JP4794187B2 - Film cutter and storage box with film cutter - Google Patents

Film cutter and storage box with film cutter Download PDF

Info

Publication number
JP4794187B2
JP4794187B2 JP2005089195A JP2005089195A JP4794187B2 JP 4794187 B2 JP4794187 B2 JP 4794187B2 JP 2005089195 A JP2005089195 A JP 2005089195A JP 2005089195 A JP2005089195 A JP 2005089195A JP 4794187 B2 JP4794187 B2 JP 4794187B2
Authority
JP
Japan
Prior art keywords
layer
acid
lactic acid
film cutter
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005089195A
Other languages
Japanese (ja)
Other versions
JP2006263892A (en
Inventor
洋介 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2005089195A priority Critical patent/JP4794187B2/en
Publication of JP2006263892A publication Critical patent/JP2006263892A/en
Application granted granted Critical
Publication of JP4794187B2 publication Critical patent/JP4794187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Nonmetal Cutting Devices (AREA)
  • Cartons (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Description

本発明は円筒状の巻芯にロール状に巻かれたラップフィルム、アルミホイル又はクッキングシート類(以下、「ラップフィルム等」という。)を収納し、必要に応じ所望の長さに切断して取り出すための収納箱に装着されたフィルムカッター、及び該フィルムカッターが装着されたフィルムカッター付収納箱に関する。   In the present invention, a wrap film, aluminum foil or cooking sheets (hereinafter referred to as “wrap film etc.”) wound in a roll shape on a cylindrical core are stored and cut into a desired length as required. The present invention relates to a film cutter mounted on a storage box for taking out, and a storage box with a film cutter mounted with the film cutter.

ラップフィルム等は箱の前板、底板又は蓋板の端縁に装着した鋸歯状のフィルムカッターを取り付けた収納箱に収納され、必要な時にそのラップフィルム等を、任意の長さに引き出し、前記収納箱に取り付けた鋸歯状フィルムカッターで切断し使用する。このラップフィルム等を切断する鋸歯状フィルムカッターは、従来、金属製であることが多いが、金属製カッターは取扱い上、手指を傷つけやすく、常に危険が伴うこと、また廃棄に際してそのまま焼却すると、カッターが燃え残るので収納箱から取り除いて処理する必要があるとうの問題があった。   Wrap film etc. is stored in a storage box attached with a sawtooth film cutter attached to the edge of the front plate, bottom plate or lid plate of the box, pulling out the wrap film etc. to an arbitrary length when necessary, Cut and use with a serrated film cutter attached to the storage box. Sawtooth film cutters that cut wrap films, etc., are usually made of metal. However, metal cutters are easy to damage fingers during handling, and are always dangerous. However, there was a problem that it had to be removed from the storage box and processed.

上記のようなことから、最近では上記カッターを金属製の材質のものに代えて、紙を素材としたものが提案され、一部で実用化されている。これらの紙製カッターは、大きく分けて、板紙を素材としてそれに熱硬化性樹脂を塗布又は含浸して硬化させたいわゆる「樹脂硬化紙刃」と、セルロース繊維からなる原料紙を、塩化亜鉛の膨潤膠化作用を利用して一定の層厚に積層一体化した後、塩化亜鉛を抽出除去して乾燥成形して得られるバルカナイズドファイバーを素材として、これに防湿皮膜を形成し、鋸歯状に打ち抜いてカッターとした、いわゆる「VF刃」の2種類がある。
これら紙製カッターと収納箱の接着方法は、通常、収納箱やカッターに接着剤を塗布し接着する方法や超音波融着法によって接着させる方法がある(特許文献1:特開平7−52255号公報)。これらの紙製カッターは、上記で指摘した金属製カッターの問題点は解消されるものの、金属製カッターに比べて切れ性、切れ耐久性に劣ることは否めない。特にフィルムの伸びが比較的大きなポリエチレンやポリ塩化ビニル製のラップフィルムではその問題が顕著であり、例えば50mを越えるような長尺のラップフィルムには使用できなかった。
In view of the above, recently, a cutter using paper as a material instead of a metal material has been proposed and put into practical use in part. These paper cutters can be broadly divided into so-called “resin-cured paper blades” made of paperboard, which are coated or impregnated with a thermosetting resin, and raw paper made of cellulose fibers. Using a vulcanized fiber obtained by dry-molding by extracting and removing zinc chloride after forming a uniform layer thickness by using a gluing action, a moisture-proof coating is formed on this and punched into a sawtooth shape. There are two types of cutters, so-called “VF blades”.
The paper cutter and the storage box are usually bonded by a method of applying an adhesive to the storage box or the cutter and bonding them by an ultrasonic fusion method (Patent Document 1: Japanese Patent Laid-Open No. 7-52255). Publication). Although these paper cutters solve the problems of the metal cutters pointed out above, it cannot be denied that the paper cutters are inferior in cutting performance and cutting durability compared to metal cutters. In particular, the problem is remarkable in a wrap film made of polyethylene or polyvinyl chloride having a relatively large film elongation. For example, it cannot be used for a long wrap film exceeding 50 m.

また別の素材としては、トウモロコシ等の植物を出発原料としたポリ乳酸系重合体を主成分としたフィルムカッターも考案されている。(特許文献2:特許第3573605号公報)これは出発原料が植物由来であるため、枯渇する石油資源から脱却できる等の特徴も有している。   As another material, a film cutter based on a polylactic acid polymer starting from a plant such as corn has been devised. (Patent Document 2: Japanese Patent No. 3573605) Since the starting material is derived from a plant, it has characteristics such as being able to escape from a depleted petroleum resource.

特開平7−52255号公報JP-A-7-52255 特許第3573605号公報Japanese Patent No. 3573605

ところで、前記のポリ乳酸系重合体を主成分としたフィルムカッターは、確かに、金属製カッターとほぼ同等な切れ性、切れ耐久性を有しているものの、このフィルムカッターの収納箱への装着方法は、金属と同様なカシメ法では、材料が塑性変形しにくいために不十分であり、また超音波融着法では融着強度が不十分なものであった。それ故、接着剤を塗布した接着方法で使用されているが、この方法では接着剤が高価であり、また収納箱やフィルムカッターに接着剤を塗布する工程が必要であり、結果として製造コストが高くなる問題があった。さらには折角、収納箱(紙製)やラップカッターが脱石油系の植物系原料を使用しているにも関わらず、接着剤は旧態依然の石油系材料の接着剤が使用されている。   By the way, although the film cutter mainly composed of the above-mentioned polylactic acid-based polymer has cutting properties and cutting durability almost the same as those of metal cutters, the film cutter is mounted on the storage box. The caulking method, which is the same as that for metals, is insufficient because the material is difficult to be plastically deformed, and the fusion strength is insufficient for the ultrasonic fusion method. Therefore, it is used in a bonding method in which an adhesive is applied, but in this method, the adhesive is expensive, and a process of applying the adhesive to a storage box or a film cutter is necessary, resulting in a low manufacturing cost. There was a problem of getting higher. Furthermore, even though corners, storage boxes (made of paper) and lap cutters use non-petroleum plant-based raw materials, the adhesives are still made from petroleum-based materials.

したがって、本発明の目的は金属製フィルムカッターと同等な切れ性、切れ耐久性を有し、また接着剤を使用しない超音波融着法で収納箱との接着が可能であるポリ乳酸系重合体を主成分とするフィルムカッターを提供することにある。本発明のさらに他の目的は、廃棄に手間を要せず、焼却、埋め立てした際にも環境に悪影響を及ぼさず、しかも枯渇する石油資源からの脱却が可能なフィルムカッターを提供することにある。   Therefore, the object of the present invention is to provide a polylactic acid polymer that has the same cutting performance and durability as a metal film cutter, and can be bonded to a storage box by an ultrasonic fusion method without using an adhesive. It is providing the film cutter which has as a main component. Still another object of the present invention is to provide a film cutter that does not require time and effort for disposal, does not adversely affect the environment even when incinerated or landfilled, and can escape from exhausted petroleum resources. .

上述の課題を解決するために鋭意検討を行った結果、出発原料が植物由来であるポリ乳酸系重合体を主成分とし、フィルムカッターに用いるシート基材を特定の組成および層構成とすることで接着剤を使用せず、しかも強固な接着を確保し、切れ性、切れ耐久性も金属製カッター同等で、環境に悪影響を及ぼさず、さらには廃棄が容易となることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the starting material is a polylactic acid-based polymer derived from a plant as a main component, and the sheet base material used for the film cutter has a specific composition and layer structure. The present invention has been completed by finding that no adhesive is used and strong adhesion is ensured, and the cutting performance and durability are the same as those of metal cutters, which does not adversely affect the environment and can be easily discarded. It came to do.

すなわち、
(1)本発明のフィルムカッターは、ポリ乳酸系重合体を主成分とする少なくとも2層以
上から構成される積層体であって、全層の厚みが0.15mm〜0.5mmであり、
一方の最外層(A層)を構成するポリ乳酸系重合体のL−乳酸とD−乳酸との合計に対す
るD−乳酸の含有割合Da(%)と、
他方の最外層(B層)を構成するポリ乳酸系重合体のL−乳酸とD−乳酸との合計に対す
るD−乳酸の割合Db(%)との関係が、
0.5≦Da≦5 かつ 16.5≧Db−Da>3
であり、さらに当該B層は、厚みが12.5μm以上であって、積層体全体における当該
B層の厚み比率が20%以下であり、かつ超音波融着法で収納箱と接着させる接着層であ
ることを特徴とする。
(2)また、本発明においては、前記積層体が2軸延伸されていることが好ましい。
(3)本発明のフィルムカッター付収納箱は、上記(1)または(2)に記載のフィルム
カッターを、超音波融着により、前記B層が収納箱面に配設されるように装着したことを
特徴とする。
That is,
(1) The film cutter of the present invention is a laminate composed of at least two layers mainly composed of a polylactic acid-based polymer, and the thickness of all layers is 0.15 mm to 0.5 mm.
The content ratio Da (%) of D-lactic acid to the total of L-lactic acid and D-lactic acid of the polylactic acid polymer constituting one outermost layer (A layer),
The relationship between the ratio Db (%) of D-lactic acid to the total of L-lactic acid and D-lactic acid of the polylactic acid polymer constituting the other outermost layer (B layer) is as follows:
0.5 ≦ Da ≦ 5 and 16.5 ≧ Db-Da> 3
Further, the B layer has a thickness of 12.5 μm or more, the thickness ratio of the B layer in the entire laminate is 20 % or less, and is bonded to the storage box by an ultrasonic fusion method. It is a layer.
(2) Moreover, in this invention, it is preferable that the said laminated body is biaxially stretched.
(3) The storage box with a film cutter of the present invention is mounted with the film cutter according to the above (1) or (2) by ultrasonic fusion so that the layer B is disposed on the surface of the storage box. It is characterized by that.

本発明では、ポリ乳酸系重合体をある特定の組成を持った層構成にすることで、金属製フィルムカッターと同等な切れ性、切れ耐久性を有し、また接着剤を使用しない超音波融着法で収納箱との接着が可能であるフィルムカッターを提供することが出来る。
また、廃棄に手間を要せず、焼却、埋め立てした際にも環境に悪影響を及ぼさず、しかも枯渇する石油資源からの脱却が可能なフィルムカッターを提供することが出来る。
In the present invention, by forming a polylactic acid polymer into a layer structure having a specific composition, it has the same cutting ability and cutting durability as a metal film cutter, and also uses ultrasonic fusion without using an adhesive. It is possible to provide a film cutter that can be adhered to the storage box by the attaching method.
In addition, it is possible to provide a film cutter that does not require time and effort for disposal, does not adversely affect the environment when incinerated or landfilled, and can escape from exhausted petroleum resources.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

(ポリ乳酸系重合体)
本発明にかかるフィルムカッターはポリ乳酸系重合体を主成分として構成されている。
上記ポリ乳酸系重合体は、乳酸を主成分とするモノマーを縮重合してなる重合体である。上記乳酸には、2種類の光学異性体のL−乳酸およびD−乳酸があり、これら2種の構造単位の割合で結晶性が異なる。例えば、L−乳酸とD−乳酸の割合がおおよそ80:20〜20:80のランダム共重合体では結晶性が無く、ガラス転移点60℃付近で軟化する透明完全非結晶性ポリマーとなる。
(Polylactic acid polymer)
The film cutter according to the present invention is composed mainly of a polylactic acid polymer.
The polylactic acid polymer is a polymer formed by condensation polymerization of a monomer mainly composed of lactic acid. The lactic acid includes two kinds of optical isomers, L-lactic acid and D-lactic acid, and the crystallinity is different depending on the ratio of these two kinds of structural units. For example, a random copolymer having a ratio of L-lactic acid to D-lactic acid of approximately 80:20 to 20:80 has no crystallinity, and becomes a transparent, completely amorphous polymer that softens near a glass transition point of 60 ° C.

一方、L−乳酸とD−乳酸の割合がおおよそ100:0〜80:20、又は20:80〜0:100のランダム共重合体は、結晶性を有する。その結晶化度は、上記のL−乳酸とD−乳酸の割合によって定まるが、この共重合体のガラス転移点は、上記と同様に60℃程度のポリマーである。このポリマーは、溶融押出した後、ただちに急冷することで透明性の優れた非晶性の材料になり、ゆっくり冷却することにより、結晶性の材料となる。例えば、L−乳酸のみ、また、D−乳酸のみからなる単独重合体は、180℃以上の融点を有する半結晶性ポリマーである。   On the other hand, a random copolymer having a ratio of L-lactic acid to D-lactic acid of approximately 100: 0 to 80:20 or 20:80 to 0: 100 has crystallinity. The crystallinity is determined by the ratio of L-lactic acid and D-lactic acid, but the glass transition point of this copolymer is a polymer of about 60 ° C. as described above. This polymer becomes an amorphous material with excellent transparency by being rapidly cooled after melt extrusion, and becomes a crystalline material by slowly cooling. For example, a homopolymer composed of only L-lactic acid or only D-lactic acid is a semicrystalline polymer having a melting point of 180 ° C. or higher.

本発明に用いられるポリ乳酸系重合体としては構造単位がL−乳酸又はD−乳酸であるホモポリマー、すなわち、ポリ(L−乳酸)又はポリ(D−乳酸)、構造単位がL−乳酸及びD−乳酸の両方である共重合体、すなわち、ポリ(DL−乳酸)や、これらの混合体を言い、さらには共重合成分として他のヒドロキシカルボン酸、ジオール/ジカルボン酸との共重合体であってもよい。また少量の鎖延長剤残基を含んでもよい。   The polylactic acid polymer used in the present invention is a homopolymer whose structural unit is L-lactic acid or D-lactic acid, that is, poly (L-lactic acid) or poly (D-lactic acid), the structural unit is L-lactic acid and It is a copolymer that is both D-lactic acid, that is, poly (DL-lactic acid), and a mixture thereof. Further, it is a copolymer with other hydroxycarboxylic acid and diol / dicarboxylic acid as a copolymerization component. There may be. It may also contain a small amount of chain extender residues.

重合法としては、縮重合法、開環重合法等公知の方法を採用することができる。例えば、縮重合法では、L−乳酸又はD−乳酸あるいはこれらの混合物を直接脱水縮重合して、任意の組成を持ったポリ乳酸を得ることができる。
また、開環重合法(ラクチド法)では、乳酸の環状2量体であるラクチドを、必用に応じて重合調節剤等を用いながら、選ばれた触媒を使用してポリ乳酸を得ることができる。
As the polymerization method, a known method such as a condensation polymerization method or a ring-opening polymerization method can be employed. For example, in the condensation polymerization method, polylactic acid having an arbitrary composition can be obtained by directly dehydrating condensation polymerization of L-lactic acid, D-lactic acid or a mixture thereof.
In the ring-opening polymerization method (lactide method), polylactic acid can be obtained by using a selected catalyst while using lactide, which is a cyclic dimer of lactic acid, with a polymerization regulator or the like as necessary. .

ポリ乳酸に共重合される上記の他のヒドロキシカルボン酸単位としては、乳酸の光学異性体(L−乳酸に対してはD−乳酸、D−乳酸に対してはL−乳酸)、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等の2官能脂肪族ヒドロキシカルボン酸やカプロラクトン、ブチロラクトン、バレロラクトン等のラクトン類が挙げられる。   Examples of the other hydroxycarboxylic acid units copolymerized with polylactic acid include optical isomers of lactic acid (D-lactic acid for L-lactic acid, L-lactic acid for D-lactic acid), glycolic acid, Such as 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, 2-hydroxycaproic acid, etc. Examples thereof include lactones such as bifunctional aliphatic hydroxycarboxylic acid, caprolactone, butyrolactone, and valerolactone.

上記ポリ乳酸系重合体に共重合される上記脂肪族ジオールとしては、エチレングリコール、1,4−ブタンジオール,1,4−シクロヘキサンジメタノール等があげられる。また、上記脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸及びドデカン二酸等があげられる。 また、必要に応じ、少量共重合成分として、テレフタル酸のような非脂肪族ジカルボン酸及び/又はビスフェノールAのエチレンオキサイド付加物のような非脂肪族ジオールを用いてもよい。   Examples of the aliphatic diol copolymerized with the polylactic acid polymer include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like. Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid. If necessary, a non-aliphatic diol such as a non-aliphatic dicarboxylic acid such as terephthalic acid and / or an ethylene oxide adduct of bisphenol A may be used as a small amount copolymerization component.

本発明において使用されるポリ乳酸系重合体の重量平均分子量の好ましい範囲としては6万〜70万であり、より好ましくは8万〜40万、特に好ましくは10万〜30万である。分子量が小さすぎると機械物性や耐熱性等の実用物性がほとんど発現されず、大きすぎると溶融粘度が高すぎ成形加工性に劣る。   The preferred range of the weight average molecular weight of the polylactic acid polymer used in the present invention is 60,000 to 700,000, more preferably 80,000 to 400,000, and particularly preferably 100,000 to 300,000. If the molecular weight is too small, practical physical properties such as mechanical properties and heat resistance are hardly expressed, and if it is too large, the melt viscosity is too high and the molding processability is poor.

(他の生分解性脂肪族ポリエステル)
また本発明のフィルムカッターにおいてある程度の柔軟性や各種加工性を向上させる意味で、上記ポリ乳酸系重合体に対し、ポリ乳酸系樹脂以外の生分解性脂肪族系ポリエステルを、その実用特性を損なわない範囲で添加してもよい。
上記生分解性脂肪族系ポリエステルとしては、ポリヒドロキシカルボン酸、脂肪族ジオールと脂肪族ジカルボン酸、又は脂肪族ジオールと脂肪族ジカルボン酸及び芳香族ジカルボン酸を縮合して得られる脂肪族ポリエステル、又は脂肪族芳香族ポリエステル、脂肪族ジオールと脂肪族ジカルボン酸、及びヒドロキシカルボン酸から得られる脂肪族ポリエステル共重合体、環状ラクトン類を開環重合した脂肪族ポリエステル、合成系脂肪族ポリエステル、菌体内で生合成される脂肪族ポリエステル等があげられる。
(Other biodegradable aliphatic polyester)
In addition, in the film cutter of the present invention, biodegradable aliphatic polyesters other than polylactic acid resins are impaired in terms of their practical properties in order to improve a certain degree of flexibility and various processability. You may add in the range which is not.
Examples of the biodegradable aliphatic polyester include polyhydroxycarboxylic acid, aliphatic diol and aliphatic dicarboxylic acid, or aliphatic polyester obtained by condensing aliphatic diol, aliphatic dicarboxylic acid and aromatic dicarboxylic acid, or Aliphatic aromatic polyester, aliphatic polyester copolymer obtained from aliphatic diol and aliphatic dicarboxylic acid, and hydroxycarboxylic acid, aliphatic polyester obtained by ring-opening polymerization of cyclic lactones, synthetic aliphatic polyester, Examples include aliphatic polyesters that are biosynthesized.

ポリヒドロキシカルボン酸としては、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等のヒドロキシカルボン酸の単独重合体や共重合体があげられる。   Examples of the polyhydroxycarboxylic acid include 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, Examples thereof include homopolymers and copolymers of hydroxycarboxylic acids such as 2-hydroxycaproic acid.

上記の肪族ジオールとしては、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等があげられる。また、上記脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等があげられる。上記芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸等があげられる。これらの脂肪族ジオールと脂肪族ジカルボン酸を縮合して得られる脂肪族ポリエステルや、脂肪族ジオール、脂肪族ジカルボン酸及び芳香族ジカルボン酸を縮合して得られる脂肪族芳香族ポリエステルは、上記の各化合物の中からそれぞれ1種類以上を選んで縮重合し、さらに、必要に応じてイソシアネート化合物等でジャンプアップして所望のポリマーを得ることができる。   Examples of the aliphatic diol include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like. Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like. Examples of the aromatic dicarboxylic acid include terephthalic acid and isophthalic acid. Aliphatic polyesters obtained by condensing these aliphatic diols and aliphatic dicarboxylic acids, and aliphatic aromatic polyesters obtained by condensing aliphatic diols, aliphatic dicarboxylic acids and aromatic dicarboxylic acids, One or more compounds can be selected from each of the compounds and subjected to condensation polymerization, and further, if necessary, jumped up with an isocyanate compound or the like to obtain a desired polymer.

脂肪族ジオールと脂肪族ジカルボン酸、及びヒドロキシカルボン酸から得られる脂肪族ポリエステル共重合体に用いられる脂肪族ジオール、脂肪族カルボン酸については上記と同様なものが挙げられ、またヒドロキシカルボン酸についてはL−乳酸、D乳酸、DL乳酸、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ3,3−ジメチル酪酸、2−ヒドロキシ3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等が挙げられ、例えばポリブチレンサクシネート乳酸、ポリブチレンサクシネートアジペート乳酸等がある。
ただし、この場合の組成比はあくまでも脂肪族ジオールと脂肪族ジカルボン酸が主体であり、モル%としては脂肪族ジオール:35〜49.99モル%、脂肪族ジカルボン酸:35〜49.99モル%、ヒドロキシカルボン酸:0.02〜30モル%のものである。
Examples of the aliphatic diol and aliphatic carboxylic acid used in the aliphatic polyester copolymer obtained from the aliphatic diol, the aliphatic dicarboxylic acid, and the hydroxycarboxylic acid are the same as those described above. L-lactic acid, D lactic acid, DL lactic acid, glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2 -Methyl lactic acid, 2-hydroxycaproic acid and the like, for example, polybutylene succinate lactic acid, polybutylene succinate adipate lactic acid and the like.
However, the composition ratio in this case is mainly an aliphatic diol and an aliphatic dicarboxylic acid, and the mol% is aliphatic diol: 35 to 49.99 mol%, aliphatic dicarboxylic acid: 35 to 49.99 mol%. Hydroxycarboxylic acid: 0.02 to 30 mol%.

上記環状ラクトン類を開環重合した脂肪族ポリエステルは、環状モノマーとして、ε−カプロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン等の1種類又はそれ以上を重合することによって得られる。   The aliphatic polyester obtained by ring-opening polymerization of the above cyclic lactones can be obtained by polymerizing one or more of ε-caprolactone, δ-valerolactone, β-methyl-δ-valerolactone and the like as a cyclic monomer.

上記合成系脂肪族ポリエステルとしては、環状酸無水物とオキシラン類、例えば、無水コハク酸とエチレンオキサイド、プロピレンオキサイド等との共重合体があげられる。   Examples of the synthetic aliphatic polyester include copolymers of cyclic acid anhydrides and oxiranes such as succinic anhydride and ethylene oxide, propylene oxide.

上記菌体内で生合成される脂肪族ポリエステルとしては、アルカリゲネスユートロファスをはじめとする菌体内でアセチルコエンチームA(アセチルCoA)により生合成される脂肪族ポリエステルがあげられる。この菌体内で生合成される脂肪族ポリエステルは、主にポリ−β−ヒドロキシ酪酸(ポリ3HB)であるが、プラスチックスとしての実用特性向上のために、ヒドロキシ吉草酸(HV)を共重合し、ポリ(3HB−CO−3HV)の共重合体にすることが工業的に有利である。HV共重合比は、一般的に0〜40mol%が好ましい。さらに、ヒドロキシ吉草酸のかわりに3−ヒドロキシヘキサノエート、3−ヒドロキシオクタノエート、3−ヒドロキシオクタデカノエート等の長鎖のヒドロキシアルカノエートを共重合してもよい。   Examples of the aliphatic polyester biosynthesized in the microbial cells include aliphatic polyesters biosynthesized by acetyl coenteam A (acetyl CoA) in the microbial cells including Alkali geneus eutrophus. The aliphatic polyester biosynthesized in the cells is mainly poly-β-hydroxybutyric acid (poly-3HB), but is copolymerized with hydroxyvaleric acid (HV) to improve the practical properties of plastics. It is industrially advantageous to make a copolymer of poly (3HB-CO-3HV). The HV copolymerization ratio is generally preferably 0 to 40 mol%. Furthermore, long-chain hydroxyalkanoates such as 3-hydroxyhexanoate, 3-hydroxyoctanoate and 3-hydroxyoctadecanoate may be copolymerized in place of hydroxyvaleric acid.

(層構成)
本発明にかかるフィルムカッターは、結晶性の異なるポリ乳酸系重合体を主成分とする少なくとも2層から構成される積層体である。ここで一方の最外層(A層)を構成するポリ乳酸系重合体は、結晶性であることが好ましい。また他方の最外層(B層)を構成するポリ乳酸系重合体は、A層を構成するポリ乳酸系重合体よりも結晶性が低いものを使用する。
また、本発明のフィルムカッターを収納箱に装着する際には、B層が収納箱面に配設されることが好ましい。
(Layer structure)
The film cutter according to the present invention is a laminate composed of at least two layers mainly composed of polylactic acid polymers having different crystallinity. Here, the polylactic acid polymer constituting one outermost layer (A layer) is preferably crystalline. Moreover, the polylactic acid-type polymer which comprises the other outermost layer (B layer) uses a thing with crystallinity lower than the polylactic acid-type polymer which comprises A layer.
Moreover, when mounting the film cutter of this invention to a storage box, it is preferable that B layer is arrange | positioned by the storage box surface.

上記A層を構成するポリ乳酸系重合体のD−乳酸の含有割合Da(%)と、上記B層を構成するポリ乳酸系重合体のD−乳酸の含有割合Db(%)とは、
Da≦7 かつ Db−Da>3
の関係を有することが重要である。
The D-lactic acid content ratio Da (%) of the polylactic acid polymer constituting the A layer and the D-lactic acid content ratio Db (%) of the polylactic acid polymer constituting the B layer are:
Da ≦ 7 and Db-Da> 3
It is important to have a relationship of

(A層)
すなわち、A層はフィルムカッターと収納箱を接着させる際の支持層となるので、このA層を構成するポリ乳酸系重合体中のD−乳酸の割合Daは、7%以下が好ましく、5%以下がより好ましい。7%以下であれば支持層としての結晶化度は十分であり、耐熱性の点において加熱された際に収縮変形を起こすことがない。
(A layer)
That is, since the A layer serves as a support layer for bonding the film cutter and the storage box, the ratio Da of D-lactic acid in the polylactic acid polymer constituting the A layer is preferably 7% or less, and preferably 5%. The following is more preferable. If it is 7% or less, the degree of crystallinity as the support layer is sufficient, and shrinkage deformation does not occur when heated in terms of heat resistance.

(B層)
B層は収納箱との超音波融着による接着層となるので、このB層を構成するポリ乳酸系重合体中のD−乳酸の割合Dbは、Daよりも3%を超えて高いことが好ましい。この差が3%より大きければ、結晶化度及び融点ともに、上記A層を構成するポリ乳酸系重合体と十分に差を有しており、支持層であるA層に影響を及ぼすような高温等の過度な条件で接着する必要が生じない。すなわち、高温の接着では支持層も加熱されて熱収縮が起るので、製品に波打ち、しわ等を発生させるといった問題を生じさせるからである。
したがって、支持層に比して結晶化度、融点を低めるためには、上記の範囲に設定することが好ましい。
(B layer)
Since the B layer becomes an adhesive layer by ultrasonic fusion with the storage box, the ratio Db of D-lactic acid in the polylactic acid polymer constituting the B layer may be higher than Da by more than 3%. preferable. If this difference is greater than 3%, both the crystallinity and the melting point are sufficiently different from the polylactic acid polymer constituting the A layer, and a high temperature that affects the A layer as a support layer. It is not necessary to bond under excessive conditions such as. That is, in high-temperature bonding, the support layer is also heated to cause heat shrinkage, which causes problems such as waviness and wrinkles in the product.
Therefore, in order to lower the crystallinity and the melting point as compared with the support layer, it is preferable to set the above range.

上記A層を構成するポリ乳酸系重合体、及び上記B層を構成するポリ乳酸系重合体は、異なる2種類以上のポリ乳酸系重合体であってもよい。この場合、D−乳酸含有割合Da、及びDbはそれぞれ2種類以上のポリ乳酸系重合体を構成するD−乳酸の配合割合から算出される平均値となる。   The polylactic acid polymer constituting the A layer and the polylactic acid polymer constituting the B layer may be two or more different polylactic acid polymers. In this case, the D-lactic acid content ratios Da and Db are average values calculated from the blending ratio of D-lactic acid constituting two or more types of polylactic acid-based polymers.

上記A層、及びB層は、上記積層体の各々一方の最外層を構成する。
従って上記積層体の構成は、A層/B層の2層構成でもよいし、A層/A層/B層の3層構成でもよい。さらにはA層/B層/A層・・・/B層や、A層/B層/B層/A層・・・/B層の多層構成でもよい。
さらに、本発明の効果を阻害しない範囲で、A層/B層の各層の間に中間層としてリサイクル樹脂層や別の第3層が1層以上積層してあってもよい。
The A layer and the B layer constitute one outermost layer of the laminate.
Therefore, the laminate may have a two-layer configuration of A layer / B layer or a three-layer configuration of A layer / A layer / B layer. Furthermore, a multilayer structure of A layer / B layer / A layer... / B layer or A layer / B layer / B layer / A layer.
Furthermore, one or more recycled resin layers or another third layer may be laminated as an intermediate layer between the A layer / B layer as long as the effects of the present invention are not impaired.

(B層の厚み比率)
これら最終の積層体の最外層を構成するB層の厚みは、2μm以上、好ましくは5μm以上であり、また上記積層体中の厚み比率で80%以下、好ましくは60%以下であることが好ましい。2μm未満であると所望の接着性が得られない場合があり、厚み比率が80%を超えると超音波融着装置でフィルムカッターを発熱溶融させた際に、溶融部分が多すぎて、製品に波打ち、しわ等の不具合が発生する場合がある。
(B layer thickness ratio)
The thickness of the B layer constituting the outermost layer of these final laminates is 2 μm or more, preferably 5 μm or more, and the thickness ratio in the laminate is 80% or less, preferably 60% or less. . If the thickness is less than 2 μm, the desired adhesiveness may not be obtained. If the thickness ratio exceeds 80%, when the film cutter is heated and melted with an ultrasonic fusing device, there are too many melted parts, resulting in a product. Problems such as undulations and wrinkles may occur.

(フィルムカッターの厚み)
本発明のフィルムカッターの厚みは0.15mm〜0.5mm程度、好ましくは0.2mm〜0.35mm程度が好ましい。0.15mm未満では剛性がなく、フィルムカッターがラップフィルム等を切断する際に変形する等の不具合が生じる場合がある。また0.5mm以上では切れ性が悪くなる等の問題が生じることがある。
(Thickness of film cutter)
The thickness of the film cutter of the present invention is about 0.15 mm to 0.5 mm, preferably about 0.2 mm to 0.35 mm. If it is less than 0.15 mm, there is no rigidity, and there may be problems such as deformation when the film cutter cuts a wrap film or the like. On the other hand, when the thickness is 0.5 mm or more, problems such as poor cutting performance may occur.

(無機充填剤)
本発明のフィルムカッターは、強度や耐久性等を向上させたり、加工性を向上させるため、無機充填剤を含有させることもできる。無機充填剤としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸マグネシウム、硫酸バリウム、硫酸カルシウム、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化チタン、アルミナ、水酸化アルミニウム、ヒドロキシアパタイト、シリカ、マイカ、タルク、カオリン、クレー、ガラス粉、アスベスト粉、ゼオライト、珪酸白土等が挙げられる。
(Inorganic filler)
The film cutter of the present invention can contain an inorganic filler in order to improve strength, durability, etc. or improve workability. Inorganic fillers include calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, alumina, aluminum hydroxide, hydroxyapatite, silica, mica, talc , Kaolin, clay, glass powder, asbestos powder, zeolite, silicate clay and the like.

(他の添加剤等)
さらに本発明のフィルムカッターには、副次的添加剤を加えて色々な改質を行うことが出来る。副次的添加剤の例としては安定剤、酸化防止剤、紫外線吸収剤、顔料、静電剤、導電剤、離型剤、可塑剤、香料、抗菌剤、核形成剤等その他類似のものが挙げられる。
(Other additives)
Furthermore, the film cutter of the present invention can be modified in various ways by adding secondary additives. Examples of secondary additives include stabilizers, antioxidants, UV absorbers, pigments, electrostatic agents, conductive agents, mold release agents, plasticizers, fragrances, antibacterial agents, nucleating agents, and other similar ones. Can be mentioned.

(積層方法)
本発明のフィルムカッターを構成する積層体の積層方法としては、本発明の目的を損なわなければ、特に限定されないが、例えば、(1)2または3台以上の押出機を用い、マルチマニホールドまたはフィードブロック方式の口金で積層化し、溶融シートとして押し出す共押出法、(2)巻き出した一方の層の上にもう一方の樹脂をコーティングする方法、(3)適温にある各層をロールやプレス機を使って熱圧着する方法、あるいは(4)接着剤を使って貼合せる方法等が挙げられる。
(Lamination method)
The method for laminating the laminate constituting the film cutter of the present invention is not particularly limited as long as the object of the present invention is not impaired. For example, (1) using two or three or more extruders, multi-manifold or feed Co-extrusion method that is laminated with a block type die and extruded as a molten sheet, (2) A method of coating the other resin on one of the unrolled layers, (3) Roll or press each layer at an appropriate temperature The method of using and thermocompression bonding, or the method of (4) bonding using an adhesive agent etc. are mentioned.

また、上記積層体のA層を構成するポリ乳酸系重合体に耐熱性を付与する方法としては、(1)融した積層体を徐冷する方法、(2)積層体をアニーリングする方法、(3)積層体を2軸に延伸した後、熱処理する方法等が挙げられるが、分子配向による耐衝撃性等の物性向上が期待できる(3)の方法が、より実用性の高い積層体が得られ好ましい。   In addition, as a method for imparting heat resistance to the polylactic acid polymer constituting the layer A of the laminate, (1) a method of slowly cooling the melted laminate, (2) a method of annealing the laminate, 3) A method in which the laminate is biaxially stretched and then heat-treated can be mentioned. The method (3), which can be expected to improve physical properties such as impact resistance by molecular orientation, provides a more practical laminate. It is preferable.

(製造方法)
ポリ乳酸系重合体を主成分とする2軸延伸積層体の製造方法としては、Tダイ、Iダイ、丸ダイ等から押し出ししたシート状物又は円筒状物を冷却キャストロールや水、圧空等により急冷し非結晶に近い状態で固化させた後、ロール法、テンター法、チューブラー法等により2軸に延伸する方法が挙げられる。
通常2軸延伸積層体の製造においては縦延伸をロール法で、横延伸をテンター法で行う逐次2軸延伸法、また縦横同時にテンターで延伸する同時2軸延伸法が一般的である。
延伸条件としては、延伸温度55〜90℃、好ましくは65〜80℃、縦延伸倍率1.5倍、好ましくは2〜4倍、横延伸倍率1.5〜5倍、好ましくは2〜4倍、延伸速度10〜100000%/分、好ましくは100〜10000%/分である。しかしながら、これらの適性範囲は重合体の組成や、未延伸シートの熱履歴によって異なってくるので、積層体の強度、伸びを考慮しながら適宜決められる。
上記延伸倍率ならびに延伸温度の範囲にない場合には、得られた積層体の厚み精度は著しく低下したものであり、特に延伸後熱処理される積層体においてはこの傾向が著しい。このような厚み振れは、二次加工において、製品にしわ、波打ち等の外観をひどく生じさせてしまうような要因となる。
(Production method)
As a method for producing a biaxially stretched laminate comprising a polylactic acid-based polymer as a main component, a sheet-like product or a cylindrical product extruded from a T-die, I-die, round die, etc. is cooled by a cast roll, water, compressed air, etc. Examples include a method of rapidly cooling and solidifying in a state close to an amorphous state and then stretching biaxially by a roll method, a tenter method, a tubular method, or the like.
Usually, in the production of a biaxially stretched laminate, a sequential biaxial stretching method in which longitudinal stretching is performed by a roll method and a lateral stretching is performed by a tenter method, and a simultaneous biaxial stretching method in which stretching is performed by a tenter simultaneously in the vertical and horizontal directions are generally used.
As stretching conditions, a stretching temperature of 55 to 90 ° C., preferably 65 to 80 ° C., a longitudinal stretching ratio of 1.5 times, preferably 2 to 4 times, a transverse stretching ratio of 1.5 to 5 times, preferably 2 to 4 times. The stretching speed is 10 to 100000% / min, preferably 100 to 10000% / min. However, these suitable ranges vary depending on the composition of the polymer and the thermal history of the unstretched sheet, and therefore can be appropriately determined in consideration of the strength and elongation of the laminate.
When the stretching ratio and the stretching temperature are not within the above ranges, the thickness accuracy of the obtained laminate is significantly reduced, and this tendency is particularly remarkable in a laminate that is heat-treated after stretching. Such thickness fluctuation is a factor that causes the appearance of products such as wrinkles and undulations in the secondary processing.

以下に実施例を示すが、これらにより本発明は何ら制限を受けるものではない。なお実施例、および比較例中の物性値は以下の方法により測定、評価した。   Examples are shown below, but the present invention is not limited by these. In addition, the physical-property value in an Example and a comparative example was measured and evaluated with the following method.

(1)延伸倍率
縦延伸倍率=縦延伸後の積層体の流れ速度/縦延伸前の原シートの流れ速度

横延伸倍率={(延伸後の積層体幅)−(クリップが把持していた幅)}/{(延伸前の原シート幅)−(クリップが把持していた幅)}

横方向の延伸倍率は、縦延伸前の原シート幅からテンターのクリップに把持する部分の幅を差し引いた値で、横延伸後に得られる幅からクリップに把持していた部分の幅を差し引いた長さを割り付けた値である。
(1) Stretch ratio Longitudinal stretch ratio = Flow rate of laminate after longitudinal stretching / Flow rate of original sheet before longitudinal stretching

Transverse stretch ratio = {(Laminated body width after stretching) − (Width held by clip)} / {(Original sheet width before stretching) − (Width held by clip)}

The draw ratio in the transverse direction is the value obtained by subtracting the width of the portion gripped by the clip of the tenter from the width of the original sheet before longitudinal stretching, and the length obtained by subtracting the width of the portion held by the clip from the width obtained after transverse stretching. This is the value assigned.

(2)超音波融着
超音波発振器と超音波振動子、及び溶着ホーンを有する超音波融着装置を用い、セット台の上に米秤量400g/m、厚さ:0.8mmの板紙を乗せ、次いでその上にフィルムカッターを乗せ、その上方よりホーンを圧着量:0.2mmなるまで下降させて、所定時間にて超音波接着した。
圧着量=(フィルムカッターの厚さ+板紙の厚さ)−(融着ホーン先端からセット台までの距離)
(2) Ultrasonic welding Using an ultrasonic welding device having an ultrasonic oscillator, an ultrasonic vibrator, and a welding horn, a paperboard having a weight of 400 g / m 2 and a thickness of 0.8 mm on a set table. Then, a film cutter was placed thereon, and the horn was lowered from above to a pressure-bonding amount of 0.2 mm, and was ultrasonically bonded for a predetermined time.
Crimping amount = (film cutter thickness + paperboard thickness)-(distance from tip of fusion horn to set stand)

(3)超音波融着強度
フィルムカッターと板紙を手で剥離し、板紙が材料破壊するものを○、剥がす際の抵抗に関係なく界面で剥離するものを×とした。
(3) Ultrasonic fusion strength The film cutter and the paperboard were peeled off by hand, and the paperboard was broken by ○, and the one peeled off at the interface regardless of the resistance when peeled was marked by x.

(4)超音波融着外観
前項の方法で融着させたフィルムカッターの外観を目視で行い、波打ち、しわ等が全くないか、多少あっても実用上問題ないものを○、波打ち、しわ等が目立ち、実用上問題があると判断したものを×とした。
(4) Ultrasonic fusion appearance The appearance of the film cutter fused by the method described in the above item is visually observed, and there is no waviness, wrinkles, etc. Was marked and marked as x for practical problems.

(5)切れ性
図1に示すような形状のフィルムカッターを装着した板紙を製箱し、その中に食品包装用ラップフィルム(三菱樹脂(株)製:商品名:ダイアラップ、ポリ塩化ビニル樹脂製、厚さ:13μm、幅:30cm)を収納する。当該ラップフィルムがフィルムカッターに対し、45°の角度になるようにセットし、1000mm/minの速度で引張った時の応力を測定した。
(5) Cutting property A paperboard equipped with a film cutter having a shape as shown in FIG. 1 is made into a box, and a wrapping film for food packaging (Mitsubishi Resin Co., Ltd .: Trade name: Diawrap, polyvinyl chloride resin) Manufactured, thickness: 13 μm, width: 30 cm). The wrap film was set at an angle of 45 ° with respect to the film cutter, and the stress when it was pulled at a speed of 1000 mm / min was measured.

(6)切れ耐久性
前項の切断試験を繰り返し、500回切り終えた際の応力を測定した。
(6) Cutting durability The cutting test described in the previous section was repeated, and the stress when cutting was completed 500 times was measured.

(7)総合評価
上記の超音波融着強度及び外観が全て○であって、かつ切れ性(初期)が後述の比較例5の紙製フィルムカッターと同等以下の荷重であり、さらに切れ耐久性(500回)の値が初期の荷重の1.5倍以下であるサンプルを○と表記し、超音波融着強度および外観において1つでも×があるサンプル、または切れ性や切れ耐久性の値が前記を満足しないサンプルについては×と表記した。
(7) Comprehensive evaluation The above ultrasonic fusion strength and appearance are all ◯, and the cutability (initial) is a load equal to or less than that of the paper film cutter of Comparative Example 5 described later, and the cut durability. Samples with a value of (500 times) of 1.5 times or less of the initial load are marked with ◯, and there is at least one x in the ultrasonic fusion strength and appearance, or the values of cutability and cut durability However, a sample that does not satisfy the above was marked as x.

(積層体の樹脂の構成)
積層体を構成する樹脂として、表1に示す第1成分単独、または第1成分と第2成分との混合物を用いた。混合体の場合のD−乳酸割合は両者の質量分率からの平均値として算出した。
(Structure of the resin of the laminate)
As resin which comprises a laminated body, the 1st component independent shown in Table 1 or the mixture of the 1st component and the 2nd component was used. The D-lactic acid ratio in the case of the mixture was calculated as an average value from the mass fraction of both.

Figure 0004794187
Figure 0004794187

[実施例1]
L−乳酸:D−乳酸=99.5:0.5(Da=0.5%)の構造単位を持ち、ガラス転移点(Tg)58℃のポリ乳酸重合体(表1の樹脂1)に、乾燥した平均粒径1.4μmの粒状シリカ:0.1質量部、及びアナターゼ型酸化チタン9質量部を混合して40mmφ単軸押出機にて、2層のマルチマニホールド式の口金より表層(A層)として220℃で押出した。
また、L−乳酸:D−乳酸=80:20の構造単位を持ち、ガラス転移点(Tg)52℃のポリ乳酸80質量%、L−乳酸:D−乳酸=95:5の構造単位を持ち、ガラス転移点(Tg)56℃のポリ乳酸20質量%を混合して、合計100質量部のポリ乳酸(Db=17%、表1の樹脂5)に乾燥した平均粒径1.4μmの粒状シリカ:0.1質量部、及びアナターゼ型酸化チタン9質量部を混合して25mmφの同方向二軸押出機にて、同様の口金より裏層(B層)として210℃で押出した。
表層(A層)、裏層(B層)の厚み比が9:1になるよう溶融樹脂の吐出量を調整した。この共押出シートを約43℃のキャスティングロールにて急冷し、未延伸シートを得た。続いて長手方向に76℃で2.6倍のロール延伸、次いで、幅方向にテンターで72℃の温度で3.2倍に延伸した。テンターでの熱処理ゾーンの温度は140℃にし、熱処理した積層体を作製した。積層体厚みはおおよそ平均で250μmとなるように押出機からの溶融樹脂の吐出量とライン速度を調整した。
[Example 1]
A polylactic acid polymer (resin 1 in Table 1) having a structural unit of L-lactic acid: D-lactic acid = 99.5: 0.5 (Da = 0.5%) and having a glass transition point (Tg) of 58 ° C. In addition, 0.1 parts by mass of dried granular silica having an average particle diameter of 1.4 μm and 9 parts by mass of anatase-type titanium oxide were mixed, and the surface layer (from the two-layer multi-manifold die using a 40 mmφ single screw extruder ( Extruded at 220 ° C. as layer A).
Further, it has a structural unit of L-lactic acid: D-lactic acid = 80: 20, has a structural unit of L-lactic acid: D-lactic acid = 95: 5, 80% by mass of polylactic acid having a glass transition point (Tg) of 52 ° C. In addition, 20% by mass of polylactic acid having a glass transition point (Tg) of 56 ° C. was mixed and dried to a total of 100 parts by mass of polylactic acid (Db = 17%, resin 5 in Table 1) with an average particle size of 1.4 μm Silica: 0.1 parts by mass and 9 parts by mass of anatase-type titanium oxide were mixed and extruded at 210 ° C. as a back layer (B layer) from the same die with a 25 mmφ unidirectional twin screw extruder.
The discharge amount of the molten resin was adjusted so that the thickness ratio of the surface layer (A layer) and the back layer (B layer) was 9: 1. This coextruded sheet was quenched with a casting roll at about 43 ° C. to obtain an unstretched sheet. Subsequently, the film was stretched 2.6 times at 76 ° C. in the longitudinal direction, and then stretched 3.2 times at a temperature of 72 ° C. with a tenter in the width direction. The temperature of the heat treatment zone in the tenter was 140 ° C., and a heat treated laminate was produced. The amount of molten resin discharged from the extruder and the line speed were adjusted so that the thickness of the laminate was approximately 250 μm on average.

[実施例2〜5、7、10]
表2に示すように、L−乳酸とD−乳酸の異なるポリ乳酸系重合体(表1に記載の各樹脂に相当する。)を各々実施例1と同様に表層(A層)、及び裏層(B層)にして所定の厚み比率になるよう押出し、2軸延伸後熱処理して積層体を得た。
[Examples 2-5, 7, 10]
As shown in Table 2, a polylactic acid-based polymer (corresponding to each resin described in Table 1) having different L-lactic acid and D-lactic acid was used in the same manner as in Example 1 for the surface layer (A layer) and the back surface. A layer (B layer) was extruded to have a predetermined thickness ratio, biaxially stretched and then heat treated to obtain a laminate.

[実施例6]
裏層(B層)に生分解性脂肪族ポリエステル(昭和高分子製ビオノーレ3003 融点:95℃、ガラス転移点:−40℃)をポリ乳酸/生分解性脂肪族ポリエステル=90/10質量%になるように混合した以外は実施例1と同様の方法にて積層体を得た。
[Example 6]
In the back layer (B layer), biodegradable aliphatic polyester (Bionole 3003, Showa High Polymer melting point: 95 ° C., glass transition point: −40 ° C.) is polylactic acid / biodegradable aliphatic polyester = 90/10% by mass A laminate was obtained in the same manner as in Example 1 except that mixing was performed.

[実施例8]
L−乳酸:D−乳酸=99.5:0.5(Da=0.5%)の構造単位を持ち、ガラス転移点(Tg)58℃のポリ乳酸重合体(表1の樹脂1)に、乾燥した平均粒径1.4μmの粒状シリカ:0.1質量部、及びアナターゼ型酸化チタン9質量部を混合して40mmφ単軸押出機にて、3層のマルチマニホールド式の口金より表層(A層)、および中間層として220℃で押出した。
また、L−乳酸:D−乳酸=80:20の構造単位を持ち、ガラス転移点(Tg)52℃のポリ乳酸80質量%、L−乳酸:D−乳酸=95:5の構造単位を持ち、ガラス転移点(Tg)56℃のポリ乳酸20質量%を混合して、合計100質量部のポリ乳酸(Db=17%、表1の樹脂5)に乾燥した平均粒径1.4μmの粒状シリカ:0.1質量部、及びアナターゼ型酸化チタン9質量部を混合して25mmφの同方向二軸押出機にて、同様の口金より裏層(B層)として210℃で押出した。
表層(A層)、中間層、裏層(B層)の厚み比が8:1:1になるよう溶融樹脂の吐出量を調整した。この共押出シートを約44℃のキャスティングロールにて急冷し、未延伸シートを得た。続いて長手方向に76℃で2.6倍のロール延伸、次いで、幅方向にテンターで72℃の温度で3.2倍に延伸した。テンターでの熱処理ゾーンの温度は140℃にし、熱処理した積層体を作製した。積層体厚みはおおよそ平均で250μmとなるように押出機からの溶融樹脂の吐出量とライン速度を調整した。
[Example 8]
A polylactic acid polymer (resin 1 in Table 1) having a structural unit of L-lactic acid: D-lactic acid = 99.5: 0.5 (Da = 0.5%) and having a glass transition point (Tg) of 58 ° C. Then, dry granular silica having an average particle size of 1.4 μm: 0.1 part by mass and 9 parts by mass of anatase-type titanium oxide were mixed, and the surface layer (from the three-layer multi-manifold die using a 40 mmφ single screw extruder ( A layer), and extruded at 220 ° C. as an intermediate layer.
Further, it has a structural unit of L-lactic acid: D-lactic acid = 80: 20, has a structural unit of L-lactic acid: D-lactic acid = 95: 5, 80% by mass of polylactic acid having a glass transition point (Tg) of 52 ° C. In addition, 20% by mass of polylactic acid having a glass transition point (Tg) of 56 ° C. was mixed and dried to a total of 100 parts by mass of polylactic acid (Db = 17%, resin 5 in Table 1) with an average particle size of 1.4 μm Silica: 0.1 parts by mass and 9 parts by mass of anatase-type titanium oxide were mixed and extruded at 210 ° C. as a back layer (B layer) from the same die with a 25 mmφ unidirectional twin screw extruder.
The amount of molten resin discharged was adjusted so that the thickness ratio of the surface layer (A layer), the intermediate layer, and the back layer (B layer) was 8: 1: 1. This coextruded sheet was quenched with a casting roll at about 44 ° C. to obtain an unstretched sheet. Subsequently, the film was stretched 2.6 times at 76 ° C. in the longitudinal direction, and then stretched 3.2 times at a temperature of 72 ° C. with a tenter in the width direction. The temperature of the heat treatment zone in the tenter was 140 ° C., and a heat treated laminate was produced. The amount of molten resin discharged from the extruder and the line speed were adjusted so that the thickness of the laminate was approximately 250 μm on average.

[実施例9]
L−乳酸:D−乳酸=99.5:0.5(Da=0.5%)の構造単位を持ち、ガラス転移点(Tg)58℃のポリ乳酸重合体(表1の樹脂1)に、乾燥した平均粒径1.4μmの粒状シリカ:0.1質量部、及びアナターゼ型酸化チタン9質量部を混合して40mmφ単軸押出機にて、3層のマルチマニホールド式の口金より表層(A層)として220℃で押出した。
また、L−乳酸:D−乳酸=80:20の構造単位を持ち、ガラス転移点(Tg)52℃のポリ乳酸80質量%、L−乳酸:D−乳酸=95:5の構造単位を持ち、ガラス転移点(Tg)56℃のポリ乳酸20質量%を混合して、合計100質量部のポリ乳酸(Db=17%、表1の樹脂5)に乾燥した平均粒径1.4μmの粒状シリカ:0.1質量部、及びアナターゼ型酸化チタン9質量部を混合して25mmφの同方向二軸押出機にて、同様の口金より中間層、および裏層(B層)として210℃で押出した。
表層(A層)、中間層、裏層(B層)の厚み比が8:1:1になるよう溶融樹脂の吐出量を調整した。この共押出シートを約44℃のキャスティングロールにて急冷し、未延伸シートを得た。続いて長手方向に76℃で2.6倍のロール延伸、次いで、幅方向にテンターで72℃の温度で3.2倍に延伸した。テンターでの熱処理ゾーンの温度は140℃にし、熱処理した積層体を作製した。積層体厚みはおおよそ平均で250μmとなるように押出機からの溶融樹脂の吐出量とライン速度を調整した。
[Example 9]
A polylactic acid polymer (resin 1 in Table 1) having a structural unit of L-lactic acid: D-lactic acid = 99.5: 0.5 (Da = 0.5%) and having a glass transition point (Tg) of 58 ° C. Then, dry granular silica having an average particle size of 1.4 μm: 0.1 part by mass and 9 parts by mass of anatase-type titanium oxide were mixed, and the surface layer (from the three-layer multi-manifold die using a 40 mmφ single screw extruder ( Extruded at 220 ° C as layer A).
Further, it has a structural unit of L-lactic acid: D-lactic acid = 80: 20, has a structural unit of L-lactic acid: D-lactic acid = 95: 5, 80% by mass of polylactic acid having a glass transition point (Tg) of 52 ° C. In addition, 20% by mass of polylactic acid having a glass transition point (Tg) of 56 ° C. was mixed and dried to a total of 100 parts by mass of polylactic acid (Db = 17%, resin 5 in Table 1) with an average particle size of 1.4 μm Silica: 0.1 parts by mass and 9 parts by mass of anatase-type titanium oxide were mixed and extruded at 210 ° C as an intermediate layer and a back layer (B layer) from the same die in a 25 mmφ co-directional twin-screw extruder. did.
The amount of molten resin discharged was adjusted so that the thickness ratio of the surface layer (A layer), the intermediate layer, and the back layer (B layer) was 8: 1: 1. This coextruded sheet was quenched with a casting roll at about 44 ° C. to obtain an unstretched sheet. Subsequently, the film was stretched 2.6 times at 76 ° C. in the longitudinal direction, and then stretched 3.2 times at a temperature of 72 ° C. with a tenter in the width direction. The temperature of the heat treatment zone in the tenter was 140 ° C., and a heat treated laminate was produced. The amount of molten resin discharged from the extruder and the line speed were adjusted so that the thickness of the laminate was approximately 250 μm on average.

[比較例1、2]
表3に示すように、L−乳酸とD−乳酸の異なるポリ乳酸系重合体(表1に記載の各樹脂に相当する。)を各々実施例1と同様に表層(A層)、及び裏層(B層)にして所定の厚み比率になるよう押出し、2軸延伸後熱処理して積層体を得た。
[Comparative Examples 1 and 2]
As shown in Table 3, a polylactic acid-based polymer (corresponding to each resin described in Table 1) having different L-lactic acid and D-lactic acid was coated on the surface layer (A layer) and the back surface in the same manner as in Example 1. A layer (B layer) was extruded to have a predetermined thickness ratio, biaxially stretched and then heat treated to obtain a laminate.

[比較例3]
L−乳酸:D−乳酸=99.5:0.5(Da=0.5%)の構造単位を持ち、ガラス転移点(Tg)58℃のポリ乳酸重合体(表1の樹脂1)に乾燥した平均粒径1.4μmの粒状シリカ:0.1質量部、及びアナターゼ型酸化チタン9質量部を混合して40mmφの同方向二軸押出機にて、単層の口金より210℃で押出した。この押出シートを約42℃のキャスティングロールにて急冷し、未延伸シートを得た。続いて長手方向に76℃で2.6倍のロール延伸、次いで、幅方向にテンターで74℃の温度で3.2倍に延伸した。テンターでの熱処理ゾーンの温度は140℃にし、熱処理したシートを作製した。シート厚みはおおよそ平均で250μmとなるように押出機からの溶融樹脂の吐出量とライン速度を調整した。
[Comparative Example 3]
A polylactic acid polymer (resin 1 in Table 1) having a structural unit of L-lactic acid: D-lactic acid = 99.5: 0.5 (Da = 0.5%) and having a glass transition point (Tg) of 58 ° C. Dry particulate silica with an average particle size of 1.4 μm: 0.1 parts by mass and 9 parts by mass of anatase-type titanium oxide were mixed and extruded at 210 ° C. from a single-layer die using a 40 mmφ co-directional twin-screw extruder. did. This extruded sheet was quenched with a casting roll at about 42 ° C. to obtain an unstretched sheet. Subsequently, the film was stretched 2.6 times at 76 ° C. in the longitudinal direction, and then stretched 3.2 times at a temperature of 74 ° C. with a tenter in the width direction. The temperature of the heat treatment zone in the tenter was 140 ° C. to produce a heat treated sheet. The amount of molten resin discharged from the extruder and the line speed were adjusted so that the sheet thickness was approximately 250 μm on average.

[比較例4]
表3に示すように、L−乳酸とD−乳酸の異なるポリ乳酸系重合体(表1に記載の各樹脂に相当する。)を各々比較例1と同様の方法で所定の厚みになるよう押出し、2軸延伸後熱処理して積層体を得た。
[Comparative Example 4]
As shown in Table 3, L-lactic acid and D-lactic acid different polylactic acid polymers (corresponding to the resins shown in Table 1) are each made to have a predetermined thickness by the same method as in Comparative Example 1. Extrusion, biaxial stretching, and heat treatment were performed to obtain a laminate.

[比較例5]
紙に樹脂を含浸させた、厚み0.3mmのダイニック製の紙製フィルムカッターを試料とした。
[Comparative Example 5]
A sample was made of a paper film cutter made of Dynic having a thickness of 0.3 mm in which paper was impregnated with resin.

Figure 0004794187
Figure 0004794187

Figure 0004794187
Figure 0004794187

Figure 0004794187
Figure 0004794187

Figure 0004794187
Figure 0004794187

[結果]
表4に示すように、実施例1〜10においては超音波融着強度、超音波融着外観に問題のないフィルムカッターであった。また切れ性、及び切れ耐久性も紙製フィルムカッターと比較し、その応力は低く良好な結果が得られた。
一方、比較例1、及び4では融着強度、及び外観に問題のないサンプルを得ることが出来ず、切れ性の評価にまで至らなかった。また比較例2では融着外観に問題があり、比較例3では十分な融着強度が得られず、何れも切れ性評価にまで至らなかった。
[result]
As shown in Table 4, in Examples 1 to 10, it was a film cutter with no problem in ultrasonic fusion strength and ultrasonic fusion appearance. Further, the cutting ability and the cutting durability were lower than those of the paper film cutter, and good results were obtained.
On the other hand, in Comparative Examples 1 and 4, it was not possible to obtain a sample having no problem with the fusion strength and the appearance, and it was not possible to evaluate the cutting ability. In Comparative Example 2, there was a problem in the appearance of fusion, and in Comparative Example 3, sufficient fusion strength could not be obtained, and none of them reached evaluation of cutting performance.

図1は、本発明のフィルムカッターの一例を示す図である。FIG. 1 is a diagram showing an example of the film cutter of the present invention.

符号の説明Explanation of symbols

1 フィルムカッター
2 刃



1 film cutter 2 blades



Claims (3)

ポリ乳酸系重合体を主成分とする少なくとも2層以上から構成される積層体であって、
層の厚みが0.15mm〜0.5mmであり、一方の最外層(A層)を構成するポリ乳酸
系重合体のL−乳酸とD−乳酸との合計に対するD−乳酸の含有割合Da(%)と、他方
の最外層(B層)を構成するポリ乳酸系重合体のL−乳酸とD−乳酸との合計に対するD
−乳酸の割合Db(%)との関係が、
0.5≦Da≦5 かつ 16.5≧Db−Da>3
であり、さらに当該B層は、厚みが12.5μm以上であって、積層体全体における当該
B層の厚み比率が20%以下であり、かつ超音波融着法で収納箱と接着させる接着層であ
ることを特徴とするフィルムカッター。

A laminate composed of at least two layers composed mainly of polylactic acid polymer, the total
The thickness of the layer is 0.15 mm to 0.5 mm, and the content ratio Da of D-lactic acid to the total of L-lactic acid and D-lactic acid of the polylactic acid polymer constituting one outermost layer (A layer) ( %) And D relative to the total of L-lactic acid and D-lactic acid of the polylactic acid polymer constituting the other outermost layer (B layer)
-The relationship with the ratio Db (%) of lactic acid is
0.5 ≦ Da ≦ 5 and 16.5 ≧ Db-Da> 3
Further, the B layer has a thickness of 12.5 μm or more, the thickness ratio of the B layer in the entire laminate is 20 % or less, and is bonded to the storage box by an ultrasonic fusion method. A film cutter characterized by being a layer.

前記積層体が2軸延伸されていることを特徴とする請求項1に記載のフィルムカッター。 The film cutter according to claim 1, wherein the laminate is biaxially stretched. 請求項1または2に記載のフィルムカッターを、超音波融着により、前記B層が収納箱面に配設されるように装着したことを特徴とするフィルムカッター付収納箱。















A storage box with a film cutter, wherein the film cutter according to claim 1 or 2 is mounted by ultrasonic fusion so that the B layer is disposed on the surface of the storage box.















JP2005089195A 2005-03-25 2005-03-25 Film cutter and storage box with film cutter Active JP4794187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005089195A JP4794187B2 (en) 2005-03-25 2005-03-25 Film cutter and storage box with film cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005089195A JP4794187B2 (en) 2005-03-25 2005-03-25 Film cutter and storage box with film cutter

Publications (2)

Publication Number Publication Date
JP2006263892A JP2006263892A (en) 2006-10-05
JP4794187B2 true JP4794187B2 (en) 2011-10-19

Family

ID=37200386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005089195A Active JP4794187B2 (en) 2005-03-25 2005-03-25 Film cutter and storage box with film cutter

Country Status (1)

Country Link
JP (1) JP4794187B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111935B2 (en) * 2007-05-21 2013-01-09 日本ウェーブロック株式会社 Plastic blade sheet, plastic blade, and carton for storing film-like material
MX2011001623A (en) 2008-08-15 2011-05-24 Toray Plastics America Inc Biaxially oriented polylactic acid film with high barrier.
JP5410788B2 (en) * 2009-02-27 2014-02-05 株式会社クレハ Packaging container manufacturing method
US9150004B2 (en) 2009-06-19 2015-10-06 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved heat seal properties
JP5373569B2 (en) * 2009-07-24 2013-12-18 三菱樹脂株式会社 Film cutter
EP2480710B1 (en) 2009-09-25 2018-01-24 Toray Plastics (America) , Inc. Multi-layer high moisture barrier polylactic acid film and its method of forming
WO2011103452A1 (en) 2010-02-19 2011-08-25 Toray Plastics (America) , Inc. Multi-layer high moisture barrier polylactic acid film
WO2011123165A1 (en) 2010-03-31 2011-10-06 Toray Plastics (America), Inc. Biaxially oriented polyactic acid film with reduced noise level
US9492962B2 (en) 2010-03-31 2016-11-15 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier
KR101334639B1 (en) 2013-06-18 2013-11-29 (주)태용인쇄지기공업사 Biodegradable wrap cutting knife how attach
JP6623039B2 (en) * 2015-11-24 2019-12-18 共同印刷株式会社 Carton blade, cutting blade inspection method, carton
JP6202660B1 (en) * 2015-11-30 2017-09-27 日立化成株式会社 Food packaging film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603596B2 (en) * 1993-08-19 1997-04-23 本州製紙株式会社 Ultrasonic sealing method and its device
JP3573605B2 (en) * 1997-09-29 2004-10-06 三井化学株式会社 Film cutter
JP2001219522A (en) * 2000-02-14 2001-08-14 Mitsubishi Plastics Ind Ltd Polylactic acid laminated biaxially stretched film

Also Published As

Publication number Publication date
JP2006263892A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4794187B2 (en) Film cutter and storage box with film cutter
JP4417216B2 (en) Biodegradable laminated sheet
JP4652332B2 (en) Method for producing polyglycolic acid resin multilayer sheet
JP5373569B2 (en) Film cutter
KR20040091573A (en) Coextruded, Heatsealable and Peelable Polyester Film having Easy Peelability, Process for its Production and its Use
WO2008020726A1 (en) Multilayered aliphatic polyester film
KR20050093803A (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet for thermoforming, and thermoformed object obtained therefrom
JP2021160155A (en) Biodegradable laminate paper and packaging material
KR20040091576A (en) Coextruded, Heatsealable and Peelable Polyester Film, Process for its Production and its Use
JP2001219522A (en) Polylactic acid laminated biaxially stretched film
JP2004217289A (en) Biodegradable blister pack
JP2002178450A (en) Lid material for ptp packaging
JP2019119025A (en) Manufacturing method of laminate for film cutter
JP2007030350A (en) Polylactic acid-based laminated biaxially stretched film for pillow packaging
JP2009179400A (en) Biodegradable blister pack
JP5620190B2 (en) Biodegradable resin laminate
JP2008087181A (en) Easily openable laminated film, laminated film and lid material
JP3817164B2 (en) Folded ruled sheet
JP4885419B2 (en) Biaxially stretched polyester film
JP2002254584A (en) Biodegradable laminate
WO2006016569A1 (en) Biaxially oriented polyester films
JP2006341616A (en) Method for producing biodegradable laminate
JP5092450B2 (en) Heat-shrinkable polyester film and method for producing the same
JP2008087180A (en) Easily openable laminated film, laminated film and lid material
JP2004106410A (en) Multilayered molded object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4794187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350