Ltd Rotary hearth reducing furnace and method of operating the same
AU2008212425B2 (en) * 2007-02-08 2011-05-26 Nippon Steel Engineering Co., Ltd. Rotary hearth reducing furnace and method of operating the same
JP2020125513A (en) * 2019-02-04 2020-08-20 日本製鉄株式会社 Control method and control device
JP7167744B2 (en) 2019-02-04 2022-11-09 日本製鉄株式会社 Control method and control device
CN115406260A (en) * 2022-08-02 2022-11-29 重庆赛迪热工环保工程技术有限公司 Method and system applied to intelligent control of combustion of rotary hearth furnace

Similar Documents

Publication Publication Date Title
JP7422233B2 (en) Device and method capable of monitoring and adjusting combustion conditions in a furnace in real time
KR20130051506A (en) Method and device for controlling furnace pressure of continuous annealing furnace
CN101675302A (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
JP6624723B2 (en) Rotary kiln
JP2005249354A (en) Combustion control method for reduced iron manufacturing plant and its device
US6962117B2 (en) Method and apparatus for controlling combustion in a furnace
Marin et al. Simulating the impact of oxygen enrichment in a cement rotary kiln using advanced computational methods
JPS5814855B2 (en) Furnace temperature setting control method for multi-zone heating furnace
JP5086657B2 (en) Rotary hearth reduction furnace and method of operation thereof
JP2002081867A (en) Introducing air control device for metallic oxide reducing furnace
JP4948184B2 (en) Industrial furnace combustion method
JPH10310808A (en) Operation of blast furnace
JP5225701B2 (en) Low NOx combustion control method and method for producing reduction product
JP4243393B2 (en) Method and apparatus for producing reduced iron
JP2001026816A (en) Operation of continuous heating furnace
JP2005300068A (en) Method for control of oxygen concentration and temperature of exhaust gas from rotary hearth reducing furnace
JP5374105B2 (en) Method for melting waste incineration residue
JP2002157023A (en) Furnace pressure control system
JP2637529B2 (en) Furnace temperature and NOx control device
JPH06281364A (en) Temperature control method for heating furnace
KR102144172B1 (en) Apparatus and method for controlling combustion of blast furnace for optimization
KR101070065B1 (en) Hot stove combustion control apparatus capable of controlling carbon dioxide
JP5945945B2 (en) Waste treatment apparatus and waste treatment method
JPS59122812A (en) Combustion controller of multi-stage incinerator
JPS6051606B2 (en) Air-fuel ratio control device for heating furnace for exhaust gas denitrification

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090703