JP4649976B2 - PWM controller for power converter - Google Patents

PWM controller for power converter Download PDF

Info

Publication number
JP4649976B2
JP4649976B2 JP2004365170A JP2004365170A JP4649976B2 JP 4649976 B2 JP4649976 B2 JP 4649976B2 JP 2004365170 A JP2004365170 A JP 2004365170A JP 2004365170 A JP2004365170 A JP 2004365170A JP 4649976 B2 JP4649976 B2 JP 4649976B2
Authority
JP
Japan
Prior art keywords
power converter
value
output
output current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004365170A
Other languages
Japanese (ja)
Other versions
JP2006174625A (en
Inventor
宣之 小林
英俊 海田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004365170A priority Critical patent/JP4649976B2/en
Publication of JP2006174625A publication Critical patent/JP2006174625A/en
Application granted granted Critical
Publication of JP4649976B2 publication Critical patent/JP4649976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

この発明は、インバータ等の電力変換器を構成する半導体スイッチ素子をパルス幅変調(PWM)制御するPWM制御装置、特に出力電圧および電流の波形改善技術に関する。   The present invention relates to a PWM control device that performs pulse width modulation (PWM) control of a semiconductor switch element that constitutes a power converter such as an inverter, and more particularly to a technique for improving waveforms of output voltage and current.

図3に、例えば特許文献1に開示されているPWMインバータの例を示す。
図3において、1はインバータで、直流電源2とU相アーム(U相レグ)3およびV相アーム(V相レグ)4から構成される。U相レグ3は半導体スイッチ3a,3bと、これらに逆並列に接続されたダイオード3c,3dからなり、V相レグ4は半導体スイッチ4a,4bと、これらに逆並列に接続されたダイオード4c,4dからなっている。
FIG. 3 shows an example of a PWM inverter disclosed in Patent Document 1, for example.
In FIG. 3, reference numeral 1 denotes an inverter, which includes a DC power source 2, a U-phase arm (U-phase leg) 3, and a V-phase arm (V-phase leg) 4. The U-phase leg 3 includes semiconductor switches 3a and 3b and diodes 3c and 3d connected in antiparallel thereto, and the V-phase leg 4 includes semiconductor switches 4a and 4b and diodes 4c, 4c connected in antiparallel thereto. 4d.

これらの半導体スイッチ3a,3b,4a,4bはそれぞれ、制御装置10から出力されるゲート信号GU,GX,GV,GYに基づきオン・オフ動作する。そして、このスイッチング動作により、リアクトル7およびコンデンサ8で構成されるフィルタを介して、負荷5に正弦波状の電圧を供給している。制御装置10は加算器11,変調波生成部12,ゲート信号生成部13および切替えスイッチ14等からなる。その動作について、以下に説明する。   These semiconductor switches 3a, 3b, 4a, 4b are turned on / off based on gate signals GU, GX, GV, GY output from the control device 10, respectively. By this switching operation, a sinusoidal voltage is supplied to the load 5 through a filter composed of the reactor 7 and the capacitor 8. The control device 10 includes an adder 11, a modulation wave generation unit 12, a gate signal generation unit 13, a changeover switch 14, and the like. The operation will be described below.

加算器11および切替えスイッチ14は、上下アームの半導体スイッチ素子(3aと3bまたは4aと4b)がともにオフする期間、すなわちデッドタイムの影響により生じる出力電圧および電流の波形歪を補償するものである。切替えスイッチ14では、電流検出器6で検出した出力電流の検出値Ioutがしきい値+Ithよりも大きい場合(Iout>Ith)は、その補償量として+Vdtを選択し、検出値Ioutがしきい値−Ithよりも小さい場合(Iout<−Ith)は、その補償量として−Vdtを選択する。   The adder 11 and the changeover switch 14 compensate for the waveform distortion of the output voltage and current caused by the influence of dead time, that is, the period when both the upper and lower arm semiconductor switch elements (3a and 3b or 4a and 4b) are turned off. . In the changeover switch 14, when the detected value Iout of the output current detected by the current detector 6 is larger than the threshold value + Ith (Iout> Ith), + Vdt is selected as the compensation amount, and the detected value Iout is the threshold value. When it is smaller than -Ith (Iout <-Ith), -Vdt is selected as the compensation amount.

そして、加算器11により、出力電圧指令Vout*に補償量を加算することで、デッドタイム補償を行なっている。また、切替えスイッチ14は、検出値Ioutがしきい値−Ith以上で、かつ+Ith以下の場合(−Ith≦Iout≦+Ith)は、その出力として“0”を選択し、デッドタイム補償を行なわないようにしている。変調波生成部12は、デッドタイム補償後の出力電圧指令Vout1*に基づき、U相およびV相の変調波PWMUおよびPWMVを出力し、ゲート信号生成部13は変調波PWMUまたはPWMVを三角波キャリアと比較することにより、デッドタイムを含んだ各半導体スイッチのゲート信号GU,GX,GV,GYを出力し、各半導体スイッチをオン・オフさせている。 The adder 11 adds a compensation amount to the output voltage command Vout * to compensate for dead time. Further, when the detection value Iout is not less than the threshold value −Ith and not more than + Ith (−Ith ≦ Iout ≦ + Ith), the changeover switch 14 selects “0” as the output and does not perform dead time compensation. I am doing so. Modulation wave generation unit 12 outputs U-phase and V-phase modulation waves PWMU and PWMV based on output voltage command Vout1 * after dead time compensation, and gate signal generation unit 13 uses modulation wave PWMU or PWMV as a triangular wave carrier. By comparison, gate signals GU, GX, GV, and GY of each semiconductor switch including dead time are output, and each semiconductor switch is turned on / off.

特開2002−159185号公報(第3頁、図3,4)JP 2002-159185 A (3rd page, FIGS. 3 and 4)

PWM制御により、一般的に出力電流にリプルが生じる。この電流リプルの山または谷のタイミングは、U相またはV相のデッドタイム期間であるため、山または谷の電流値がゼロ付近にあると、デッドタイム期間中のU相またはV相の上下のダイオード(3c,3d,4c,4d)はともにオンせず、その出力電位が不定となる。その結果、出力電流のゼロクロス付近において、出力電圧および電流の波形に歪が生じるという問題がある。
したがって、この発明の課題は、出力電流のゼロクロス付近における出力電圧,電流波形歪を抑制することにある。
The PWM control generally causes a ripple in the output current. Since the peak or valley timing of this current ripple is the dead time period of the U phase or the V phase, if the current value of the peak or valley is near zero, the top and bottom of the U phase or V phase during the dead time period The diodes (3c, 3d, 4c, 4d) are not turned on, and their output potentials are indefinite. As a result, there is a problem that the output voltage and current waveforms are distorted near the zero cross of the output current.
Accordingly, an object of the present invention is to suppress output voltage and current waveform distortion in the vicinity of the zero cross of the output current.

このような課題を解決するため、この発明では、出力電流リプルの山または谷の電流値がゼロ付近にあると、出力電圧および電流の波形に歪が生じることから、出力電流のゼロクロス付近において電流リプルの振幅を増やし、出力電流リプルの山または谷の電流値がゼロ付近にならないようにすることを特徴とする。   In order to solve such a problem, in the present invention, if the current value of the peak or valley of the output current ripple is near zero, the output voltage and current waveforms are distorted. The ripple amplitude is increased so that the current value of the peak or valley of the output current ripple does not become near zero.

電流リプルの振幅を増やということは、例えば図2に示すように、三角波の山と谷で(または山ごと、谷ごとに)その極性の異なる値を出力電圧指令に加算し、加算後の出力電圧指令に基づき各相の変調波を生成することで可能である。
図2は出力電圧指令22が0Vの時の例を示し、三角波キャリア21の山と谷でその極性の異なる値を出力電圧指令22に加算すると、U相とV相の線間にパルス状の電圧(リプル振幅増加処理後波形:新たな出力電圧指令23)が正負交互に出力され、出力電流24の振幅が図示のように増加し、その平均電圧が出力電圧指令に一致して0Vとなる。
Increasing the amplitude of the current ripple means that, for example, as shown in FIG. 2, values having different polarities are added to the output voltage command at the peaks and valleys of the triangular wave (or for each peak and valley), This is possible by generating a modulated wave of each phase based on the output voltage command.
FIG. 2 shows an example when the output voltage command 22 is 0V. When values having different polarities at the peaks and valleys of the triangular wave carrier 21 are added to the output voltage command 22, a pulse-like waveform is formed between the U-phase and V-phase lines. Voltage (waveform after ripple amplitude increase processing: new output voltage command 23) is output alternately, and the amplitude of the output current 24 increases as shown in the figure, and the average voltage matches the output voltage command and becomes 0V. .

以上のように、三角波の山と谷でその極性の異なる値を出力電圧指令に加算することにより、出力される平均電圧を出力電圧指令に維持しながら、出力電流リプルの振幅を増加させることが可能であり、出力電圧および出力電流の波形歪を抑制することができる。また、出力電流のゼロクロス付近でそのリプルの振幅を増やすことにより、キャリア一周期の間に電流リプルが正負交互に流れ、各相においてデッドタイム期間中の電流リプルの極性は交互に変化する。これにより、各相で1キャリアあたりにデッドタイム期間は二回存在するが、その影響は互いに打ち消しあい、デッドタイムによる波形歪は発生しない。   As described above, the amplitude of the output current ripple can be increased while maintaining the average voltage to be output in the output voltage command by adding values having different polarities at the peaks and valleys of the triangular wave to the output voltage command. This is possible, and waveform distortion of the output voltage and output current can be suppressed. Further, by increasing the amplitude of the ripple near the zero crossing of the output current, the current ripple flows alternately between positive and negative during one carrier cycle, and the polarity of the current ripple in the dead time period alternately changes in each phase. As a result, there are two dead time periods per carrier in each phase, but their influences cancel each other and waveform distortion due to dead time does not occur.

この発明によれば、出力電流のゼロクロス付近において、出力電流リプルの振幅を増加させることにより、各相のデッドタイム期間と出力電流が0Aとなるタイミングが一致することが防止され、出力電圧および出力電流の波形歪を抑制することができる。   According to the present invention, by increasing the amplitude of the output current ripple in the vicinity of the zero cross of the output current, it is possible to prevent the dead time period of each phase from coincident with the timing when the output current becomes 0 A, and the output voltage and output Current waveform distortion can be suppressed.

図1はこの発明の実施の形態を示す構成図である。
図1からも明らかなように、図3に示すものに対し切替えスイッチ15および加算器16を付加した点が特徴である。その他は図3と同様なので、以下ではその相違点を主に説明する。
上記切替えスイッチ15および加算器16は、出力電流がゼロクロス付近にあるときに、出力電流のリプルを増加させるためのもので、切替えスイッチ15は出力電流検出値Ioutおよび三角波キャリアに基づき、以下のようにその出力を決定する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
As is apparent from FIG. 1, the changeover switch 15 and the adder 16 are added to the configuration shown in FIG. Others are the same as in FIG. 3, and the differences will be mainly described below.
The changeover switch 15 and the adder 16 are for increasing the ripple of the output current when the output current is in the vicinity of the zero cross. The changeover switch 15 is based on the output current detection value Iout and the triangular wave carrier as follows. Determine its output.

検出値Ioutがしきい値+Ithよりも大きい(Iout>+Ith)か、またはしきい値−Ithよりも小さい(Iout<−Ith)場合は、その出力として“0”を選択する。また、検出値Ioutがしきい値−Ith以上、かつ+Ith以下の場合(−Ith≦Iout≦+Ith)で、しかも三角波キャリアが下り期間のときは、その出力として+Vofsを選択し、上り期間のときはその出力として−Vofsを選択する。   When the detection value Iout is larger than the threshold value + Ith (Iout> + Ith) or smaller than the threshold value −Ith (Iout <−Ith), “0” is selected as the output. When the detection value Iout is not less than the threshold value −Ith and not more than + Ith (−Ith ≦ Iout ≦ + Ith), and the triangular wave carrier is in the down period, + Vofs is selected as the output thereof, and in the up period Selects -Vofs as its output.

加算器16は、デッドタイム補償後の出力電圧指令Vout1*と切替えスイッチ15の出力とを加算し、変調波生成部12に対して出力電圧指令(新たな出力電圧指令)Vout2*を出力する。
以上のように、出力電圧指令Vout2*を決定することにより、出力電流のゼロクロス付近において、出力電流リプルの振幅を増加させることができ(図2参照)、出力電圧および電流の波形歪を抑制することができる。
The adder 16 adds the output voltage command Vout1 * after the dead time compensation and the output of the changeover switch 15 and outputs an output voltage command (new output voltage command) Vout2 * to the modulated wave generator 12.
As described above, by determining the output voltage command Vout2 * , the amplitude of the output current ripple can be increased in the vicinity of the zero cross of the output current (see FIG. 2), and waveform distortion of the output voltage and current is suppressed. be able to.

この発明の実施の形態を示す構成図Configuration diagram showing an embodiment of the present invention 図1の動作を説明する各部波形図Waveform diagram of each part for explaining the operation of FIG. 従来方式を示す構成図Configuration diagram showing the conventional method

符号の説明Explanation of symbols

1…インバータ、2…直流電源、3…U相アーム(U相レグ)、3a,3b,4a,4b…半導体スイッチ、3c,3d,4c,4d…ダイオード、4…V相アーム(V相レグ)、5…負荷、6…電流検出器、7…リアクトル、8…コンデンサ、10…制御装置、11,16…加算器、12…変調波生成部、13…ゲート信号生成部、14,15…切替えスイッチ。   DESCRIPTION OF SYMBOLS 1 ... Inverter, 2 ... DC power supply, 3 ... U-phase arm (U-phase leg), 3a, 3b, 4a, 4b ... Semiconductor switch, 3c, 3d, 4c, 4d ... Diode, 4 ... V-phase arm (V-phase leg) ) 5 ... Load, 6 ... Current detector, 7 ... Reactor, 8 ... Condenser, 10 ... Control device, 11, 16 ... Adder, 12 ... Modulated wave generator, 13 ... Gate signal generator, 14, 15 ... Changeover switch.

Claims (1)

電力変換器を構成する半導体スイッチに対し、前記電力変換器の出力電流検出値に応じて、デッドタイム補償を考慮した指令値と三角波キャリアとの比較結果に基づくオン・オフ信号を与えて、パルス幅変調(PWM)を行なう電力変換器のPWM制御装置において、
前記電力変換器の出力電流検出値の絶対値が所定値も小さいときは、前記指令値に出力電流リプルの振幅を増加させるための前記三角波キャリアの山と谷で極性が反転する所定値を加算する加算手段を設け、その加算された値を新たな指令値として、PWM制御を行なうことを特徴とする電圧駆動型半導体素子の電圧ばらつき抑制方式。

An on / off signal based on a comparison result between a command value considering dead time compensation and a triangular wave carrier is given to the semiconductor switch constituting the power converter in accordance with the output current detection value of the power converter, and the pulse In a PWM controller for a power converter that performs width modulation (PWM),
When the absolute value of the output current detection value of the power converter is smaller than a predetermined value, a predetermined value whose polarity is inverted at the peak and valley of the triangular wave carrier for increasing the amplitude of the output current ripple is added to the command value. And a voltage variation suppression method for a voltage-driven semiconductor element, wherein PWM control is performed using the added value as a new command value.

JP2004365170A 2004-12-17 2004-12-17 PWM controller for power converter Expired - Fee Related JP4649976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365170A JP4649976B2 (en) 2004-12-17 2004-12-17 PWM controller for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004365170A JP4649976B2 (en) 2004-12-17 2004-12-17 PWM controller for power converter

Publications (2)

Publication Number Publication Date
JP2006174625A JP2006174625A (en) 2006-06-29
JP4649976B2 true JP4649976B2 (en) 2011-03-16

Family

ID=36674756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365170A Expired - Fee Related JP4649976B2 (en) 2004-12-17 2004-12-17 PWM controller for power converter

Country Status (1)

Country Link
JP (1) JP4649976B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316514B2 (en) * 2010-11-02 2013-10-16 株式会社日本自動車部品総合研究所 Power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207464A (en) * 1984-03-30 1985-10-19 Yuzuru Tsunehiro Control circuit of inverter
JP2001145368A (en) * 1999-11-18 2001-05-25 Fuji Electric Co Ltd Method for compensating dead time of voltage pwm inverter
JP2002159185A (en) * 2000-11-15 2002-05-31 Mitsubishi Heavy Ind Ltd Current control method
JP2003180083A (en) * 2001-12-10 2003-06-27 Meidensha Corp Voltage-type pwm inverter device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207464A (en) * 1984-03-30 1985-10-19 Yuzuru Tsunehiro Control circuit of inverter
JP2001145368A (en) * 1999-11-18 2001-05-25 Fuji Electric Co Ltd Method for compensating dead time of voltage pwm inverter
JP2002159185A (en) * 2000-11-15 2002-05-31 Mitsubishi Heavy Ind Ltd Current control method
JP2003180083A (en) * 2001-12-10 2003-06-27 Meidensha Corp Voltage-type pwm inverter device

Also Published As

Publication number Publication date
JP2006174625A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5734609B2 (en) Inverter device and grid-connected inverter system provided with this inverter device
JPWO2005088822A1 (en) MOTOR CONTROL DEVICE AND MODULATION WAVE COMMAND GENERATION METHOD FOR PWM INVERTER
JP6354623B2 (en) Conversion device
JP5045137B2 (en) Power converter
JP2008048550A (en) Matrix converter
JP5493783B2 (en) Three-phase inverter device
JP2018088750A (en) Power conversion device
WO2018190076A1 (en) Device for controlling power conversion circuit
JP5974646B2 (en) Control device for three-level power conversion circuit
JP5958153B2 (en) DC power supply
JP6270696B2 (en) Power converter
JP5521291B2 (en) Control device and control method for power conversion device
JP5364303B2 (en) Current control type power converter and method for improving output current waveform of current control type power converter
JP2006020384A (en) Controller of power converter
JP4649976B2 (en) PWM controller for power converter
JP5736678B2 (en) PWM power converter dead time compensation device
JP5824339B2 (en) Three-phase rectifier
JP6573197B2 (en) Power converter
JP2000217363A (en) Power supply device
JP6016836B2 (en) Power conversion device and power conversion control method
JP4498891B2 (en) Semiconductor power converter
JP5428744B2 (en) Power converter control method
JP6754022B1 (en) Power converter
JP2019201493A (en) Multilevel power conversion device and control method therefor
JP2020014319A (en) Three-phase power-factor improvement circuit and control method therefor, and control circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees