JP4649557B2 - Wiring manufacturing method - Google Patents

Wiring manufacturing method Download PDF

Info

Publication number
JP4649557B2
JP4649557B2 JP2003353006A JP2003353006A JP4649557B2 JP 4649557 B2 JP4649557 B2 JP 4649557B2 JP 2003353006 A JP2003353006 A JP 2003353006A JP 2003353006 A JP2003353006 A JP 2003353006A JP 4649557 B2 JP4649557 B2 JP 4649557B2
Authority
JP
Japan
Prior art keywords
substrate
photosensitive resin
region
wiring
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003353006A
Other languages
Japanese (ja)
Other versions
JP2005116989A (en
Inventor
成利 須川
昌彦 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aomori Support Center for Industrial Promotion
Original Assignee
Aomori Support Center for Industrial Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aomori Support Center for Industrial Promotion filed Critical Aomori Support Center for Industrial Promotion
Priority to JP2003353006A priority Critical patent/JP4649557B2/en
Publication of JP2005116989A publication Critical patent/JP2005116989A/en
Application granted granted Critical
Publication of JP4649557B2 publication Critical patent/JP4649557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、ガラス基板、ガラス基板上に絶縁膜が形成された基板、樹脂性基板などの所望の表面領域にメッキ法で金属配線を形成する方法に関する。   The present invention relates to a method for forming a metal wiring by a plating method on a desired surface region such as a glass substrate, a substrate having an insulating film formed on the glass substrate, or a resinous substrate.

ガラス基板やプラスチック基板の表面に配線を形成する方法としては、一般的には、配線金属を基板上にメッキ法やスパッタリング法で形成した後に、感光性樹脂を塗布し露光・現像を経て、エッチングなどの方法により所望の形状にパターニングする方法が行なわれている。   As a method of forming wiring on the surface of a glass substrate or plastic substrate, generally, after forming a wiring metal on the substrate by plating or sputtering, a photosensitive resin is applied, exposed and developed, and then etched. A method of patterning into a desired shape is performed by such a method.

また、基板上に感光性樹脂を塗布し感光性樹脂をエッチングなどの方法により所望の形状にパターニングして形成された溝に無電解メッキ法などにより配線金属を埋め込む方法が行なわれている。   Also, a method of embedding a wiring metal in a groove formed by applying a photosensitive resin on a substrate and patterning the photosensitive resin into a desired shape by etching or the like is performed by an electroless plating method or the like.

図5はガラス基板やプラスチック基板上への従来の一般的な無電解メッキの手法の流れを示す図である。図5においては、ガラス基板やプラスチックを洗浄し、後、アルカリ溶液で脱脂し、酸系の溶液により表面のエッチング処理を施し、ついで、感光性樹脂塗布とパターニングを経た後、触媒付与のための感応化処理液浸漬および触媒付与液浸漬を行い、さらに無電解メッキ液へ浸漬するという工程となっている。   FIG. 5 is a diagram showing a flow of a conventional general electroless plating method on a glass substrate or a plastic substrate. In FIG. 5, the glass substrate and plastic are washed, then degreased with an alkaline solution, subjected to surface etching with an acid solution, and then subjected to photosensitive resin coating and patterning, followed by application of a catalyst. The sensitizing treatment liquid immersion and the catalyst imparting liquid immersion are performed, and the immersion is further performed in the electroless plating liquid.

図6は無電解メッキの代表的な金属であるニッケルを含む溶液のpHと酸化還元電位による状態模式図である。pHが大きいアルカリ性溶液では酸化還元電位の絶対値が比較的大きい領域でニッケルの析出が見られ、pHが小さい酸性溶液では酸化還元電位の絶対値が比較的小さい領域でニッケルの析出が見られることが知られている。なお従来技術記載文献例としては、下記の各文献等がある。
特開2001−203448「多層プリント配線板およびその製造方法」 特開2000−294926「多層プリント配線板の製造方法」
FIG. 6 is a schematic view of the state of a solution containing nickel, which is a typical metal for electroless plating, depending on the pH and oxidation-reduction potential. An alkaline solution with a high pH shows nickel precipitation in a region where the absolute value of the oxidation-reduction potential is relatively large, and an acidic solution with a low pH shows precipitation of nickel in a region where the absolute value of the oxidation-reduction potential is relatively small. It has been known. Note that examples of documents described in the prior art include the following documents.
Japanese Patent Laid-Open No. 2001-203448 “Multilayer Printed Wiring Board and Manufacturing Method Thereof” JP 2000-294926 “Manufacturing method of multilayer printed wiring board”

さて、上述したかかる従来の方法には幾多の問題点がある。すなわち、ガラス基板やプラスチック基板の表面において、配線金属を該基板上にメッキ法やスパッタリング法によって形成した後に、感光性樹脂を塗布し露光・現像を経て、エッチングなどの方法により所望の形状にパターニングする方法においては、スパッタリングで成膜したメタルをエッチングし、感光性樹脂を剥離して配線を形成するため、配線形成がなされない大部分の領域の感光性樹脂材料は廃棄されることとなり、プロセス効率の低下を招いている。   There are a number of problems with the conventional method described above. That is, on the surface of a glass substrate or plastic substrate, a wiring metal is formed on the substrate by plating or sputtering, then a photosensitive resin is applied, exposed and developed, and then patterned into a desired shape by etching or other methods. In this method, the metal film formed by sputtering is etched, and the photosensitive resin is peeled off to form the wiring. Therefore, the photosensitive resin material in most areas where the wiring is not formed is discarded. The efficiency is reduced.

また、このように形成される配線では、抵抗と寄生容量の低減を図る目的で配線厚さを増加させると、金属配線と基板との間の段差が大きくなり、液晶の配向不良、TFTのリーク電流の増加などの問題を引き起こしてしまうことになる。   Further, in the wiring formed in this way, when the wiring thickness is increased for the purpose of reducing resistance and parasitic capacitance, the step between the metal wiring and the substrate becomes large, resulting in poor alignment of the liquid crystal and TFT leakage. This will cause problems such as an increase in current.

また、配線金属のスパッタリング工程には減圧工程が含まれるため、ガラス基板の大型化とともにプロセスコスト・プロセス時間の増大が不可避であるという問題もある。   In addition, since the wiring metal sputtering step includes a decompression step, there is a problem that an increase in process cost and process time is inevitable as the glass substrate becomes larger.

一方、減圧工程を用いずに、基板上の感光性樹脂の溝に無電解メッキ法などにより配線金属を埋め込む方法(前掲図5)においては、溶液からみたガラス基板やプラスチック基板の表面電位が、溶液からみた感光性樹脂の表面電位よりも十分に低くなっていれば、金属イオンを含んだ溶液の電位状態をそれらの電位の中間に設定しておくことによって、ガラス表面やプラスチック基板表面にのみ金属が析出し、感光性樹脂表面には析出を起こさない、選択的なメッキが行なえることになる。   On the other hand, in the method of embedding the wiring metal in the groove of the photosensitive resin on the substrate by the electroless plating method without using the decompression step (see FIG. 5), the surface potential of the glass substrate or plastic substrate viewed from the solution is If it is sufficiently lower than the surface potential of the photosensitive resin as seen from the solution, the potential state of the solution containing metal ions is set to the middle of those potentials, so that only the surface of the glass or plastic substrate Metal can be deposited and selective plating can be performed without causing deposition on the surface of the photosensitive resin.

しかしながら、両者の表面の電位に十分な差がなければ、金属イオンを含んだ溶液をその間の電位に制御することは困難であり、ガラス面と感光性樹脂面の両方に析出させてしまうことになる。   However, unless there is a sufficient difference between the surface potentials of the two, it is difficult to control the solution containing metal ions to the potential between them, and it will be deposited on both the glass surface and the photosensitive resin surface. Become.

また、両表面の電位に十分な差がある場合であっても、金属イオンを含んだ溶液の酸化還元電位をほぼ一定に制御しなければ、プロセス時間の経過とともに酸化還元電位が変化し、該酸化還元電位がいずれの表面よりも低い電位状態になれば両方の表面に析出し、いずれの表面よりも高い電位状態になればいずれの表面にも析出が得られないことになる。   Further, even when there is a sufficient difference between the potentials of both surfaces, unless the oxidation-reduction potential of the solution containing metal ions is controlled to be substantially constant, the oxidation-reduction potential changes with the passage of process time, If the oxidation-reduction potential is lower than any surface, it will precipitate on both surfaces, and if it is higher than any surface, no precipitation will be obtained on either surface.

また、半導体集積回路の配線形成においては、やはりスパッタリング法によりシード層を形成し、これを電極として電解メッキ法により配線の膜厚を増大させるという手法が採られている。   Further, in the formation of wirings in a semiconductor integrated circuit, a method is employed in which a seed layer is also formed by sputtering, and the film thickness is increased by electrolytic plating using this as an electrode.

本来、無電解メッキ法を用いてシード層を形成した方が、プロセス的に有利であるにもかかわらず、これを用いずスパッタリング法を用いている理由は、基板との密着性が十分にとれないこと、および無電解メッキ法には還元剤、安定剤等としてトランジスタなどの素子特性に悪影響を与える物質を使用する必要があるためである。
本発明はかかる課題を解決することを目的としてなされたものである。
Although it is inherently more advantageous in terms of process to form the seed layer using the electroless plating method, the reason for using the sputtering method without using this is that the adhesion to the substrate is sufficient. This is because it is necessary to use a substance that adversely affects device characteristics such as a transistor as a reducing agent, a stabilizer, etc. in the electroless plating method.
The present invention has been made for the purpose of solving such problems.

上記課題を解決するために、本願において特許請求される発明は以下のとおりである。
(1) 基体上に感光性樹脂層が形成され、該感光性樹脂の少なくとも一部を感光および現像して該基体が露出した領域G1と感光性樹脂が残された領域R1とを有する該基体に対して行う無電解メッキによる配線形成方法であって、該方法は、
(IA)カチオン系界面活性剤を用いて、該感光性樹脂領域R1における表面電位を該基体露出領域G1におけるそれよりも正にするための電位差形成過程と、
(IB)該電位差形成過程の後において、
(IB−1)該基体露出領域G1の表面電位よりも正側でかつ該感光性樹脂領域R1の表面電位よりも負側の酸化還元電位を有する触媒核付与液、ならびに、
(IB−2)該基体露出領域G1の表面電位よりも正側でかつ該感光性樹脂領域R1の表面電位よりも負側の酸化還元電位を有する無電解メッキ液を用いて処理する触媒核付与およびメッキ過程と、
を備えてなることにより、配線の形成された基体が得られることを特徴とする、配線形成方法。
(2) 基体上に感光性樹脂層が形成され、該感光性樹脂の少なくとも一部を感光および現像して該基体が露出した領域G1と感光性樹脂が残された領域R1を有する該基体に対して行う無電解メッキによる配線形成方法であって、該感光性樹脂領域R1はカチオン系界面活性剤処理により該基体露出領域G1よりも表面電位が正にされ、該基体露出領域G1の表面電位よりも正側で、かつ、該感光性樹脂領域R1の表面電位よりも負側の酸化還元電位を有する触媒核付与液および無電解メッキ液を用いることを特徴とする配線形成方法。
(3) 前記電位差形成過程における処理または前記カチオン系界面活性剤処理は、前記感光性樹脂領域R1と基体露出領域G1との間の電位差が0.05V以上、好ましくは0.1V以上となるように行うことを特徴とする、(1)または(2)に記載の配線形成方法。
(4) 該基体は、ガラス基板、ガラス基板上に絶縁膜が形成された基板、樹脂性基板のいずれかであることを特徴とする、(1)ないし(3)のいずれかに記載の配線形成方法。
) 触媒核付与液は、pHと酸化還元電位を制御したオゾン添加水に触媒核となる化合物を溶解して得られるものであることを特徴とする、(1)ないし()のいずれかに記載の配線形成方法。
) 無電解メッキ液は、pHと酸化還元電位を制御したオゾン添加水または水素添加水に、析出させる金属イオンを溶解して得られるものであることを特徴とする、(1)ないし()のいずれかに記載の配線形成方法。
) 該基体は、あらかじめフッ酸またはフッ酸をその溶質に含む溶液に浸漬処理され、これに感光性樹脂で基体露出領域G1と感光性樹脂領域R1を形成することを特徴とする、(1)ないし()のいずれかに記載の配線形成方法。
) 該基体は、あらかじめ0.05%から0.1%の範囲で調整されたフッ酸またはフッ酸をその溶質に含む溶液に3秒間から10秒間の範囲で浸漬処理され、これに感光性樹脂で基体露出領域G1と感光性樹脂領域R1を形成することを特徴とする、(1)ないし()のいずれかに記載の配線形成方法。
(9) 該基体は、あらかじめアルカリ溶液に浸漬処理され、これに感光性樹脂でG1とR1を形成することを特徴とする、(1)ないし()のいずれかに記載の配線形成方法。
(10) 該基体は、あらかじめ10%から20%の範囲で調整されたアルカリ溶液に3分間から10分間の範囲で浸漬処理され、これに感光性樹脂でG1とR1を形成することを特徴とする、(1)ないし()のいずれかに記載の配線形成方法。
これら(1)〜(10)の発明について、%は重量%である(以下も同様である。)。
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) A substrate having a photosensitive resin layer formed on a substrate, and having a region G1 where the substrate is exposed by exposing and developing at least a part of the photosensitive resin and a region R1 where the photosensitive resin remains. A wiring formation method by electroless plating performed on
(IA) Using a cationic surfactant, a potential difference forming process for making the surface potential in the photosensitive resin region R1 more positive than that in the substrate exposed region G1,
(IB) After the potential difference forming process,
(IB-1) a catalyst nucleus imparting solution having a redox potential that is more positive than the surface potential of the substrate exposed region G1 and more negative than the surface potential of the photosensitive resin region R1, and
(IB-2) Application of catalyst nuclei to be treated using an electroless plating solution having a redox potential that is more positive than the surface potential of the substrate exposed region G1 and more negative than the surface potential of the photosensitive resin region R1. And plating process,
A wiring formation method characterized in that a substrate on which wiring is formed is obtained.
(2) A photosensitive resin layer is formed on a substrate, and at least a part of the photosensitive resin is exposed and developed to have a region G1 where the substrate is exposed and a region R1 where the photosensitive resin remains. In the wiring formation method by electroless plating performed on the photosensitive resin region R1, the surface potential of the photosensitive resin region R1 is more positive than the substrate exposed region G1 by the cationic surfactant treatment, and the surface potential of the substrate exposed region G1 is increased. A wiring formation method using a catalyst nucleus imparting solution and an electroless plating solution having an oxidation-reduction potential that is more positive than the surface potential of the photosensitive resin region R1 and more negative than the surface potential of the photosensitive resin region R1.
(3) The treatment in the potential difference forming process or the cationic surfactant treatment is such that the potential difference between the photosensitive resin region R1 and the substrate exposed region G1 is 0.05 V or more, preferably 0.1 V or more. The wiring formation method according to (1) or (2), characterized in that:
(4) The wiring according to any one of (1) to (3), wherein the substrate is any one of a glass substrate, a substrate having an insulating film formed on the glass substrate, and a resinous substrate. Forming method.
( 5 ) The catalyst nucleus-imparting liquid is obtained by dissolving a compound serving as a catalyst nucleus in ozone-added water whose pH and oxidation-reduction potential are controlled. Any one of (1) to ( 4 ), A method of forming a wiring according to claim 1.
( 6 ) The electroless plating solution is obtained by dissolving metal ions to be precipitated in ozone-added water or hydrogenated water with controlled pH and oxidation-reduction potential, (1) to ( 5 ) The wiring formation method according to any one of the above.
( 7 ) The substrate is preliminarily immersed in hydrofluoric acid or a solution containing hydrofluoric acid in the solute, and the substrate exposed region G1 and the photosensitive resin region R1 are formed with a photosensitive resin. The wiring formation method according to any one of 1) to ( 5 ).
( 8 ) The substrate is dipped in hydrofluoric acid or a solution containing fluoric acid in the solute prepared in the range of 0.05% to 0.1% in the range of 3 seconds to 10 seconds. The wiring formation method according to any one of (1) to ( 5 ), characterized in that the substrate exposed region G1 and the photosensitive resin region R1 are formed of a conductive resin.
(9) The wiring forming method according to any one of (1) to ( 5 ), wherein the substrate is preliminarily immersed in an alkaline solution, and G1 and R1 are formed on the substrate with a photosensitive resin.
(10) The substrate is dipped in an alkali solution adjusted in advance in a range of 10% to 20% in a range of 3 minutes to 10 minutes, and G1 and R1 are formed with a photosensitive resin thereon. The wiring formation method according to any one of (1) to ( 5 ).
In these inventions (1) to (10),% is% by weight (the same applies to the following).

上記各発明に加え、以下もまた本発明に含まれる。
(5’) 該基体は、カチオン系界面活性剤処理の前にあらかじめアルカリ溶液に浸漬処理されることを特徴とする、(1)ないし(4)のいずれかに記載の配線形成方法。
(6’) 該基体は、カチオン系界面活性剤処理の前にあらかじめ10%から20%の範囲で調整されたアルカリ溶液に3分間から10分間の範囲で浸漬処理されることを特徴とする、(1)ないし(5)のいずれかに記載の配線形成方法。
(9’) 該基体は、カチオン系界面活性剤処理の後に、フッ酸またはフッ酸をその溶質に含む溶液に浸漬処理されることを特徴とする、(1)、(2)、(3)、(4)、(7)または(8)のいずれかに記載の配線形成方法。
(10’) 該基体は、カチオン系界面活性剤処理の後に、0.05%から0.1%の範囲で調整されたフッ酸またはフッ酸をその溶質に含む溶液に3秒間から10秒間の範囲で浸漬処理されることを特徴とする、(1)、(2)、(3)、(4)、(7)、(8)または(9)のいずれかに記載の配線形成方法。
In addition to the above inventions, the following are also included in the present invention.
(5 ') said substrate, characterized in that it is dipped in advance alkaline solution prior to cationic surfactant treatment, the wiring forming method according to any one of (1) to (4).
(6 ') said substrate, characterized in that it is dipped in the range of advance 10% of the alkaline solution that has been adjusted in the range of 20% to 10 minutes 3 minutes prior to cationic surfactant treatment, (1) The wiring formation method according to any one of (5).
(9 ′) The substrate is immersed in hydrofluoric acid or a solution containing hydrofluoric acid in the solute after the cationic surfactant treatment, (1) , (2), (3) , (4), (7) or (8) .
(10 ′) The substrate was treated with a hydrofluoric acid adjusted to a range of 0.05% to 0.1% or a solution containing hydrofluoric acid in the solute for 3 to 10 seconds after the cationic surfactant treatment. The wiring forming method according to any one of (1) , (2), (3), (4), (7), (8), and (9) , characterized by being immersed in a range.

さらに、本発明には次の各発明も含まれる。
(11)基体上に感光性樹脂層が形成され、該感光性樹脂の少なくとも一部が感光および現像処理されて該基体が露出した領域G1と感光性樹脂が残された領域R1を有する、無電解メッキ処理に供することのできる基体であって、該基体は、感光性樹脂塗布後にカチオン系界面活性剤に浸漬処理されることによって、該基体露出領域G1と感光性樹脂領域R1との間に電位差が設けられていることを特徴とする、無電解メッキ処理用基体
(12)基体上に感光性樹脂層が形成され、該感光性樹脂の少なくとも一部が感光および現像処理されて該基体が露出した領域G1と感光性樹脂が残された領域R1を有する、無電解メッキ処理に供することのできる基体の形成方法であって、該方法は、感光性樹脂塗布後にカチオン系界面活性剤に浸漬処理されることによって、該基体露出領域G1と感光性樹脂領域R1との間に電位差を設けることを特徴とする、無電解メッキ処理用基体の形成方法。
Furthermore, the present invention includes the following inventions.
(11) is formed a photosensitive resin layer on a substrate has a region R1 at least partially exposed and developed by the region G1 which exposed the base photosensitive resin is left of the photosensitive resin, no a substrate which can be subjected to electrolytic plating process, the substrate, by being dipped in a cationic surfactant after the photosensitive resin coating, between the substrate exposed region G1 and the photosensitive resin region R1 A substrate for electroless plating, which is provided with a potential difference.
(12) is formed a photosensitive resin layer on a substrate has a region R1 at least partially exposed and developed by the region G1 which exposed the base photosensitive resin is left of the photosensitive resin, no a method of forming a substrate that can be subjected to electrolytic plating process, the method, by being dipped in a cationic surfactant after the photosensitive resin coating, and the substrate exposed region G1 and the photosensitive resin region R1 A method for forming a substrate for electroless plating, characterized by providing a potential difference between the two.

すなわち本発明は、基体上に感光性樹脂が形成され、該感光性樹脂の少なくとも一部を感光および現像して該基体が露出した領域G1と感光性樹脂が残された領域R1を有する該基体において、該感光性樹脂領域R1はカチオン系界面活性剤処理により該基体露出領域G1よりも表面電位が正にされ、該G1の表面電位よりも正側で、かつ、該R1の表面電位よりも負側の酸化還元電位を有する触媒核付与液および無電解メッキ液を用いる、配線形成方法であることを特徴とする。
That is, the present invention is a photosensitive resin is formed on a substrate, said substrate having a region R1 in which at least a portion of the exposed and developed with region G1 which exposed the base photosensitive resin is left of the photosensitive resin in, photosensitive resin region R1 surface potential than the substrate exposed region G1 is positively by cationic detergent treatment, the positive side than the surface potential of the G1, and than the surface potential of the R1 A wiring formation method using a catalyst nucleus imparting solution having a negative oxidation-reduction potential and an electroless plating solution.

また、該基体としては、ガラス基板、ガラス基板上に絶縁膜が形成された基板、樹脂性基板を用いることができる。
また、触媒核付与液としては、pHを制御したオゾン添加水に触媒核となる化合物を溶解して得られるものを用いることができる。
また、無電解メッキ液は、pHを制御したオゾン添加水またはpHを制御した水素添加水に、析出させる金属イオンを溶解して得られるものを用いることができる。
また、該基体は、あらかじめ10%から20%の範囲で調整されたアルカリ溶液に3分から10分の範囲で浸漬されて得られ、これに感光性樹脂でG1とR1を形成することができる。
また、該基体は、あらかじめ0.05%から0.1%の範囲で調整されたフッ酸またはフッ酸をその溶質に含む溶液に3秒から10秒の範囲で浸漬されて得られ、これに感光性樹脂でG1とR1を形成することができる。
Further, examples of the substrate, a glass substrate, a substrate having an insulating film formed on a glass substrate, a resin substrate.
Moreover, as a catalyst nucleus provision liquid, what is obtained by melt | dissolving the compound used as a catalyst nucleus in the ozone addition water which controlled pH can be used.
Further, as the electroless plating solution, a solution obtained by dissolving metal ions to be precipitated in ozone-added water with controlled pH or hydrogenated water with controlled pH can be used.
Further, the substrate may be obtained by being immersed in 3 minutes in the 10 minute range in the alkaline solution is adjusted in a range from advance 10% to 20% to form a G1 and R1 in the photosensitive resin thereto.
Further, the substrate is obtained by being dipped in a range hydrofluoric acid or hydrofluoric acid which is adjusted in a range from a pre-0.05% 0.1% 3 seconds in a solution containing its solute 10 seconds, to G1 and R1 can be formed with a photosensitive resin.

本発明の方法によれば、配線の作成に感光性樹脂を用いるため感光性樹脂を現像するだけで配線の作成領域を決定できる。現像により剥離あるいは溶解された感光性樹脂は、面積比率が比較的少ない配線領域のみが廃棄されるにとどまる上、メタル等の不純物を含まないため、容易に再生が可能となる。   According to the method of the present invention, since the photosensitive resin is used for creating the wiring, the wiring creating region can be determined simply by developing the photosensitive resin. The photosensitive resin peeled or dissolved by development can be easily regenerated because only the wiring region having a relatively small area ratio is discarded and does not contain impurities such as metal.

また、感光性樹脂に埋め込まれた配線金属表面と感光性樹脂表面との間の段差が小さくなり、配線の厚さは感光性樹脂の膜厚で決定できるので、任意の膜厚の配線を液晶の配向特性やトランジスタの電気的特性に悪影響がないように配線を作成、形成することが可能となる。   Also, the step between the surface of the wiring metal embedded in the photosensitive resin and the surface of the photosensitive resin is reduced, and the thickness of the wiring can be determined by the film thickness of the photosensitive resin. Wiring can be created and formed so as not to adversely affect the alignment characteristics and the electrical characteristics of the transistor.

また、本発明は減圧工程を含まないため、基板が大きくなったとしても、従来のスパッタリング法を使用する配線形成に比べ、プロセスコストの増大を抑制することができる。   In addition, since the present invention does not include a decompression step, an increase in process cost can be suppressed even when the substrate is large, as compared with wiring formation using a conventional sputtering method.

さらに本発明では、無電解メッキに不可欠である触媒核付与溶液を作製するに当って、オゾン添加水を用いることとし、無電解メッキ液はオゾン添加水もしくは水素添加水に所望の金属を含有する化合物を溶解して作製することにより、従来の無電解メッキにおいてなされていたような、酸・アルカリ溶剤の大量使用を不要とすることができる。   Further, in the present invention, ozone-added water is used in preparing a catalyst nucleus imparting solution that is indispensable for electroless plating, and the electroless plating solution contains a desired metal in ozone-added water or hydrogenated water. By dissolving the compound, it is possible to eliminate the use of a large amount of an acid / alkali solvent as has been done in conventional electroless plating.

同時に、上記のオゾン添加水に溶かす二酸化炭素ガス等の量を制御することにより、酸性側にpHを制御することが可能であり、また水素添加水に溶かすアンモニアガス等の量を制御することにより、酸性側にpHを制御することが可能であるので、廃液の処理は極めて容易となる。ここで、上記各ガスは例示であり、本発明におけるpH制御に使用できるガスであれば、適宜のものを用いることができる。   At the same time, by controlling the amount of carbon dioxide gas or the like dissolved in the ozone-added water, it is possible to control the pH on the acidic side, and by controlling the amount of ammonia gas or the like dissolved in the hydrogen-added water. Since the pH can be controlled to the acidic side, the waste liquid can be treated very easily. Here, each said gas is an illustration, and if it is a gas which can be used for pH control in this invention, an appropriate | suitable thing can be used.

図1は、本発明の配線形成方法の基本構成を示すフロー図である。図において本方法は、基体上に感光性樹脂層が形成され、該感光性樹脂の少なくとも一部を感光および現像して該基体が露出した領域と感光性樹脂が残された領域とを有する該基体Uに対して行う無電解メッキによる配線形成方法であって、該方法は、
(IA)カチオン系界面活性剤を用いて、該感光性樹脂領域における表面電位を該基体露出領域におけるそれよりも正にするための電位差形成過程SIAと、
(IB)該電位差形成過程SIAの後において、
(IB−1)該基体露出領域の表面電位よりも正側でかつ該感光性樹脂領域の表面電位よりも負側の酸化還元電位を有する触媒核付与液、ならびに、
(IB−2)該基体露出領域の表面電位よりも正側でかつ該感光性樹脂領域の表面電位よりも負側の酸化還元電位を有する無電解メッキ液を用いて処理する触媒核付与およびメッキ過程SIBと、
を備えて、基本的に構成される。
FIG. 1 is a flowchart showing the basic configuration of the wiring forming method of the present invention. The method in FIG. Is a photosensitive resin layer is formed on a substrate, said having at least a portion of the exposed and developed to expose the said base region and a photosensitive resin is left area of the photosensitive resin A wiring formation method by electroless plating performed on the substrate U, the method comprising:
Using (IA) cationic surface active agents, and the potential difference formation process SIA for the surface potential of the photosensitive resin region more positive than that in the substrate exposed region,
(IB) After the potential difference forming process SIA,
(IB-1) said substrate is more positive than the surface potential of the exposed region and catalytic core imparting solution having a redox potential of more negative than the surface potential of the photosensitive resin region, and,
(IB-2) the substrate exposed area catalyst nucleus applied and plating processes positive a and using an electroless plating solution having a redox potential of more negative than the surface potential of the photosensitive resin region than the surface potential of the Process SIB,
It is basically composed.

かかる構成により、該電位差形成過程SIAによって該感光性樹脂領域における表面電位が該基体露出領域におけるそれよりも正になされ、ついで該触媒核付与およびメッキ過程SIBによって、電位差形成された基体に対して触媒核付与とメッキ処理がなされ、配線の形成された基体Pが得られる。なお、該触媒核付与およびメッキ過程SIBは、触媒核付与過程SIB−1とメッキ過程SIB−2から構成される。
With this configuration, the surface potential in the photosensitive resin region is made more positive than that in the substrate exposed region by the potential difference formation process SIA, then by the catalyst nucleus applied and plating processes SIB, relative potential difference formed substrate The catalyst core is applied and the plating process is performed to obtain the base P on which the wiring is formed. The catalyst nucleus application and plating process SIB includes a catalyst nucleus application process SIB-1 and a plating process SIB-2.

本発明において用いるカチオン系界面活性剤としては、アミン塩型、第四アンモニウム塩型、ピリジニウム塩型等があるが、特に限定されずに適宜のものを用いることができる。   Examples of the cationic surfactant used in the present invention include an amine salt type, a quaternary ammonium salt type, a pyridinium salt type, and the like.

以下、実施例により本発明を説明するが、これら実施例、実施例に示された具体的条件により本発明が限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by the specific conditions shown by these Examples and Examples.

本発明の実施例1における配線製造法を図2を用いて説明する。
図3は本実施例1の配線製造法の工程図であり、ガラス基板には無アルカリガラスを用いた。ここで、熱収縮率が比較的少ないシリカ系ガラスを使用してもよい。
A wiring manufacturing method according to the first embodiment of the present invention will be described with reference to FIG.
FIG. 3 is a process diagram of the wiring manufacturing method of the first embodiment, and non-alkali glass was used for the glass substrate. Here, silica glass having a relatively small heat shrinkage rate may be used.

無アルカリガラスの表面に感光性樹脂を塗布し、露光後現像することにより所望の配線形成領域G1を得た。ここで使用する感光性樹脂は、所望の光波長領域で十分に光透過率が高いものを選択する。ここではシクロオレフィンを主体とする樹脂を使用した。   A desired wiring formation region G1 was obtained by applying a photosensitive resin to the surface of alkali-free glass and developing after exposure. The photosensitive resin used here is selected from those having a sufficiently high light transmittance in a desired light wavelength region. Here, a resin mainly composed of cycloolefin was used.

この領域G1と現像後残存した感光性樹脂領域R1を有するガラス基板を15%の水酸化カリウム溶液に5分間浸漬した後、純水で洗浄した。ここで使用する溶液は、あらかじめ10%から20%の範囲で調整されたアルカリ性溶液で、また浸漬する時間も3分間から10分間の範囲であれば同様の効果が得られる。なお、温度条件としては、室温下にて行なった(以下も同様。)。   A glass substrate having the region G1 and the photosensitive resin region R1 remaining after development was immersed in a 15% potassium hydroxide solution for 5 minutes, and then washed with pure water. The solution used here is an alkaline solution adjusted in advance in the range of 10% to 20%, and the same effect can be obtained if the immersion time is in the range of 3 minutes to 10 minutes. In addition, as temperature conditions, it carried out at room temperature (the same applies below).

さらに、この基板を0.05%カチオン系界面活性剤に1分間浸漬した後0.1%フッ酸溶液に5秒浸漬して、感光性樹脂領域R1の表面電位を基体露出領域G1のそれよりも正になるようにした。このとき、ガラス面に付着したカチオン系界面活性剤はフッ酸によるガラスのエッチングにより除去され、ガラス面と感光性樹脂面での表面電位差を増大させた基板を得た。ここで使用する酸性溶液は、0.05%から0.1%の範囲で調整されたフッ酸またはフッ酸をその溶質に含む溶液で、浸漬時間は3秒間から10秒間の範囲であれば同様の効果が得られる。
Further, this substrate was immersed in 0.05% cationic surfactant for 1 minute and then immersed in a 0.1% hydrofluoric acid solution for 5 seconds, and the surface potential of the photosensitive resin region R1 was changed from that of the substrate exposed region G1. Was also positive. At this time, the cationic surfactant adhering to the glass surface was removed by etching the glass with hydrofluoric acid to obtain a substrate having an increased surface potential difference between the glass surface and the photosensitive resin surface. The acidic solution used here is a solution containing hydrofluoric acid or hydrofluoric acid adjusted in the range of 0.05% to 0.1% in the solute, and the immersion time is the same if it is in the range of 3 seconds to 10 seconds. The effect is obtained.

次に、基板を塩化スズと塩酸で調整した溶液と、洗浄後、塩化パラジウムと塩酸で調整した溶液にそれぞれ1分間ずつ浸漬し、触媒核をガラス露出面のみに付着させた基板を得た。ここで使用している触媒核付与液は、G1の表面電位よりも正側で、かつ、R1の表面電位よりも負側の酸化還元電位を有している。   Next, the substrate was washed with a solution prepared with tin chloride and hydrochloric acid, and washed and then immersed in a solution prepared with palladium chloride and hydrochloric acid for 1 minute each to obtain a substrate having the catalyst nucleus attached only to the exposed glass surface. The catalyst nucleus imparting solution used here has a redox potential that is more positive than the surface potential of G1 and more negative than the surface potential of R1.

これを、ニッケルイオンが溶解している無電解メッキ溶液に浸漬することにより、所望のガラス露出面のみにニッケルを析出させた。ここで使用している無電解メッキ溶液は、G1の表面電位よりも正側で、かつ、R1の表面電位よりも負側の酸化還元電位を有している。ニッケルは感光性樹脂の溝を埋め感光性樹脂の表面とほぼ同一の高さのところで析出を終えるように制御し、金属配線表面と感光性樹脂表面がほぼ平坦になるようにした。   This was immersed in an electroless plating solution in which nickel ions were dissolved to deposit nickel only on the desired glass exposed surface. The electroless plating solution used here has a redox potential that is more positive than the surface potential of G1 and more negative than the surface potential of R1. Nickel was controlled to fill the groove of the photosensitive resin and finish the deposition at the same height as the surface of the photosensitive resin, so that the surface of the metal wiring and the surface of the photosensitive resin were almost flat.

本発明の実施例2における配線製造法を図3を用いて説明する。
図3は実施例2における触媒核付与溶液の調製法および無電解メッキ液の調製法を示したものである。
A wiring manufacturing method according to the second embodiment of the present invention will be described with reference to FIG.
Figure 3 shows the preparation of preparation and the electroless plating solution of the catalyst nuclei imparting solution in Example 2.

製造工程は、実施例1に示したアルカリ性溶液、酸性溶液処理工程を経た後、調製したオゾン添加水に塩化スズを溶解してなる塩化スズ溶液、および該オゾン添加水に塩化パラジウムを溶解してなる触媒核付与溶液に、ガラス基板をそれぞれ1分間浸漬し、触媒核をガラス露出面のみに付着させた基板を得た。ここで使用している溶液は、G1の表面電位よりも正側で、かつ、R1の表面電位よりも負側の酸化還元電位を有している。
Manufacturing process, an alkaline solution as shown in Example 1, after passing through an acid solution treatment step, by dissolving a palladium chloride-tin solution to the ozone added water prepared by dissolving tin chloride, and the ozone-containing water Each of the glass substrates was immersed for 1 minute in the resulting catalyst nucleus imparting solution to obtain a substrate having the catalyst nuclei attached only to the exposed glass surface. The solution used here has a redox potential that is more positive than the surface potential of G1 and more negative than the surface potential of R1.

調製したアンモニアガスを溶かしたアルカリ性水素水添加水に硫酸ニッケルを溶解してメッキ溶液とし、これに、先に得られた基板を1分間浸漬し、ガラス面のみにニッケルを析出させた。ここで使用している溶液は、G1の表面電位よりも正側で、かつ、R1の表面電位よりも負側の酸化還元電位を有している。ニッケルは感光性樹脂の溝を埋め感光性樹脂の表面とほぼ同一の高さのところで析出を終えるように制御し、金属配線表面と感光性樹脂表面がほぼ平坦になるようにした。
Nickel sulfate was dissolved in an alkaline hydrogen water-added water in which the prepared ammonia gas was dissolved to form a plating solution. The previously obtained substrate was immersed in this for 1 minute to deposit nickel only on the glass surface. The solution used here has a redox potential that is more positive than the surface potential of G1 and more negative than the surface potential of R1. Nickel was controlled to fill the groove of the photosensitive resin and finish the deposition at the same height as the surface of the photosensitive resin, so that the surface of the metal wiring and the surface of the photosensitive resin were almost flat.

本発明の実施例3における配線製造法を図4を用いて説明する。
図4は実施例3における基体表面に感光性樹脂領域を作製する工程を示したものである。
A wiring manufacturing method according to the third embodiment of the present invention will be described with reference to FIG.
FIG. 4 shows a process for producing a photosensitive resin region on the substrate surface in Example 3.

基板表面における感光性樹脂領域の作製は、感光性樹脂塗布後仮乾燥を行ない、ついで、0.05%カチオン系界面活性剤に1分間浸漬し、その後露光、現像という工程を経て行った。   Preparation of the photosensitive resin area | region in the board | substrate surface performed temporary drying after photosensitive resin application | coating, Then, it immersed in 0.05% cationic surfactant for 1 minute, and performed through the process of exposure and image development after that.

得られた基板は、ガラス露出面には界面活性剤が付与されておらず、感光性樹脂領域表面のみに付与されており、この領域はガラス露出領域G1よりも表面電位が正側になっている。   The obtained substrate is not provided with a surfactant on the glass exposed surface, but is provided only on the surface of the photosensitive resin region, and the surface potential of this region is more positive than the glass exposed region G1. Yes.

上記基板は、これを実施例1および実施例2にある触媒化付与工程、および無電解メッキ工程に供することにより、基板のガラス露出領域のみにニッケルを析出させることができる。   By subjecting the substrate to the catalyzing imparting step in Example 1 and Example 2 and the electroless plating step, nickel can be deposited only in the glass exposed region of the substrate.

上記第一、第二および第三の実施例において、感光性樹脂領域R1はカチオン系界面活性剤処理により基体露出領域G1よりも表面電位が正にされるが、この際の電位差は0.05V以上、好ましくは0.1V以上あれば十分な効果が得られる。さらにG1の表面電位よりも正側で、かつ、R1の表面電位よりも負側の酸化還元電位を有する触媒核付与液および無電解メッキ液の電位は、R1とG1の表面電位のほぼ中間の電位に制御されることが、配線形成の選択性を最大化する上で、より好ましい。
上記各実施例はガラス基板を用いたものであるが、絶縁膜がその表面に形成されたガラス基板、プラスチックなどの樹脂性基板、あるいはその他の基板に対しても同様の方法で配線形成を行なうことができる。
In the first, second and third embodiments, the photosensitive resin region R1 has a positive surface potential as compared with the substrate exposed region G1 by the cationic surfactant treatment, but the potential difference at this time is 0.05V. As described above, preferably 0.1 V or more, a sufficient effect can be obtained. Furthermore, the potentials of the catalyst nucleus imparting solution and the electroless plating solution having a redox potential that is positive with respect to the surface potential of G1 and negative with respect to the surface potential of R1 are substantially intermediate between those of R1 and G1. It is more preferable to control the potential in order to maximize the selectivity of wiring formation.
Each of the above embodiments uses a glass substrate, but wiring is formed in the same manner on a glass substrate having an insulating film formed on its surface, a plastic substrate such as plastic, or other substrates. be able to.

また、上記実施例においてはニッケルを配線金属として使用しているが、銅、クロム、その他の金属を、特に限定されることなく使用することができる。たとえば、配線抵抗を下げる必要がある場合には抵抗率の低い金属として銅を用いるなど、金属の選択は適宜行うことができる。
また、上記実施例では配線金属形成を無電解メッキ法で行なっているが、配線形成速度を向上させたいときには、無電解メッキ法と電界メッキ法を組み合わせて行なってもよい。
Moreover, in the said Example, although nickel is used as a wiring metal, copper, chromium, and another metal can be used without being specifically limited. For example, when it is necessary to lower the wiring resistance, the metal can be selected as appropriate, such as using copper as the metal having a low resistivity.
In the above embodiment, the wiring metal is formed by the electroless plating method. However, in order to improve the wiring formation speed, the electroless plating method and the electroplating method may be combined.

本発明によれば、ガラス基板への配線形成が従来の減圧工程を用いずに可能となり、液晶のTFT基板、有機ELディスプレイの配線、プラズマディスプレイの配線、半導体基板、セラミック基板や回路基板等に応用が可能である。   According to the present invention, it is possible to form a wiring on a glass substrate without using a conventional decompression process, and it can be applied to a liquid crystal TFT substrate, an organic EL display wiring, a plasma display wiring, a semiconductor substrate, a ceramic substrate, a circuit substrate, and the like. Application is possible.

本発明の配線形成方法の構成を示すフロー図The flowchart which shows the structure of the wiring formation method of this invention 本発明の実施例1の工程図Process drawing of Example 1 of this invention 本発明の実施例2の工程図Process drawing of Example 2 of this invention 本発明の実施例3の感光性樹脂領域作製工程図Photosensitive resin region production process diagram of Example 3 of the present invention 一般的なガラス基板やプラスチック基板への無電解メッキによる配線形成の工程図Process diagram of wiring formation by electroless plating on general glass substrate and plastic substrate ニッケルのpHと酸化還元電位による状態模式図Schematic diagram of nickel pH and redox potential

符号の説明Explanation of symbols

1 基板露出面
2 感光性樹脂表面
3 析出金属
U 処理前基体
SIA 電位差形成過程
SIB 触媒核付与およびメッキ過程
SIB−1 触媒核付与過程
SIB−2 メッキ過程
P 配線形成された基体
DESCRIPTION OF SYMBOLS 1 Substrate exposed surface 2 Photosensitive resin surface 3 Precipitated metal U Pretreatment substrate SIA Potential difference formation process SIB Catalyst nucleus application and plating process SIB-1 Catalyst nucleus application process SIB-2 Plating process P Substrate with wiring formed

Claims (10)

基体上に感光性樹脂層が形成され、該感光性樹脂の少なくとも一部を感光および現像して該基体が露出した領域G1と感光性樹脂が残された領域R1とを有する該基体に対して行う、無電解メッキによる配線形成方法であって、該方法は、
(IA)カチオン系界面活性剤を用いて、該感光性樹脂領域R1における表面電位を該基体露出領域G1におけるそれよりも正にするための電位差形成過程と、
(IB)該電位差形成過程の後において、
(IB−1)該基体露出領域G1の表面電位よりも正側でかつ該感光性樹脂領域R1の表面電位よりも負側の酸化還元電位を有する触媒核付与液、ならびに、
(IB−2)該基体露出領域G1の表面電位よりも正側でかつ該感光性樹脂領域R1の表面電位よりも負側の酸化還元電位を有する無電解メッキ液を用いて処理する触媒核付与およびメッキ過程と、
を備えてなることにより、配線の形成された基体が得られることを特徴とする、配線形成方法。
A photosensitive resin layer is formed on a substrate, and the substrate having a region G1 where the substrate is exposed by exposing and developing at least a part of the photosensitive resin and a region R1 where the photosensitive resin is left. A method of forming a wiring by electroless plating, the method comprising:
(IA) Using a cationic surfactant, a potential difference forming process for making the surface potential in the photosensitive resin region R1 more positive than that in the substrate exposed region G1,
(IB) After the potential difference forming process,
(IB-1) a catalyst nucleus imparting solution having a redox potential that is more positive than the surface potential of the substrate exposed region G1 and more negative than the surface potential of the photosensitive resin region R1, and
(IB-2) Application of catalyst nuclei to be treated using an electroless plating solution having a redox potential that is more positive than the surface potential of the substrate exposed region G1 and more negative than the surface potential of the photosensitive resin region R1. And plating process,
A wiring formation method characterized in that a substrate on which wiring is formed is obtained.
基体上に感光性樹脂層が形成され、該感光性樹脂の少なくとも一部を感光および現像して該基体が露出した領域G1と感光性樹脂が残された領域R1を有する該基体に対して行う無電解メッキによる配線形成方法であって、該感光性樹脂領域R1はカチオン系界面活性剤処理により該基体露出領域G1よりも表面電位が正にされ、該基体露出領域G1の表面電位よりも正側で、かつ、該感光性樹脂領域R1の表面電位よりも負側の酸化還元電位を有する触媒核付与液および無電解メッキ液を用いることを特徴とする配線形成方法。 A photosensitive resin layer is formed on a substrate, and at least a part of the photosensitive resin is exposed to light and developed, and this is performed on the substrate having a region G1 where the substrate is exposed and a region R1 where the photosensitive resin remains. In the wiring forming method by electroless plating, the photosensitive resin region R1 has a surface potential more positive than the substrate exposed region G1 by the cationic surfactant treatment, and is more positive than the surface potential of the substrate exposed region G1. A method of forming a wiring, comprising using a catalyst nucleus imparting solution and an electroless plating solution having a redox potential on the side and on the negative side of the surface potential of the photosensitive resin region R1. 前記電位差形成過程における処理または前記カチオン系界面活性剤処理は、前記感光性樹脂領域R1と基体露出領域G1との間の電位差が0.05V以上、好ましくは0.1V以上となるように行うことを特徴とする、請求項1または2に記載の配線形成方法。 The treatment in the potential difference forming process or the cationic surfactant treatment is performed so that the potential difference between the photosensitive resin region R1 and the substrate exposed region G1 is 0.05 V or more, preferably 0.1 V or more. The wiring formation method according to claim 1, wherein: 該基体は、ガラス基板、ガラス基板上に絶縁膜が形成された基板、樹脂性基板のいずれかであることを特徴とする、請求項1ないし3のいずれかに記載の配線形成方法。 4. The wiring forming method according to claim 1, wherein the base is any one of a glass substrate, a substrate having an insulating film formed on the glass substrate, and a resinous substrate. 触媒核付与液は、pHと酸化還元電位を制御したオゾン添加水に触媒核となる化合物を溶解して得られるものであることを特徴とする、請求項1ないしのいずれかに記載の配線形成方法。 Catalyst nuclei imparting solution is characterized in that is obtained by dissolving the compound of the catalyst nucleus in ozone-containing water having a controlled pH and redox potential, the wiring of any one of claims 1 to 4 Forming method. 無電解メッキ液は、pHと酸化還元電位を制御したオゾン添加水または水素添加水に、析出させる金属イオンを溶解して得られるものであることを特徴とする、請求項1ないしのいずれかに記載の配線形成方法。
Electroless plating solution, the ozone-containing water or hydrogenated water to control the pH and redox potential, characterized in that obtained by dissolving the metal ions to be deposited, any one of claims 1 to 5 The wiring formation method of description.
該基体は、あらかじめフッ酸またはフッ酸をその溶質に含む溶液に浸漬処理され、これに感光性樹脂で基体露出領域G1と感光性樹脂領域R1を形成することを特徴とする、請求項1ないしのいずれかに記載の配線形成方法。 The substrate is preliminarily immersed in hydrofluoric acid or a solution containing hydrofluoric acid in a solute, and a substrate exposed region G1 and a photosensitive resin region R1 are formed on the substrate with a photosensitive resin. The wiring formation method according to any one of 5 . 該基体は、あらかじめ0.05%から0.1%の範囲で調整されたフッ酸またはフッ酸をその溶質に含む溶液に3秒間から10秒間の範囲で浸漬処理され、これに感光性樹脂で基体露出領域G1と感光性樹脂領域R1を形成することを特徴とする、請求項1ないしのいずれかに記載の配線形成方法。
The substrate is dipped in hydrofluoric acid or a solution containing hydrofluoric acid in the solute in a range of 0.05% to 0.1% in a range of 3 seconds to 10 seconds. and forming a substrate exposed area G1 and the photosensitive resin region R1, the wiring forming method according to any one of claims 1 to 5.
該基体は、あらかじめアルカリ溶液に浸漬処理され、これに感光性樹脂でG1とR1を形成することを特徴とする、請求項1ないしのいずれかに記載の配線形成方法。 It said substrate is dipped in advance alkaline solution, and forming a G1 and R1 in the photosensitive resin to the wiring formation method according to any one of claims 1 to 5. 該基体は、あらかじめ10%から20%の範囲で調整されたアルカリ溶液に3分間から10分間の範囲で浸漬処理され、これに感光性樹脂でG1とR1を形成することを特徴とする、請求項1ないしのいずれかに記載の配線形成方法。
The substrate is dipped in an alkaline solution adjusted in advance in a range of 10% to 20% in a range of 3 minutes to 10 minutes, and G1 and R1 are formed on the photosensitive resin by using this. Item 6. The wiring forming method according to any one of Items 1 to 5 .
JP2003353006A 2003-10-10 2003-10-10 Wiring manufacturing method Expired - Fee Related JP4649557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003353006A JP4649557B2 (en) 2003-10-10 2003-10-10 Wiring manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003353006A JP4649557B2 (en) 2003-10-10 2003-10-10 Wiring manufacturing method

Publications (2)

Publication Number Publication Date
JP2005116989A JP2005116989A (en) 2005-04-28
JP4649557B2 true JP4649557B2 (en) 2011-03-09

Family

ID=34543708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003353006A Expired - Fee Related JP4649557B2 (en) 2003-10-10 2003-10-10 Wiring manufacturing method

Country Status (1)

Country Link
JP (1) JP4649557B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132089A (en) * 1989-09-25 1991-06-05 Internatl Business Mach Corp <Ibm> Multilayer structure of different electric active materials and their manufacture
JPH03180476A (en) * 1989-12-08 1991-08-06 Sony Corp Electroless nickel plating method
JPH0978250A (en) * 1995-09-11 1997-03-25 Kao Corp Forming method of conductive pattern
JPH1075038A (en) * 1996-06-28 1998-03-17 Ngk Spark Plug Co Ltd Wiring board and its manufacture method
JP2000294926A (en) * 1996-12-19 2000-10-20 Ibiden Co Ltd Manufacture of multilayer printed wiring board
JP2001203448A (en) * 1999-11-11 2001-07-27 Ibiden Co Ltd Multilayer printed wiring board and manufacturing method therefor
JP2001226777A (en) * 2001-03-02 2001-08-21 Omron Corp Method for plating polymer forming material, circuit forming component and method for manufacturing the circuit forming component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132089A (en) * 1989-09-25 1991-06-05 Internatl Business Mach Corp <Ibm> Multilayer structure of different electric active materials and their manufacture
JPH03180476A (en) * 1989-12-08 1991-08-06 Sony Corp Electroless nickel plating method
JPH0978250A (en) * 1995-09-11 1997-03-25 Kao Corp Forming method of conductive pattern
JPH1075038A (en) * 1996-06-28 1998-03-17 Ngk Spark Plug Co Ltd Wiring board and its manufacture method
JP2000294926A (en) * 1996-12-19 2000-10-20 Ibiden Co Ltd Manufacture of multilayer printed wiring board
JP2001203448A (en) * 1999-11-11 2001-07-27 Ibiden Co Ltd Multilayer printed wiring board and manufacturing method therefor
JP2001226777A (en) * 2001-03-02 2001-08-21 Omron Corp Method for plating polymer forming material, circuit forming component and method for manufacturing the circuit forming component

Also Published As

Publication number Publication date
JP2005116989A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
KR100371298B1 (en) Method for Fabricating Metal Interconnections
US8198191B2 (en) Method of preparing low resistance metal line, patterned metal line structure, and display device using the same
JP4134172B2 (en) Manufacturing method of double-sided wiring glass substrate
KR100815376B1 (en) Novel Method for forming Metal Pattern and Flat Panel Display using the Metal Pattern
US20080314628A1 (en) Method of forming metal pattern, patterned metal structure, and thin film transistor-liquid crystal displays using the same
KR100709446B1 (en) Method of Preparing Metal Pattern having Low Resistivity
US7488570B2 (en) Method of forming metal pattern having low resistivity
PT788728E (en) PROCESS FOR THE COATING OF ELECTRICALLY NOT CONDUCTIVE SURFACES WITH METALLIC STRUCTURES LINKED BETWEEN
KR100385109B1 (en) Method for fabricating metal wirings
JP4649557B2 (en) Wiring manufacturing method
JP2002525797A (en) Method of depositing metal conductor track as electrode on channel plate of large screen flat display panel
JP2002353167A (en) Metal wiring substrate, method of manufacturing the same, and metal wiring substrate for reflection liquid crystal display
JPH07140475A (en) Wiring structure of liquid crystal display device
JP5166772B2 (en) Method for forming conductive pattern
KR100555896B1 (en) Method of fabricating metal bus electrode of plasma display panel
JPH0216529A (en) Method of lowering resistance of transparent electrode
WO2008065976A1 (en) Method for forming conductive pattern
JPS59149326A (en) Production of liquid crystal panel
JPS6161667B2 (en)
JP4955274B2 (en) Plating wiring board and electroless plating method
JP3161407B2 (en) Activating catalyst solution for electroless plating and electroless plating method
JP5807889B2 (en) Method for forming metal structure
JP2007243036A (en) Manufacturing method and plating method of wiring board
JPS59129766A (en) Electroless plating method
JPS5974271A (en) Electroless plating method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061009

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees