JP4651773B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP4651773B2
JP4651773B2 JP2000101787A JP2000101787A JP4651773B2 JP 4651773 B2 JP4651773 B2 JP 4651773B2 JP 2000101787 A JP2000101787 A JP 2000101787A JP 2000101787 A JP2000101787 A JP 2000101787A JP 4651773 B2 JP4651773 B2 JP 4651773B2
Authority
JP
Japan
Prior art keywords
film
mask
region
channel
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000101787A
Other languages
Japanese (ja)
Other versions
JP2001068680A5 (en
JP2001068680A (en
Inventor
英人 北角
律子 河崎
健司 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2000101787A priority Critical patent/JP4651773B2/en
Publication of JP2001068680A publication Critical patent/JP2001068680A/en
Publication of JP2001068680A5 publication Critical patent/JP2001068680A5/ja
Application granted granted Critical
Publication of JP4651773B2 publication Critical patent/JP4651773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は絶縁表面を有する基板上に薄膜トランジスタ(以下、TFTと記す)で構成された回路を有する半導体装置の作製方法に関する。特に本発明は、 表示領域に設けた画素TFTと、該表示領域の周辺に設けた駆動回路とを同一の基板上に設けた液晶表示装置に代表される電気光学装置、およびそのような電気光学装置を搭載した電子機器に好適に利用できる。尚、本願明細書において半導体装置とは、半導体特性を利用することで機能する装置全般を指し、上記電気光学装置およびその電気光学装置を搭載した電子機器をその範疇に含んでいる。
【0002】
【従来の技術】
絶縁表面を有する基板上に、結晶質シリコン膜で活性層を形成したTFT(以下、結晶質シリコンTFTと記す)は電界効果移動度が高いことから、いろいろな機能回路を形成することが可能であり、そのような機能回路を同一基板上に一体形成した上記電気光学装置が開発されている。アクティブマトリクス型液晶表示装置はその代表例としてよく知られている。
【0003】
結晶質シリコンTFTを用いたアクティブマトリクス型液晶表示装置は、画像表示領域の各画素に画素TFTが形成され、画像表示領域の周辺には駆動回路が設けられている。駆動回路はCMOS回路を基本として形成されるシフトレジスタ回路、レベルシフタ回路、バッファ回路、サンプリング回路などから構成され、このような回路が同一基板上に形成され、一体となって表示装置が完成する。
【0004】
画素TFTや駆動回路の動作条件は必ずしも同一ではないので、そのことからTFTに要求される特性も少なからず異なっている。例えば、画素TFTは液晶に電圧を印加するためのスイッチ素子としての機能が要求されている。液晶は交流で駆動させるので、フレーム反転駆動と呼ばれる方式が多く採用されている。この方式では保持容量の電荷を保持するために、画素TFTに要求される特性は、オフ電流値(TFTがオフ動作時に流れるドレイン電流)を十分低くすることであった。一方、駆動回路のバッファ回路は高い駆動電圧が印加されるため、高電圧が印加されても壊れないようにTFTの耐圧を高めておく必要があった。また電流駆動能力を高めるために、オン電流値(TFTがオン動作時に流れるドレイン電流)を十分確保する必要があった。
【0005】
しかし、結晶質シリコンTFTのオフ電流値は高くなりやすいといった問題点があった。また、ICなどで使われるMOSトランジスタと同様に、結晶質シリコンTFTにはオン電流値の低下といった劣化現象が観測される。その主たる原因はホットキャリア注入であり、ドレイン近傍の高電界によぅて発生したホットキャリアが劣化現象を引き起こすものと考えられている。
【0006】
オフ電流値を低減するためのTFTの構造として、低濃度ドレイン(LDD:Lightly Doped Drain)構造が知られている。この構造はチャネル形成領域と、高濃度に不純物元素を添加して形成するソース領域またはドレイン領域との間に低濃度に不純物元素を添加した領域を設けたものであり、この領域をLDD領域と呼んでいる。
【0007】
LDD領域を有するTFTの作製方法に関し、例えば特許第2564725号には、ゲート絶縁膜をゲート電極よりチャネル幅方向に広く形成し、さらにそのゲート絶縁膜より薄い絶縁膜をその横に形成して、該絶縁膜とゲート絶縁膜との厚みの差を利用してゲート電極の端部とソースまたはドレイン領域との間の半導体膜にLDD領域を形成する方法が開示されている。
【0008】
また、ホットキャリアによる劣化を防ぐための手段として、LDD領域をゲート絶縁膜を介してゲート電極と重なるように配置させた、いわゆるGOLD(Gate-drain Overlapped LDD)構造が知られている。このような構造とすることで、ドレイン近傍の高電界が緩和されてホットキャリア注入を防ぎ、劣化現象の防止に有効である。例えば、「Mutuko Hatano, Hajime Akimoto and Takeshi Sakai,IEDM97 TECHNICAL DIGEST,p523-526,1997」では、シリコンで形成したサイドウオールにより形成したGOLD構造を開示しているが、他の構造のTFTと比べ、きわめて優れた信頼性が得られることが確認されている。
【0009】
このような構造のTFTのソース領域やドレイン領域、およびLDD領域などの不純物領域を形成するための半導体層への不純物元素の導入は、半導体層上に設けたゲート電極やマスク用の絶縁膜を用いて自己整合的に行う方法で行うことが望ましかった。さらに、マスク数を削減するために一旦、ゲート電極やマスク用の絶縁膜を用いて全面に一導電型の不純物元素を導入し、それより高濃度でpチャネル型TFTまたはnチャネル型TFTのいずれか一方のTFTの不純物領域に一導電型とは反対の導電型の不純物元素を導入する方法(本明細書中ではクロスドープ法と記す)がとられていた。
【0010】
【発明が解決しようとする課題】
しかしながら、画素TFTと、シフトレジスタ回路やバッファ回路などの駆動回路のTFTとでは、その要求される特性は必ずしも同じではない。例えば、画素TFTにおいてはゲートに大きな逆バイアス(nチャネル型TFTでは負の電圧)が印加されるが、駆動回路のTFTは基本的に逆バイアス状態で動作することはない。また、動作速度に関しても、画素TFTは駆動回路のTFTの1/100以下で良かった。
【0011】
GOLD構造はオン電流値の劣化を防ぐ効果は高いが、その反面、通常のLDD構造と比べてオフ電流値が大きくなってしまう問題があった。従って、画素TFTに適用するには好ましい構造ではなかった。逆に通常のLDD構造はオフ電流値を抑える効果は高いが、ドレイン近傍の電界を緩和してホットキャリア注入による劣化を防ぐ効果は低かった。このように、アクティブマトリクス型液晶表示装置のような動作条件の異なる複数の集積回路を有する半導体装置において、全てのTFTを同じ構造で形成することは必ずしも好ましくなかった。このような問題点は、特に結晶質シリコンTFTにおいて、その特性が高まり、またアクティブマトリクス型液晶表示装置に要求される性能が高まるほど顕在化してきた。
【0012】
また、TFTのオフ電流値を低減するための手段はいくつかあるが、チャネル形成領域と不純物領域(LDD領域、ソース領域またはドレイン領域)との接合を良好に形成することが必要であった。そのためには、チャネル形成領域とそれに接する不純物領域との界面における不純物元素の分布を精密に制御する必要があった。しかし、前述のクロスドープ法を実施した場合、一方のTFTの不純物領域には一導電型の不純物元素と、それとは反対の導電型の不純物元素が導入されていて、界面における不純物元素の分布を精密に制御することは困難であった。
【0013】
このようなLDD構造はnチャネル型TFTの特性を重点的に考慮して形成されていた。CMOS回路などを形成するために同一基板上に形成されるpチャネル型TFTは、マスク数を可能な限り少なくするためにシングルドレイン構造で形成することが多かった。しかし、その場合、pチャネル型TFTのソースまたはドレイン領域にnチャネル型TFTのLDD形成用のリン(P)がドーピングされて、チャネル形成領域との接合に欠陥が形成され、オフ電流値が増加してしまう問題があった。
【0014】
本発明はこのような問題点を解決するための技術であり、半導体装置の各回路に配置されるTFTの構造を、回路の機能に応じて適切なものとすることにより、半導体装置の動作特性および信頼性を向上させることを目的とする。
【0015】
【課題を解決するための手段】
上記の課題を解決ずるために本発明の構成は、表示領域に設けた画素TFTと、該表示領域の周辺に設けた駆動回路のnチャネル型TFTとpチャネル型TFTを同一の基板に有する半導体装置において、前記画素TFTと前記駆動回路のTFTとは、活性層と、該活性層に設けられたLDD領域と、該活性層と前記基板とのとの間に設けたゲート絶縁膜と、該ゲート絶縁膜と前記基板との間に設けたゲート電極とを有し、前記画素TFTと前記駆動回路のnチャネル型TFTのLDD領域は、当該ゲート電極と少なくとも一部が重なるように配置され、前記駆動回路のpチャネル型TFTのLDD領域は、当該ゲート電極と全てが重なるように配置されていることを特徴としている。また、前記画素TFTと前記駆動回路とのnチャネル型TFTのLDD領域は、当該TFTに設けられたチャネル保護絶縁膜と重ならず、かつ、ゲート電極と少なくとも一部が重なるように配置され、前記駆動回路のpチャネル型TFTのLDD領域は、当該TFTの保護絶縁膜と重なり、かつ、ゲート電極と重なるように配置されていることを特徴とする。
【0016】
また、他の発明の構成は、前記駆動回路のpチャネル型TFTは、p型を付与する不純物元素とn型を付与する不純物元素との両方を含む不純物領域(A)と、p型を付与する不純物元素だけを含む不純物領域(B)とを有し、前記不純物領域(B)は、前記不純物領域(A)と前記駆動回路のpチャネル型TFTのLDD領域との間に形成されていることを特徴としている。
【0017】
この構造は、マスク数を増加させることなくpチャネル型TFTのソースまたはドレイン領域にドーピングされるリン(P)が、チャネル形成領域との接合部にはドーピングされない構造であり、オフ電流値の低減を目的としている。
【0018】
前記画素TFTに接続する保持容量は、前記基板上に形成された容量配線と、該容量配線上に形成された絶縁膜と、該絶縁膜上に形成された半導体層とから形成されていること、或いは、前記画素TFT上に有機樹脂膜が形成され、該有機樹脂膜上に形成された遮光膜と、該遮光膜に密接して形成された誘電体膜と、一部が前記遮光膜と重なるように設けられ前記画素TFTに接続する画素電極とから、容量が形成されていることを特徴としている。
【0019】
上記課題を解決するために、本発明の半導体装置の作製方法は、表示領域に設けた画素TFTと、該表示領域の周辺に設けた駆動回路のnチャネル型TFTとpチャネル型TFTとを同一の基板上に有する半導体装置の作製方法において、前記画素TFTと前記nチャネル型TFTに、当該ゲート電極と少なくとも一部が重なるLDD領域を形成する工程と、前記駆動回路のpチャネル型TFTに、当該ゲート電極と全てが重なるLDD領域を形成する工程とを有することを特徴としている。また、前記画素TFTと前記nチャネル型TFTに、当該TFTのチャネル保護絶縁膜と重ならず、かつ、ゲート電極と少なくとも一部が重なるLDD領域を形成する工程と、前記駆動回路のpチャネル型TFTに、当該TFTのチャネル保護絶縁膜と全てが重なり、かつ、当該ゲート電極と重なるLDD領域を形成する工程とを有していちことを特徴とする。
【0020】
上記半導体装置の作製方法において、前記駆動回路のpチャネル型TFTに、p型を付与する不純物元素とn型を付与する不純物元素との両方を含む不純物領域(A)と、p型を付与する不純物元素を含む不純物領域(B)とを形成する工程を有し、前記不純物領域(B)は、前記不純物領域(A)と前記駆動回路のpチャネル型TFTのLDD領域との間に形成することが望ましい。
【0021】
また、他の発明の構成は、表示領域に設けた画素TFTと、該表示領域の周辺に設けた駆動回路のnチャネル型TFTとpチャネル型TFTとを同一の基板上に有する半導体装置の作製方法において、基板上にゲート電極を形成する第1の工程と、前記ゲート電極上にゲート絶縁膜を形成する第2の工程と、前記ゲート絶縁膜上に第1および第2の半導体層を形成する第3の工程と、前記第1および第2の半導体層上にチャネル保護膜を形成する第4の工程と、前記第1の半導体層にn型を付与する不純物元素を導入して、前記チャネル保護膜に重ならないnチャネル型TFTのLDD領域を形成する第5の工程と、前記第1の半導体層にn型を付与する不純物元素を導入して、nチャネル型TFTのソース領域またはドレイン領域を形成する第6の工程と、前記第2の半導体層に、p型を付与する不純物元素を導入して、前記チャネル保護膜に重なるpチャネル型TFTのLDD領域とソース領域またはドレイン領域を形成する第7の工程とを有することを特徴としている。
【0022】
上記本発明の半導体装置の作製方法において、前記基板上に容量配線を形成する工程と、該容量配線上に絶縁層を形成する工程と、該絶縁層上に半導体層を形成する工程と、から前記画素TFTに接続する保持容量を形成する工程、或いは、前記画素TFT上に有機樹脂層を形成する工程と、該有機樹脂上に遮光膜を形成する工程と、該遮光膜に密接して誘電体膜を形成する工程と、一部が前記遮光膜と重なるように設けられ前記画素TFTに接続する画素電極を形成する工程とから容量を形成することを特徴としている。前記遮光膜は、アルミニウム、タンタル、チタンから選ばれた一種または複数種を含む材料で形成し、前記誘電体膜は、前記遮光膜を形成する材料の酸化物で形成することが好ましく、該酸化物を形成する方法として陽極酸化法を用いることが最も好ましい。
【0023】
【発明の実施の形態】
本発明の実施の形態について、以下に示す実施例により詳細な説明を行う。
【0024】
[実施例1]
本発明の実施例を図1〜図3を用いて説明する。ここでは、表示領域の画素TFTと、表示領域の周辺に設けられる駆動回路のTFTを同時に作製する方法について工程に従って詳細に説明する。
【0025】
(ゲート電極、ゲート絶縁膜、結晶質半導体膜の形成:図1(A))
図1(A)において、基板101には低アルカリガラス基板や石英基板を用いることができる。この基板101のTFTを形成する表面には、酸化シリコン膜、窒化シリコン膜または窒化酸化シリコン膜などの絶縁膜を形成しておいても良い(図示せず)。ゲート電極102〜104と容量配線105とは、タンタル(Ta)、チタン(Ti)、タングステン(W)、モリブデン(Mo)、アルミニウム(Al)から選ばれた元素またはいずれかを主成分とする材料を用い、スパッタ法や真空蒸着法などの公知の成膜法を用いて被膜を形成した後、端面がテーパ形状となるようにエッチング処理してパターン形成した。例えば、スパッタ法でTa膜を200nmの厚さに形成し、所定の形状にレジストマスクを形成した後、CF4とO2の混合ガスでプラズマエッチング処理をすれば所望の形状に加工することができる。また、ゲート電極は窒化タンタル(TaN)とTaまたは窒化タングステン(WN)とWの2層構造としても良い(図示せず)。ここでは図示はしてないがゲート電極に接続するゲート配線も同時に形成する。
【0026】
ゲート絶縁膜106は酸化シリコン、窒化シリコンを成分とする材料で、10〜200nm、好ましくは50〜150nmの厚さで形成する。例えばプラズマCVD法で、SiH4、NH3、N2を原料とした窒化シリコン膜106aを50nm、SiH4とN2Oを原料とした窒化酸化シリコン膜106bを75nmの厚さに積層形成してゲート絶縁膜としても良い。勿論、窒化シリコン膜や酸化シリコン膜からなる一層としても何ら差し支えない。また、清浄な表面を得るために、ゲート絶縁膜の成膜の前にプラズマ水素処理を施すと良かった。
【0027】
次に、TFTの活性層となる結晶質半導体膜の形成を行った。結晶質半導体膜の材料にはシリコンを用いた。まず、ゲート絶縁膜106に密接して、20〜150nmの厚さで非晶質シリコン膜をプラズマCVD法やスパッタ法などの公知の成膜法で形成した。非晶質シリコン膜の作製条件に限定されるものはないが、膜中に含まれる酸素、窒素の不純物元素を5×1018cm-3以下に低減させておくことが望ましい。また、ゲート絶縁膜と非晶質シリコン膜とは同じ成膜法で形成することが可能なので、両者を連続形成しても良い。ゲート絶縁膜を形成した後、一旦大気雰囲気に晒さないことでその表面の汚染を防ぐことが可能となり、作製するTFTの特性バラツキやしきい値電圧の変動を低減させることができる。そして公知の結晶化技術を使用して結晶質シリコン膜107を形成する。例えば、レーザー結晶化法や、熱結晶化法(固相成長法)、または特開平7−130652号公報で開示された技術に従って、触媒元素を用いる結晶化法で結晶質シリコン膜107を形成しても良い。
【0028】
結晶質シリコン膜107のnチャネル型TFTが形成される領域には、しきい値電圧を制御する目的で1×1016〜5×1017cm-3程度のボロン(B)を添加しておいても良い。ボロン(B)の添加はイオンドープ法で実施しても良いし、非晶質シリコン膜を成膜するときに同時に添加しておくこともできる。
【0029】
(マスク絶縁膜形成、n-領域の形成:図1(B))
次に、nチャネル型TFTのLDD領域を形成するために、n型を付与する不純物元素の添加を行った。まず、結晶質シリコン膜107の表面に酸化シリコン膜や窒化シリコン膜から成るマスク絶縁膜108を100〜200nm、代表的には120nmの厚さに形成した。この表面にフォトレジスト膜を全面に形成した後、基板101の裏面からの露光法によりゲート電極102〜104をマスクとしてフォトレジスト膜を感光させ、ゲート電極上にレジストマスク109〜112を形成した。この方法により、ゲート電極上であってゲート電極の内側にレジストマスクを形成することができた。
【0030】
そして、マスク絶縁膜108を介してその下側にある結晶質シリコン膜にn型を付与する不純物元素をイオンドープ法(イオン注入法でも良い)で添加した。半導体の技術分野においてn型を付与する不純物元素には、周期律表第15族の元素からリン(P)、砒素(As)、アンチモン(Sb)などが適用され、ここではリン(P)を用いた。形成した不純物領域113〜118のリン(P)濃度は1×1017〜5×1018cm-3の範囲とすることが望ましく、ここでは、5×1017cm-3とした。本明細書中では、不純物領域113〜118に含まれるn型を付与する不純物元素の濃度を(n-)と表す。
【0031】
(チャネル保護膜形成:図1(C))
次に、このレジストマスクを使用してマスク絶縁膜108をエッチング除去し、チャネル保護膜119〜122を形成した。下地となる結晶質シリコン膜107に対して選択性良くマスク絶縁膜108をエッチングするために、ここではフッ酸系の溶液を用いたウエットエッチング法を採用した。勿論、ドライエッチング法で実施しても良く、例えばCHF3ガスで絶縁膜108をエッチングすることができる。いずれにしてもこの工程ではオーバーエッチングして、レジストマスク109〜112の端面より内側にチャネル保護膜119〜122が形成されるようにした。
【0032】
(n+領域の形成:図2(A))
次にnチャネル型TFTにおいて、ソース領域またはドレイン領域として機能する不純物領域の形成を形成する工程を行った。ここでは、通常の露光法でレジストによるマスク123〜125を形成した。そして、このレジストマスクを用いて容量配線105上のチャネル保護膜122をエッチングして除去した。次いで、結晶質シリコン膜107にn型を付与する不純物元素が添加された不純物領域126〜130をイオンドープ法(イオン注入法でも良い)で形成した。不純物領域126〜130には1×1020〜1×1021cm-3とすれば良く、ここでは5×1020cm-3の濃度で不純物元素を含ませた。この濃度を本明細書中では(n+)と表す。
【0033】
(p+領域の形成:図2(B))
次に、駆動回路のpチャネル型TFTのソース領域およびドレイン領域を形成するために、p型を付与する不純物元素を添加する工程を行った。半導体の技術分野においてp型を付与する不純物元素には、周期律表第13族の元素からボロン(B)、アルミニウム(Al)、ガリウム(Ga)などが適用され、ここではボロン(B)を用いた。チャネル保護膜119上の内側に位置するようにマスク131を形成し、nチャネル型TFTを形成する領域はすべてレジストマスク132、133で覆った。そして、ジボラン(B26)を用いたイオンドープ法(イオン注入法を用いても良い)で不純物領域134〜136を形成した。不純物領域135a、135b、136a、136bは結晶質シリコン膜の表面から不純物元素が添加され、この領域のボロン(B)濃度を1.5×1020〜3×1021cm-3の範囲とし、ここでは2×1021cm-3とした。本明細書中では、ここで形成された不純物領域135a、135b、136a、136bに含まれるp型を付与する不純物元素の濃度を(p+)と表す。一方、不純物領域134はチャネル保護膜119を介して結晶質シリコン膜に不純物元素が添加されるため、この領域のボロン(B)濃度は1×1016〜1×1018cm-3となった。本明細書中では、ここで形成された不純物領域134に含まれるp型を付与する不純物元素の濃度を(p-)と表す。
【0034】
図1(B)〜図2(A)で示したように、不純物領域135b、136bには前の工程でリン(P)が添加されているにで、ボロン(B)とリン(P)が混在した領域が形成されるが、この工程で添加するボロン(B)濃度をその1.5〜3倍とすることでp型の導電性が確保され、TFTの特性に何ら影響を与えることはなかった。本明細書中ではこの領域を不純物領域(B)とする。そして、不純物領域(B)135b、136bのチャネル形成領域側にある不純物領域135a、136aはボロン(B)のみを含む領域であり、本明細書中ではこの領域を不純物領域(A)とする。また、ゲート電極103に重なり、かつ、チャネル保護膜120とも重なる不純物領域134もボロン(B)のみを含む領域として形成し、この領域はLDD領域として機能する。
【0035】
(第1の層間絶縁膜の形成、熱活性化の工程、水素化の工程:図2(C))
結晶質シリコン膜にそれぞれの不純物元素を選択的に添加したら、結晶質シリコン膜をエッチング処理して島状に分割し、後に第1の層間絶縁膜の一部となる保護絶縁膜137を形成した。保護絶縁膜137は窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜またはそれらを組み合わせた積層膜で形成すれば良い。また、膜厚は100〜400nmとすれば良い。
【0036】
その後、それぞれの濃度で添加されたn型またはp型を付与する不純物元素を活性化するために熱処理工程を行った。この工程はファーネスアニール法、レーザーアニール法、またはラピッドサーマルアニール法(RTA法)などで行うことができる。ここではファーネスアニール法で活性化工程を行った。加熱処理は、窒素雰囲気中において300〜650℃、好ましくは500〜550℃、ここでは525℃で4時間の熱処理を行った。さらに、3〜100%の水素を含む雰囲気中で、300〜450℃で1〜12時間の熱処理を行い、活性層を水素化する工程を行った。この工程は熱的に励起された水素により活性層のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。
【0037】
活性層となる結晶質シリコン膜107を、非晶質シリコン膜から触媒元素を用いる結晶化の方法で作製した場合、結晶質シリコン膜107中にはおよそ1×1017〜5×1019cm-3の触媒元素が残留した。勿論、そのような状態でもTFTを完成させ動作させることに問題はないが、残留する触媒元素を少なくともチャネル形成領域から除去する方がより好ましかった。この触媒元素を除去する手段の一つにリン(P)によるゲッタリング作用を利用する手段があった。ゲッタリングに必要なリン(P)の濃度は図2(B)で形成した不純物領域(n+)と同程度であり、ここで実施される活性化工程の熱処理により、nチャネル型TFTおよびpチャネル型TFTのチャネル形成領域から、リン(P)が添加されている周辺の不純物領域へ触媒元素をゲッタリングをすることができた。その結果チャネル形成領域の触媒元素濃度を5×1017cm-3以下とすることが可能となり、前記不純物領域には1×1018〜5×1020cm-3の触媒元素が偏析した。
【0038】
(層間絶縁膜の形成、ソース・ドレイン配線の形成、パッシベーション膜の形成、画素電極の形成:図3)
活性化工程を終えたら、保護絶縁膜137の上に500〜1500nmの厚さの層間絶縁膜138を形成した。前記保護絶縁膜137と層間絶縁膜138とでなる積層膜を第1の層間絶縁膜とした。その後、それぞれのTFTのソース領域またはドレイン領域に達するコンタクトホールを形成して、ソース配線139〜141と、ドレイン配線142、143を形成した。図示していないが、本実施例ではこの電極を、Ti膜を100nm、Tiを含むアルミニウム膜300nm、Ti膜150nmをスパッタ法で連続して形成した3層構造の積層膜とした。
【0039】
保護絶縁膜137と層間絶縁膜138とは、窒化シリコン膜、酸化シリコン膜または窒化酸化シリコン膜などで形成すれば良いが、いずれにしても膜の内部応力を圧縮応力としておくと良かった。
【0040】
次に、窒化シリコン膜、酸化シリコン膜、または窒化酸化シリコン膜を用い、パッシベーション膜144を50〜500nm(代表的には100〜300nm)の厚さで形成した。その後、この状態で水素化処理を行うとTFTの特性向上に対して好ましい結果が得られた。例えば、3〜100%の水素を含む雰囲気中で、300〜450℃で1〜12時間の熱処理を行うと良く、あるいはプラズマ水素化法を用いても同様の効果が得られた。なお、ここで後に画素電極とドレイン配線を接続するためのコンタクトホールを形成する位置において、パッシベーション膜144に開口部を形成しておいても良い。
【0041】
その後、有機樹脂膜からなる第2の層間絶縁膜145を約1μmの厚さに形成した。適用できる有機樹脂材料としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、BCB(ベンゾシクロブテン)等を使用することができる。ここでは、基板に塗布後、熱重合するタイプのポリイミドを用い、300℃で焼成して形成した。そして、第2の層間絶縁膜145、パッシベーション膜144にドレイン配線143に達するコンタクトホールを形成し、画素電極146を設けた。画素電極146は、透過型液晶表示装置とする場合には透明導電膜を用い、反射型の液晶表示装置とする場合には金属膜を用いれば良い。ここでは透過型の液晶表示装置とするために、酸化インジウム・スズ(ITO)膜を100nmの厚さにスパッタ法で形成した。画素電極190は隣接する画素の電極である。
【0042】
以上の工程で、同一の基板上に表示領域の画素TFTと、表示領域の周辺に設けた駆動回路のTFTとを形成することができた。駆動回路には、nチャネル型TFT168とpチャネル型TFT167が形成され、CMOS回路を基本としたロジック回路を形成することを可能とした。画素TFT169はnチャネル型TFTであり、さらに容量配線105と半導体層166と、その間に形成されている絶縁膜とから保持容量170が画素TFT169に接続している。
【0043】
駆動回路のpチャネル型TFT167は、チャネル形成領域147、ソース領域150a、150b、ドレイン領域151a、151bおよびLDD領域148、149を有している。ソース領域150bおよびドレイン領域151bは不純物領域(B)で形成され、この領域のボロン(B)濃度はリン(P)濃度の1.5〜3倍にしてある。その不純物領域(B)の内側、即ちチャネル形成領域147の側に形成したソース領域150aおよびドレイン領域151aは不純物領域(A)であり、不純物領域(B)と同じ濃度でボロン(B)のみを含む領域である。また、ゲート電極103に重なり、かつ、チャネル保護膜120とも重なるLDD領域148、149もボロン(B)のみを含む領域として形成する。このように、不純物領域(B)をチャネル形成領域から遠ざけることで、チャネル形成領域とそれに接するLDD領域、さらにLDD領域とソース領域またはドレイン領域との接合形成が確実なものとなり、pチャネル型TFTの特性を良好に保つことができた。
【0044】
駆動回路のnチャネル型TFT168は、チャネル形成領域152と、ソース領域155およびドレイン領域156と、LDD領域153、154とを有している。画素TFT169には、チャネル形成領域157、158と、ソース領域またはドレイン領域163〜165と、LDD領域159〜162とを有している。駆動回路のnチャネル型TFTのLDD領域は、ドレイン近傍の高電界を緩和してホットキャリア注入によるオン電流値の劣化を防ぐことを主な目的として設けるものであり、そのために適したn型を付与する不純物元素の濃度は5×1017〜5×1018cm-3とすれば良かった。一方、画素TFTのLDD領域は、オフ電流値を低減することを主たる目的とするために設けられ、その不純物元素の濃度は駆動回路のnチャネル型TFTのLDD領域の濃度と同じとしても良いが、その濃度の1/2〜1/10としても良い。図3では画素TFT169をダブルゲート構造として完成したが、シングルゲート構造でも良いし、複数のゲート電極を設けたマルチゲート構造としても差し支えない。
【0045】
以上の様に本発明は、画素TFTおよび駆動回路が要求する仕様に応じて各回路を構成するTFTの構造を最適化し、半導体装置の動作性能と信頼性を向上させることを可能とすることができた。
【0046】
[実施例2]
本実施例を図4を用い、実施例1とは異なる構造で画素TFTに接続する保持容量を設ける例について説明する。駆動回路のpチャネル型TFT167、nチャネル型TFT168、および画素TFT169は実施例1と同様に作製した。以下、実施例1との相違点について説明する。
【0047】
少なくとも画素TFT上には、第2の層間絶縁膜145上に遮光膜171を形成した。遮光膜171はAl、Ti、Taから選ばれた一種または複数種の元素を主成分とする膜で、100〜300nmの厚さで成膜をし、所定の形状にパターン形成した。さらに、この上に第2の層間絶縁膜と同様に有機樹脂膜を用いて第3の層間絶縁膜172を形成した。第3の層間絶縁膜172の厚さは0.5〜1μmとした。そして、第3の層間絶縁膜172、第2の層間絶縁膜145、パッシベーション膜144にドレイン配線143に達するコンタクトホールを形成し、画素電極173を設けた。画素電極173は、透過型液晶表示装置とする場合には透明導電膜を用い、反射型の液晶表示装置とする場合には金属膜を用いれば良い。ここでは透過型の液晶表示装置とするために、酸化インジウム・スズ(ITO)膜を100nmの厚さにスパッタ法で形成した。このようにして、画素TFT169に接続する保持容量174を、遮光膜171と第3の層間絶縁膜172と画素電極173とから形成することができた。
【0048】
[実施例3]
本実施例では実施例1と実施例2で示したTFTの活性層となる結晶質半導体膜を形成する工程について図5を用いて説明する。まず、基板(本実施例ではガラス基板)1101上に100〜400nmの厚さのゲート電極1102、1103を形成する。ゲート電極はAl、Ti、Ta、Mo、Wから選ばれた一種または複数種の元素を含む材料から形成し、端面がテーパー形状となるようにパターン形成する。また、図示していないが、前記材料の積層構造としても良い。例えば、基板側から窒化タンタル(TaN)とTaの2層構造としても良い。さらに、ゲート電極の表面に陽極酸化法などで酸化物を被覆形成しておいても良い。ゲート絶縁膜1104は、窒化シリコン膜、酸化シリコン膜または窒酸化シリコン膜で形成し、その厚さは20〜200nm、好ましくは75〜125nmで形成する。そして、ゲート絶縁膜1104上に50nm厚の非晶質半導体膜(本実施例では非晶質シリコン膜)1105を大気解放しないで連続的に形成する。
【0049】
次に、重量換算で10ppmの触媒元素(本実施例ではニッケル)を含む水溶液(酢酸ニッケル水溶液)をスピンコート法で塗布して、触媒元素含有層1106を非晶質半導体膜1105の全面に形成する。ここで使用可能な触媒元素は、ニッケル(Ni)以外にも、ゲルマニウム(Ge)、鉄(Fe)、パラジウム(Pd)、スズ(Sn)、鉛(Pb)、コバルト(Co)、白金(Pt)、銅(Cu)、金(Au)、といった元素がある。また、本実施例ではスピンコート法でニッケルを添加する方法を用いたが、蒸着法やスパッタ法などにより触媒元素でなる薄膜(本実施例の場合はニッケル膜)を非晶質半導体膜上に形成する手段をとっても良い。(図5(A))
【0050】
次に、結晶化の前に400〜500℃で1時間程度の熱処理工程を行い、水素を膜中から脱離させた後、500〜650℃(好ましくは550〜570℃)で4〜12時間(好ましくは4〜6時間)の熱処理を行う。本実施例では、550℃で4時間の熱処理を行い、結晶質半導体膜(本実施例では結晶質シリコン膜)1107を形成する。(図5(B))
【0051】
以上のようにして形成された活性層1107は、結晶化を助長する触媒元素(ここではニッケル)を用いることによって、結晶性の優れた結晶質半導体膜を形成することができる。また、さらにその結晶性を高めるために、レーザー結晶化法を併用しても良い。例えば、XeFエキシマレーザー光(波長308nm)を用い、線状ビームを形成して、発振周波数5〜50Hz、エネルギー密度100〜500mJ/cm2として線状ビームのオーバーラップ割合を80〜98%として、図5(B)で作製された結晶質半導体膜1107に照射した。その結果、さらに結晶性の優れた結晶質半導体膜1108を形成することができた。(図5(C))
【0052】
このようにして基板1101上に作製された結晶質半導体膜を用い、実施例1〜実施例2に示した手順でTFTを作製すると良好な特性を得ることができる。TFTの特性は、代表的には電界効果移動度で表すことができるが、本実施例のようにして作製する結晶質半導体膜から形成するTFTの特性は、nチャネル型TFTで150〜220cm2/V・sec、pチャネル型TFTで90〜120cm2/V・secが得られ、しかも連続動作させても初期値からの特性劣化は殆ど観測されず、信頼性の観点からも優れた特性が得られた。
【0053】
[実施例4]
本実施例では画素TFTに接続される保持容量の他の構成について図6と図7を用いて説明する。ここで、図6および図7の作製工程は実施例1で説明した作製工程に従い、有機樹脂膜から成る第2の層間絶縁膜145を形成するところまでは同一であるので、そこまでの構造は図1〜図3で既に説明されている。従って、本実施例では実施例1と異なる点のみに注目して説明を行うこととする。
【0054】
図6(A)において、まず実施例1の工程に従って第2の層間絶縁膜145を形成したら、Al、Ta、Tiから選ばれた元素を含む材料で遮光膜301を形成する。そして、遮光膜301の表面に陽極酸化法により30〜150nm(好ましくは50〜75nm)の厚さの誘電体膜302(遮光膜を形成する材料の酸化物)を形成する。
【0055】
陽極酸化法で誘電体膜302を形成する場合には、まず十分にアルカリイオン濃度の小さい酒石酸エチレングリコール溶液を作製した。これは15%の酒石酸アンモニウム水溶液とエチレングリコールとを2:8で混合した溶液であり、これにアンモニア水を加え、pHが7±0.5となるように調節した。そして、この溶液中に陰極となる白金電極を設け、遮光膜301が形成されている基板を溶液に浸し、遮光膜301を陽極として、一定(数mA〜数十mA)の直流電流を流した。溶液中の陰極と陽極との間の電圧は酸化物の成長に従い時間と共に変化するが、電流が一定となるように電圧を調整し、150Vとなったところでその電圧を保持することなく、或いはその保持時間を数秒〜数十秒として陽極酸化処理を終了させた。こうすることにより、遮光膜301が第2の層間絶縁膜に接する面にまで誘電体膜を回り込ませることなく形成することができる。
【0056】
ここでは遮光膜表面のみに誘電体膜を設ける構成としたが、誘電体膜をプラズマCVD法、熱CVD法またはスパッタ法などの気相法によって形成しても良い。その場合も膜厚は30〜150nm(好ましくは50〜75nm)とすることが好ましい。また、酸化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜、DLC(Diamond like carbon)膜または有機樹脂膜を用いても良い。さらに、これらを組み合わせた積層膜を用いても良い。
【0057】
その後、実施例1と同様に画素電極303を形成する。こうして、遮光膜301と画素電極303が誘電体膜302を介して重なった領域で保持容量304が形成される。
【0058】
図6(B)の構造は、図6(A)と同様に遮光膜301、誘電体膜302を形成した後、有機樹脂でなるスペーサー305を形成する。有機樹脂膜としては、ポリイミド、ポリアミド、ポリイミドアミド、アクリル、BCB(ベンゾシクロブテン)から選ばれた膜を用いることができる。その後、スペーサー305、第2の層間絶縁膜145、パッシベーション膜143をエッチングしてコンタクトホールを形成し、実施例1と同一の材料で画素電極306を形成する。こうして、遮光膜301と画素電極306が誘電体膜302を介して重なった領域において保持容量307が形成される。このようにスペーサー305を設けることにより、遮光膜301と画素電極306との間で発生するショート(短絡)を防止することができる。
【0059】
図6(C)の構造は、図6(A)と同様に遮光膜301を形成し、遮光膜301の端部を覆うようにして有機樹脂でなるスペーサー308を形成する。有機樹脂としては、ポリイミド、ポリアミド、ポリイミドアミド、アクリル、BCB(ベンゾシクロブテン)から選ばれた膜を用いることができる。次に、陽極酸化法により遮光膜301の露出した表面に誘電体膜309を形成する。なお、スペーサー308と接した部分には誘電体膜は形成されない。そして、スペーサー308、第2の層間絶縁膜145、パッシベーション膜143をエッチングしてコンタクトホールを形成し、実施例1と同一の材料で画素電極310を形成する。こうして、遮光膜301と画素電極310が誘電体膜309を介して重なった領域において保持容量311が形成される。このようにスペーサー308を設けることにより、遮光膜301と画素電極310との間で発生するショート(短絡)を防止することができる。
【0060】
図7(A)では、まず実施例1の工程に従って第2の層間絶縁膜145を形成したら、その上に窒化シリコン膜、酸化シリコン膜または窒化酸化シリコン膜などの材料で絶縁膜312を形成する。絶縁膜312は公知の成膜法で形成するが、そのなかでもスパッタ法を用いると良かった。以降は図6(A)と同様にして遮光膜、誘電体膜、画素電極を形成して保持容量313を設ける。絶縁膜312を設けることにより、遮光膜の下地との密着性が向上し、陽極酸化法で誘電体膜を形成するときに、遮光膜の下地との界面への誘電体膜の回り込み形成を防止できる。
【0061】
図7(B)では、同様に絶縁膜と遮光膜を形成した後、絶縁膜の遮光膜と密接しない領域をエッチング除去して、遮光膜の下に重なるように絶縁膜314を形成した。そして、画素電極315を設けた。このような構成にすることにより、遮光膜の下地との密着性が向上し、陽極酸化法で誘電体膜を形成するときに、遮光膜の下地との界面への誘電体膜の回り込み形成を防止でき、また、遮光膜が形成される画素領域の光の透過率を向上させることができる。
【0062】
図7(A)と(B)で示した構成は、図6(B)と(C)で示したスペーサを設ける構成と組み合わせることも可能である。また、図6と図7で示した本実施例の構成は、実施例1または実施例2の構成と組み合わせることが可能である。
【0063】
[実施例5]
実施例1および実施例2に記載した表示領域に形成される画素TFTと表示領域の周辺に設けられる駆動回路のTFTを同一の基板上に備えた半導体装置の作製方法において、活性層とする結晶質半導体膜、ゲート絶縁膜や層間絶縁膜および下地膜などの絶縁膜、ゲート電極、ソース配線、ドレイン配線および画素電極などの導電膜はいずれもスパッタ法を用いて作製することができる。スパッタ法を用いることの利点は、導電膜などの成膜においてDC(直流)放電方式が採用できるので大面積基板に均一な膜を形成するのに適している。また、非晶質シリコン膜や窒化シリコン膜などのシリコン系の材料を成膜するのに取り扱いに多大な注意を要するシラン(SiH4)を使用しなくて済み、作業の安全性が確保される。このような点は、特に生産の現場において非常にメリットとして生かすことができる。以下に、スパッタ法を用いた作製工程を実施例1に従い説明する。
【0064】
図1(A)のゲート電極102〜104や容量配線105はTa、Ti、W、Moなどのターゲット材を用い、公知のスパッタ法で容易に形成できる。W−MoやTa−Moなどの化合物材料とする場合には、同様に化合物のターゲットを用いれば良い。また、TaNやWNを形成する場合には、スパッタ雰囲気中にアルゴン(Ar)の他に窒素(N2)やアンモニア(NH3)を適宣添加すると作製することができる。また、スパッタ用のガスにArに加えヘリウム(He)、クリプトン(Kr)、キセノン(Xe)を加え、作製する被膜の内部応力を制御する方法もある。
【0065】
ゲート絶縁膜106に用いる窒化シリコン膜106aは、シリコン(Si)ターゲットを用い、Ar、N2、水素(H2)、NH3を適宣混合すれば形成できる。または、窒化シリコンのターゲット材を用いても同様に形成することができる。窒化酸化シリコン膜106bは、Siターゲットを用い、Ar、N2、H2、N2Oを適宣混合してスパッタすることにより作製する。
【0066】
非晶質シリコン膜も同様に、Siターゲットを用い、Ar、H2をスパッタガスに用い作製する。また、非晶質シリコン膜中に微量にボロン(B)を添加したい場合には、あらかじめターゲット中に数十ppm〜数千ppmのボロン(B)を添加しておいても良いし、スパッタガス中にジボラン(B26)を添加することもできる。
【0067】
チャネル保護膜119〜122に適用できる酸化シリコン膜は、酸化シリコン(または石英)をターゲット材にして、ArまたはArと酸素(O2)の混合ガスでスパッタすることにより作製できる。保護絶縁膜137、層間絶縁膜138、パッシベーション膜144に用いる窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜は前述のように作製すれば良い。
【0068】
ソース配線139〜141、及びドレイン配線142、143において、Alを用いる場合にはTi、Si、スカンジウム(Sc)、バナジウム(V)、Cuなどを0.01〜5重量%程度含有させるとヒロックの防止に効果的である。遮光膜171に用いるTi、Ta、Al等や、画素電極146に用いるITO、ZnO、SnO2などはいずれも公知のスパッタ法で成膜すれば良い。
【0069】
このように、有機樹脂からなる第2の層間絶縁膜145と第3の層間絶縁膜172以外はいずれもスパッタ法を用いて膜形成が可能である。尚、詳細な実験条件は実施者が適宣決定すれば良い。
【0070】
[実施例6]
本実施例は、画素TFTと駆動回路のTFTについて、特にpチャネル型TFTの他の一例について示す。まず、最初に実施例1で説明した図1(A)〜図2(A)までの工程を同様にして行う。図12(A)は図2(A)に対応した図面であり、レジストマスク1123〜1125、n型を付与する不純物元素が添加された不純物領域1126〜1130が形成された状態を示している。
【0071】
そして、図12(B)に示すようにp+領域の形成を行う。チャネル保護膜1119上の内側に位置するようにマスク1131を形成し、nチャネル型TFTを形成する領域はすべてレジストマスク1132、1133で覆った。さらに、フッ酸系の溶液を用いたウエットエッチング法でチャネル保護膜1119の端部がほぼマスク1131の端部と一致するようにエッチング処理して新たな形状を有するチャネル保護絶縁膜1119bを形成した。そして、ジボラン(B26)を用いたイオンドープ法(イオン注入法を用いても良い)で高濃度不純物領域1134〜1136を形成した。不純物領域1134〜1136は結晶質シリコン膜の表面から不純物元素が添加され、この領域のボロン(B)濃度を1.5×1020〜3×1021cm-3の範囲とし、ここでは2×1021cm-3とした。本明細書中では、ここで形成された不純物領域1134〜1136に含まれるp型を付与する不純物元素の濃度を(p+)と表す。このようにして、pチャネル型TFTの高濃度不純物領域のチャネル形成領域と接する端部を、前の工程で形成した低濃度不純物領域1113、1114の端部よりチャネル形成領域側に設けることにより、この部分における接合状態を良好なものとすることができる。
【0072】
図1(B)〜図2(A)で示したように、不純物領域1135、1136には前の工程でリン(P)が添加されているにで、ボロン(B)とリン(P)が混在した領域が形成されるが、この工程で添加するボロン(B)濃度をその1.5〜3倍とすることでp型の導電性が確保され、TFTの特性に何ら影響を与えることはなかった。本明細書中ではこの領域を領域(B)とする。そして、チャネル形成領域側にある不純物領域134はボロン(B)のみを含む領域であり、本明細書中ではこの領域を領域(A)とする。
【0073】
結晶質シリコン膜にそれぞれの不純物元素を選択的に添加したら、結晶質シリコン膜をエッチング処理して島状に分割し、後に第1の層間絶縁膜の一部となる保護絶縁膜1137を形成した。保護絶縁膜1137は窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜またはそれらを組み合わせた積層膜で形成すれば良い。また、膜厚は100〜400nmとすれば良い。
【0074】
その後、それぞれの濃度で添加されたn型またはp型を付与する不純物元素を活性化するために熱処理工程を行った。ファーネスアニール法で活性化を行う場合には、窒素雰囲気中において300〜650℃、好ましくは500〜550℃、ここでは525℃で4時間の熱処理を行った。レーザーアニール法を適用する場合には、エキシマレーザーを光源として、そのレーザー光を光学系で線幅100〜500μm、線状ビームとし、発振周波数10〜100Hz、発振パルス幅20〜50nsec(好ましくは30nsec)、エネルギー密度100〜500mJ/cm2ので照射して行う。さらに、3〜100%の水素を含む雰囲気中で、300〜450℃で1〜12時間の熱処理を行い、活性層を水素化する工程を行った。この工程は熱的に励起された水素により活性層のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。
【0075】
活性化工程を終えたら、保護絶縁膜1137の上に500〜1500nmの厚さの層間絶縁膜1138を形成した。前記保護絶縁膜1137と層間絶縁膜1138とでなる積層膜を第1の層間絶縁膜とした。その後、それぞれのTFTのソース領域またはドレイン領域に達するコンタクトホールを形成して、ソース配線1139〜1141と、ドレイン配線1142、1143を形成した。図示していないが、本実施例ではこの電極を、Ti膜を100nm、Tiを含むアルミニウム膜300nm、Ti膜150nmをスパッタ法で連続して形成した3層構造の積層膜とした。
【0076】
保護絶縁膜1137と層間絶縁膜1138とは、窒化シリコン膜、酸化シリコン膜または窒化酸化シリコン膜などで形成すれば良いが、いずれにしても膜の内部応力を圧縮応力としておくと良かった。
【0077】
次に、窒化シリコン膜、酸化シリコン膜、または窒化酸化シリコン膜を用い、パッシベーション膜1144を50〜500nm(代表的には100〜300nm)の厚さで形成した。その後、この状態で水素化処理を行うとTFTの特性向上に対して好ましい結果が得られた。例えば、3〜100%の水素を含む雰囲気中で、300〜450℃で1〜12時間の熱処理を行うと良く、あるいはプラズマ水素化法を用いても同様の効果が得られた。なお、ここで後に画素電極とドレイン配線を接続するためのコンタクトホールを形成する位置において、パッシベーション膜1144に開口部を形成しておいても良い。
【0078】
その後、実施例1と同様に有機樹脂膜からなる第2の層間絶縁膜1145を約1μmの厚さに形成した。そして、第2の層間絶縁膜1145、パッシベーション膜1144にドレイン配線1143に達するコンタクトホールを形成し、画素電極1146を設けた。画素電極1146は、透過型液晶表示装置とする場合には透明導電膜を用い、反射型の液晶表示装置とする場合には金属膜を用いれば良い。ここでは透過型の液晶表示装置とするために、酸化インジウム・スズ(ITO)膜を100nmの厚さにスパッタ法で形成した。画素電極1190は隣接する画素の電極である。
【0079】
以上の工程で、同一の基板上に表示領域の画素TFTと、表示領域の周辺に設けた駆動回路のTFTとを形成することができた。駆動回路には、nチャネル型TFT1168とpチャネル型TFT1167が形成され、CMOS回路を基本としたロジック回路を形成することを可能とした。画素TFT1169はnチャネル型TFTであり、さらに容量配線105と半導体層1166と、その間に形成されている絶縁膜とから保持容量1170が画素TFT1169に接続している。
【0080】
駆動回路のpチャネル型TFT1167は、チャネル形成領域1147、高濃度不純物領域で形成されるソース領域1148、1150およびドレイン領域1149、1151を有している。ソース領域1150とドレイン領域1151は領域(B)で形成され、この領域のボロン(B)濃度はリン(P)濃度の1.5〜3倍にしてある。その不純物領域(B)の内側、即ちチャネル形成領域1147の側に形成したソース領域1148とドレイン領域1149は領域(A)であり、領域(B)と同じ濃度でボロン(B)のみを含む領域である。この領域(A)はその全部がゲート電極1103と重なり、一方領域(B)は一部がゲート電極1103と重なる構造となっている。このように、pチャネル型TFTの高濃度不純物領域を領域(B)と領域(A)とから形成し、領域(B)をチャネル形成領域から遠ざけることで、チャネル形成領域と高濃度不純物領域との接合を良好なものとすることができる。
【0081】
駆動回路のnチャネル型TFT1168は、チャネル形成領域1152と、ソース領域1155およびドレイン領域1156と、LDD領域1153、1154とを有している。画素TFT1169には、チャネル形成領域1157、1158と、ソース領域またはドレイン領域1163〜1165と、LDD領域1159〜1162とを有している。駆動回路のnチャネル型TFTのLDD領域は、ドレイン近傍の高電界を緩和してホットキャリア注入によるオン電流値の劣化を防ぐことを主な目的として設けるものであり、そのために適したn型を付与する不純物元素の濃度は5×1017〜5×1018cm-3とすれば良かった。一方、画素TFTのLDD領域は、オフ電流値を低減することを主たる目的とするために設けられ、その不純物元素の濃度は駆動回路のnチャネル型TFTのLDD領域の濃度と同じとしても良いが、その濃度の1/2〜1/10としても良い。図3では画素TFT1169をダブルゲート構造として完成したが、シングルゲート構造でも良いし、複数のゲート電極を設けたマルチゲート構造としても差し支えない。
【0082】
以上のような工程により作製されたTFTは、チャネル保護絶縁膜1119b、1120〜1122が、イオンドープ法などによりダメージを受けることがなく形成されるので、TFTの特性を安定なものとすることができる。例えば、バイアス・熱ストレス(BTS)試験として、ゲート電極に±にー1.7MVの電圧を印加して、150℃で1時間放置しても、しきい値電圧や電界効果移動度、サブスレショルド定数、オン電流値などの変動は殆ど観測されることはない。さらに本発明は、画素TFTおよび駆動回路が要求する仕様に応じて各回路を構成するTFTの構造を最適化し、半導体装置の動作性能と信頼性を向上させることを可能とすることができた。
【0083】
また、図13で示す保持容量の構成は、実施例4において図6と図7を用いて説明したような、遮光膜と、その表面に陽極酸化法で形成した誘電体層と、画素電極とから形成しても良い。
【0084】
[実施例7]
本実例では、画素TFTと駆動回路が形成された基板から、アクティブマトリクス型液晶表示装置を作製する工程を説明する。図8に示すように、実施例1で作製した図3の状態の基板に対し、配向膜601を形成する。通常液晶表示素子の配向膜にはポリイミド樹脂が多く用いられている。対向側の基板602には、遮光膜603、透明導電膜604および配向膜605を形成する。配向膜を形成した後、ラビング処理を施して液晶分子がある一定のプレチルト角を持って配向するようにした。そして、画素TFTと駆動回路が形成された一方の基板と対向基板とを、公知のセル組み工程によってシール材やスペーサ(共に図示せず)などを介して貼りあわせる。その後、両基板の間に液晶材料606を注入し、封止剤(図示せず)によって完全に封止した。液晶材料には公知の液晶材料を用いれば良い。このようにして図8に示すアクティブマトリクス型液晶表示装置を完成する。
【0085】
次にこのアクティブマトリクス型液晶表示装置の構成を、図9の斜視図および図10の上面図を用いて説明する。尚、図9と図10は、図1〜図3と図8の断面構造図と対応付けるため、共通の符号を用いている。また、図10で示すA―A’に沿った断面構造は、図3に示す画素TFT169および保持容量170の断面図に対応している。
【0086】
図9に示す斜視図は、ガラス基板101上に形成された、表示領域701と、走査(ゲート)線駆動回路702と、信号(ソース)線駆動回路703で構成される。表示領域には画素TFT169が設けられ、表示領域の周辺に設けられる駆動回路はCMOS回路を基本として構成されている。走査(ゲート)線駆動回路702と、信号(ソース)線駆動回路703はそれぞれゲート配線104(ゲート電極に接続し、延在して形成される意味で同じ符号を用いて表す)とソース配線141で表示領域701の画素TFTに接続されている。また、FPC731が外部入出力端子734に接続される。
【0087】
図10は表示領域701のほぼ一画素を示す上面図である。ゲート配線104は、図示されていないゲート絶縁膜を介してその下の活性層と交差している。図示はしていないが、活性層には、ソース領域、ドレイン領域、n-領域でなるLDD領域が形成されている。また、180はソース配線141とソース領域163とのコンタクト部、181はドレイン配線143とドレイン領域165とのコンタクト部、182はドレイン配線143と画素電極146のコンタクト部である。保持容量170は、画素TFT169のドレイン領域165に接続する半導体層166と、容量配線105とその間に形成されている絶縁膜が重なる領域で形成される。
【0088】
なお、本実施例のアクティブマトリクス型液晶表示装置は、実施例1で説明した構造と照らし合わせて説明したが、実施例1〜6のいずれの構成とも自由に組み合わせてアクティブマトリクス型液晶表示装置を作製することができる。
【0089】
[実施例8]
本発明を実施して作製された画素TFTや駆動回路を同一の基板上に一体形成した基板は、さまざまな電気光学装置(アクティブマトリクス型液晶表示装置、アクティブマトリクス型EL表示装置、アクティブマトリクス型EC表示装置)に用いることができる。即ち、これらの電気光学装置を表示媒体として組み込んだ電子機器全てに本発明を実施できる。
【0090】
そのような電子機器としては、ビデオカメラ、デジタルカメラ、プロジェクター(リア型またはフロント型)、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、パーソナルコンピュータ、携帯電話または電子書籍など)が上げられる。それらの一例を図12に示す。
【0091】
図11(A)は携帯電話であり、本体9001、音声出力部9002、音声入力部9003、表示装置9004、操作スイッチ9005、アンテナ9006から構成されている。本願発明は音声出力部9002、音声入力部9003、及び表示領域およびその周辺に駆動回路を備えたアクティブマトリクス型の表示装置9004に適用することができる。
【0092】
図11(B)はビデオカメラであり、本体9101、表示装置9102、音声入力部9103、操作スイッチ9104、バッテリー9105、受像部9106から成っている。本願発明は音声入力部9103、及び表示領域およびその周辺に駆動回路を備えたアクティブマトリクス型の表示装置9102、受像部9106に適用することができる。
【0093】
図11(C)はモバイルコンピュータであり、本体9201、カメラ部9202、受像部9203、操作スイッチ9204、表示装置9205で構成されている。本願発明は受像部9203、及び表示領域およびその周辺に駆動回路を備えたアクティブマトリクス型の表示装置9205に適用することができる。
【0094】
図11(D)はゴーグル型ディスプレイであり、本体9301、表示装置9302、アーム部9303で構成される。本願発明は表示領域およびその周辺に駆動回路を備えたアクティブマトリクス型の表示装置9302に適用することができる。また、表示されていないが、その他の信号制御用回路に使用することもできる。
【0095】
図11(E)はリア型プロジェクターであり、本体9401、光源9402、表示装置9403、偏光ビームスプリッタ9404、リフレクター9405、9406、スクリーン9407で構成される。本発明は表示領域およびその周辺に駆動回路を備えたアクティブマトリクス型の表示装置9403に適用することができる。
【0096】
図11(F)は携帯書籍であり、本体9501、表示装置9502、9503、記憶媒体9504、操作スイッチ9505、アンテナ9506から構成されており、ミニディスク(MD)やデジタルビデオディスク(DVD)に記憶されたデータや、アンテナで受信したデータを表示するものである。表示装置9502、9503は表示領域およびその周辺に駆動回路を備えたアクティブマトリクス型の直視型表示装置であり、本発明はこの適用することができる。
【0097】
また、ここでは図示しなかったが、本発明はその他にも、カーナビゲーションシステムやイメージセンサパーソナルコンピュータの表示部に適用することも可能である。このように、本願発明の適用範囲はきわめて広く、あらゆる分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例1〜7のどのような組み合わせから成る構成を用いても実現することができる。
【0098】
【発明の効果】
本発明を用いることで、同一の基板上に複数の機能回路が形成された半導体装置(ここでは具体的には電気光学装置)において、その機能回路が要求する仕様に応じて適切な性能のTFTを配置することが可能となり、その動作特性や信頼性を大幅に向上させることができる。
【0099】
特に、LDD領域が設けられたボトムゲート型または逆スタガ型のTFTにおいて、画素TFTのLDD領域をn-の濃度でかつLoffを形成することにより、大幅にオフ電流値を低減でき、画素TFTの低消費電力化に寄与することができる。また、駆動回路のnチャネル型TFTのLDD領域をn-の濃度でかつLov+Loffを形成することにより、電流駆動能力を高め、かつ、ホットキャリアによる劣化を防ぎ、オン電流値の劣化を低減することができる。
【0100】
さらに、駆動回路のpチャネル型TFTにおいて、p型を付与する不純物元素とn型を付与する不純物元素との両方を含む不純物領域(B)と、p型を付与する不純物元素を含む不純物領域(A)とを有し、前記不純物領域(A)は、前記不純物領域(A)と前記駆動回路のpチャネル型TFTのLDD領域との間に形成されていることにより、チャネル形成領域とそれに接するLDD領域、さらにLDD領域とソース領域またはドレイン領域との接合形成が確実なものとなり、pチャネル型TFTの特性を良好に保つことができる。
【0101】
また、そのような電気光学装置を表示媒体として有する半導体装置(ここでは具体的に電子機器)の動作性能と信頼性も向上させることができる。
【図面の簡単な説明】
【図1】 画素TFTおよび駆動回路のTFTの作製工程を示す図。
【図2】 画素TFTおよび駆動回路のTFTの作製工程を示す図。
【図3】 画素TFTおよび駆動回路のTFTの作製工程を示す図。
【図4】 画素TFTおよび駆動回路のTFTの作製工程を示す図。
【図5】 結晶質半導体膜の作製工程を示す図。
【図6】 保持容量の断面構造の一例を示す図。
【図7】 保持容量の断面構造の一例を示す図。
【図8】 アクティブマトリクス型液晶表示装置の断面構造を示す図。
【図9】 アクティブマトリクス型液晶表示装置の斜視図。
【図10】 画素の上面図。
【図11】 半導体装置の一例を示す図。
【図12】 画素TFTおよび駆動回路のTFTの作製工程を示す図。
【図13】 画素TFTおよび駆動回路のTFTの作製工程を示す図。
【符号の説明】
101 基板
102〜104 ゲート電極
105 容量配線
106 ゲート絶縁膜
107 結晶質シリコン膜
108 マスク絶縁膜
119〜121 チャネル保護膜
139〜141 ソース電極
142〜143 ドレイン電極
137 保護絶縁膜
138 層間絶縁膜
144 パッシベーション膜
145 第2の層間絶縁膜
146 画素電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device having a circuit including thin film transistors (hereinafter referred to as TFTs) over a substrate having an insulating surface. In particular, the present invention relates to an electro-optical device typified by a liquid crystal display device in which a pixel TFT provided in a display region and a drive circuit provided in the periphery of the display region are provided on the same substrate, and such an electro-optical device. It can be suitably used for an electronic device equipped with the device. Note that in this specification, a semiconductor device refers to all devices that function by utilizing semiconductor characteristics, and includes the above-described electro-optical device and electronic equipment including the electro-optical device in its category.
[0002]
[Prior art]
A TFT in which an active layer is formed of a crystalline silicon film on a substrate having an insulating surface (hereinafter referred to as a crystalline silicon TFT) has high field effect mobility, so that various functional circuits can be formed. There has been developed the electro-optical device in which such a functional circuit is integrally formed on the same substrate. An active matrix liquid crystal display device is well known as a representative example.
[0003]
In an active matrix liquid crystal display device using crystalline silicon TFTs, a pixel TFT is formed in each pixel in the image display area, and a drive circuit is provided around the image display area. The drive circuit is composed of a shift register circuit, a level shifter circuit, a buffer circuit, a sampling circuit, etc., which are formed on the basis of a CMOS circuit. Such a circuit is formed on the same substrate, and the display device is completed as a unit.
[0004]
Since the operating conditions of the pixel TFT and the driving circuit are not necessarily the same, the characteristics required for the TFT are not a little different. For example, the pixel TFT is required to have a function as a switch element for applying a voltage to the liquid crystal. Since the liquid crystal is driven by alternating current, a method called frame inversion driving is often employed. In this method, in order to hold the charge of the holding capacitor, the characteristic required for the pixel TFT is to sufficiently reduce the off-current value (drain current that flows when the TFT is turned off). On the other hand, since a high drive voltage is applied to the buffer circuit of the drive circuit, it is necessary to increase the breakdown voltage of the TFT so that it does not break even when a high voltage is applied. Further, in order to increase the current driving capability, it is necessary to secure a sufficient on-current value (drain current that flows when the TFT is turned on).
[0005]
However, there is a problem that the off-current value of the crystalline silicon TFT tends to be high. In addition, as with MOS transistors used in ICs and the like, deterioration phenomena such as a decrease in on-current value are observed in crystalline silicon TFTs. The main cause is hot carrier injection, and it is considered that hot carriers generated by a high electric field near the drain cause a deterioration phenomenon.
[0006]
As a TFT structure for reducing the off-current value, a lightly doped drain (LDD) structure is known. In this structure, a region to which an impurity element is added at a low concentration is provided between a channel formation region and a source region or a drain region formed by adding an impurity element at a high concentration, and this region is referred to as an LDD region. I'm calling.
[0007]
Regarding a method for manufacturing a TFT having an LDD region, for example, in Japanese Patent No. 2564725, a gate insulating film is formed wider in the channel width direction than the gate electrode, and an insulating film thinner than the gate insulating film is formed beside the gate insulating film. A method of forming an LDD region in a semiconductor film between an end portion of a gate electrode and a source or drain region using the difference in thickness between the insulating film and the gate insulating film is disclosed.
[0008]
As a means for preventing deterioration due to hot carriers, a so-called GOLD (Gate-drain Overlapped LDD) structure in which an LDD region is disposed so as to overlap a gate electrode through a gate insulating film is known. With such a structure, a high electric field in the vicinity of the drain is relieved, hot carrier injection is prevented, and deterioration is effectively prevented. For example, “Mutuko Hatano, Hajime Akimoto and Takeshi Sakai, IEDM97 TECHNICAL DIGEST, p523-526, 1997” discloses a GOLD structure formed by side walls made of silicon, but compared with TFTs of other structures, It has been confirmed that extremely excellent reliability can be obtained.
[0009]
Introducing an impurity element into a semiconductor layer for forming an impurity region such as a source region, a drain region, and an LDD region of a TFT having such a structure is performed by using a gate electrode or a mask insulating film provided on the semiconductor layer. It was desirable to use this method in a self-aligned manner. Further, in order to reduce the number of masks, an impurity element of one conductivity type is once introduced into the entire surface using a gate electrode or an insulating film for a mask, and either a p-channel TFT or an n-channel TFT with a higher concentration than that is introduced. A method of introducing an impurity element having a conductivity type opposite to one conductivity type into the impurity region of one of the TFTs (referred to as a cross-doping method in this specification) has been adopted.
[0010]
[Problems to be solved by the invention]
However, the required characteristics are not necessarily the same between the pixel TFT and the TFT of a drive circuit such as a shift register circuit or a buffer circuit. For example, in a pixel TFT, a large reverse bias (a negative voltage in an n-channel TFT) is applied to the gate, but a TFT in a drive circuit basically does not operate in a reverse bias state. Also, regarding the operation speed, the pixel TFT was good at 1/100 or less of the TFT of the drive circuit.
[0011]
The GOLD structure has a high effect of preventing the deterioration of the on-current value, but there is a problem that the off-current value becomes larger than that of the normal LDD structure. Therefore, it is not a preferable structure for application to the pixel TFT. Conversely, the normal LDD structure has a high effect of suppressing the off-current value, but has a low effect of relaxing the electric field in the vicinity of the drain and preventing deterioration due to hot carrier injection. Thus, in a semiconductor device having a plurality of integrated circuits with different operating conditions, such as an active matrix liquid crystal display device, it is not always preferable to form all TFTs with the same structure. Such problems have become apparent as the characteristics of crystalline silicon TFTs increase and the performance required for active matrix liquid crystal display devices increases.
[0012]
Although there are several means for reducing the off-current value of the TFT, it is necessary to form a good junction between the channel formation region and the impurity region (LDD region, source region or drain region). For this purpose, it is necessary to precisely control the distribution of impurity elements at the interface between the channel formation region and the impurity region in contact therewith. However, when the above-described cross-doping method is performed, one impurity type impurity element and the opposite conductivity type impurity element are introduced into the impurity region of one TFT, and the distribution of the impurity element at the interface is reduced. It was difficult to control precisely.
[0013]
Such an LDD structure is formed in consideration of the characteristics of the n-channel TFT. A p-channel TFT formed on the same substrate for forming a CMOS circuit or the like is often formed with a single drain structure in order to reduce the number of masks as much as possible. However, in that case, the source or drain region of the p-channel TFT is doped with phosphorus (P) for forming the LDD of the n-channel TFT, and a defect is formed at the junction with the channel formation region, increasing the off-current value. There was a problem.
[0014]
The present invention is a technique for solving such a problem, and the operation characteristics of the semiconductor device can be obtained by making the structure of the TFT disposed in each circuit of the semiconductor device appropriate according to the function of the circuit. And to improve reliability.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, the structure of the present invention is a semiconductor device in which a pixel TFT provided in a display region and an n-channel TFT and a p-channel TFT of a driver circuit provided in the periphery of the display region are provided on the same substrate In the device, the pixel TFT and the TFT of the drive circuit include an active layer, an LDD region provided in the active layer, a gate insulating film provided between the active layer and the substrate, A gate electrode provided between the gate insulating film and the substrate, and the LDD region of the pixel TFT and the n-channel TFT of the drive circuit is disposed so as to at least partially overlap the gate electrode; The LDD region of the p-channel TFT of the driving circuit is arranged so as to overlap with the gate electrode. In addition, the LDD region of the n-channel TFT of the pixel TFT and the driving circuit is disposed so as not to overlap with the channel protective insulating film provided in the TFT and at least partially overlaps the gate electrode. The LDD region of the p-channel TFT of the driver circuit is arranged to overlap with a protective insulating film of the TFT and with a gate electrode.
[0016]
According to another aspect of the invention, the p-channel TFT of the driving circuit provides an impurity region (A) including both an impurity element imparting p-type and an impurity element imparting n-type, and a p-type impart. An impurity region (B) containing only the impurity element to be formed, and the impurity region (B) is formed between the impurity region (A) and the LDD region of the p-channel TFT of the driver circuit. It is characterized by that.
[0017]
In this structure, phosphorus (P) doped in the source or drain region of the p-channel TFT without increasing the number of masks is not doped in the junction with the channel formation region, and the off-current value is reduced. It is an object.
[0018]
The storage capacitor connected to the pixel TFT is formed of a capacitor wiring formed on the substrate, an insulating film formed on the capacitor wiring, and a semiconductor layer formed on the insulating film. Alternatively, an organic resin film is formed on the pixel TFT, a light shielding film formed on the organic resin film, a dielectric film formed in close contact with the light shielding film, and a part of the light shielding film. A capacitor is formed from a pixel electrode that is provided so as to overlap and is connected to the pixel TFT.
[0019]
In order to solve the above problems, a method for manufacturing a semiconductor device of the present invention is the same as that of a pixel TFT provided in a display region, and an n-channel TFT and a p-channel TFT of a driver circuit provided around the display region. In the method for manufacturing a semiconductor device over the substrate, a step of forming an LDD region at least partially overlapping with the gate electrode in the pixel TFT and the n-channel TFT, and a p-channel TFT in the driver circuit are provided. And a step of forming an LDD region which overlaps with the gate electrode. A step of forming an LDD region in the pixel TFT and the n-channel TFT that does not overlap with a channel protection insulating film of the TFT and at least partially overlaps with a gate electrode; The TFT includes a step of forming an LDD region that overlaps with the channel protective insulating film of the TFT and overlaps with the gate electrode.
[0020]
In the above method for manufacturing a semiconductor device, an impurity region (A) including both an impurity element imparting p-type and an impurity element imparting n-type and p-type are imparted to the p-channel TFT of the driver circuit. Forming an impurity region (B) containing an impurity element, and the impurity region (B) is formed between the impurity region (A) and the LDD region of the p-channel TFT of the driver circuit. It is desirable.
[0021]
In another aspect of the invention, a semiconductor device having a pixel TFT provided in a display region and an n-channel TFT and a p-channel TFT of a driver circuit provided in the periphery of the display region on the same substrate is manufactured. In the method, a first step of forming a gate electrode on a substrate, a second step of forming a gate insulating film on the gate electrode, and forming first and second semiconductor layers on the gate insulating film A third step of performing, a fourth step of forming a channel protective film on the first and second semiconductor layers, and introducing an impurity element imparting n-type into the first semiconductor layer, A fifth step of forming an LDD region of the n-channel TFT that does not overlap with the channel protective film; and an impurity element imparting n-type conductivity is introduced into the first semiconductor layer, so that the source region or drain of the n-channel TFT Forming a region A seventh step of introducing an impurity element imparting p-type into the second semiconductor layer to form an LDD region and a source region or drain region of the p-channel TFT overlying the channel protective film; It is characterized by having these processes.
[0022]
In the method for manufacturing a semiconductor device of the present invention, a step of forming a capacitor wiring on the substrate, a step of forming an insulating layer on the capacitor wiring, and a step of forming a semiconductor layer on the insulating layer, A step of forming a storage capacitor connected to the pixel TFT, a step of forming an organic resin layer on the pixel TFT, a step of forming a light-shielding film on the organic resin, and a dielectric in close contact with the light-shielding film. A capacitor is formed from a step of forming a body film and a step of forming a pixel electrode that is provided so as to partially overlap the light shielding film and is connected to the pixel TFT. The light shielding film is preferably formed of a material containing one or more selected from aluminum, tantalum, and titanium, and the dielectric film is preferably formed of an oxide of a material forming the light shielding film. It is most preferable to use an anodic oxidation method as a method of forming the product.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described in detail with reference to the following examples.
[0024]
[Example 1]
An embodiment of the present invention will be described with reference to FIGS. Here, a method for simultaneously manufacturing a pixel TFT in the display region and a TFT in a driver circuit provided in the periphery of the display region will be described in detail according to the process.
[0025]
(Formation of gate electrode, gate insulating film, crystalline semiconductor film: FIG. 1A)
In FIG. 1A, a low alkali glass substrate or a quartz substrate can be used for the substrate 101. An insulating film such as a silicon oxide film, a silicon nitride film, or a silicon nitride oxide film may be formed on the surface of the substrate 101 on which the TFT is formed (not shown). The gate electrodes 102 to 104 and the capacitor wiring 105 are made of an element selected from tantalum (Ta), titanium (Ti), tungsten (W), molybdenum (Mo), and aluminum (Al), or a material mainly containing one of them. After forming a film by using a known film forming method such as sputtering or vacuum deposition, a pattern was formed by etching so that the end face was tapered. For example, a Ta film is formed to a thickness of 200 nm by sputtering, a resist mask is formed in a predetermined shape, and then CF Four And O 2 If the plasma etching process is performed with this mixed gas, it can be processed into a desired shape. The gate electrode may have a two-layer structure of tantalum nitride (TaN) and Ta or tungsten nitride (WN) and W (not shown). Although not shown here, a gate wiring connected to the gate electrode is also formed at the same time.
[0026]
The gate insulating film 106 is a material containing silicon oxide or silicon nitride as a component, and is formed to a thickness of 10 to 200 nm, preferably 50 to 150 nm. For example, plasma CVD method, SiH Four , NH Three , N 2 A silicon nitride film 106a made from a material of 50 nm, SiH Four And N 2 A gate insulating film may be formed by stacking the silicon nitride oxide film 106b using O as a raw material to a thickness of 75 nm. Of course, a single layer made of a silicon nitride film or a silicon oxide film can be used. In order to obtain a clean surface, it is preferable to perform plasma hydrogen treatment before forming the gate insulating film.
[0027]
Next, a crystalline semiconductor film serving as an active layer of the TFT was formed. Silicon was used as the material of the crystalline semiconductor film. First, an amorphous silicon film having a thickness of 20 to 150 nm was formed in close contact with the gate insulating film 106 by a known film formation method such as a plasma CVD method or a sputtering method. There is no limitation on the conditions for forming the amorphous silicon film, but oxygen and nitrogen impurity elements contained in the film are 5 × 10 5. 18 cm -3 It is desirable to reduce it to the following. Further, since the gate insulating film and the amorphous silicon film can be formed by the same film formation method, they may be formed continuously. After the gate insulating film is formed, it is possible to prevent contamination of the surface by not exposing it to the air atmosphere, so that variation in characteristics of TFTs to be manufactured and variation in threshold voltage can be reduced. Then, a crystalline silicon film 107 is formed using a known crystallization technique. For example, the crystalline silicon film 107 is formed by a laser crystallization method, a thermal crystallization method (solid phase growth method), or a crystallization method using a catalytic element according to the technique disclosed in Japanese Patent Laid-Open No. 7-130552. May be.
[0028]
In the region of the crystalline silicon film 107 where the n-channel TFT is formed, 1 × 10 6 is used for the purpose of controlling the threshold voltage. 16 ~ 5x10 17 cm -3 About boron (B) may be added. Boron (B) may be added by an ion doping method, or may be added simultaneously with the formation of an amorphous silicon film.
[0029]
(Mask insulation film formation, n - Region formation: FIG. 1 (B))
Next, in order to form an LDD region of the n-channel TFT, an impurity element imparting n-type was added. First, a mask insulating film 108 made of a silicon oxide film or a silicon nitride film was formed on the surface of the crystalline silicon film 107 to a thickness of 100 to 200 nm, typically 120 nm. After forming a photoresist film on the entire surface, the photoresist film was exposed using the gate electrodes 102 to 104 as a mask by an exposure method from the back surface of the substrate 101 to form resist masks 109 to 112 on the gate electrodes. By this method, a resist mask could be formed on the gate electrode and inside the gate electrode.
[0030]
Then, an impurity element imparting n-type conductivity was added to the crystalline silicon film below the mask insulating film 108 by an ion doping method (or an ion implantation method). In the technical field of semiconductors, phosphorus (P), arsenic (As), antimony (Sb), etc. are applied from the group 15 elements of the periodic table as impurity elements imparting n-type. Here, phosphorus (P) is used. Using. The formed impurity regions 113 to 118 have a phosphorus (P) concentration of 1 × 10 17 ~ 5x10 18 cm -3 In this case, 5 × 10 17 cm -3 It was. In this specification, the concentration of an impurity element imparting n-type contained in the impurity regions 113 to 118 is defined as (n - ).
[0031]
(Channel protection film formation: FIG. 1C)
Next, the mask insulating film 108 was removed by etching using this resist mask to form channel protective films 119 to 122. In order to etch the mask insulating film 108 with high selectivity with respect to the crystalline silicon film 107 as a base, a wet etching method using a hydrofluoric acid-based solution is employed here. Of course, it may be performed by a dry etching method, for example, CHF. Three The insulating film 108 can be etched with a gas. In any case, in this step, channel protection films 119 to 122 are formed inside the end faces of the resist masks 109 to 112 by over-etching.
[0032]
(N + Region formation: FIG. 2 (A))
Next, in the n-channel TFT, a step of forming an impurity region functioning as a source region or a drain region was performed. Here, resist masks 123 to 125 were formed by a normal exposure method. Then, the channel protective film 122 on the capacitor wiring 105 was removed by etching using this resist mask. Next, impurity regions 126 to 130 in which an impurity element imparting n-type conductivity was added to the crystalline silicon film 107 were formed by an ion doping method (or an ion implantation method). Impurity regions 126 to 130 have 1 × 10 20 ~ 1x10 twenty one cm -3 In this case, 5 × 10 20 cm -3 Impurity elements were included at a concentration of. This concentration is referred to herein as (n + ).
[0033]
(P + Region formation: FIG. 2 (B))
Next, in order to form a source region and a drain region of the p-channel TFT of the driver circuit, a step of adding an impurity element imparting p-type was performed. In the semiconductor technical field, boron (B), aluminum (Al), gallium (Ga), or the like is applied from the group 13 element of the periodic table to the impurity element imparting p-type. Here, boron (B) is used. Using. A mask 131 was formed so as to be positioned on the inner side of the channel protective film 119, and all regions where n-channel TFTs were formed were covered with resist masks 132 and 133. And diborane (B 2 H 6 The impurity regions 134 to 136 are formed by an ion doping method using ion) (an ion implantation method may be used). Impurity regions 135a, 135b, 136a, and 136b are doped with an impurity element from the surface of the crystalline silicon film, and the boron (B) concentration in these regions is 1.5 × 10 5. 20 ~ 3x10 twenty one cm -3 Where 2 × 10 twenty one cm -3 It was. In this specification, the concentration of the impurity element imparting p-type contained in the impurity regions 135a, 135b, 136a, and 136b formed here (p + ). On the other hand, since the impurity region 134 has an impurity element added to the crystalline silicon film through the channel protective film 119, the boron (B) concentration in this region is 1 × 10. 16 ~ 1x10 18 cm -3 It became. In this specification, the concentration of the impurity element imparting p-type contained in the impurity region 134 formed here is defined as (p - ).
[0034]
As shown in FIGS. 1B to 2A, since phosphorus (P) is added to the impurity regions 135b and 136b in the previous step, boron (B) and phosphorus (P) are added. A mixed region is formed, but by increasing the boron (B) concentration added in this step to 1.5 to 3 times that, p-type conductivity is ensured, and this has no influence on the TFT characteristics. There wasn't. In this specification, this region is referred to as an impurity region (B). The impurity regions 135a and 136a on the channel formation region side of the impurity regions (B) 135b and 136b are regions containing only boron (B), and this region is referred to as an impurity region (A) in this specification. The impurity region 134 that overlaps with the gate electrode 103 and also overlaps with the channel protective film 120 is formed as a region containing only boron (B), and this region functions as an LDD region.
[0035]
(Formation of first interlayer insulating film, thermal activation process, hydrogenation process: FIG. 2C)
After each impurity element is selectively added to the crystalline silicon film, the crystalline silicon film is etched to be divided into islands, and a protective insulating film 137 that later becomes a part of the first interlayer insulating film is formed. . The protective insulating film 137 may be formed using a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or a stacked film including a combination thereof. The film thickness may be 100 to 400 nm.
[0036]
Thereafter, a heat treatment process was performed to activate the impurity element imparting n-type or p-type added at each concentration. This step can be performed by a furnace annealing method, a laser annealing method, a rapid thermal annealing method (RTA method), or the like. Here, the activation process was performed by furnace annealing. The heat treatment was performed in a nitrogen atmosphere at 300 to 650 ° C., preferably 500 to 550 ° C., here at 525 ° C. for 4 hours. Further, a process of hydrogenating the active layer was performed by performing heat treatment at 300 to 450 ° C. for 1 to 12 hours in an atmosphere containing 3 to 100% hydrogen. This step is a step of terminating dangling bonds in the active layer with thermally excited hydrogen. As another means of hydrogenation, plasma hydrogenation (using hydrogen excited by plasma) may be performed.
[0037]
When the crystalline silicon film 107 serving as an active layer is formed from an amorphous silicon film by a crystallization method using a catalytic element, the crystalline silicon film 107 has approximately 1 × 10 × 10. 17 ~ 5x10 19 cm -3 Of catalytic element remained. Of course, there is no problem in completing and operating the TFT even in such a state, but it is more preferable to remove the remaining catalyst element from at least the channel formation region. As one of means for removing the catalyst element, there is a means for utilizing the gettering action by phosphorus (P). The concentration of phosphorus (P) necessary for gettering is the impurity region (n) formed in FIG. + ) And the catalytic element from the channel formation region of the n-channel TFT and the p-channel TFT to the peripheral impurity region to which phosphorus (P) is added by the heat treatment in the activation process performed here. Was able to gettering. As a result, the catalyst element concentration in the channel formation region is 5 × 10 5. 17 cm -3 And the impurity region has 1 × 10 10 18 ~ 5x10 20 cm -3 The catalyst element segregated.
[0038]
(Formation of interlayer insulating film, formation of source / drain wiring, formation of passivation film, formation of pixel electrode: FIG. 3)
After the activation process, an interlayer insulating film 138 having a thickness of 500 to 1500 nm was formed on the protective insulating film 137. A laminated film composed of the protective insulating film 137 and the interlayer insulating film 138 was used as a first interlayer insulating film. Thereafter, contact holes reaching the source region or drain region of each TFT were formed, and source wirings 139 to 141 and drain wirings 142 and 143 were formed. Although not shown, in this embodiment, this electrode is a laminated film having a three-layer structure in which a Ti film is 100 nm, an aluminum film containing Ti is 300 nm, and a Ti film is 150 nm continuously formed by sputtering.
[0039]
The protective insulating film 137 and the interlayer insulating film 138 may be formed of a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or the like, but in any case, it is preferable to set the internal stress of the film as a compressive stress.
[0040]
Next, a passivation film 144 was formed to a thickness of 50 to 500 nm (typically 100 to 300 nm) using a silicon nitride film, a silicon oxide film, or a silicon nitride oxide film. Thereafter, when the hydrogenation treatment was performed in this state, a favorable result was obtained for improving the characteristics of the TFT. For example, heat treatment may be performed at 300 to 450 ° C. for 1 to 12 hours in an atmosphere containing 3 to 100% hydrogen, or the same effect can be obtained by using a plasma hydrogenation method. Note that an opening may be formed in the passivation film 144 at a position where a contact hole for connecting the pixel electrode and the drain wiring is formed later.
[0041]
Thereafter, a second interlayer insulating film 145 made of an organic resin film was formed to a thickness of about 1 μm. As an applicable organic resin material, polyimide, acrylic, polyamide, polyimide amide, BCB (benzocyclobutene), or the like can be used. Here, it was formed by baking at 300 ° C. using a type of polyimide that is thermally polymerized after being applied to the substrate. A contact hole reaching the drain wiring 143 was formed in the second interlayer insulating film 145 and the passivation film 144, and a pixel electrode 146 was provided. As the pixel electrode 146, a transparent conductive film is used when a transmissive liquid crystal display device is used, and a metal film may be used when a reflective liquid crystal display device is used. Here, in order to obtain a transmissive liquid crystal display device, an indium tin oxide (ITO) film was formed to a thickness of 100 nm by sputtering. The pixel electrode 190 is an electrode of an adjacent pixel.
[0042]
Through the above steps, the pixel TFT in the display area and the TFT of the drive circuit provided around the display area can be formed on the same substrate. In the driving circuit, an n-channel TFT 168 and a p-channel TFT 167 are formed, and a logic circuit based on a CMOS circuit can be formed. The pixel TFT 169 is an n-channel TFT, and a storage capacitor 170 is connected to the pixel TFT 169 from the capacitor wiring 105, the semiconductor layer 166, and an insulating film formed therebetween.
[0043]
The p-channel TFT 167 of the driver circuit includes a channel formation region 147, source regions 150a and 150b, drain regions 151a and 151b, and LDD regions 148 and 149. The source region 150b and the drain region 151b are formed of an impurity region (B), and the boron (B) concentration in this region is 1.5 to 3 times the phosphorus (P) concentration. The source region 150a and the drain region 151a formed inside the impurity region (B), that is, on the channel formation region 147 side are the impurity regions (A), and boron (B) is the same concentration as the impurity regions (B). It is an area to include. In addition, LDD regions 148 and 149 which overlap with the gate electrode 103 and also overlap with the channel protective film 120 are formed as regions containing only boron (B). In this way, by separating the impurity region (B) from the channel formation region, the channel formation region and the LDD region in contact with the channel formation region, and the junction formation between the LDD region and the source region or drain region can be ensured. It was possible to maintain good characteristics.
[0044]
The n-channel TFT 168 of the driver circuit has a channel formation region 152, a source region 155 and a drain region 156, and LDD regions 153 and 154. The pixel TFT 169 includes channel formation regions 157 and 158, source or drain regions 163 to 165, and LDD regions 159 to 162. The LDD region of the n-channel TFT of the drive circuit is provided mainly for the purpose of relaxing the high electric field in the vicinity of the drain and preventing the deterioration of the on-current value due to hot carrier injection. Impurity element concentration to be applied is 5 × 10 17 ~ 5x10 18 cm -3 I should have done it. On the other hand, the LDD region of the pixel TFT is provided mainly for the purpose of reducing the off-current value, and the concentration of the impurity element may be the same as the concentration of the LDD region of the n-channel TFT of the driver circuit. The density may be ½ to 1/10. In FIG. 3, the pixel TFT 169 is completed as a double gate structure, but it may be a single gate structure or a multi-gate structure provided with a plurality of gate electrodes.
[0045]
As described above, the present invention can optimize the structure of TFTs constituting each circuit in accordance with specifications required by the pixel TFT and the drive circuit, and can improve the operation performance and reliability of the semiconductor device. did it.
[0046]
[Example 2]
This embodiment will be described with reference to FIG. 4 as an example in which a storage capacitor connected to the pixel TFT has a structure different from that of the first embodiment. The p-channel TFT 167, the n-channel TFT 168, and the pixel TFT 169 of the driver circuit were manufactured in the same manner as in Example 1. Hereinafter, differences from the first embodiment will be described.
[0047]
A light shielding film 171 is formed on the second interlayer insulating film 145 at least on the pixel TFT. The light-shielding film 171 is a film mainly containing one or more elements selected from Al, Ti, and Ta. The light-shielding film 171 is formed to a thickness of 100 to 300 nm and is patterned into a predetermined shape. Further, a third interlayer insulating film 172 was formed thereon using an organic resin film in the same manner as the second interlayer insulating film. The thickness of the third interlayer insulating film 172 was set to 0.5 to 1 μm. Then, a contact hole reaching the drain wiring 143 was formed in the third interlayer insulating film 172, the second interlayer insulating film 145, and the passivation film 144, and the pixel electrode 173 was provided. The pixel electrode 173 may be a transparent conductive film in the case of a transmissive liquid crystal display device, and a metal film in the case of a reflective liquid crystal display device. Here, in order to obtain a transmissive liquid crystal display device, an indium tin oxide (ITO) film was formed to a thickness of 100 nm by sputtering. In this manner, the storage capacitor 174 connected to the pixel TFT 169 can be formed from the light shielding film 171, the third interlayer insulating film 172, and the pixel electrode 173.
[0048]
[Example 3]
In this embodiment, a process of forming a crystalline semiconductor film which becomes an active layer of the TFT shown in Embodiments 1 and 2 will be described with reference to FIG. First, gate electrodes 1102 and 1103 having a thickness of 100 to 400 nm are formed on a substrate (a glass substrate in this embodiment) 1101. The gate electrode is formed from a material containing one or more elements selected from Al, Ti, Ta, Mo, and W, and is patterned to have a tapered end surface. Although not shown, a laminated structure of the materials may be used. For example, a two-layer structure of tantalum nitride (TaN) and Ta may be used from the substrate side. Further, an oxide may be coated on the surface of the gate electrode by an anodic oxidation method or the like. The gate insulating film 1104 is formed using a silicon nitride film, a silicon oxide film, or a silicon nitride oxide film, and has a thickness of 20 to 200 nm, preferably 75 to 125 nm. Then, an amorphous semiconductor film (amorphous silicon film in this embodiment) 1105 having a thickness of 50 nm is continuously formed on the gate insulating film 1104 without being released to the atmosphere.
[0049]
Next, an aqueous solution (nickel acetate aqueous solution) containing 10 ppm of catalyst element (nickel in this embodiment) in terms of weight is applied by spin coating to form the catalyst element-containing layer 1106 over the entire surface of the amorphous semiconductor film 1105. To do. In addition to nickel (Ni), usable catalyst elements include germanium (Ge), iron (Fe), palladium (Pd), tin (Sn), lead (Pb), cobalt (Co), platinum (Pt). ), Copper (Cu), and gold (Au). In this embodiment, a method of adding nickel by a spin coating method was used. However, a thin film made of a catalytic element (a nickel film in this embodiment) is deposited on an amorphous semiconductor film by an evaporation method or a sputtering method. You may take the means to form. (Fig. 5 (A))
[0050]
Next, a heat treatment step is performed at 400 to 500 ° C. for about 1 hour before crystallization to desorb hydrogen from the film, and then at 500 to 650 ° C. (preferably 550 to 570 ° C.) for 4 to 12 hours. Heat treatment is performed (preferably 4 to 6 hours). In this embodiment, heat treatment is performed at 550 ° C. for 4 hours to form a crystalline semiconductor film (crystalline silicon film in this embodiment) 1107. (Fig. 5 (B))
[0051]
The active layer 1107 formed as described above can form a crystalline semiconductor film with excellent crystallinity by using a catalyst element (here, nickel) that promotes crystallization. In order to further improve the crystallinity, a laser crystallization method may be used in combination. For example, a linear beam is formed using XeF excimer laser light (wavelength 308 nm), and the oscillation frequency is 5 to 50 Hz and the energy density is 100 to 500 mJ / cm. 2 As shown in FIG. 5B, the linear semiconductor overlap ratio of 80 to 98% was applied to the crystalline semiconductor film 1107 manufactured in FIG. As a result, a crystalline semiconductor film 1108 with further excellent crystallinity could be formed. (Fig. 5 (C))
[0052]
When a crystalline semiconductor film manufactured over the substrate 1101 in this way is used to manufacture a TFT according to the procedure shown in Embodiments 1 and 2, good characteristics can be obtained. The characteristics of a TFT can be typically represented by field effect mobility, but the characteristics of a TFT formed from a crystalline semiconductor film manufactured as in this embodiment are 150 to 220 cm for an n-channel TFT. 2 / V · sec, 90-120cm for p-channel TFT 2 / V · sec was obtained, and even when operated continuously, characteristic deterioration from the initial value was hardly observed, and excellent characteristics were obtained from the viewpoint of reliability.
[0053]
[Example 4]
In this embodiment, another structure of the storage capacitor connected to the pixel TFT will be described with reference to FIGS. Here, the manufacturing steps of FIGS. 6 and 7 are the same as the step of forming the second interlayer insulating film 145 made of an organic resin film in accordance with the manufacturing steps described in the first embodiment. It has already been described with reference to FIGS. Therefore, in the present embodiment, the description will be made by paying attention only to differences from the first embodiment.
[0054]
6A, first, after forming the second interlayer insulating film 145 according to the steps of Embodiment 1, a light shielding film 301 is formed with a material containing an element selected from Al, Ta, and Ti. Then, a dielectric film 302 (an oxide of a material for forming the light shielding film) having a thickness of 30 to 150 nm (preferably 50 to 75 nm) is formed on the surface of the light shielding film 301 by an anodic oxidation method.
[0055]
When forming the dielectric film 302 by the anodic oxidation method, an ethylene glycol tartrate solution having a sufficiently low alkali ion concentration was first prepared. This was a solution in which 15% ammonium tartrate aqueous solution and ethylene glycol were mixed at a ratio of 2: 8, and aqueous ammonia was added thereto to adjust the pH to 7 ± 0.5. Then, a platinum electrode serving as a cathode is provided in the solution, the substrate on which the light shielding film 301 is formed is immersed in the solution, and a constant (several mA to several tens mA) direct current is passed using the light shielding film 301 as an anode. . The voltage between the cathode and the anode in the solution changes with time as the oxide grows, but the voltage is adjusted so that the current becomes constant, and when the voltage reaches 150 V, the voltage is not maintained or The anodizing treatment was terminated by setting the holding time to several seconds to several tens of seconds. Thus, the light shielding film 301 can be formed without causing the dielectric film to reach the surface in contact with the second interlayer insulating film.
[0056]
Although the dielectric film is provided only on the surface of the light shielding film here, the dielectric film may be formed by a vapor phase method such as a plasma CVD method, a thermal CVD method, or a sputtering method. In that case also, the film thickness is preferably 30 to 150 nm (preferably 50 to 75 nm). Alternatively, a silicon oxide film, a silicon nitride film, a silicon nitride oxide film, a DLC (Diamond like carbon) film, or an organic resin film may be used. Further, a laminated film combining these may be used.
[0057]
Thereafter, the pixel electrode 303 is formed as in the first embodiment. Thus, the storage capacitor 304 is formed in the region where the light shielding film 301 and the pixel electrode 303 overlap with each other with the dielectric film 302 interposed therebetween.
[0058]
In the structure of FIG. 6B, a light shielding film 301 and a dielectric film 302 are formed as in FIG. 6A, and then a spacer 305 made of an organic resin is formed. As the organic resin film, a film selected from polyimide, polyamide, polyimide amide, acrylic, and BCB (benzocyclobutene) can be used. After that, the spacer 305, the second interlayer insulating film 145, and the passivation film 143 are etched to form contact holes, and the pixel electrode 306 is formed using the same material as that in the first embodiment. Thus, the storage capacitor 307 is formed in a region where the light shielding film 301 and the pixel electrode 306 overlap with each other with the dielectric film 302 interposed therebetween. By providing the spacer 305 in this manner, a short circuit that occurs between the light shielding film 301 and the pixel electrode 306 can be prevented.
[0059]
In the structure of FIG. 6C, a light shielding film 301 is formed as in FIG. 6A, and a spacer 308 made of an organic resin is formed so as to cover an end portion of the light shielding film 301. As the organic resin, a film selected from polyimide, polyamide, polyimide amide, acrylic, and BCB (benzocyclobutene) can be used. Next, a dielectric film 309 is formed on the exposed surface of the light shielding film 301 by anodic oxidation. Note that a dielectric film is not formed on a portion in contact with the spacer 308. Then, the spacer 308, the second interlayer insulating film 145, and the passivation film 143 are etched to form a contact hole, and the pixel electrode 310 is formed using the same material as that of the first embodiment. Thus, the storage capacitor 311 is formed in a region where the light shielding film 301 and the pixel electrode 310 overlap with each other with the dielectric film 309 interposed therebetween. By providing the spacer 308 in this manner, a short circuit that occurs between the light shielding film 301 and the pixel electrode 310 can be prevented.
[0060]
In FIG. 7A, first, the second interlayer insulating film 145 is formed in accordance with the steps of Embodiment 1, and then the insulating film 312 is formed thereon with a material such as a silicon nitride film, a silicon oxide film, or a silicon nitride oxide film. . The insulating film 312 is formed by a known film formation method, and among these, it is preferable to use a sputtering method. Thereafter, similarly to FIG. 6A, a light-shielding film, a dielectric film, and a pixel electrode are formed, and the storage capacitor 313 is provided. By providing the insulating film 312, the adhesion of the light shielding film to the base is improved, and when the dielectric film is formed by the anodic oxidation method, the formation of the dielectric film around the interface with the base of the light shielding film is prevented. it can.
[0061]
In FIG. 7B, similarly, after forming the insulating film and the light shielding film, a region of the insulating film that is not in close contact with the light shielding film is removed by etching, and the insulating film 314 is formed so as to overlap the light shielding film. A pixel electrode 315 is provided. With this configuration, the adhesion of the light shielding film to the base is improved, and when the dielectric film is formed by the anodic oxidation method, the dielectric film wraps around the interface with the base of the light shielding film. In addition, the light transmittance of the pixel region where the light shielding film is formed can be improved.
[0062]
The structure shown in FIGS. 7A and 7B can be combined with the structure provided with the spacers shown in FIGS. 6B and 6C. Further, the configuration of this embodiment shown in FIGS. 6 and 7 can be combined with the configuration of Embodiment 1 or Embodiment 2.
[0063]
[Example 5]
In the method for manufacturing a semiconductor device in which the pixel TFT formed in the display region and the driver circuit TFT provided in the periphery of the display region described in Example 1 and Example 2 are provided over the same substrate, a crystal serving as an active layer A conductive semiconductor film, an insulating film such as a gate insulating film, an interlayer insulating film, and a base film, and a conductive film such as a gate electrode, a source wiring, a drain wiring, and a pixel electrode can all be formed by sputtering. The advantage of using the sputtering method is suitable for forming a uniform film over a large-area substrate because a DC (direct current) discharge method can be adopted in forming a conductive film or the like. In addition, it is not necessary to use silane (SiH4), which requires great care when forming a silicon-based material such as an amorphous silicon film or a silicon nitride film, and the safety of work is ensured. Such a point can be utilized as a very merit in the production site. Hereinafter, a manufacturing process using the sputtering method will be described according to the first embodiment.
[0064]
The gate electrodes 102 to 104 and the capacitor wiring 105 in FIG. 1A can be easily formed by a known sputtering method using a target material such as Ta, Ti, W, or Mo. When a compound material such as W-Mo or Ta-Mo is used, a compound target may be used similarly. Further, when forming TaN or WN, nitrogen (N) in addition to argon (Ar) in the sputtering atmosphere. 2 ) And ammonia (NH Three ) Can be prepared by appropriate addition. In addition, there is a method in which helium (He), krypton (Kr), or xenon (Xe) is added to the sputtering gas in addition to Ar to control the internal stress of the coating film to be produced.
[0065]
As the silicon nitride film 106a used for the gate insulating film 106, a silicon (Si) target is used, and Ar, N 2 , Hydrogen (H 2 ), NH Three It can be formed by mixing properly. Alternatively, a similar material can be formed using a silicon nitride target material. The silicon nitride oxide film 106b uses an Si, Ar, N 2 , H 2 , N 2 It is produced by mixing O with appropriate mixing and sputtering.
[0066]
Similarly, the amorphous silicon film uses a Si target and Ar, H 2 Is used as a sputtering gas. Further, when it is desired to add a small amount of boron (B) to the amorphous silicon film, several tens to several thousand ppm of boron (B) may be added to the target in advance, or sputtering gas may be added. Diborane (B 2 H 6 ) Can also be added.
[0067]
Silicon oxide films applicable to the channel protective films 119 to 122 can be manufactured by sputtering with silicon oxide (or quartz) as a target material and using a mixed gas of Ar or Ar and oxygen (O2). The silicon nitride film, the silicon oxide film, and the silicon nitride oxide film used for the protective insulating film 137, the interlayer insulating film 138, and the passivation film 144 may be formed as described above.
[0068]
In the case where Al is used in the source wirings 139 to 141 and the drain wirings 142 and 143, the inclusion of about 0.01 to 5% by weight of Ti, Si, scandium (Sc), vanadium (V), Cu or the like causes hillocks. It is effective for prevention. Ti, Ta, Al, etc. used for the light shielding film 171, ITO, ZnO, SnO used for the pixel electrode 146 2 Any of these may be formed by a known sputtering method.
[0069]
As described above, films other than the second interlayer insulating film 145 and the third interlayer insulating film 172 made of an organic resin can be formed by sputtering. The detailed experimental conditions may be determined by the practitioner.
[0070]
[Example 6]
In this embodiment, a pixel TFT and a TFT of a driver circuit, particularly, another example of a p-channel TFT will be described. First, the steps from FIG. 1A to FIG. 2A described in the first embodiment are performed in the same manner. FIG. 12A corresponds to FIG. 2A and shows a state where resist masks 1123 to 1125 and impurity regions 1126 to 1130 to which an impurity element imparting n-type conductivity is added are formed.
[0071]
Then, as shown in FIG. + Region formation is performed. A mask 1131 was formed so as to be positioned on the inner side of the channel protective film 1119, and all regions where n-channel TFTs were formed were covered with resist masks 1132 and 1133. Further, a channel protection insulating film 1119b having a new shape is formed by wet etching using a hydrofluoric acid-based solution so that the end of the channel protection film 1119 substantially matches the end of the mask 1131. . And diborane (B 2 H 6 The high-concentration impurity regions 1134 to 1136 are formed by an ion doping method using () (an ion implantation method may be used). Impurity regions 1134 to 1136 are doped with an impurity element from the surface of the crystalline silicon film, and the boron (B) concentration in this region is 1.5 × 10 5. 20 ~ 3x10 twenty one cm -3 Where 2 × 10 twenty one cm -3 It was. In this specification, the concentration of the impurity element imparting p-type contained in the impurity regions 1134 to 1136 formed here is defined as (p + ). In this manner, by providing the end portion in contact with the channel formation region of the high-concentration impurity region of the p-channel TFT on the channel formation region side from the end portions of the low-concentration impurity regions 1113 and 1114 formed in the previous step, The joining state in this part can be made favorable.
[0072]
As shown in FIGS. 1B to 2A, since phosphorus (P) is added to the impurity regions 1135 and 1136 in the previous step, boron (B) and phosphorus (P) are added. A mixed region is formed, but by increasing the boron (B) concentration added in this step to 1.5 to 3 times that, p-type conductivity is ensured, and this has no influence on the TFT characteristics. There wasn't. In this specification, this region is referred to as a region (B). The impurity region 134 on the channel formation region side includes only boron (B), and this region is referred to as a region (A) in this specification.
[0073]
After each impurity element is selectively added to the crystalline silicon film, the crystalline silicon film is etched to be divided into islands, and a protective insulating film 1137 that later becomes a part of the first interlayer insulating film is formed. . The protective insulating film 1137 may be formed using a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or a stacked film including a combination thereof. The film thickness may be 100 to 400 nm.
[0074]
Thereafter, a heat treatment process was performed to activate the impurity element imparting n-type or p-type added at each concentration. In the case of activation by the furnace annealing method, heat treatment was performed in a nitrogen atmosphere at 300 to 650 ° C., preferably 500 to 550 ° C., here 525 ° C. for 4 hours. When laser annealing is applied, an excimer laser is used as a light source, and the laser beam is converted into a linear beam with a line width of 100 to 500 μm by an optical system. ), Irradiation is performed at an energy density of 100 to 500 mJ / cm 2. Further, a process of hydrogenating the active layer was performed by performing heat treatment at 300 to 450 ° C. for 1 to 12 hours in an atmosphere containing 3 to 100% hydrogen. This step is a step of terminating dangling bonds in the active layer with thermally excited hydrogen. As another means of hydrogenation, plasma hydrogenation (using hydrogen excited by plasma) may be performed.
[0075]
After the activation process, an interlayer insulating film 1138 having a thickness of 500 to 1500 nm was formed on the protective insulating film 1137. A laminated film composed of the protective insulating film 1137 and the interlayer insulating film 1138 was used as a first interlayer insulating film. Thereafter, contact holes reaching the source region or the drain region of each TFT were formed, and source wirings 1139 to 1141 and drain wirings 1142 and 1143 were formed. Although not shown, in this embodiment, this electrode is a laminated film having a three-layer structure in which a Ti film is 100 nm, an aluminum film containing Ti is 300 nm, and a Ti film is 150 nm continuously formed by sputtering.
[0076]
The protective insulating film 1137 and the interlayer insulating film 1138 may be formed of a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or the like. In any case, it is preferable to set the internal stress of the film as a compressive stress.
[0077]
Next, a passivation film 1144 was formed to a thickness of 50 to 500 nm (typically 100 to 300 nm) using a silicon nitride film, a silicon oxide film, or a silicon nitride oxide film. Thereafter, when the hydrogenation treatment was performed in this state, a favorable result was obtained for improving the characteristics of the TFT. For example, heat treatment may be performed at 300 to 450 ° C. for 1 to 12 hours in an atmosphere containing 3 to 100% hydrogen, or the same effect can be obtained by using a plasma hydrogenation method. Note that an opening may be formed in the passivation film 1144 at a position where a contact hole for connecting the pixel electrode and the drain wiring is formed later.
[0078]
Thereafter, as in Example 1, a second interlayer insulating film 1145 made of an organic resin film was formed to a thickness of about 1 μm. A contact hole reaching the drain wiring 1143 was formed in the second interlayer insulating film 1145 and the passivation film 1144, and a pixel electrode 1146 was provided. The pixel electrode 1146 may be a transparent conductive film in the case of a transmissive liquid crystal display device, and a metal film in the case of a reflective liquid crystal display device. Here, in order to obtain a transmissive liquid crystal display device, an indium tin oxide (ITO) film was formed to a thickness of 100 nm by sputtering. The pixel electrode 1190 is an electrode of an adjacent pixel.
[0079]
Through the above steps, the pixel TFT in the display area and the TFT of the drive circuit provided around the display area can be formed on the same substrate. In the driving circuit, an n-channel TFT 1168 and a p-channel TFT 1167 are formed, and a logic circuit based on a CMOS circuit can be formed. The pixel TFT 1169 is an n-channel TFT, and a storage capacitor 1170 is connected to the pixel TFT 1169 from the capacitor wiring 105, the semiconductor layer 1166, and an insulating film formed therebetween.
[0080]
A p-channel TFT 1167 of the driver circuit includes a channel formation region 1147, source regions 1148 and 1150 formed of high-concentration impurity regions, and drain regions 1149 and 1151. The source region 1150 and the drain region 1151 are formed of a region (B), and the boron (B) concentration in this region is 1.5 to 3 times the phosphorus (P) concentration. A source region 1148 and a drain region 1149 formed on the inner side of the impurity region (B), that is, on the channel formation region 1147 side are regions (A), and regions containing only boron (B) at the same concentration as the region (B). It is. This region (A) has a structure that entirely overlaps with the gate electrode 1103, while the region (B) partially overlaps with the gate electrode 1103. As described above, the high concentration impurity region of the p-channel TFT is formed from the region (B) and the region (A), and the region (B) is separated from the channel formation region, whereby the channel formation region, the high concentration impurity region, The bonding can be made excellent.
[0081]
The n-channel TFT 1168 of the driver circuit includes a channel formation region 1152, a source region 1155 and a drain region 1156, and LDD regions 1153 and 1154. The pixel TFT 1169 includes channel formation regions 1157 and 1158, source or drain regions 1163 to 1165, and LDD regions 1159 to 1162. The LDD region of the n-channel TFT of the drive circuit is provided mainly for the purpose of relaxing the high electric field in the vicinity of the drain and preventing the deterioration of the on-current value due to hot carrier injection. Impurity element concentration to be applied is 5 × 10 17 ~ 5x10 18 cm -3 I should have done it. On the other hand, the LDD region of the pixel TFT is provided mainly for the purpose of reducing the off-current value, and the concentration of the impurity element may be the same as the concentration of the LDD region of the n-channel TFT of the driver circuit. The density may be ½ to 1/10. In FIG. 3, the pixel TFT 1169 is completed as a double gate structure, but it may be a single gate structure or a multi-gate structure provided with a plurality of gate electrodes.
[0082]
In the TFT manufactured through the above steps, the channel protection insulating films 1119b and 1120 to 1122 are formed without being damaged by an ion doping method or the like, and thus the TFT characteristics may be stabilized. it can. For example, as a bias / thermal stress (BTS) test, even when a voltage of −1.7 MV is applied to the gate electrode and left at 150 ° C. for 1 hour, the threshold voltage, field effect mobility, subthreshold Fluctuations such as constants and on-current values are hardly observed. Furthermore, according to the present invention, the structure of the TFT constituting each circuit can be optimized according to the specifications required by the pixel TFT and the drive circuit, and the operation performance and reliability of the semiconductor device can be improved.
[0083]
Further, the storage capacitor shown in FIG. 13 has a light shielding film, a dielectric layer formed on the surface thereof by an anodic oxidation method, a pixel electrode, as described in Embodiment 4 with reference to FIGS. You may form from.
[0084]
[Example 7]
In this example, a process of manufacturing an active matrix liquid crystal display device from a substrate on which a pixel TFT and a driving circuit are formed will be described. As shown in FIG. 8, an alignment film 601 is formed on the substrate in the state of FIG. Usually, a polyimide resin is often used for the alignment film of the liquid crystal display element. A light shielding film 603, a transparent conductive film 604, and an alignment film 605 are formed on the opposite substrate 602. After the alignment film was formed, rubbing treatment was performed so that the liquid crystal molecules were aligned with a certain pretilt angle. Then, the one substrate on which the pixel TFT and the drive circuit are formed and the counter substrate are bonded to each other through a sealing material, a spacer (both not shown), and the like by a known cell assembling process. Thereafter, a liquid crystal material 606 was injected between both substrates and completely sealed with a sealant (not shown). A known liquid crystal material may be used as the liquid crystal material. In this way, the active matrix liquid crystal display device shown in FIG. 8 is completed.
[0085]
Next, the configuration of the active matrix liquid crystal display device will be described with reference to the perspective view of FIG. 9 and the top view of FIG. 9 and 10 use the same reference numerals in order to correspond to the cross-sectional structure diagrams of FIGS. 1 to 3 and FIG. 10 corresponds to the sectional view of the pixel TFT 169 and the storage capacitor 170 shown in FIG.
[0086]
The perspective view shown in FIG. 9 includes a display region 701, a scanning (gate) line driving circuit 702, and a signal (source) line driving circuit 703 formed on the glass substrate 101. A pixel TFT 169 is provided in the display area, and a drive circuit provided in the periphery of the display area is configured based on a CMOS circuit. The scanning (gate) line driving circuit 702 and the signal (source) line driving circuit 703 are respectively connected to the gate wiring 104 (represented by the same reference numerals in the sense of being connected to the gate electrode and extending) and the source wiring 141. To the pixel TFT in the display area 701. Further, the FPC 731 is connected to the external input / output terminal 734.
[0087]
FIG. 10 is a top view showing almost one pixel in the display area 701. The gate wiring 104 intersects with the active layer thereunder via a gate insulating film (not shown). Although not shown, the active layer includes a source region, a drain region, n - An LDD region composed of regions is formed. Reference numeral 180 denotes a contact portion between the source wiring 141 and the source region 163, 181 denotes a contact portion between the drain wiring 143 and the drain region 165, and 182 denotes a contact portion between the drain wiring 143 and the pixel electrode 146. The storage capacitor 170 is formed in a region where the semiconductor layer 166 connected to the drain region 165 of the pixel TFT 169 overlaps with the capacitor wiring 105 and the insulating film formed therebetween.
[0088]
Although the active matrix liquid crystal display device of this embodiment has been described in light of the structure described in the first embodiment, the active matrix liquid crystal display device can be freely combined with any of the configurations of the first to sixth embodiments. Can be produced.
[0089]
[Example 8]
Substrates in which pixel TFTs and drive circuits manufactured by implementing the present invention are integrally formed on the same substrate are various electro-optical devices (active matrix liquid crystal display devices, active matrix EL display devices, active matrix EC devices). Display device). That is, the present invention can be implemented in all electronic devices in which these electro-optical devices are incorporated as display media.
[0090]
Examples of such electronic devices include a video camera, a digital camera, a projector (rear type or front type), a head mounted display (goggles type display), a car navigation system, a personal computer, a mobile phone, or an electronic book. An example of them is shown in FIG.
[0091]
FIG. 11A illustrates a mobile phone, which includes a main body 9001, an audio output portion 9002, an audio input portion 9003, a display device 9004, operation switches 9005, and an antenna 9006. The present invention can be applied to the audio output unit 9002, the audio input unit 9003, and an active matrix display device 9004 provided with a drive circuit in the display area and its periphery.
[0092]
FIG. 11B illustrates a video camera which includes a main body 9101, a display device 9102, an audio input portion 9103, operation switches 9104, a battery 9105, and an image receiving portion 9106. The present invention can be applied to the voice input portion 9103, the active matrix display device 9102 and the image receiving portion 9106 each having a display area and a drive circuit in the periphery thereof.
[0093]
FIG. 11C illustrates a mobile computer, which includes a main body 9201, a camera portion 9202, an image receiving portion 9203, operation switches 9204, and a display device 9205. The present invention can be applied to the image receiving portion 9203 and an active matrix display device 9205 provided with a drive circuit in the display area and its periphery.
[0094]
FIG. 11D illustrates a goggle type display which includes a main body 9301, a display device 9302, and an arm portion 9303. The present invention can be applied to an active matrix display device 9302 provided with a drive circuit in the display area and its periphery. Although not shown, it can also be used for other signal control circuits.
[0095]
FIG. 11E illustrates a rear projector, which includes a main body 9401, a light source 9402, a display device 9403, a polarizing beam splitter 9404, reflectors 9405 and 9406, and a screen 9407. The present invention can be applied to an active matrix display device 9403 provided with a driver circuit in and around the display region.
[0096]
FIG. 11F illustrates a portable book which includes a main body 9501, display devices 9502 and 9503, a storage medium 9504, operation switches 9505, and an antenna 9506, and is stored in a mini disc (MD) or a digital video disc (DVD). Displayed data and data received by an antenna are displayed. The display devices 9502 and 9503 are active matrix direct-view display devices each including a display region and a driver circuit around the display region. The present invention can be applied to the display devices.
[0097]
Although not shown here, the present invention can also be applied to a display unit of a car navigation system or an image sensor personal computer. Thus, the applicable range of the present invention is extremely wide and can be applied to electronic devices in all fields. Moreover, the electronic apparatus of a present Example is realizable even if it uses the structure which consists of what combination of Examples 1-7.
[0098]
【The invention's effect】
By using the present invention, in a semiconductor device (specifically, an electro-optical device here) in which a plurality of functional circuits are formed on the same substrate, a TFT having appropriate performance according to the specifications required by the functional circuits Can be arranged, and its operating characteristics and reliability can be greatly improved.
[0099]
In particular, in a bottom gate type or inverted stagger type TFT provided with an LDD region, the LDD region of the pixel TFT is set to n. - By forming Loff at a concentration of 1%, it is possible to greatly reduce the off-current value and contribute to lower power consumption of the pixel TFT. In addition, the LDD region of the n-channel TFT of the drive circuit is set to - By forming Lov + Loff at a concentration of N, it is possible to increase current drive capability, prevent deterioration due to hot carriers, and reduce deterioration of the on-current value.
[0100]
Further, in the p-channel TFT of the driver circuit, an impurity region (B) including both an impurity element imparting p-type and an impurity element imparting n-type, and an impurity region including an impurity element imparting p-type ( A), and the impurity region (A) is formed between the impurity region (A) and the LDD region of the p-channel TFT of the driver circuit, thereby being in contact with the channel formation region. The junction formation between the LDD region and the LDD region and the source region or the drain region is ensured, and the characteristics of the p-channel TFT can be kept good.
[0101]
In addition, operation performance and reliability of a semiconductor device (specifically, an electronic device here) having such an electro-optical device as a display medium can be improved.
[Brief description of the drawings]
FIGS. 1A and 1B are diagrams illustrating a manufacturing process of a pixel TFT and a driver circuit TFT. FIGS.
FIGS. 2A and 2B are diagrams illustrating a manufacturing process of a pixel TFT and a TFT of a driver circuit. FIGS.
FIGS. 3A and 3B are diagrams illustrating a manufacturing process of a pixel TFT and a driver circuit TFT. FIGS.
FIGS. 4A and 4B are diagrams illustrating a manufacturing process of a pixel TFT and a driver circuit TFT; FIGS.
FIGS. 5A and 5B illustrate a manufacturing process of a crystalline semiconductor film. FIGS.
FIG. 6 illustrates an example of a cross-sectional structure of a storage capacitor.
FIG. 7 illustrates an example of a cross-sectional structure of a storage capacitor.
FIG. 8 illustrates a cross-sectional structure of an active matrix liquid crystal display device.
FIG. 9 is a perspective view of an active matrix liquid crystal display device.
FIG. 10 is a top view of a pixel.
FIG 11 illustrates an example of a semiconductor device.
FIGS. 12A to 12C are diagrams illustrating manufacturing steps of a pixel TFT and a TFT of a driver circuit. FIGS.
FIGS. 13A and 13B are diagrams illustrating manufacturing steps of a pixel TFT and a TFT of a driver circuit. FIGS.
[Explanation of symbols]
101 substrate
102 to 104 Gate electrode
105 capacitance wiring
106 Gate insulation film
107 crystalline silicon film
108 Mask insulation film
119 to 121 channel protective film
139-141 Source electrode
142-143 drain electrode
137 Protective insulating film
138 Interlayer insulation film
144 Passivation film
145 Second interlayer insulating film
146 Pixel electrode

Claims (7)

表示領域に設けられたTFTと、前記表示領域の周辺に設けられた駆動回路のnチャネル型TFTとpチャネル型TFTとを同一の基板上に有し、
前記pチャネル型TFTは第1のゲート電極と、第1の半導体膜とを有し、
前記第1の半導体膜は、第1のチャネル形成領域と、前記第1のチャネル形成領域と隣接しない第1の不純物領域と、前記第1のチャネル形成領域と隣接した第2の不純物領域と、を有し、
前記nチャネル型TFTは、第2のゲート電極と、第2の半導体膜とを有し、
前記第2の半導体膜は、第2のチャネル形成領域と、第3の不純物領域と、を有し、
前記第2の不純物領域は、前記第3の不純物領域に添加された不純物元素を有さない半導体装置の作製方法であって、
前記基板上に前記第1のゲート電極及び前記第2のゲート電極を形成し、
前記第1のゲート電極上及び前記第2のゲート電極上にゲート絶縁膜を形成し、
前記ゲート絶縁膜を介して前記第1のゲート電極上に前記第1の半導体膜を形成し、前記ゲート絶縁膜を介して前記第2のゲート電極上に前記第2の半導体膜を形成し、
前記第1の半導体膜上及び前記第2の半導体膜上に第1の絶縁膜を形成し、
前記第1の絶縁膜上に、前記第1のゲート電極の内側に位置した第1のマスクを形成し、前記第1の絶縁膜上に、前記第2のゲート電極の内側に位置した第2のマスクを形成し、
前記第1のマスク及び前記第2のマスクを用いて、前記n型を付与する不純物元素を第1の濃度で添加して、前記第2のチャネル形成領域を形成し、
前記第1のマスク及び前記第2のマスクを用いて、前記第1の絶縁膜をエッチングして、前記第1のマスクより内側に位置した第1のチャネル保護膜、及び前記第2のマスクより内側に位置した第2のチャネル保護膜を形成し、
前記第1のチャネル保護膜及び前記第1の半導体膜上に、前記第1のチャネル保護膜より広い第3のマスクを形成し、前記第2のチャネル保護膜及び前記第2の半導体膜上に、前記第2のゲート電極より広い第4のマスクを形成し、
前記第3のマスク及び前記第4のマスクを用いて、前記n型を付与する不純物元素を前記第1の濃度より高い第2の濃度で添加して、前記第3の不純物領域を形成し、
前記第1のチャネル保護膜上に、前記1のチャネル保護膜より内側に位置した第5のマスクを形成し、前記第2の半導体膜の全部の上に第6のマスクを形成し、
前記第1のチャネル保護膜、前記第5のマスク及び前記第6のマスクを用いて、前記第1の半導体膜にp型を付与する不純物元素を前記第2の濃度より高い第3の濃度で添加して、前記第1のチャネル形成領域と、前記第1の不純物領域と、前記第2の不純物領域とを形成することを特徴とする半導体装置の作製方法。
A TFT provided in the display region, and an n-channel TFT and a p-channel TFT of a drive circuit provided around the display region on the same substrate;
The p-channel TFT has a first gate electrode and a first semiconductor film,
The first semiconductor film includes a first channel formation region, a first impurity region not adjacent to the first channel formation region, a second impurity region adjacent to the first channel formation region, Have
The n-channel TFT has a second gate electrode and a second semiconductor film,
The second semiconductor film has a second channel formation region and a third impurity region,
The second impurity region is a method for manufacturing a semiconductor device having no impurity element added to the third impurity region,
Forming the first gate electrode and the second gate electrode on the substrate;
Forming a gate insulating film on the first gate electrode and the second gate electrode;
Forming the first semiconductor film on the first gate electrode via the gate insulating film, forming the second semiconductor film on the second gate electrode via the gate insulating film;
Forming a first insulating film on the first semiconductor film and the second semiconductor film;
On the first insulating film, said first mask is formed which is positioned inside the first gate electrode, on the first insulating film, the second located on the inner side of the second gate electrode Forming a mask of
Using the first mask and the second mask, an impurity element imparting the n-type is added at a first concentration to form the second channel formation region;
Using the first mask and the second mask, the first insulating film is etched, and the first channel protective film located inside the first mask and the second mask. Forming a second channel protective film located inside;
A third mask wider than the first channel protective film is formed on the first channel protective film and the first semiconductor film , and is formed on the second channel protective film and the second semiconductor film . Forming a fourth mask wider than the second gate electrode;
Using the third mask and the fourth mask, an impurity element imparting the n-type is added at a second concentration higher than the first concentration to form the third impurity region;
Forming a fifth mask located on the inner side of the first channel protective film on the first channel protective film , and forming a sixth mask on the whole of the second semiconductor film;
Using the first channel protective film, the fifth mask, and the sixth mask, an impurity element imparting p-type to the first semiconductor film is formed at a third concentration higher than the second concentration. A method for manufacturing a semiconductor device, wherein the first channel formation region, the first impurity region, and the second impurity region are formed by addition.
請求項1において、
前記第1のチャネル保護膜、前記第5のマスク及び前記第6のマスクを用いて、前記第1の半導体膜に前記p型を付与する不純物元素を添加して、前記第1のチャネル形成領域と、前記第2の不純物領域とを形成したことにより、前記第1のチャネル形成領域は、前記第2のチャネル形成領域よりチャネル長方向に短いことを特徴とする半導体装置の作製方法。
In claim 1,
The first channel formation region is formed by adding an impurity element imparting the p-type to the first semiconductor film using the first channel protective film, the fifth mask, and the sixth mask. And the second impurity region is formed, whereby the first channel formation region is shorter in the channel length direction than the second channel formation region.
表示領域に設けられたTFTと、前記表示領域の周辺に設けられた駆動回路のnチャネル型TFTとpチャネル型TFTとを同一の基板上に有し、
前記pチャネル型TFTは第1のゲート電極と、第1の半導体膜とを有し、
前記第1の半導体膜は、第1のチャネル形成領域と、前記第1のチャネル形成領域に隣接した第1の不純物領域と、を有し、
前記nチャネル型TFTは、第2のゲート電極と、第2の半導体膜とを有し、
前記第2の半導体膜は、第2のチャネル形成領域と、第2の不純物領域とを有し、
前記第1の不純物領域は、前記第2の不純物領域に添加された不純物元素を有さない半導体装置の作製方法であって、
前記基板上に前記第1のゲート電極及び前記第2のゲート電極を形成し、
前記第1のゲート電極上及び前記第2のゲート電極上にゲート絶縁膜を形成し、
前記ゲート絶縁膜を介して前記第1のゲート電極上に前記第1の半導体膜を形成し、前記ゲート絶縁膜を介して前記第2のゲート電極上に前記第2の半導体膜を形成し、
前記第1の半導体膜上及び前記第2の半導体膜上に第1の絶縁膜を形成し、
前記第1の絶縁膜上に、前記第1のゲート電極の内側に位置した第1のマスクを形成し、前記第1の絶縁膜上に、前記第2のゲート電極の内側に位置した第2のマスクを形成し、
前記第1のマスク及び前記第2のマスクを用いて、前記n型を付与する不純物元素を第1の濃度で添加して、前記第2のチャネル形成領域を形成し、
前記第1のマスク及び前記第2のマスクを用いて、前記第1の絶縁膜をエッチングして、前記第1のマスクより内側に位置した第1のチャネル保護膜、及び前記第2のマスクより内側に位置した第2のチャネル保護膜を形成し、
前記第1のチャネル保護膜及び前記第1の半導体膜上に、前記第1のチャネル保護膜より広い第3のマスクを形成し、前記第2のチャネル保護膜及び前記第2の半導体膜上に、前記第2のゲート電極より広い第4のマスクを形成し、
前記第3のマスク及び前記第4のマスクを用いて、前記n型を付与する不純物元素を前記第1の濃度より高い第2の濃度で添加して、前記第2の不純物領域を形成し、
前記第1のチャネル保護膜上に、前記1のチャネル保護膜より内側に位置した第5のマスクを形成し、前記第2の半導体膜の全部の上に第6のマスクを形成し、
前記第5のマスクを用いて前記第1のチャネル保護膜をエッチングして、第3のチャネル保護膜を形成し、
前記第3のチャネル保護膜、前記第5のマスク及び前記第6のマスクを用いて、前記第1の半導体膜にp型を付与する不純物元素を前記第2の濃度より高い第3の濃度で添加して、前記第1のチャネル形成領域と、前記第1の不純物領域とを形成することを特徴とする半導体装置の作製方法。
A TFT provided in the display region, and an n-channel TFT and a p-channel TFT of a drive circuit provided around the display region on the same substrate;
The p-channel TFT has a first gate electrode and a first semiconductor film,
The first semiconductor film has a first channel formation region and a first impurity region adjacent to the first channel formation region,
The n-channel TFT has a second gate electrode and a second semiconductor film,
The second semiconductor film has a second channel formation region and a second impurity region,
The first impurity region is a method for manufacturing a semiconductor device having no impurity element added to the second impurity region,
Forming the first gate electrode and the second gate electrode on the substrate;
Forming a gate insulating film on the first gate electrode and the second gate electrode;
Forming the first semiconductor film on the first gate electrode via the gate insulating film, forming the second semiconductor film on the second gate electrode via the gate insulating film;
Forming a first insulating film on the first semiconductor film and the second semiconductor film;
On the first insulating film, said first mask is formed which is positioned inside the first gate electrode, on the first insulating film, the second located on the inner side of the second gate electrode Forming a mask of
Using the first mask and the second mask, an impurity element imparting the n-type is added at a first concentration to form the second channel formation region;
Using the first mask and the second mask, the first insulating film is etched, and the first channel protective film located inside the first mask and the second mask. Forming a second channel protective film located inside;
A third mask wider than the first channel protective film is formed on the first channel protective film and the first semiconductor film , and is formed on the second channel protective film and the second semiconductor film . Forming a fourth mask wider than the second gate electrode;
Using the third mask and the fourth mask, an impurity element imparting the n-type is added at a second concentration higher than the first concentration to form the second impurity region;
Forming a fifth mask located on the inner side of the first channel protective film on the first channel protective film , and forming a sixth mask on the whole of the second semiconductor film;
Etching the first channel protective film using the fifth mask to form a third channel protective film,
Using the third channel protective film, the fifth mask, and the sixth mask, an impurity element imparting p-type to the first semiconductor film is formed at a third concentration higher than the second concentration. A method for manufacturing a semiconductor device, wherein the first channel formation region and the first impurity region are formed by addition.
請求項3において、
前記第3のチャネル保護膜、前記第5のマスク及び前記第6のマスクを用いて、前記第1の半導体膜に前記p型を付与する不純物元素を添加して、前記第1のチャネル形成領域と、前記第1の不純物領域とを形成したことにより、前記第1のチャネル形成領域は、前記第2のチャネル形成領域よりチャネル長方向に短いことを特徴とする半導体装置の作製方法。
In claim 3,
Using the third channel protective film, the fifth mask, and the sixth mask, the impurity element imparting the p-type is added to the first semiconductor film, and the first channel formation region And the first impurity region is formed, whereby the first channel formation region is shorter in the channel length direction than the second channel formation region.
請求項1乃至請求項4のいずれか一において、
前記基板上に容量配線を形成し、
前記容量配線上に絶縁膜を形成し、
前記絶縁膜上に第3の半導体膜を形成して、前記容量配線、前記絶縁膜、及び前記第3の半導体膜を有する容量を形成し、
前記容量は、前記表示領域の前記TFTに電気的に接続されることを特徴とする半導体装置の作製方法。
In any one of Claims 1 thru | or 4,
Forming capacitive wiring on the substrate;
Forming an insulating film on the capacitor wiring;
Forming a third semiconductor film on the insulating film to form a capacitor having the capacitor wiring, the insulating film, and the third semiconductor film;
The method for manufacturing a semiconductor device, wherein the capacitor is electrically connected to the TFT in the display region.
請求項1乃至請求項4のいずれか一において、
前記表示領域の前記TFT上に遮光膜を形成し、
前記遮光膜に接して誘電体膜を形成し、
前記遮光膜と一部が重なるように前記表示領域の前記TFTに電気的に接続する画素電極を形成して、前記遮光膜、前記誘電体膜、及び前記画素電極を有する容量を形成し、
前記容量は、前記表示領域の前記TFTに電気的に接続されることを特徴とする半導体装置の作製方法。
In any one of Claims 1 thru | or 4,
Forming a light shielding film on the TFT in the display area;
Forming a dielectric film in contact with the light shielding film;
The display area said to form a pixel electrode electrically connected to the T FT of as the light shielding film to partially overlap the light shielding film to form a capacitor having a dielectric layer, and the pixel electrode,
The method for manufacturing a semiconductor device, wherein the capacitor is electrically connected to the TFT in the display region.
請求項6において、
前記遮光膜は、アルミニウム、タンタル、チタンから選ばれた一種または複数種を含む材料で形成し、
前記誘電体膜は、前記遮光膜を形成する材料の酸化物で形成することを特徴とする半導体装置の作製方法。
In claim 6,
The light shielding film is formed of a material including one or more selected from aluminum, tantalum, and titanium,
The method for manufacturing a semiconductor device, wherein the dielectric film is formed of an oxide of a material for forming the light shielding film.
JP2000101787A 1999-04-06 2000-04-04 Method for manufacturing semiconductor device Expired - Fee Related JP4651773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101787A JP4651773B2 (en) 1999-04-06 2000-04-04 Method for manufacturing semiconductor device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP9948199 1999-04-06
JP11-99481 1999-06-22
JP11-176120 1999-06-22
JP17612099 1999-06-22
JP2000101787A JP4651773B2 (en) 1999-04-06 2000-04-04 Method for manufacturing semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010226258A Division JP5337780B2 (en) 1999-04-06 2010-10-06 Semiconductor device

Publications (3)

Publication Number Publication Date
JP2001068680A JP2001068680A (en) 2001-03-16
JP2001068680A5 JP2001068680A5 (en) 2007-06-07
JP4651773B2 true JP4651773B2 (en) 2011-03-16

Family

ID=27308970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101787A Expired - Fee Related JP4651773B2 (en) 1999-04-06 2000-04-04 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP4651773B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346730B1 (en) * 1999-04-06 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device having a pixel TFT formed in a display region and a drive circuit formed in the periphery of the display region on the same substrate
US6362507B1 (en) * 1999-04-20 2002-03-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical devices in which pixel section and the driver circuit are disposed over the same substrate
KR100915148B1 (en) * 2003-03-07 2009-09-03 엘지디스플레이 주식회사 Method for fabricating switching and driving device for liquid crystal display device with driving circuit
KR100924493B1 (en) * 2003-06-27 2009-11-03 엘지디스플레이 주식회사 Method of fabricating an array substrate for Liquid Crystal Display Device with driving circuit
US7859187B2 (en) 2003-11-14 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Display device and method for fabricating the same
JP4831954B2 (en) * 2003-11-14 2011-12-07 株式会社半導体エネルギー研究所 Method for manufacturing display device
KR100721555B1 (en) 2004-08-13 2007-05-23 삼성에스디아이 주식회사 Bottom gate thin film transistor and method fabricating thereof
TWI339442B (en) 2005-12-09 2011-03-21 Samsung Mobile Display Co Ltd Flat panel display and method of fabricating the same
US8284142B2 (en) * 2008-09-30 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Display device
US9799773B2 (en) * 2011-02-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
KR102430573B1 (en) 2015-05-14 2022-08-08 엘지디스플레이 주식회사 Thin Film Transistor and Backplane Substrate including the Same
CN109545795B (en) 2017-09-22 2020-10-30 群创光电股份有限公司 Display device
JP2020027862A (en) * 2018-08-10 2020-02-20 株式会社ジャパンディスプレイ Display and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186053A (en) * 1984-03-06 1985-09-21 Seiko Epson Corp Thin film complementary mos circuit
JPH1174535A (en) * 1997-08-29 1999-03-16 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186053A (en) * 1984-03-06 1985-09-21 Seiko Epson Corp Thin film complementary mos circuit
JPH1174535A (en) * 1997-08-29 1999-03-16 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture

Also Published As

Publication number Publication date
JP2001068680A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP6495973B2 (en) Liquid crystal display
US9786787B2 (en) Semiconductor device and fabrication method thereof
JP4798824B2 (en) Semiconductor device and manufacturing method thereof
JP4712208B2 (en) Method for manufacturing semiconductor device
US6808968B2 (en) Method of manufacturing a semiconductor device
JP4651773B2 (en) Method for manufacturing semiconductor device
JP4583540B2 (en) Semiconductor device and manufacturing method thereof
JP2000353809A (en) Semiconductor device and manufacture thereof
JP4850763B2 (en) Method for manufacturing semiconductor device
JP4080168B2 (en) Method for manufacturing semiconductor device
JP2005322935A (en) Semiconductor device and its manufacturing method
JP4641586B2 (en) Method for manufacturing semiconductor device
JP2000269513A (en) Semiconductor device and its forming method
JP5057605B2 (en) Method for manufacturing semiconductor device
JP4127467B2 (en) Method for manufacturing semiconductor device
JP4700159B2 (en) Method for manufacturing semiconductor device
JP3907898B2 (en) Method for manufacturing semiconductor device
JPH10200125A (en) Thin-film transistor and its manufacture
JPH11307781A (en) Thin film transistor and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees