JP4652332B2 - Method for producing polyglycolic acid resin multilayer sheet - Google Patents

Method for producing polyglycolic acid resin multilayer sheet Download PDF

Info

Publication number
JP4652332B2
JP4652332B2 JP2006528516A JP2006528516A JP4652332B2 JP 4652332 B2 JP4652332 B2 JP 4652332B2 JP 2006528516 A JP2006528516 A JP 2006528516A JP 2006528516 A JP2006528516 A JP 2006528516A JP 4652332 B2 JP4652332 B2 JP 4652332B2
Authority
JP
Japan
Prior art keywords
layer
polyglycolic acid
biodegradable
resin layer
multilayer sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006528516A
Other languages
Japanese (ja)
Other versions
JPWO2006001250A1 (en
Inventor
卓 佐藤
和行 山根
寿一 若林
智明 佐藤
健久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Publication of JPWO2006001250A1 publication Critical patent/JPWO2006001250A1/en
Application granted granted Critical
Publication of JP4652332B2 publication Critical patent/JP4652332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/02Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1303Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1338Elemental metal containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1348Cellular material derived from plant or animal source [e.g., wood, cotton, wool, leather, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Description

本発明は、コーヒー、スープ、味噌汁、スナック菓子等の飲食品に用いられるカップに使用する基材、あるいは、ピザ・惣菜・電子レンジ食品等に用いるトレーに使用する基材、として用いるに適した紙類似の多層シートの製造方法に関する。 The present invention is a paper suitable for use as a base material used in cups used in foods and beverages such as coffee, soup, miso soup and snacks, or a base material used in trays used for pizza, side dishes, microwave foods, etc. The present invention relates to a method for producing a similar multilayer sheet.

紙、及び布等の基材(本明細書においてはこれらの紙および類似の特性を有する基材を総称して「紙質基材」、あるいは「植物性基材シート」と称する)に合成樹脂を積層した多層シートは各種の用途に用いられている。   Synthetic resin is applied to base materials such as paper and cloth (in the present specification, these paper and base materials having similar characteristics are collectively referred to as “paper base material” or “vegetable base material sheet”). Laminated multilayer sheets are used for various applications.

例えば、飲食品用途に使用される紙カップ、紙トレーなどの紙製容器は、少なくとも液体、油性食品等の内容物と接する片面に撥水層ないし撥油層としてポリオレフィン組成物を積層したものが用いられてきた。   For example, paper containers used for food and drink applications such as paper cups, paper trays, and the like are used in which a polyolefin composition is laminated as a water-repellent layer or an oil-repellent layer on at least one surface in contact with contents such as liquid and oil-based foods. I came.

現在飲食品等に使用される紙カップ又は紙トレー等の紙製容器基材の製造法は、撥水層ないし撥油層として用いるポリオレフィン組成物を紙との密着及び接着を強固にするため、300℃以上の高温度で積層する必要がある。このためポリオレフィンに酸化劣化が生じ、紙積層体に樹脂組成物の酸化劣化臭が残留したり、積層工程において多量の煙が発生することによる作業環境の悪化や、周辺環境の汚染が問題となっている。   The manufacturing method of paper container base materials such as paper cups or paper trays currently used for food and drink, etc., in order to make the polyolefin composition used as a water-repellent layer or oil-repellent layer strong adhesion and adhesion to paper, It is necessary to laminate at the above high temperature. For this reason, oxidation degradation occurs in polyolefin, and the deterioration of the working environment due to the oxidative degradation odor of the resin composition remaining in the paper laminate or the generation of a large amount of smoke in the lamination process becomes a problem. ing.

使用済みの紙カップ、紙トレー等は、微生物分解性、加水分解性の無いポリオレフィン組成物が積層されているために、土中に埋めても分解せず、環境を汚染するという問題があるため、紙とともに生分解するような撥水層ないし撥油層用組成物が強く求められている。   Used paper cups, paper trays, etc. are laminated with polyolefin compositions that are not biodegradable or hydrolyzable. There is a strong demand for compositions for water- and oil-repellent layers that biodegrade with paper.

このような要請に応えるため、紙質基材上に、各種生分解性樹脂層を形成した多層シートからなり、その廃棄に際しての環境への負荷の少ない食品容器が各種提案されている(例えば下記特許文献1〜4)。   In order to meet such demands, various food containers have been proposed that consist of a multi-layer sheet in which various biodegradable resin layers are formed on a paper-based base material and have a low environmental impact upon disposal (for example, the following patents) Literatures 1-4).

他方、食品容器には、内容食品の保存中の酸素あるいは水分の透過による劣化を防止する機能も求められている。紙質食品容器において、この特性を出すために紙質基材上に特殊なポリメタアリルアルコール系樹脂のバリア層を設けることも提案されている(下記特許文献5)が、この場合には、必ずしも生分解性容器とはなり得ていない。
特開平4−336246号公報 特開平6−171050号公報 特開平6−316042号公報 特開2003−261129号公報 特開平11−91016号公報
On the other hand, the food container is also required to have a function of preventing deterioration due to permeation of oxygen or moisture during storage of the content food. In a paper food container, it has also been proposed to provide a special polymethallyl alcohol-based barrier layer on a paper base material in order to achieve this characteristic (Patent Document 5 below). It cannot be a degradable container.
JP-A-4-336246 Japanese Patent Laid-Open No. 6-171050 JP-A-6-316042 JP 2003-261129 A JP-A-11-91016

従って、本発明の主要な目的は、紙質基材上に生分解性樹脂層を積層することにより、生分解性で且つバリア性の良好な多層シートを与えることにある。   Accordingly, a main object of the present invention is to provide a multilayer sheet having a good biodegradability and good barrier properties by laminating a biodegradable resin layer on a paper base.

ポリグリコール酸樹脂の応用開発を進める本発明者等は、紙質基材上にバリア性の優れたポリグリコール酸樹脂層を積層することが上記目的の達成のためには有効であろうとの着想にはかなり早くから到達していた。しかしながら、ポリグリコール酸樹脂は、融点が200℃以上という高融点樹脂であり、その紙質基材上への熱ラミネートは困難であるという問題点を有していた。そうかと云って、上記特許文献3あるいは4に示されるような有機溶剤使用による接着剤層の塗布形成は、残留溶剤の問題を残し、食品容器基材としては好ましくない。   The present inventors, who are proceeding with application development of polyglycolic acid resin, have the idea that laminating a polyglycolic acid resin layer with excellent barrier properties on a paper-based substrate would be effective for achieving the above-mentioned object. Had reached fairly early. However, the polyglycolic acid resin is a high melting point resin having a melting point of 200 ° C. or higher, and has a problem that it is difficult to thermally laminate the paper base material. Nevertheless, the formation of an adhesive layer by using an organic solvent as described in Patent Document 3 or 4 leaves the problem of residual solvent and is not preferable as a food container substrate.

本発明者らは、上述の目的で更に研究した結果、ポリグリコール酸樹脂に適切な溶融特性を付与してそれ自体を融着層に、あるいは適当な溶融特性を有する他の生分解性樹脂層を融着層として使用して、紙質基材、特に植物性基材シート上にポリグリコール酸樹脂層を融着積層することにより、上述のように生分解性とバリア性に優れ、且つ残留溶剤の問題もない食品容器基材として優れた適性を有する多層シートが得られることを知見して、本発明に到達したものである。   As a result of further studies by the present inventors, the polyglycolic acid resin is imparted with an appropriate melting property to itself as a fusion layer, or another biodegradable resin layer having an appropriate melting property. Is used as a fusing layer, and a polyglycolic acid resin layer is fused and laminated on a paper base material, particularly a vegetable base material sheet. The present inventors have found that a multilayer sheet having excellent aptitude as a food container base without the above problems can be obtained, and the present invention has been achieved.

すなわち、本発明のポリグリコール酸樹脂系多層シートの製造方法は、なくともポリグリコール酸樹脂層を含む一層又は複数の層からなる生分解性樹脂層を該ポリグリコール酸樹脂層自体またはポリグリコール酸樹脂とは異なる生分解性樹脂層からなり、温度240℃、せん断速度122sec−1における溶融粘度が100〜2000Pa・secであり、融点(Tm)が235℃以下である生分解性の融着層を介して、植物性基材シート上に、直ちに、または該生分解性樹脂層を250〜300℃の樹脂温度で押出ラミネートした後に、樹脂温度がTm+20℃〜300℃、圧力が0.2〜1.0MPaの条件で熱圧着することを特徴とするものである。 That is, polyglycolic acid production process of a resin-based multilayer sheet of the present invention, the biodegradable resin layer Do that a single layer or a plurality of layers including a polyglycolic acid resin layer even without low, the polyglycolic acid resin layer itself or A biodegradable resin layer comprising a biodegradable resin layer different from polyglycolic acid resin, having a melt viscosity of 100 to 2000 Pa · sec at a temperature of 240 ° C., a shear rate of 122 sec −1 , and a melting point (Tm) of 235 ° C. or less . The resin temperature is Tm + 20 ° C. to 300 ° C. and the pressure is either immediately or after extrusion laminating the biodegradable resin layer at a resin temperature of 250 to 300 ° C. on the plant base sheet through the fusion layer. It is characterized by thermocompression bonding under conditions of 0.2 to 1.0 MPa .

以下、本発明をその好ましい態様について、更に具体的に説明する。   Hereinafter, the present invention will be described in more detail with respect to preferred embodiments thereof.

(植物性基材シート)
本発明のポリグリコール酸樹脂系多層シートを構成する植物性基材シートは、上記した紙質基材とほぼ類似するものであるが、その好ましい具体例には、植物繊維の絡み合いからなるいわゆる紙に加えて、植物由来の天然高分子あるいはその誘導体(更には動物でん粉のように動物由来ではあるが植物由来の天然高分子あるいはその誘導体と類似の化学構造を有するものを含むものとする、従って生物系高分子と称してもよい)からなる樹脂を成形したシート、あるいはパルプをこれら樹脂バインダーで固めたパルプモールドシートなどが挙げられる。
(Plant base sheet)
The plant base sheet constituting the polyglycolic acid resin multilayer sheet of the present invention is substantially similar to the above-mentioned paper base, but a preferable example thereof is a so-called paper made of entangled plant fibers. In addition, plant-derived natural polymers or derivatives thereof (including animal-derived starches such as animal starch but having a chemical structure similar to plant-derived natural polymers or derivatives thereof) And a pulp mold sheet obtained by molding a resin with these resin binders.

より具体的には、いわゆる紙類には、原材料パルプからの加工の程度あるいは坪量によって、和紙、普通紙、クラフト紙、アート紙、コート紙、インディアン紙、板紙、段ボール紙、カップ原紙、アイボリー紙などが含まれるが、これらのいずれを用いることも可能である。食品容器基材としての使用を考慮したとき坪量が5〜500g/m、特に20〜300g/mであるものが好ましく用いられる。 More specifically, the so-called papers include Japanese paper, plain paper, kraft paper, art paper, coated paper, Indian paper, paperboard, corrugated paper, cup base paper, ivory, depending on the degree of processing from the raw material pulp or basis weight. Paper is included, but any of these can be used. In consideration of use as a food container base material, those having a basis weight of 5 to 500 g / m 2 , particularly 20 to 300 g / m 2 are preferably used.

また、植物由来の天然高分子には、木材や草木などに豊富に含まれているセルロース、ヘミセルロースなどのセルロース類;アミロースとアミロペクチンの多様な量的割合の組合せからなる各種でん粉類;その他の多糖類;リグニン類などがあり、酢酸セルロースのような多糖類やリグリン類の化学修飾物も含まれる。またグリコーゲンなどの動物でんぷんや、キチン、キトサン等のキチン類などの動物性多糖類も、単独で、あるいは植物由来の天然高分子と併用することができる。これら天然高分子樹脂のシート化物の代表例には、でん粉樹脂シートがあり、またキトサン誘導体樹脂のシート化物(アイセロ化学(株)製「ドロンCC」)などの市販品もある。   In addition, plant-derived natural polymers include celluloses such as cellulose and hemicellulose that are abundantly contained in wood and vegetation; various starches composed of combinations of various quantitative ratios of amylose and amylopectin; Sugars; lignins and the like, including polysaccharides such as cellulose acetate and chemically modified products of ligrins. Moreover, animal polysaccharides such as animal starches such as glycogen and chitins such as chitin and chitosan can be used alone or in combination with plant-derived natural polymers. Representative examples of these natural polymer resin sheet products include starch resin sheets, and commercially available products such as chitosan derivative resin sheet products (“Drone CC” manufactured by Aicero Chemical Co., Ltd.).

これら天然高分子樹脂のシート化物は、本発明の植物性基材シートとして単独で用いられるほか、上記紙類と積層をした植物性基材シートとして用いることもできる。   These natural polymer resin sheets can be used alone as the plant base sheet of the present invention, or can be used as a plant base sheet laminated with the above papers.

これら植物性基材シートの生分解性樹脂との積層面には、コロナ放電処理、プライマー塗布などの接着性改善のための下処理を施すこともできるが、有機溶剤を使用するプライマー塗布は避けるべきである。   The surface of these plant base sheets laminated with the biodegradable resin can be subjected to pretreatment for improving adhesion such as corona discharge treatment and primer coating, but avoid primer coating using organic solvents. Should.

(生分解性樹脂)
本発明で生分解性樹脂とは、土壌中や水中などの自然環境中において、加水分解や微生物の作用により、炭酸ガス、メタン、水などの低分子量化合物に分解される樹脂のことであり、財団法人生分解性プラスチック協会が定める「PL分類A」に属する分子量(Mn)1000以上の生分解性高分子材料である。簡潔に言えば、紙と同等以上の生分解性を有する樹脂ということもできる。本発明には、必須の生分解性樹脂としてポリグリコール酸樹脂が用いられ、必要に応じて他の生分解性樹脂も用いられる。
(Biodegradable resin)
In the present invention, the biodegradable resin is a resin that is decomposed into low molecular weight compounds such as carbon dioxide, methane, and water by the action of hydrolysis and microorganisms in natural environments such as soil and water, It is a biodegradable polymer material with a molecular weight (Mn) of 1000 or more belonging to “PL classification A” defined by the Foundation for Life Degradable Plastics. In short, it can be said that the resin has biodegradability equivalent to or better than that of paper. In the present invention, a polyglycolic acid resin is used as an essential biodegradable resin, and other biodegradable resins are used as necessary.

(ポリグリコール酸樹脂)
本発明で使用するポリグリコール酸樹脂(以下、しばしば「PGA樹脂」という)は、下記式(1)
[化1]
−(O・CH・CO)− (1)
で表わされるグリコール酸繰り返し単位のみからなるグリコール酸の単独重合体(PGA、グリコール酸の2分子間環状エステルであるグリコリド(GL)の開環重合物を含む)に加えて、上記グリコール酸繰り返し単位を55重量%以上含むポリグリコール酸共重合体を含むものである。
(Polyglycolic acid resin)
The polyglycolic acid resin used in the present invention (hereinafter often referred to as “PGA resin”) is represented by the following formula (1):
[Chemical 1]
-(O.CH 2 .CO)-(1)
In addition to the glycolic acid homopolymer consisting only of the glycolic acid repeating unit represented by (including PGA, a ring-opened polymer of glycolide (GL) which is a bimolecular cyclic ester of glycolic acid), the glycolic acid repeating unit described above Is a polyglycolic acid copolymer containing 55% by weight or more.

上記グリコリド等のグリコール酸モノマーとともに、ポリグリコール酸共重合体を与えるコモノマーとしては、例えば、シュウ酸エチレン(即ち、1,4−ジオキサン−2,3−ジオン)、ラクチド類、ラクトン類(例えば、β−プロピオラクトン、β−ブチロラクトン、β−ピバロラクトン、γ−ブチロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、ε−カプロラクトン等)、カーボネート類(例えばトリメチリンカーボネート等)、エーテル類(例えば1,3−ジオキサン等)、エーテルエステル類(例えばジオキサノン等)、アミド類(εカプロラクタム等)などの環状モノマー;乳酸、3−ヒドロキシプロパン酸、3−ヒドロキシブタン酸、4−ヒドロキシブタン酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4−ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族ジカルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;またはこれらの2種以上を挙げることができる。   Examples of comonomers that give a polyglycolic acid copolymer together with glycolic acid monomers such as glycolide include ethylene oxalate (that is, 1,4-dioxane-2,3-dione), lactides, and lactones (for example, β-propiolactone, β-butyrolactone, β-pivalolactone, γ-butyrolactone, δ-valerolactone, β-methyl-δ-valerolactone, ε-caprolactone, etc.), carbonates (eg, trimethyline carbonate, etc.), ethers Cyclic monomers such as ether esters (such as dioxanone), amides (such as ε-caprolactam); lactic acid, 3-hydroxypropanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid Hydroxycal such as 6-hydroxycaproic acid Acids or alkyl esters thereof; substantially equimolar mixtures of aliphatic diols such as ethylene glycol and 1,4-butanediol with aliphatic dicarboxylic acids such as succinic acid and adipic acid or alkyl esters thereof; Or 2 or more types of these can be mentioned.

PGA樹脂中の上記グリコール酸繰り返し単位は55重量%以上であり、好ましくは70重量%以上、より好ましくは90重量%以上である。この割合が小さ過ぎると、PGA樹脂に期待されるガスバリア性向上効果が乏しくなる。この限りで、PGA樹脂は、2種以上のポリグリコール酸(共)重合体を併用してもよい。   The glycolic acid repeating unit in the PGA resin is 55% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. When this ratio is too small, the gas barrier property improvement effect expected for the PGA resin becomes poor. As long as this is the case, the PGA resin may be used in combination of two or more polyglycolic acid (co) polymers.

PGA樹脂は、ヘキサフルオロイソプロパノール溶媒を用いるGPC測定における重量平均分子量(ポリメチルメタクリレート換算)が5万〜60万の範囲であることが好ましい。重量平均分子量が低過ぎると、成形物の強度が低下する。重量平均分子量が大き過ぎると、溶融加工時のスクリューの剪断力で発熱し、PGA組成物をペレットに加工する時や、あるいは成形物に加工する時、樹脂着色が進み、また溶融不良による斑(成形物のフローマーク)などが発生し外観不良になる。重量平均分子量15万〜30万程度がより好ましい。   The PGA resin preferably has a weight average molecular weight (in terms of polymethyl methacrylate) in the range of 50,000 to 600,000 in GPC measurement using a hexafluoroisopropanol solvent. When the weight average molecular weight is too low, the strength of the molded product is lowered. If the weight average molecular weight is too large, heat is generated by the shearing force of the screw during melt processing, and when the PGA composition is processed into pellets or when processed into molded products, resin coloring progresses, and spots due to poor melting ( The flow mark) of the molded product occurs, resulting in poor appearance. A weight average molecular weight of about 150,000 to 300,000 is more preferable.

(他の生分解性樹脂)
本発明においては、上記ポリグリコール酸樹脂に加えて、他の生分解性樹脂を用いることもできる。他の生分解性樹脂の例としては、上記したグリコール酸モノマーとともにポリグリコール酸共重合体を構成するコモノマーの単独又は共重合体が挙げられる。その他、グルテン、コラーゲンなどのたんぱく質系を含むポリアミノ酸およびポリエステルアミド類;ポリアルキレングリコール等のポリエーテル類;ポリビニルアルコール等のポリエステル鹸化物なども用いられる。多くは、脂肪族樹脂であるが、全体として生分解性を失わない程度に芳香族成分が共重合していても差し支えない。例えば生分解性芳香族ポリエステル樹脂が有り、これは芳香族ポリエステル樹脂を構成するテレフタル酸等の芳香族ジカルボン酸の一部が、こはく酸、アジピン酸等の脂肪族ジカルボン酸に置き換わることにより、生分解性を付与されたもの(例えば市販されているものとしてポリエチレンテレフタレート・サクシネート共重合体(デュポン社製「バイオマックス」)、ポリブチレンアジペート/テレフタレート(BASFジャパン(株)製「エコフレックス」)、ポリテトラメチレンアジペート・コ・テレフタレート(イーストマンケミカルジャパン(株)製「Easter BiO」など)であり、本発明において好ましく用いられる。上記以外にも、これら生分解性樹脂の多くは市販もされており、市販品の例としては、以下に普通名称(メーカー、「商品(シリーズ)名」)を挙げるものが含まれる。
(Other biodegradable resins)
In the present invention, in addition to the polyglycolic acid resin, other biodegradable resins can also be used. Examples of other biodegradable resins include homopolymers or copolymers of comonomer constituting the polyglycolic acid copolymer together with the glycolic acid monomer described above. In addition, polyamino acids and polyesteramides containing protein systems such as gluten and collagen; polyethers such as polyalkylene glycol; and saponified polyester such as polyvinyl alcohol are also used. Many are aliphatic resins, but the aromatic component may be copolymerized to such an extent that the biodegradability is not lost as a whole. For example, there is a biodegradable aromatic polyester resin, which is produced by replacing a part of an aromatic dicarboxylic acid such as terephthalic acid constituting the aromatic polyester resin with an aliphatic dicarboxylic acid such as succinic acid or adipic acid. Degradable (for example, commercially available polyethylene terephthalate succinate copolymer (DuPont "Biomax"), polybutylene adipate / terephthalate (BASF Japan Ltd. "Ecoflex"), Polytetramethylene adipate co-terephthalate (such as “Easter BiO” manufactured by Eastman Chemical Japan Co., Ltd.) is used preferably in the present invention.In addition to the above, many of these biodegradable resins are also commercially available. The following are common names (manufacturers, "Product (series) name") is included.

ポリ乳酸(Cargill-Dow社製「Nature Works」、(株)島津製作所製「ラクティー」、三井化学(株)製「レイシア」、カネボウ合繊(株)製「ラクトロン」、東洋紡績(株)製「バイロエコール」、トヨタ自動車(株)製「トヨタエコプラスチック U‘z」;いずれもガラス転移点(Tg)=50〜60℃、融点(Tm)=150〜180℃)、ポリ乳酸/ジオール・ジカルボン酸共重合体(大日本インキ化学工業(株)製「プラメートPD」、ポリカプロラクトン(ダイセル化学工業(株)製「セルグリーン」、ダウケミカル社製「Tone Polymer」;Tg=約−60℃、Tm=約60℃)、ポリ−3−ヒドロキシ酪酸(三菱ガス化学(株)製「ビオグリーン」;Tg=約5℃、Tm=約180℃)、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート(鐘淵化学工業(株)製「PHBH」、ポリブチレンサクシネート(昭和高分子(株)「ビオノーレ」;Tm=約115℃)、ポリブチレンサクシネート・アジペート(昭和高分子(株)製「ビオノーレ」)、ポリ(ε−カプロラクトン−ブチレンサクシネート)(ダイセル化学工業(株)製「セルグリーンCBS」;Tm=47〜72℃)、ポリエチレンサクシネート(日本触媒(株)製「ルナーレSE」;Tm=約100℃)、ポリエステルカーボネート(三菱ガス化学(株)製「ユーペック」;Tm=約105℃)、ポリブチレンアジペート/テレフタレート(BASFジャパン(株)製「エコフレックス」;Tm=105〜115℃)、ポリエチレンテレフタレート・コ・サクシネート(帝人(株)製「グリーンエコペット」)、ポリテトラメチレンアジペート・コ・テレフタレート(イーストマンケミカルジャパン(株)製「Easter BiO」;Tg=−30℃、Tm=約110℃)、ポリブチレンサクシネート・コ・アジペート(Ire Chemical社製「EnPol」)。ポリエチレンテレフタレート・サクシネート共重合体(デュポン社製「バイオマックス」;Tg=27〜44℃、Tm=195〜200℃)、(1,4−ブタジエン、こはく酸、アジペート、乳酸)コポリマー(三菱化学(株)製「GS Pla」;Tm=約90℃)、ポリビニルアルコール(日本合成化学工業(株)製「ゴーセノール」、「ゴーセナール」および「エコティ」;クラレ(株)製「クラレポバール」および「クラレセバール」;(β−ヒドロキシ酪酸/β−ヒドロキシ吉草酸)コポリマー(Monsanto社製「バイオポール」;Tm=135〜150℃)、澱粉脂肪酸エステル(日本コーンスターチ(株)製「コーンポールCP」)、澱粉ポリエステル(Novamont社製「Mater Bi」)、酢酸セルロース(ダイセル化学工業(株)製「セルグリーンCA−BNE」、帝人(株)製「アセテートセルロース」)、キトサン(アイセロ化学(株)製「ドロンCC」)。   Polylactic acid ("Nature Works" manufactured by Cargill-Dow, "Lacty" manufactured by Shimadzu Corporation, "Lacia" manufactured by Mitsui Chemicals, Inc., "Lactron" manufactured by Kanebo Gosei Co., Ltd., "Toyobo Co., Ltd." “Viro Ecole”, “Toyota Eco-Plastic U'z” manufactured by Toyota Motor Co., Ltd .; glass transition point (Tg) = 50-60 ° C., melting point (Tm) = 150-180 ° C., polylactic acid / diol dicarboxylic Acid copolymer ("Plamate PD" manufactured by Dainippon Ink & Chemicals, Inc., polycaprolactone ("Cell Green" manufactured by Daicel Chemical Industries, Ltd., "Tone Polymer" manufactured by Dow Chemical Co., Ltd.); Tg = about -60 ° C, Tm = about 60 ° C.), poly-3-hydroxybutyric acid (“Biogreen” manufactured by Mitsubishi Gas Chemical Co., Inc .; Tg = about 5 ° C., Tm = about 180 ° C.), poly (3-hydroxybutyrate-co-3 -Hydro Xyxhexanoate (“PHBH” manufactured by Kaneka Chemical Co., Ltd., polybutylene succinate (Showa Polymer Co., Ltd. “Bionore”; Tm = about 115 ° C.), polybutylene succinate adipate (Showa Polymer ( “Bionore”), poly (ε-caprolactone-butylene succinate) (manufactured by Daicel Chemical Industries, Ltd. “Cell Green CBS”; Tm = 47 to 72 ° C.), polyethylene succinate (Nippon Shokubai Co., Ltd.) “Lunale SE”; Tm = about 100 ° C., polyester carbonate (“Eupek” manufactured by Mitsubishi Gas Chemical Co., Inc .; Tm = about 105 ° C.), polybutylene adipate / terephthalate (“Ecoflex” manufactured by BASF Japan Ltd.); Tm = 105-115 ° C., polyethylene terephthalate co-succinate (manufactured by Teijin Limited, “Green” Copet ”), polytetramethylene adipate co-terephthalate (“ Easter BiO ”manufactured by Eastman Chemical Japan Co., Ltd .; Tg = −30 ° C., Tm = about 110 ° C.), polybutylene succinate co-adipate (Ire Chemical) “EnPol” manufactured by the company, polyethylene terephthalate succinate copolymer (“Biomax” manufactured by DuPont; Tg = 27 to 44 ° C., Tm = 195 to 200 ° C.), (1,4-butadiene, succinic acid, adipate, Lactic acid) copolymer (“GS Pla” manufactured by Mitsubishi Chemical Corporation; Tm = about 90 ° C.), polyvinyl alcohol (“GOHSENOL”, “GOHSENAL” and “ECOTY” manufactured by Nippon Synthetic Chemical Industry Co., Ltd .; manufactured by Kuraray Co., Ltd. “Kuraraypoval” and “Kuraraysebar”; (β-hydroxybutyric acid / β-hydroxyvaleric acid) copolymers (Monsanto “Biopol” (Tm = 135 to 150 ° C.), starch fatty acid ester (“Cornpol CP” manufactured by Nippon Corn Starch Co., Ltd.), starch polyester (“Mater Bi” manufactured by Novamont), cellulose acetate (Daicel Chemical Industries) "Cell Green CA-BNE" manufactured by Co., Ltd., "Acetate cellulose" manufactured by Teijin Limited), chitosan ("Drone CC" manufactured by Aicero Chemical Co., Ltd.).

これら生分解性樹脂は後述する融着層構成に際しての溶融粘度適性等を考慮して、必要に応じてその一種または二種以上が適宜選択される。   These biodegradable resins are appropriately selected from one or two or more as necessary in consideration of the melt viscosity suitability and the like in the construction of the fusion layer described later.

(ポリグリコール酸樹脂層)
本発明の多層シートの必須の構成要素であるポリグリコール酸樹脂層は、上記したポリグリコール酸樹脂単独で構成することが好ましいが、含まれる上記したグリコール酸繰り返し単位が55重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上となる範囲で、他の生分解性樹脂あるいは全体として生分解性を維持する範囲で他の熱可塑性樹脂との混合物で形成してもよい。グリコール酸繰り返し単位量が減少するに従ってバリア性が低下する傾向を示すので、上記量範囲を満たすべきである。
(Polyglycolic acid resin layer)
The polyglycolic acid resin layer, which is an essential component of the multilayer sheet of the present invention, is preferably composed of the above-described polyglycolic acid resin alone, but the above-mentioned glycolic acid repeating unit contained is 55% by weight or more, preferably It may be formed of other biodegradable resins or a mixture with other thermoplastic resins within a range that maintains biodegradability as a whole within a range of 70% by weight or more, more preferably 90% by weight or more. Since the barrier property tends to decrease as the glycolic acid repeating unit amount decreases, the above amount range should be satisfied.

(融着層)
本発明の多層シートにおいて、植物性基材シートを生分解性樹脂層との熱融着層として機能する融着層は、上記したポリグリコール酸樹脂層あるいは他の生分解性樹脂層により形成される。融着層を形成する好ましい他の生分解性樹脂の例には、前記生分解性芳香族ポリエステル樹脂が含まれる。いずれにしても融着層を構成する樹脂は、融点が235℃以下であり、温度240℃、せん断速度122sec−1における溶融粘度が100〜2000Pa・secである必要がある。
(Fusion layer)
In the multilayer sheet of the present invention, the fusion layer that functions as a heat fusion layer between the plant base sheet and the biodegradable resin layer is formed by the polyglycolic acid resin layer or other biodegradable resin layer. The Examples of other preferable biodegradable resins that form the fusion layer include the biodegradable aromatic polyester resins. In any case, the resin constituting the fusion layer needs to have a melting point of 235 ° C. or lower, a melt viscosity at a temperature of 240 ° C., and a shear rate of 122 sec −1 of 100 to 2000 Pa · sec.

融着層構成樹脂融点が235℃を超えるか、溶融粘度が2000Pa・secを超えると、ポリグリコール酸樹脂層の熱劣化を起こさずに生分解性樹脂層の熱融着処理を行って必要な接着強度を得ることが困難になる。また溶融粘度が100Pa・sec未満であると、凝集力が小さ過ぎてやはり必要な熱融着による接着強度を得るのが困難になる。 If the melting point of the fusion layer constituent resin exceeds 235 ° C. or the melt viscosity exceeds 2000 Pa · sec, it is necessary to perform thermal fusion treatment of the biodegradable resin layer without causing thermal degradation of the polyglycolic acid resin layer. It is difficult to obtain a good adhesive strength. Also the melt viscosity is less than 100 Pa · sec, cohesion excessively and Ru difficult name to obtain the adhesive strength by still required thermal fusion small.

ポリグリコール酸樹脂以外の生分解性樹脂を融着層に用いる場合、その生分解性樹脂は必ずしも結晶性樹脂である必要はなく、この場合樹脂融点(Tm)は、ガラス転移温度(Tg)+150℃として判定するのが、本発明のためには好適である。但し、Tmの下限については、食品容器基材として多層シートの使用を考えたときに、お湯に接したときに変形や剥離を生じない観点で定められ、Tmとしては80℃以上が適当である。Tgについては、より低くても、このような不都合は起らない。   When a biodegradable resin other than polyglycolic acid resin is used for the fusion layer, the biodegradable resin does not necessarily need to be a crystalline resin, and in this case, the resin melting point (Tm) is the glass transition temperature (Tg) +150. Determining as ° C is preferred for the present invention. However, the lower limit of Tm is determined from the viewpoint of not causing deformation or peeling when in contact with hot water when considering the use of a multilayer sheet as a food container substrate, and Tm is suitably 80 ° C. or higher. . Even if Tg is lower, such inconvenience does not occur.

(層構成)
本発明の多層シートは、植物性基材シートとポリグリコール酸樹脂層を必須成分とし、他の生分解性樹脂層を任意の層構成成分とするが、その層構成には多様性がある。仮に、植物性基材シートをP、ポリグリコール酸樹脂層をG、他の生分解性樹脂層をBで表現したときに、その代表的積層構造には、P/G、P/G/B、P/B/G、P/B/G/Bなどが含まれる。より具体的には、P/B/G積層の例としては、紙/PLLA(結晶性ポリL乳酸)/G、紙/PLA(D体を含む非晶性ポリ乳酸)/G、紙/生分解性芳香族ポリエステル/G、紙/脂肪族ポリエステル/Gなどが;またP/B/G/B積層の例としては、紙/PLLA/G/PLLA、紙/PLLA/G/PLA、紙/PLLA/G/生分解性芳香族ポリエステル、紙/PLLA/G/脂肪族ポリエステル、紙/PLA/G/生分解性芳香族ポリエステル、紙/PLA/G/脂肪族ポリエステル、紙/生分解性芳香族ポリエステル/G/PLLA、紙/生分解性芳香族ポリエステル/G/PLA、紙/生分解性芳香族ポリエステル/G/生分解性芳香族ポリエステル、紙/生分解性芳香族ポリエステル/G/脂肪族ポリエステルなど;が挙げられる。
(Layer structure)
The multilayer sheet of the present invention comprises a vegetable base sheet and a polyglycolic acid resin layer as essential components and other biodegradable resin layers as optional layer components, but there are various layer configurations. If the plant base sheet is represented by P, the polyglycolic acid resin layer is represented by G, and the other biodegradable resin layer is represented by B, the typical laminated structure includes P / G, P / G / B. , P / B / G, P / B / G / B, and the like. More specifically, as examples of P / B / G lamination, paper / PLLA (crystalline poly L lactic acid) / G, paper / PLA (amorphous poly lactic acid including D-form) / G, paper / raw Degradable aromatic polyester / G, paper / aliphatic polyester / G, etc .; and examples of P / B / G / B lamination include paper / PLLA / G / PLLA, paper / PLLA / G / PLA, paper / PLLA / G / biodegradable aromatic polyester, paper / PLLA / G / aliphatic polyester, paper / PLA / G / biodegradable aromatic polyester, paper / PLA / G / aliphatic polyester, paper / biodegradable aroma Polyester / G / PLLA, paper / biodegradable aromatic polyester / G / PLA, paper / biodegradable aromatic polyester / G / biodegradable aromatic polyester, paper / biodegradable aromatic polyester / G / fat Tribe polyester; It is below.

植物性基材シートに、生分解性樹脂の単層又は積層を溶融押出ラミネートあるいは熱圧着して融着積層することにより、上記積層構成が形成される。熱圧着により融着積層するに先立って、Tダイあるいはインフレーション成形により生分解性樹脂の単層又は積層を溶融加工してフィルムを得、あるいは溶融加工し、冷却し、再加熱した後、一軸あるいは二軸に延伸して延伸フィルムを得、これを熱圧着により植物性基材シートに積層することにより、強度の高い多層シートを形成することができる。この際、延伸フィルムを緊張熱処理して、熱収縮率(90℃の熱水に浸漬5秒間で測定)が、好ましくは10%以下、より好ましくは5%以下まで低下させておくことにより、例えば食品容器とした多層シートの高温使用条件下での変形を低減することができる。延伸後、緊張熱処理しないフィルムの熱収縮率は10%を超え、50%まで達することがある。   By laminating a single layer or laminate of biodegradable resin on a plant base sheet by melt extrusion lamination or thermocompression bonding, the above laminate structure is formed. Prior to fusion lamination by thermocompression bonding, a single layer or lamination of biodegradable resin is melt processed by T-die or inflation molding to obtain a film, or melt processed, cooled, reheated, uniaxially or By stretching biaxially to obtain a stretched film and laminating the stretched film on a vegetable base sheet by thermocompression bonding, a high-strength multilayer sheet can be formed. At this time, the stretched film is subjected to tension heat treatment, and the thermal contraction rate (measured in hot water at 90 ° C. in 5 seconds) is preferably reduced to 10% or less, more preferably to 5% or less. Deformation of the multilayer sheet used as a food container under high temperature use conditions can be reduced. After stretching, the heat shrinkage rate of the film not subjected to tension heat treatment exceeds 10% and may reach 50%.

上記層構成に必要に応じて、更にGあるいはB層を付加することは差し支えない。例えば、植物性基材シートの外側に、反対側の生分解性樹脂(例えばB)層と同種の生分解性樹脂(B)の層を形成することは、封筒張り(すなわち包装材シートの両面間での接着)によるパウチ形成の際に有効である。また融着層として機能するG層またはB層の外側に(すなわちPと直接接触する生分解性樹脂層の最外層として)結晶化温度が120〜190℃、より好ましくは130〜170℃と適度である脂肪族ポリエステル樹脂(例えばPGAは、代表的に約160℃の結晶化温度を有し、その好適例である)の薄層(例えば2〜100μm)を挿入し、熱融着に際しての融着層樹脂の紙質基材への浸透を制御して、生分解性樹脂の厚みならびに紙質基材との接着強度を改善するのは好ましい層構成の一つである。また全体としての生分解性を損わない範囲で、印刷層、接着性樹脂層等を適宜付加することも可能である。   If necessary, a G or B layer may be added to the above layer structure. For example, forming a biodegradable resin (B) layer of the same type as the biodegradable resin (for example, B) layer on the opposite side on the outside of the plant base sheet is an envelope (ie, both sides of the packaging material sheet). This is effective when forming a pouch by bonding. Further, on the outside of the G layer or B layer functioning as a fusion layer (that is, as the outermost layer of the biodegradable resin layer in direct contact with P), the crystallization temperature is moderately 120 to 190 ° C., more preferably 130 to 170 ° C. A thin layer (for example, 2 to 100 μm) of an aliphatic polyester resin (for example, PGA typically has a crystallization temperature of about 160 ° C., which is a preferred example) is inserted and melted during thermal fusion. It is one of preferable layer configurations to improve the thickness of the biodegradable resin and the adhesive strength with the paper substrate by controlling the penetration of the resin layer into the paper substrate. In addition, a printing layer, an adhesive resin layer, and the like can be appropriately added as long as the overall biodegradability is not impaired.

食品容器に望ましい、ガスバリア性および水蒸気バリア性を確保するために、ポリグリコール酸樹脂層は、2μm以上の厚さで含まれることが好ましく、特に2〜100μmの範囲が好ましい。また、ポリグリコール酸樹脂および他の生分解性樹脂層を含めて生分解性樹脂層の合計厚さは2〜3000μm、特に2〜1000μmの範囲が好ましい。
(熱融着処理)
In order to ensure gas barrier properties and water vapor barrier properties, which are desirable for food containers, the polyglycolic acid resin layer is preferably included in a thickness of 2 μm or more, and particularly preferably in the range of 2 to 100 μm. The total thickness of the biodegradable resin layer including the polyglycolic acid resin and other biodegradable resin layers is preferably in the range of 2 to 3000 μm, particularly preferably in the range of 2 to 1000 μm.
(Heat fusion treatment)

上記したような層構成を有する本発明の多層シートは、上記植物性基材シートに、ポリグリコール酸樹脂層を含む生分解性樹脂層を熱融着により積層することにより行われる。熱融着は、生分解性樹脂層の(共)押出ラミネートあるいは熱圧着で好適に達成することができる。押出ラミネート時の生分解性樹脂の樹脂温度は250〜300℃とする。250℃未満ではポリグリコール酸樹脂の熱融着が不完全であり、300℃を超えるとポリグリコール酸樹脂の熱劣化が無視できなくなるからである。他方熱圧着時の融着層樹脂温度はTm+20℃〜300℃であり、圧力としては0.2〜1.0MPaとするThe multilayer sheet of the present invention having the layer structure as described above is performed by laminating a biodegradable resin layer including a polyglycolic acid resin layer on the plant base sheet by heat fusion. Thermal fusion can be suitably achieved by (co) extrusion lamination or thermocompression bonding of the biodegradable resin layer. Resin temperature of the biodegradable resin during extrusion lamination to 250 to 300 ° C.. If the temperature is less than 250 ° C., the thermal fusion of the polyglycolic acid resin is incomplete, and if it exceeds 300 ° C., the thermal degradation of the polyglycolic acid resin cannot be ignored. On the other hand, the fusion layer resin temperature during thermocompression bonding is Tm + 20 ° C. to 300 ° C., and the pressure is 0.2 to 1.0 MPa.

かくして形成された本発明の多層シートは、含まれるポリグリコール酸樹脂層が、優れたガスバリア性(代表的なガスバリア性樹脂であるEVOHの3倍以上のバリア性を示す)および水蒸気バリア性を有するため、例えば酸化劣化を嫌う油性食品や飲料等、あるいは水分吸収によって変質する乾燥食品等の食品容器の基材として好ましく用いられる。   In the multilayer sheet of the present invention thus formed, the included polyglycolic acid resin layer has excellent gas barrier properties (showing a barrier property three times or more that of EVOH, which is a typical gas barrier resin) and water vapor barrier properties. Therefore, it is preferably used as a base material for food containers such as oily foods and beverages that dislike oxidative degradation, or dry foods that are altered by moisture absorption.

以下、実施例および比較例により、本発明を更に具体的に説明する。以下の実施例を含め、本明細書に記載の物性値は、下記の方法による測定値に基づく。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The physical property values described in this specification, including the following examples, are based on the measured values by the following method.

(1)溶融粘度
東洋測機(株)製「キャピログラフID PMD−C型」を測定機として用い、温度240℃、せん断速度122sec−1における溶融粘度値を測定した。
(1) Melt Viscosity Using a “Capillograph ID PMD-C type” manufactured by Toyo Keiki Co., Ltd. as a measuring machine, the melt viscosity value at a temperature of 240 ° C. and a shear rate of 122 sec −1 was measured.

(2)融点および結晶化温度
島津製作所製の示差走査熱量計「DSC−60」を用いて、昇温速度を20℃/分として室温から250℃まで昇温し、この過程で生じる吸熱ピーク温度を融点とし、また250℃で1分間保持した後、降温速度を20℃/分として室温まで冷却する過程で生じる発熱ピーク温度を結晶化温度とした。
(2) Melting point and crystallization temperature Using a differential scanning calorimeter “DSC-60” manufactured by Shimadzu Corporation, the temperature was increased from room temperature to 250 ° C. at a rate of temperature increase of 20 ° C./min. Was maintained at 250 ° C. for 1 minute, and the exothermic peak temperature generated in the process of cooling to room temperature at a rate of temperature decrease of 20 ° C./min was defined as the crystallization temperature.

(3)剥離強度(接着強度)
JIS Z1707に準拠して、それぞれのサンプルについて、紙と生分解性樹脂層間のT剥離試験を行って幅15mmあたりの剥離強度(N/15mm)を測定した。
(3) Peel strength (adhesive strength)
In accordance with JIS Z1707, the T peel test between the paper and the biodegradable resin layer was performed for each sample, and the peel strength per 15 mm width (N / 15 mm) was measured.

(4)酸素透過係数
MODERN CONTROL社製酸素透過量測定装置「MOCON OX−TRAN 2/20型」を使用し、23℃・80%相対湿度の条件でJIS K7126(等圧法)に記載の方法に準じて測定した、ポリグリコール酸樹脂層厚さあたりの酸素透過係数。(但し、後記比較例2については、PET・S層厚さあたりの酸素透過係数を示す。)
(5)透湿度
40℃・90%相対湿度の条件で、JIS K7129の記載に従って、試料シートについて測定した水蒸気透過量(g/m・day)を、樹脂層の合計厚さ20μmに換算した値(g・20μm/m・day)で示した。
(4) Oxygen Permeability Coefficient Using the method described in JIS K7126 (isobaric method) under conditions of 23 ° C. and 80% relative humidity using an oxygen permeation measuring device “MOCON OX-TRAN 2/20 type” manufactured by MODERN CONTROL. Oxygen permeation coefficient per polyglycolic acid resin layer thickness measured according to the above. (However, for Comparative Example 2 described later, the oxygen permeability coefficient per PET / S layer thickness is shown.)
(5) Water vapor transmission rate The water vapor transmission rate (g / m 2 · day) measured for the sample sheet was converted into a total thickness of 20 μm of the resin layer according to the description of JIS K7129 under the conditions of 40 ° C. and 90% relative humidity. It was shown as a value (g · 20 μm / m 2 · day).

(実施例1)押出溶融ラミネート
3種3層構成の積層体を与える3台の押出機(スクリュウ径は順に、50mm、60mm、50mm;すべてL/D=24)にフィードブロック方式のTダイを使用し、第2層(中間層)に溶融粘度が9.0×10Pa・sec、融点220℃のポリグリコール酸(以下「PGA」と略記)を配し、その両側(第1層および第3層)に溶融粘度が2.8×10Pa・sec、融点197℃のポリエチレンテレフタレート・サクシネート共重合体(DuPont社製「バイオマックス」、以下「PET・S」と略記)を配した3層構成の透明な多層シート(PET・S/PGA/PET・S(厚みは各々左から40/40/40μm))を、樹脂温度260℃、シート引き取りロール速度4.0m/分の条件で押出成膜し、同じく4.0m/分の速度で供給される厚さ200μmの未加工のカップ原紙(坪量250g/m)上に、多層シートのPET・S側(第1層または第3層)を紙と対向させて、ピンチロール(ロール圧:0.6MPa)を使用してラミネートして、紙/PET・S/PGA/PET・Sの層構成を有する生分解性多層シートを作成した。
(Example 1) Extrusion Melt Laminate Three extruders that give a laminate of 3 types and 3 layers (screw diameters are in order 50 mm, 60 mm, 50 mm; all L / D = 24) feed block type T-die And a second layer (intermediate layer) is disposed with polyglycolic acid (hereinafter abbreviated as “PGA”) having a melt viscosity of 9.0 × 10 2 Pa · sec and a melting point of 220 ° C. A polyethylene terephthalate / succinate copolymer (DuPont “Biomax”, hereinafter abbreviated as “PET • S”) having a melt viscosity of 2.8 × 10 2 Pa · sec and a melting point of 197 ° C. was disposed on the third layer). A three-layer transparent multilayer sheet (PET.S / PGA / PET.S (thickness is 40/40/40 .mu.m from the left)) at a resin temperature of 260.degree. C. and a sheet take-up roll speed of 4.0 m / min. Push Deposited, also on 4.0 m / min speed of the raw thickness 200μm supplied in the cup base paper (basis weight 250g / m 2), PET · S side of the multilayer sheet (first layer or the third Layer) is opposed to paper and laminated using a pinch roll (roll pressure: 0.6 MPa) to create a biodegradable multilayer sheet having a paper / PET / S / PGA / PET / S layer structure did.

(実施例2)押出溶融ラミネート
スクリュウ径が60mm、L/D=24の押出機にフィードブロック方式のTダイを使用し、実施例1と同じ溶融粘度が9.0×10Pa・sec、融点220℃のPGAを、樹脂温度280℃、シート引き取りロール速度4.0m/分の条件で、厚さ100μmに押出成膜し、同じく4.0m/分の速度で供給される厚さ200μmの未加工のカップ原紙(坪量250g/m)上に、ピンチロール(ロール圧:0.6MPa)を使用してラミネートして、紙/PGAの層構成を有する生分解性多層シートを作成した。
(Example 2) Extrusion melt lamination A screw block type T die was used in an extruder having a screw diameter of 60 mm and L / D = 24, and the same melt viscosity as in Example 1 was 9.0 × 10 2 Pa · sec. A PGA having a melting point of 220 ° C. was extruded to a thickness of 100 μm under the conditions of a resin temperature of 280 ° C. and a sheet take-up roll speed of 4.0 m / min, and the thickness of 200 μm supplied at a speed of 4.0 m / min. A biodegradable multilayer sheet having a paper / PGA layer structure was prepared by laminating on a raw cup base paper (basis weight 250 g / m 2 ) using a pinch roll (roll pressure: 0.6 MPa). .

(実施例3)熱圧着法
実施例1で使用したPGAとPET・Sを用い、実施例1と同条件で作成したPET・S/PGA/PET・S(厚みは各々左から40/40/40μm)の3層構成を有する透明な多層シートを、熱ラミネートロール((株)ロボット工業製;加熱ロール径:300mm、ガイドロール径:100mm)を使用して、厚さ200μmの未加工のカップ原紙(坪量250g/m)に、多層シートのPET・S側を紙と対向させ加熱ロールとガイドロールの間に送り込むことで、温度240℃、ロール圧力0.6MPa、ラミネート速度:1.0m/分の条件で、熱圧着ラミネートして、紙/PET・S/PGA/PET・Sの層構成を有する生分解性多層シートを作成した。
(Example 3) Thermocompression bonding method PET / S / PGA / PET / S prepared under the same conditions as in Example 1 using PGA and PET / S used in Example 1 (thickness is 40/40 / each from the left) 40 μm) a transparent multilayer sheet having a three-layer structure, using a heat laminating roll (manufactured by Robot Kogyo Co., Ltd .; heating roll diameter: 300 mm, guide roll diameter: 100 mm), a raw cup having a thickness of 200 μm A base paper (basis weight 250 g / m 2 ) is fed between a heating roll and a guide roll with the PET · S side of the multilayer sheet facing the paper, and fed at a temperature of 240 ° C., a roll pressure of 0.6 MPa, and a laminating speed: 1. A biodegradable multilayer sheet having a layer structure of paper / PET / S / PGA / PET / S was prepared by thermocompression laminating under the condition of 0 m / min.

(比較例1)押出溶融ラミネート
実施例2と同条件で、溶融粘度が7.0×10Pa・sec、融点220℃のPGAを、厚さ約200μmの未加工のカップ原紙(坪量250g/m)上に、100μmの厚さで溶融押出ラミネートさせた紙/PGAの2層構成を有する多層シートを作成した。
(Comparative Example 1) Extrusion Melt Lamination PGA having a melt viscosity of 7.0 × 10 3 Pa · sec and a melting point of 220 ° C. under the same conditions as in Example 2 was processed into an unprocessed cup base paper having a thickness of about 200 μm (basis weight 250 g / M 2 ), a multilayer sheet having a two-layer constitution of paper / PGA laminated by melt extrusion at a thickness of 100 μm was prepared.

(比較例2)押出溶融ラミネート
スクリュウ径が60mm、L/D=24の押出機にフィードブロック方式のTダイを使用し、溶融粘度が2.8×10Pa・sec、融点197℃のPET・Sを、樹脂温度260℃、シート引き取りロール速度4.0m/分の条件で、厚さ100μmに押出成膜し、同じく4.0m/分の速度で供給される厚さ200μmの未加工のカップ原紙(坪量250g/m)上に、ピンチロール(ロール圧:0.6MPa)を使用してラミネートして、紙/PET・Sの層構成を有する生分解性多層シートを作成した。
(Comparative Example 2) Extrusion Melt Laminate PET having a screw diameter of 60 mm, an L / D = 24 extruder using a feed block type T die, a melt viscosity of 2.8 × 10 2 Pa · sec, and a melting point of 197 ° C. -S was extruded into a film thickness of 100 μm under the conditions of a resin temperature of 260 ° C. and a sheet take-up roll speed of 4.0 m / min, and the raw material of 200 μm thickness that was also supplied at a speed of 4.0 m / min. A pinch roll (roll pressure: 0.6 MPa) was laminated on a cup base paper (basis weight 250 g / m 2 ) to prepare a biodegradable multilayer sheet having a paper / PET · S layer structure.

上記で得られた実施例および比較例の多層シートについて、上述の方法により剥離強度、酸素透過係数および透湿度を測定した。結果を、融着層樹脂の溶融粘度とともにまとめて下表1に記す。

Figure 0004652332
For the multilayer sheets of Examples and Comparative Examples obtained above, peel strength, oxygen permeability coefficient and moisture permeability were measured by the above-described methods. The results are summarized in Table 1 below together with the melt viscosity of the fusion layer resin.
Figure 0004652332

上記表1から理解される通り、紙基材上に全て生分解性樹脂からなる生分解性樹脂を熱融着積層してなる本発明によるポリグリコール酸樹脂系多層シート(実施例1〜3)は、ポリグリコール酸樹脂層の使用により、極めて優れた酸素バリア性および耐透湿性を示し、且つ、融着層の溶融粘度の適切な制御により、剥離強度も良好に保たれている。従って、本発明による多層シートは、酸素劣化や水分の透過を嫌う食品等の内容物の容器の基材として優れた適性を示すことが分る。また、紙基材を含めて全て生分解性の材料からなるため、その廃棄に際して環境負荷が小さいという重要な利点を示す。 As understood from Table 1 above, the polyglycolic acid resin-based multilayer sheet according to the present invention obtained by heat-sealing a biodegradable resin consisting of a biodegradable resin on a paper substrate (Examples 1 to 3) Shows an extremely excellent oxygen barrier property and moisture permeability resistance by using a polyglycolic acid resin layer, and the peel strength is also kept good by appropriately controlling the melt viscosity of the fused layer. Therefore, the multilayer sheet according to the present invention, it is found to exhibit excellent suitability as a base material of the container of the contents of foods dislike permeation of oxygen deterioration and moisture. In addition, since it is made of a biodegradable material including the paper base material, it shows an important advantage that the environmental load is small when discarded.

Claims (12)

なくともポリグリコール酸樹脂層を含む一層又は複数の層からなる生分解性樹脂層を該ポリグリコール酸樹脂層自体またはポリグリコール酸樹脂とは異なる生分解性樹脂層からなり、温度240℃、せん断速度122sec−1における溶融粘度が100〜2000Pa・secであり、融点(Tm)が235℃以下である生分解性の融着層を介して、植物性基材シート上に、直ちに、または該生分解性樹脂層を250〜300℃の樹脂温度で押出ラミネートした後に、樹脂温度がTm+20℃〜300℃、圧力が0.2〜1.0MPaの条件で熱圧着することを特徴とするポリグリコール酸樹脂系多層シートの製造方法Even without least a biodegradable resin layer Do that a single layer or a plurality of layers including a polyglycolic acid resin layer, made of different biodegradable resin layer with the polyglycolic acid resin layer itself or polyglycolic acid resin, a temperature of 240 Immediately on the plant base material sheet via a biodegradable fusion layer having a melt viscosity of 100 to 2000 Pa · sec at a temperature of ° C and a shear rate of 122 sec −1 and a melting point (Tm) of 235 ° C. or less. Or, after extrusion laminating the biodegradable resin layer at a resin temperature of 250 to 300 ° C., thermocompression bonding is performed under the conditions of a resin temperature of Tm + 20 ° C. to 300 ° C. and a pressure of 0.2 to 1.0 MPa. A method for producing a polyglycolic acid resin multilayer sheet. 植物性基材シートが、紙、天然高分子樹脂シートおよびパルプモールドシートのいずれか少なくとも一種からなる請求項1に記載の多層シートの製造方法The method for producing a multilayer sheet according to claim 1, wherein the plant base sheet is made of at least one of paper, a natural polymer resin sheet, and a pulp mold sheet. 融着層がポリグリコール酸樹脂層からなる請求項1または2に記載の多層シートの製造方法The method for producing a multilayer sheet according to claim 1, wherein the fusion layer is made of a polyglycolic acid resin layer. 融着層がポリグリコール酸樹脂とは異なる生分解性樹脂層からなる請求項1または2に記載の多層シートの製造方法 The manufacturing method of the multilayer sheet | seat of Claim 1 or 2 which a melt | fusion layer consists of a biodegradable resin layer different from a polyglycolic acid resin. 融着層が生分解性芳香族ポリエステル樹脂の層からなる請求項4に記載の多層シートの製造方法 The manufacturing method of the multilayer sheet | seat of Claim 4 which a melt | fusion layer consists of a layer of a biodegradable aromatic polyester resin. 生分解性樹脂層が、基材シートと近接する融着層をなすポリグリコール酸樹脂以外の生分解性樹脂層/ポリグリコール酸樹脂層/ポリグリコール酸樹脂以外生分解性樹脂層の積層構造を有する請求項4または5に記載の多層シートの製造方法The biodegradable resin layer has a laminated structure of a biodegradable resin layer other than polyglycolic acid resin / polyglycolic acid resin layer / non-polyglycolic acid resin other than polyglycolic acid resin that forms a fusion layer adjacent to the base sheet. A method for producing a multilayer sheet according to claim 4 or 5. 生分解性樹脂層が、基材シートと近接する融着層の外側に基材シートと更に近接する結晶化温度が120〜190℃の脂肪族ポリエステル樹脂層を有する請求項4〜6のいずれかに記載の多層シートの製造方法The biodegradable resin layer has an aliphatic polyester resin layer having a crystallization temperature of 120 to 190 ° C that is further closer to the base sheet on the outside of the fusion layer adjacent to the base sheet. The manufacturing method of the multilayer sheet as described in any one of . 温度23℃、相対湿度80%で測定した酸素透過係数が、5.0×10−14cm・cm/cm・sec・cmHg以下である請求項1〜7のいずれかに記載の多層シートの製造方法The multilayer sheet according to any one of claims 1 to 7, wherein an oxygen transmission coefficient measured at a temperature of 23 ° C and a relative humidity of 80% is 5.0 x 10 -14 cm 3 · cm / cm 2 · sec · cmHg or less. Manufacturing method . 40℃、相対湿度90%における水蒸気透過度が25g・20μm/m・day以下である請求項1〜8のいずれかに記載の多層シートの製造方法The method for producing a multilayer sheet according to any one of claims 1 to 8, wherein the water vapor permeability at 40 ° C and a relative humidity of 90% is 25 g · 20 µm / m 2 · day or less. 植物性基材シート上に生分解性樹脂層を押出溶融ラミネートした後に熱圧着する請求項1〜9のいずれかに記載の多層シート。The multilayer sheet according to any one of claims 1 to 9, wherein the biodegradable resin layer is extruded and melt-laminated on the plant base sheet and then thermocompression bonded . 植物性基材シート上に生分解性樹脂層を直接に熱圧着ラミネートする請求項1〜9のいずれかに記載の多層シートの製造方法 Method for manufacturing a multilayer sheet according to any one of claims 1 to 9 directly thermocompression lamination biodegradable resin layer on plant substrate sheet. 請求項1〜11のいずれかに記載の方法により製造された多層シートからなる食品容器。The food container which consists of a multilayer sheet manufactured by the method in any one of Claims 1-11.
JP2006528516A 2004-06-25 2005-06-20 Method for producing polyglycolic acid resin multilayer sheet Expired - Fee Related JP4652332B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004188576 2004-06-25
JP2004188576 2004-06-25
PCT/JP2005/011261 WO2006001250A1 (en) 2004-06-25 2005-06-20 Mulilayer sheet made of polyglycolic acid resin

Publications (2)

Publication Number Publication Date
JPWO2006001250A1 JPWO2006001250A1 (en) 2008-04-17
JP4652332B2 true JP4652332B2 (en) 2011-03-16

Family

ID=35781728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006528516A Expired - Fee Related JP4652332B2 (en) 2004-06-25 2005-06-20 Method for producing polyglycolic acid resin multilayer sheet

Country Status (5)

Country Link
US (1) US7785682B2 (en)
EP (1) EP1787807A4 (en)
JP (1) JP4652332B2 (en)
CN (1) CN1972801B (en)
WO (1) WO2006001250A1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4970947B2 (en) * 2004-09-08 2012-07-11 株式会社クレハ Polyglycolic acid resin multilayer sheet
US7951436B2 (en) * 2006-08-14 2011-05-31 Frito-Lay North America, Inc. Environmentally-friendly multi-layer flexible film having barrier properties
US20090061126A1 (en) * 2007-08-31 2009-03-05 Anthony Robert Knoerzer Package and Multi-Layer Flexible Film Having Paper Containing Post Consumer Recycled Fiber
US20100221560A1 (en) * 2006-08-14 2010-09-02 Frito-Lay North America, Inc. Bio-Based In-Line High Barrier Metalized Film and Process for its Production
JP5332108B2 (en) * 2007-02-02 2013-11-06 大日本印刷株式会社 Microwave oven paper container
JP2009051210A (en) * 2007-07-31 2009-03-12 Mitsubishi Chemicals Corp Biodegradable resin laminate and its manufacturing process
JP4972012B2 (en) * 2008-02-28 2012-07-11 株式会社クレハ Sequential biaxially stretched polyglycolic acid film, method for producing the same, and multilayer film
US8389107B2 (en) 2008-03-24 2013-03-05 Biovation, Llc Cellulosic biolaminate composite assembly and related methods
US20110123809A1 (en) * 2008-03-24 2011-05-26 Biovation, Llc Biolaminate composite assembly and related methods
EP2265439A4 (en) 2008-03-24 2012-05-16 Biovation Llc Biolaminate composite assembly and related methods
JP5321798B2 (en) * 2008-09-19 2013-10-23 大日本印刷株式会社 Paper container
US20100172889A1 (en) * 2008-12-05 2010-07-08 Catchmark Jeffrey M Degradable biomolecule compositions
US8079413B2 (en) 2008-12-23 2011-12-20 W. Lynn Frazier Bottom set downhole plug
US8899317B2 (en) 2008-12-23 2014-12-02 W. Lynn Frazier Decomposable pumpdown ball for downhole plugs
US9234100B2 (en) 2009-02-20 2016-01-12 Uniboard Canada Inc. Chitosan-based adhesives and uses thereof
US9562415B2 (en) 2009-04-21 2017-02-07 Magnum Oil Tools International, Ltd. Configurable inserts for downhole plugs
US9062522B2 (en) 2009-04-21 2015-06-23 W. Lynn Frazier Configurable inserts for downhole plugs
US9181772B2 (en) 2009-04-21 2015-11-10 W. Lynn Frazier Decomposable impediments for downhole plugs
US9109428B2 (en) 2009-04-21 2015-08-18 W. Lynn Frazier Configurable bridge plugs and methods for using same
US9127527B2 (en) 2009-04-21 2015-09-08 W. Lynn Frazier Decomposable impediments for downhole tools and methods for using same
US9163477B2 (en) 2009-04-21 2015-10-20 W. Lynn Frazier Configurable downhole tools and methods for using same
US20110086236A1 (en) * 2009-10-13 2011-04-14 The Penn State Research Foundation Composites containing polypeptides attached to polysaccharides and molecules
JP5640973B2 (en) * 2009-12-02 2014-12-17 東レ株式会社 Polyester-based laminated film, vapor-deposited film using the same, laminate, and package
US20110200844A1 (en) * 2010-02-17 2011-08-18 Frito-Lay North America, Inc. Composition for facilitating environmental degradation of a film
FI124269B (en) * 2010-03-12 2014-05-30 Stora Enso Oyj Heat-sealable biodegradable packaging material, its manufacturing method and its product packaging
JP5612344B2 (en) 2010-03-25 2014-10-22 パナソニック株式会社 Molding material for water-borne housing facilities and water-based housing facilities using the same
JP5620190B2 (en) * 2010-08-12 2014-11-05 株式会社クレハ Biodegradable resin laminate
JP5766955B2 (en) * 2011-01-06 2015-08-19 株式会社クレハ Fumigation film, fumigation bag, and fumigation method
US9040120B2 (en) 2011-08-05 2015-05-26 Frito-Lay North America, Inc. Inorganic nanocoating primed organic film
US20130101855A1 (en) * 2011-10-20 2013-04-25 Frito-Lay North America, Inc. Barrier paper packaging and process for its production
US8399077B1 (en) 2011-11-21 2013-03-19 Cryovac, Inc. Polyglycolic acid-based film
US9267011B2 (en) 2012-03-20 2016-02-23 Frito-Lay North America, Inc. Composition and method for making a cavitated bio-based film
US9162421B2 (en) 2012-04-25 2015-10-20 Frito-Lay North America, Inc. Film with compostable heat seal layer
US8722164B2 (en) 2012-05-11 2014-05-13 Cryovac, Inc. Polymeric film for use in bioprocessing applications
BR112014029751A2 (en) 2012-06-23 2017-06-27 Frito Lay North America Inc deposition of ultrafine inorganic oxide coatings in packaging
US9149980B2 (en) 2012-08-02 2015-10-06 Frito-Lay North America, Inc. Ultrasonic sealing of packages
US9090021B2 (en) 2012-08-02 2015-07-28 Frito-Lay North America, Inc. Ultrasonic sealing of packages
CN102991063B (en) * 2012-12-24 2015-04-22 北京印刷学院 Composite material of pulp molding product and plastic and preparation method thereof
WO2014161653A1 (en) * 2013-04-03 2014-10-09 Cedar Advanced Technology Group Ltd. Container for a food, beverage or pharmaceutical product an method of preparation thereof
WO2015013065A1 (en) 2013-07-26 2015-01-29 The Penn State Research Foundation Polymer compositions and coatings
JP2017505831A (en) * 2013-12-10 2017-02-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polymer mixture for barrier film
FR3024844B1 (en) * 2014-08-18 2016-09-09 Cellulopack PROCESS FOR MANUFACTURING BIODEGRADABLE AND COMPOSTABLE PACKAGING
CN107385993A (en) * 2017-09-05 2017-11-24 重庆泰宝纸制品有限公司 Biodegradable coated paper and its production equipment
WO2019047280A1 (en) * 2017-09-05 2019-03-14 重庆泰宝纸制品有限公司 Biodegradable coated paper and production device therefor
EP3476593A1 (en) 2017-10-24 2019-05-01 Renolit SE Laminate structure for barrier packaging
EP3476594A1 (en) 2017-10-24 2019-05-01 Renolit SE Laminate structure for biocompatible barrier packaging
JP7272835B2 (en) * 2019-03-18 2023-05-12 株式会社生産日本社 Biodegradable bag and manufacturing method thereof
US20220266578A1 (en) * 2019-10-10 2022-08-25 Toray Industries, Inc. Flame-resistant layered molded article
WO2024068864A1 (en) 2022-09-28 2024-04-04 Basf Se Biodegradable multilayer composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106444A (en) * 1996-06-19 1998-01-13 Dainippon Printing Co Ltd Biodegradable laminate
JP2003266527A (en) * 2002-03-19 2003-09-24 Kureha Chem Ind Co Ltd Multilayered blow molded container

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255039A (en) * 1993-03-04 1994-09-13 Toyobo Co Ltd Biodegradable paper laminate
EP0925915B1 (en) * 1996-09-13 2004-01-21 Kureha Kagaku Kogyo Kabushiki Kaisha Gas-barrier, multi-layer hollow container
JP2000238194A (en) * 1999-02-22 2000-09-05 Daicel Chem Ind Ltd Biodegradable laminate film and agricultural biodegradable film
NO320290B1 (en) * 2000-05-31 2005-11-21 Oji Paper Co Moldable base paper and scales made from this
US20030125508A1 (en) * 2001-10-31 2003-07-03 Kazuyuki Yamane Crystalline polyglycolic acid, polyglycolic acid composition and production process thereof
EP1477304A4 (en) * 2002-02-21 2008-06-04 Kao Corp Biodegradable film
JP2003300293A (en) * 2002-04-09 2003-10-21 Kureha Chem Ind Co Ltd Gas-barrier multilayer structure and manufacturing method therefor
JP4925555B2 (en) * 2003-03-28 2012-04-25 株式会社クレハ Polyglycolic acid resin composition and molded product thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106444A (en) * 1996-06-19 1998-01-13 Dainippon Printing Co Ltd Biodegradable laminate
JP2003266527A (en) * 2002-03-19 2003-09-24 Kureha Chem Ind Co Ltd Multilayered blow molded container

Also Published As

Publication number Publication date
WO2006001250A1 (en) 2006-01-05
CN1972801B (en) 2010-04-14
JPWO2006001250A1 (en) 2008-04-17
CN1972801A (en) 2007-05-30
EP1787807A4 (en) 2010-07-07
US7785682B2 (en) 2010-08-31
EP1787807A1 (en) 2007-05-23
US20080069988A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
JP4652332B2 (en) Method for producing polyglycolic acid resin multilayer sheet
JP4871266B2 (en) Polyglycolic acid resin-based laminated sheet and packaging container comprising the same
KR101118326B1 (en) Biodegradable layered sheet
JP4970947B2 (en) Polyglycolic acid resin multilayer sheet
US5849401A (en) Compostable multilayer structures, methods for manufacture, and articles prepared therefrom
JP5728442B2 (en) Multilayer sealant film
DK2010380T4 (en) Multilayer foil and process for making it
US5849374A (en) Compostable multilayer structures, methods for manufacture, and articles prepared therefrom
JP4794187B2 (en) Film cutter and storage box with film cutter
KR20000067861A (en) Gas-barrier composite film
EP1598399B1 (en) Aliphatic polyester composition films and multilayer films produced therefrom
KR20150082355A (en) A method for manufacturing biodegradable packaging material, biodegradable packaging material, and packages and containers made thereof
JP2021160155A (en) Biodegradable laminate paper and packaging material
JP3084239B2 (en) Biodegradable laminated film
JP4278646B2 (en) Wax for moisture barrier
JP2004276320A (en) Laminated film for heat fusion to natural material
JP2002254584A (en) Biodegradable laminate
JP2006341616A (en) Method for producing biodegradable laminate
JP2007118485A (en) Laminated film for heat fusion to papery base material and its molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees