JPH03180476A - Electroless nickel plating method - Google Patents

Electroless nickel plating method

Info

Publication number
JPH03180476A
JPH03180476A JP31980489A JP31980489A JPH03180476A JP H03180476 A JPH03180476 A JP H03180476A JP 31980489 A JP31980489 A JP 31980489A JP 31980489 A JP31980489 A JP 31980489A JP H03180476 A JPH03180476 A JP H03180476A
Authority
JP
Japan
Prior art keywords
substrate
type
nickel plating
electroless nickel
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31980489A
Other languages
Japanese (ja)
Other versions
JP2881871B2 (en
Inventor
Hiroshi Yubi
啓 由尾
Masao Tsuchiya
雅夫 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31980489A priority Critical patent/JP2881871B2/en
Publication of JPH03180476A publication Critical patent/JPH03180476A/en
Application granted granted Critical
Publication of JP2881871B2 publication Critical patent/JP2881871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To enable the adsorption of an Sn-Pd activator on a substrate and to perform uniform electroless nickel plating on the substrate by previously adsorbing a quat. ammonium type surfactant on the surface of the substrate with a formed positive type photoresist layer having a prescribed pattern. CONSTITUTION:A positive type photoresist layer having a prescribed pattern is formed on the surface of a substrate and at least one kind of surfactant selected among quat. ammonium type, betaine type, amine oxide type, aminocarboxylate type and polyoxyethylene alkylamine type is adsorbed on the surface of the substrate by dipping in an aq. soln. contg. about 0.001-2% of the surfactant. The surface of the substrate can be activated with an Sn-Pd activator and uniform electroless nickel plating is performed.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、無電解ニッケルめっき方法に関し、特に所定
のパターンを有するポジ型フォトレジスト層が形成され
てなる基体に対して無電解ニッケルめっきを施す方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electroless nickel plating method, and particularly to a method for electroless nickel plating on a substrate on which a positive photoresist layer having a predetermined pattern is formed. Regarding the method of application.

〔発明の概要〕[Summary of the invention]

本発明は、予め所定のパターンを有するポジ型フォトレ
ジスト層が形成されてなる基体の表面を、第4級アンモ
ニウム系、ベタイン系、アミンカルボン酸塩系、アミン
アセテート系、およびポリオキシエチレンアルキルアご
ン系から選ばれる少なくとも1種類の界面活性剤を吸着
させることにより、上記ポジ型フォトレジスト層表面へ
の錫−パラジウム系活性剤の触媒の吸着を可能とし、か
かる基体表面の無電解ニッケルめっきを可能とするもの
である。
In the present invention, the surface of a substrate on which a positive photoresist layer having a predetermined pattern has been formed is coated with quaternary ammonium-based, betaine-based, amine carboxylate-based, amine acetate-based, and polyoxyethylene alkyl amines. By adsorbing at least one type of surfactant selected from the tin-based photoresist layer, the catalyst of the tin-palladium-based activator can be adsorbed onto the surface of the positive photoresist layer, and electroless nickel plating on the surface of the substrate can be achieved. This makes it possible to

〔従来の技術〕[Conventional technology]

無電解めっき法は、陰極表面における金属の電気化学的
な還元反応を行う電解めっきと異なり、溶液中に含まれ
ている還元剤によって金属イオンを還元することにより
、被めっき体の表面に自己触媒的に金属(もしくは合金
)を析出させるめっき法である。無電解めっき法は、■
適当な触媒を吸着させることにより被導電体の表面にも
金属を析出させることができる、■めっき液に接触する
部分であれば、いかなる形状の被めっき体の表面にも均
一の厚さに金属が析出する、■欠陥が少なく硬度の高い
めっき被膜が得られる、■装置や設備が簡単である、等
の優れた特長を有しており、プリント回路における回路
パターンの形成やスルーホールめっき、ハードディスク
用アルミニウム系基板上における非磁性下地膜の形成、
コンピュータ筐体等の電磁波シールド等をはしめ、多く
の技術分野に適用されている。
Unlike electrolytic plating, which involves an electrochemical reduction reaction of the metal on the surface of the cathode, electroless plating produces an autocatalytic reaction on the surface of the object to be plated by reducing metal ions with a reducing agent contained in a solution. This is a plating method in which metals (or alloys) are deposited directly. Electroless plating method is ■
By adsorbing an appropriate catalyst, metal can also be deposited on the surface of the conductive object. ■Metal can be deposited to a uniform thickness on the surface of any shape of the object to be plated, as long as it is in contact with the plating solution. It has excellent features such as: ■ produces a highly hard plating film with few defects; and ■ simple equipment and equipment. It is useful for forming circuit patterns in printed circuits, through-hole plating, and hard disk Formation of a non-magnetic base film on an aluminum-based substrate for
It is used in many technical fields to provide electromagnetic shielding for computer cases, etc.

光ディスクを製造するための原盤(スタンバ−)作成も
、かかる適用分野のひとつである。光ディスクの一般的
な原盤作成工程においては、まず研磨したガラス板等か
らなる基板の上にフォトレジストを塗布し、レーザー光
の選択照射および現像により信号ピントやガイド溝等の
所定のパターンを有するフォトレジスト層を形威し、導
体化処理、電鋳を経てメタルマスターを作成している。
One such field of application is the creation of master discs (stambars) for manufacturing optical discs. In the general master production process for optical discs, a photoresist is first coated on a substrate made of a polished glass plate, etc., and a photoresist with predetermined patterns such as signal focus and guide grooves is formed by selective irradiation with laser light and development. A metal master is created by shaping the resist layer, making it conductive, and electroforming.

近年では、このメタルマスターを直接に射出成形機にセ
ントし、スタンバ−として使用することが行われている
。無電解めっき法は上記導体化処理に適用されており、
非導電性であるフォトレジスト層の表面に金属被膜を形
成することによりこれを導体化し、電鋳を可能としてい
る。ここで、上記導体化処理の方法としては、他に真空
1着法やスパンタリング法等も考えられるが、これらの
方法は特殊な設備を要するためにコスト高を招くこと、
生産性に劣ること、予めフォトレジスト層を乾燥させる
ために高度な乾燥技術を要すること等の問題を有してい
る。これに対し、無電解めっき法によれば、安価な設備
により欠陥の少ない金属被膜の形成が可能であり、被め
っき体を予め乾燥させておく必要もないので、信頼性、
経済性、生産性等の観点から極めて実用性が高い。
In recent years, this metal master has been directly inserted into an injection molding machine and used as a stand bar. The electroless plating method is applied to the above conductor treatment,
By forming a metal film on the surface of a non-conductive photoresist layer, it becomes conductive and electroforming becomes possible. Here, other methods such as the vacuum single-layer method and the sputtering method may be considered as methods for the above-mentioned conductor treatment, but these methods require special equipment and therefore increase costs;
This method has problems such as poor productivity and the need for advanced drying techniques to dry the photoresist layer in advance. On the other hand, electroless plating allows the formation of metal films with fewer defects using inexpensive equipment, and there is no need to dry the object to be plated beforehand, resulting in improved reliability and
It is extremely practical in terms of economy, productivity, etc.

無電解めっき法により析出され得る金属としては幾つか
の種類が知られているが、上述のような光ディスクの原
盤作成工程における導体化処理の目的に適用されるもの
としては銀、銅、およびニッケルが考えられる。このう
ち、銀および銅は還元され易いので無電解めっきの前処
理が比較的容易である反面、形成される金属被膜の硬度
が不足するので、これを表面に有するメタルマスターを
直接にスタンバ−として使用しようとすると上記金属被
膜のパターンが射出圧力により変形する虞れがある。こ
のようなスタンバ−を使用して光ディスクを製造すると
、ピントの変形等が生し、再生信号のCN比を劣化させ
る原因となる。したがって、上述の目的には、欠陥が少
なく硬度の高い金属被膜が得られるニッケルが最も適し
ていると言える。
Several types of metals are known that can be deposited by electroless plating, but silver, copper, and nickel are used for the purpose of conductive treatment in the optical disk master production process mentioned above. is possible. Of these, silver and copper are easily reduced, so pretreatment for electroless plating is relatively easy. However, the metal film formed lacks hardness, so a metal master with this on the surface can be directly used as a standbar. When used, there is a risk that the pattern of the metal coating may be deformed by the injection pressure. If such a stand bar is used to manufacture an optical disc, deformation of the focus will occur, which will cause a deterioration of the CN ratio of the reproduced signal. Therefore, it can be said that nickel is most suitable for the above-mentioned purpose since it provides a metal coating with few defects and high hardness.

ところで、一般に無電解めっきによりニッケル被膜を形
成するためには、その前処理として被めっき体の表面に
金属触媒を保持させておき(活性化処理)、これを核と
してニッケルを析出させることが行われる。上記金属触
媒としては、パラジウムのコロイドを吸着させるのが一
般的である。
By the way, in general, in order to form a nickel film by electroless plating, a metal catalyst is held on the surface of the object to be plated as a pretreatment (activation treatment), and nickel is deposited using this as a nucleus. be exposed. As the metal catalyst, it is common to adsorb palladium colloid.

従来、パラジウムのコロイドを吸着させる方法としては
、被めっき体を塩化第一錫に浸漬して錫イオンを吸着さ
せた後、塩化パラジウム/8液に浸漬することによりパ
ラジウムイオンを還元しコロイド状に析出させる方法が
広く採用されてきた。しかし、この方法では処理中に塩
化第一錫が空気酸化により塩化第二錫に変化し、水洗時
にコロイド状沈澱物が生成され易い。このコロイド状沈
澱物は目視できる程度の大きさにまで成長するため、特
に微細なパターンの形成を必要とする上述のような光デ
ィスクの原盤作成工程へ適用した場合には、製造される
光ディスクの欠陥の原因となり、好ましくない。したが
って、これに代わる活性化処理の方法が望まれている。
Conventionally, as a method for adsorbing colloidal palladium, the object to be plated is immersed in stannous chloride to adsorb tin ions, and then immersed in a palladium chloride/8 solution to reduce the palladium ions and form a colloid. Precipitation methods have been widely adopted. However, in this method, stannous chloride is converted to stannic chloride by air oxidation during treatment, and colloidal precipitates are likely to be generated during washing with water. This colloidal precipitate grows to a size that is visible to the naked eye, so when it is applied to the above-mentioned optical disc master production process that requires the formation of fine patterns, it can cause defects in the manufactured optical disc. This is not desirable because it causes Therefore, an alternative activation processing method is desired.

(発明が解決しようとする課題) 一方、一般の無電解ニッケルめっきの分野においては、
上述のようなコロイド状沈澱物の形成を防止するために
、近年、錫イオンとパラジウムイオンの両者を含む、い
わゆるキャタリストと呼ばれる錫−パラジウム系活性剤
を使用することが多くなっている、このキャタリスト中
では、パラジウムは錫イオンの保護コロイドに被覆され
た状態で存在するものと考えられている。
(Problem to be solved by the invention) On the other hand, in the field of general electroless nickel plating,
In order to prevent the formation of colloidal precipitates as described above, in recent years, tin-palladium activators containing both tin ions and palladium ions, so-called catalysts, have been increasingly used. In the catalyst, palladium is thought to exist in a state coated with a protective colloid of tin ions.

しかしながら、光ディスクの原盤作成工程における導体
化処理を目的としてニッケルの無電解めっきを行う場合
、上述のようなキャタリストを使用して被めっき体の表
面に貴金属触媒を吸着させようとしても、ポジ型フォト
レジスト層がキャタリストを弾いてしまい、無電解めっ
きを施すことができないという問題がある。
However, when performing electroless plating of nickel for the purpose of conductive treatment in the optical disc master production process, even if you try to adsorb the precious metal catalyst to the surface of the plated object using the catalyst described above, it will not work as a positive type. There is a problem in that the photoresist layer repels the catalyst, making it impossible to perform electroless plating.

そこで本発明は、ポジ型フォトレジスト層を有する基体
に対してもキャタリストによる活性化処理を良好に行い
、無電解ニッケルめっきを可能とする方法を提供するこ
とを目的とする。
Therefore, an object of the present invention is to provide a method that enables electroless nickel plating by successfully performing activation treatment using a catalyst even on a substrate having a positive photoresist layer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上述の目的を達成するために鋭意検討を行
った結果、ポジ型フォトレジスト層の表面に特定の分子
構造を有する界面活性剤を吸着させておくことにより、
該ポジ型フォトレジスト層の表面にも錫−パラジウム系
活性剤による活性化処理を良好に行うことができ、無電
解ニッケルめっきが可能となることを見出した。
The present inventors conducted intensive studies to achieve the above object, and found that by adsorbing a surfactant having a specific molecular structure on the surface of a positive photoresist layer,
It has been found that the surface of the positive photoresist layer can also be successfully activated with a tin-palladium activator, making electroless nickel plating possible.

本発明にかかる無電解ニッケルめっき方法はかかる知見
にもとづいて提案されるものであり、予め所定のパター
ンを有するポジ型フォトレジスト層が形成されてなる基
体の表面に、第4級アンモニウム系、ベタイン系、アミ
ンオキサイド系。
The electroless nickel plating method according to the present invention is proposed based on this knowledge, and the electroless nickel plating method according to the present invention is based on this knowledge. system, amine oxide system.

アミンカルボン酸塩系、およびポリオキシエチレンアル
キルアミン系から選ばれる少なくとも1種類の界面活性
剤を吸着させた後、錫−パラジウム系活性剤による活性
化処理を経て前記基体を真電解ニッケルめっき浴に浸漬
することを特徴とするものである。
After adsorbing at least one type of surfactant selected from amine carboxylate-based and polyoxyethylene alkylamine-based surfactants, the substrate is subjected to activation treatment with a tin-palladium-based activator and placed in a true electrolytic nickel plating bath. It is characterized by being immersed.

まず、上記ポジ型フォトレジスト層は、たとえばポジ型
フォトレジスト材料の代表例であるナフトキノンジアジ
ド系フォトレジストにより形成されるものである。上記
ナフトキノンジアジド系フォトレジストは、フェノール
系樹脂と光分解性化合物であるナフトキノンジアジドと
を主成分とするものであり、本発明では各種の市販品を
適用することができる。このポジ型フォトレジスト材料
は、常法にしたがってガラス等の基板上に塗布され、選
択露光および現像を経て所定のパターンを有するポジ型
フォトレジスト層となる。
First, the positive photoresist layer is formed of, for example, a naphthoquinone diazide photoresist, which is a typical example of a positive photoresist material. The naphthoquinone diazide photoresist has a phenol resin and naphthoquinone diazide, which is a photodegradable compound, as main components, and various commercially available products can be used in the present invention. This positive photoresist material is applied onto a substrate such as glass according to a conventional method, and is selectively exposed and developed to become a positive photoresist layer having a predetermined pattern.

このポジ型フォトレジスト層は、このままでは活性化処
理に使用される錫−パラジウム系活性剤を弾くので、本
発明ではこの表面に界面活性剤を吸着させる。この界面
活性剤としては、第4級アンモニウム系、ベタイン系、
アミンオキサイド系。
Since this positive photoresist layer as it is will repel the tin-palladium activator used in the activation process, in the present invention a surfactant is adsorbed onto this surface. Examples of this surfactant include quaternary ammonium type, betaine type,
Amine oxide type.

アミンカルボン酸塩系、およびポリオキシエチレンアル
キルアミン系から選ばれる化合物が使用され、1種類の
化合物を単独で使用しても、あるいは数種類の化合物を
混合して使用しても良い、使用時には、上記界面活性剤
を0.001〜2%程度の濃度で含有する水溶液を調製
し、該水溶液中に被めっき体を浸漬する。上記の濃度範
囲よりも界面活性剤が少ない場合には、錫−パラジウム
系活性剤の均一な吸着を可能とさせる程の表面改質効果
を得ることができず、また多すぎても界面活性剤がくセ
ル化を起こす等して所望の効果が得られなくなる。浸漬
時間および上記水溶液の液温等は、特に限定されるもの
ではなく、適宜設定すれば良い。
Compounds selected from amine carboxylate salts and polyoxyethylene alkyl amines are used, and one type of compound may be used alone or several types of compounds may be used in combination.When used, An aqueous solution containing the above surfactant at a concentration of about 0.001 to 2% is prepared, and the object to be plated is immersed in the aqueous solution. If the concentration of the surfactant is less than the above concentration range, it will not be possible to obtain a surface modification effect sufficient to enable uniform adsorption of the tin-palladium active agent, and if the concentration is too high, the surfactant will The desired effect may not be obtained due to the formation of calyx cells. The immersion time, the temperature of the aqueous solution, etc. are not particularly limited, and may be set as appropriate.

界面活性剤を含む水溶液中に浸漬した後の被めっき体に
は、水洗により過剰な界面活性剤が除去された後、常法
にしたがって錫−パラジウム系活性剤による活性化処理
を経て無電解ニッケルめっきが施される。上記錫−パラ
ジウム系活性剤や無電解ニッケルめっき浴の組成は特に
限定されるものではなく、−aに適用されている組成を
有するものの他、各種の市販品が使用可能である。
After being immersed in an aqueous solution containing a surfactant, the object to be plated is washed with water to remove excess surfactant, and then subjected to an activation treatment using a tin-palladium activator in accordance with a conventional method to form electroless nickel. Plating is applied. The compositions of the tin-palladium activator and electroless nickel plating bath are not particularly limited, and in addition to those having the composition applied to -a, various commercially available products can be used.

〔作用〕[Effect]

本発明において使用される界面活性剤は、いずれも分子
内の第4級窒素原子上、アミノ窒素原子上、もしくは酸
素原子に配位結合している窒素原子上に陽電荷を有する
界面活性剤である。これらは、繊維、金属、ガラス、プ
ラスチック、FL物等の一般に表面陰電荷を有する物質
の表面に、窒素原子もしくは窒素原子の近傍部を向けて
強く吸着される性質を有している。したがって、かかる
界面活性剤は本発明において被めっき体となる基体、す
なわち予め所定のパターンを有するポジ型フォトレジス
ト層が形成された基体上にも良好に吸着される。
The surfactants used in the present invention are all surfactants that have a positive charge on a quaternary nitrogen atom, an amino nitrogen atom, or a nitrogen atom that is coordinately bonded to an oxygen atom in the molecule. be. These substances have the property of being strongly adsorbed onto the surface of substances that generally have a negative surface charge, such as fibers, metals, glass, plastics, FL materials, etc., with the nitrogen atom or the vicinity of the nitrogen atom directed. Therefore, such a surfactant is well adsorbed onto a substrate to be plated in the present invention, that is, a substrate on which a positive photoresist layer having a predetermined pattern has been formed in advance.

このように界面活性剤が吸着された基体の表面は、錫−
パラジウム系活性剤に対する親和性が高められた状態と
なり、錫イオンの保護コロイドに被覆されたパラジウム
を保持することができるよう番こなる。このことにより
、最終的に上記保護コロイドが酸もしくはアルカリによ
り除去されても、パラジウムが安定に基体上に保持され
、適当な還元剤の存在下でこれを核としたニッケルの析
出が可能となる。
The surface of the substrate on which the surfactant is adsorbed in this way is tin-
The affinity for the palladium-based activator is increased, and the palladium coated with the protective colloid of tin ions can be retained. As a result, even if the protective colloid is finally removed by acid or alkali, palladium is stably retained on the substrate, and nickel can be deposited using this as a nucleus in the presence of an appropriate reducing agent. .

〔実施例〕〔Example〕

以下、本発明の好適な実施例について実験結果にもとづ
いて説明する。
Hereinafter, preferred embodiments of the present invention will be described based on experimental results.

まず、以下の各実施例において使用した界面活性剤の名
称および構造式を第1表に示す。
First, Table 1 shows the names and structural formulas of the surfactants used in each of the following Examples.

第1表 なお、第1表中のポリオキシエチレンアルキルアミンは
一般式で示されているが、通常mは5〜20の整数、n
は12〜18の整数に選ばれる。以下の実験ではm=5
.n=12のポリオキシエチレンラウリルアミンを使用
した。
Table 1 Note that the polyoxyethylene alkylamines in Table 1 are represented by general formulas, where m is usually an integer of 5 to 20 and n
is selected as an integer from 12 to 18. In the following experiment m=5
.. Polyoxyethylene laurylamine with n=12 was used.

実施例1 本実施例は、本発明を光デイスク製造用のスタンパ−の
作成に適用するにあたり、ポジ型フォトレジスト材料と
してヘキスト社製、商品名AZ−1350を使用した場
合の各界面活性剤の効果を検討したものである。
Example 1 In this example, when applying the present invention to the production of a stamper for manufacturing optical disks, the results of the present invention were as follows: This is a study of the effects.

まず、研磨した36cm径のディスク状のガラス基板上
に、ポジ型フォトレジスト(ヘキスト社製。
First, a positive photoresist (manufactured by Hoechst) was placed on a polished 36 cm diameter disk-shaped glass substrate.

商品名A Z−1350)を塗布し、これを乾燥させた
後、選択露光および現像により所定のパターンを有する
ポジ型フォトレジスト層を形成した。
After coating (trade name AZ-1350) and drying it, a positive photoresist layer having a predetermined pattern was formed by selective exposure and development.

次に、この基体を前述の第1表に示す各界面活性剤の0
.25%水溶液に30秒間浸漬した後、流水洗浄を行っ
て過剰な界面活性剤分子を除去した。この処理により、
基体表面は均一に界面活性剤の分子が吸着された状態と
なった。
Next, this substrate was treated with 0% of each surfactant shown in Table 1 above.
.. After immersion in a 25% aqueous solution for 30 seconds, excess surfactant molecules were removed by washing with running water. With this process,
The surfactant molecules were uniformly adsorbed on the surface of the substrate.

次に、上記の基体を濃厚溶液状の錫−パラジウム系活性
剤(シブジー社製。商品名キャタリスト9F)1部を濃
塩酸1部と純水5部により希釈した混合7夜中に1分間
浸漬し、流水洗浄を行った。
Next, the above substrate was mixed with a mixture of 1 part of a tin-palladium activator in the form of a concentrated solution (manufactured by Sibgy Co., Ltd., trade name Catalyst 9F) diluted with 1 part of concentrated hydrochloric acid and 5 parts of pure water, and immersed for 1 minute overnight. and washed with running water.

さらに、上記錫イオンの保護コロイドを除去してパラジ
ウムのみを基体表面に吸着させるために、酸促進剤(シ
ブレー社製、商品名アクセレレータ19)  1部を純
水5部で希釈した混合液中に1分間浸漬し、流水洗浄を
行った。ここで、上記錫−パラジウム系活性剤はポジ型
フォトレジスト層に弾かれることなく、基体表面に均一
に付着し、続く酸促進剤処理により均一にパラジウムを
吸着させた状態となった。
Furthermore, in order to remove the protective colloid of tin ions and adsorb only palladium on the substrate surface, add 1 part of an acid accelerator (manufactured by Sibley, trade name: Accelerator 19) to a mixed solution diluted with 5 parts of pure water. It was immersed for 1 minute and washed with running water. Here, the tin-palladium-based activator was not repelled by the positive photoresist layer and adhered uniformly to the substrate surface, and the subsequent acid promoter treatment resulted in a state in which palladium was uniformly adsorbed.

かかる基体を、無電解ニッケルめっき′a(シプレー社
製、商品名二ボジッl−468)を満たしためっき浴中
(浴温35〜40℃)に1分間浸漬した。これにより、
ポジ型フォトレジスト層の表面も含めて基体表面には厚
さ0.3〜0.4mmのニッケル被膜が均一に析出した
。上記ニッケル被膜は、その後の電鋳工程においても剥
離することはなかった。
The substrate was immersed for 1 minute in a plating bath (bath temperature: 35 to 40°C) filled with electroless nickel plating 'a (manufactured by Shipley Co., Ltd., trade name Niboji 1-468). This results in
A nickel film with a thickness of 0.3 to 0.4 mm was uniformly deposited on the surface of the substrate including the surface of the positive photoresist layer. The nickel coating did not peel off even in the subsequent electroforming process.

なお、上述の工程において、界面活性剤の水溶液の濃度
を0.025%もしくは0.0025%としても同様の
効果が認められ、いずれの場合にも均一なニッケル被膜
を析出させることができた。
In addition, in the above-mentioned process, a similar effect was observed when the concentration of the aqueous surfactant solution was changed to 0.025% or 0.0025%, and a uniform nickel film could be deposited in either case.

さらに、無電解ニッケルめっき液の種類による影響を調
べるため、さらに5種類の市販の無電解ニッケルめっき
液と、本発明者らが調製した無電解ニッケルめっき液を
使用して、同様の実験を行った。
Furthermore, in order to investigate the effect of the type of electroless nickel plating solution, similar experiments were conducted using five types of commercially available electroless nickel plating solutions and an electroless nickel plating solution prepared by the inventors. Ta.

ここで使用した市販品は、シプレー社製、商品名二りロ
イ22;シブレー社製、ニポジット68;ニーシライト
社製、商品名工ニレツクス;カニング社製、商品名ナイ
フオス3000 ;日本カニゼン社製。
The commercial products used here were manufactured by Shipley Co., Ltd., trade name: Niriroy 22; manufactured by Sibley Co., Ltd., Niposit 68; manufactured by Nishilight Co., Ltd., trade name: Meiko Nirex; manufactured by Canning Co., Ltd., trade name: Knife Os 3000; manufactured by Nippon Kanigen Co., Ltd.

商品名シェーマ−5680である。The product name is Schema-5680.

また、本発明者らが調製した無電解ニッケルめっき液(
p H=7.5)の組成は以下のとおりである。
In addition, the electroless nickel plating solution prepared by the present inventors (
The composition of pH=7.5) is as follows.

塩化ニッケル      20  g/j!次亜リン酸
ナトリウム  15g/j!グリシン        
20g/j!コハク酸ナトリウム   25  g/l
これらの無電解ニッケルめっき液を使用して浴温35℃
で無電解ニッケルめっきを行ったところ、いずれの場合
にも均一なニッケル被膜(正確には、還元剤中のリン等
を含有するニッケル被膜)が形成され、めっき液の種類
による影響は特に現れないことがわかった。
Nickel chloride 20 g/j! Sodium hypophosphite 15g/j! glycine
20g/j! Sodium succinate 25 g/l
Using these electroless nickel plating solutions, the bath temperature is 35℃.
When electroless nickel plating was carried out in both cases, a uniform nickel film (more precisely, a nickel film containing phosphorus, etc. in the reducing agent) was formed, and there was no particular effect of the type of plating solution. I understand.

実施例2 ポジ型フォトレジスト材料として東京応化社製。Example 2 Manufactured by Tokyo Ohka Co., Ltd. as a positive photoresist material.

商品名0FPR−77を使用した他は、上述の実施例1
と同様に実験を行った。いずれの場合にも、良好なニッ
ケル被膜が得られた。
Example 1 described above except that the product name 0FPR-77 was used.
The experiment was conducted in the same way. In both cases, good nickel coatings were obtained.

実施例3 ポジ型フォトレジスト材料としてコダック社製。Example 3 Manufactured by Kodak as a positive photoresist material.

KMPR820を使用し、界面活性剤としてポリオキシ
メチレンラウリルアミンを0.2%濃度で使用した他は
、上述の実施例1と同様に実験を行ったところ、良好な
ニッケル被膜が得られた。
An experiment was conducted in the same manner as in Example 1 above, except that KMPR820 was used and polyoxymethylene laurylamine was used as a surfactant at a concentration of 0.2%, and a good nickel film was obtained.

しかしながら、第1表に示す他の5種類の界面活性剤で
は所望の効果が得られなかった。これは、ポジ型フォト
レジスト材料の分子構造の差異に起因するものと考えら
れる。すなわち、上記KMPR820はノボラック樹脂
に感光基であるナフトキノンジアジドを付加させた化合
物であるのに対し、前述のA Z −1350および0
FPR−77はノボラック樹脂とナフトキノンジアジド
との混合物である点が異なっており、これがポジ型フォ
トレジスト層の表面物性に反映して界面活性剤に対する
親和性を変化させたものと考えられる。
However, the desired effect could not be obtained with the other five types of surfactants shown in Table 1. This is considered to be due to the difference in the molecular structure of the positive photoresist materials. That is, the above-mentioned KMPR820 is a compound in which naphthoquinonediazide, which is a photosensitive group, is added to a novolak resin, whereas the above-mentioned AZ-1350 and 0
FPR-77 is different in that it is a mixture of novolak resin and naphthoquinonediazide, and it is thought that this is reflected in the surface properties of the positive photoresist layer and changes its affinity for surfactants.

比較例 いかなる界面活性剤も使用せずに、上述の実施例1もし
くは実施例2と同様の実験を行ったが、ガラス基板の露
出部にはニッケル被膜が形成されたものの、A Z−1
350もしくは0FPR−77からなるポジ型フォトレ
ジスト層の表面には全くニッケル被膜が形成されなかっ
た。
Comparative Example An experiment similar to Example 1 or Example 2 above was conducted without using any surfactant, but although a nickel film was formed on the exposed portion of the glass substrate, A Z-1
No nickel film was formed on the surface of the positive photoresist layer made of 350 or 0FPR-77.

さらに、錫−パラジウム系活性剤(シプレー社製、商品
名キャタリス19F)の濃度を実施例1の2倍および3
倍とした場合、濃塩酸の濃度を実施例1の2倍とした場
合、および無電解ニッケルめっき液(シプレー社製、商
品名二ポジット468)の濃度を実施例1の2倍とした
場合についてそれぞれ同様の実験を行ったが、いずれの
場合にもポジ型フォトレジスト層の表面にはニッケル被
膜が全く形成されなかった。
Furthermore, the concentration of the tin-palladium activator (manufactured by Shipley, trade name Catalis 19F) was increased to twice that of Example 1 and 3 times as high.
When the concentration of concentrated hydrochloric acid is twice that of Example 1, and when the concentration of electroless nickel plating solution (manufactured by Shipley, trade name Niposit 468) is twice that of Example 1. Similar experiments were conducted in each case, but no nickel film was formed on the surface of the positive photoresist layer in any case.

したがって、上述のようなポジ型フォトレジスト層を有
する基体の表面に均一な無電解ニッケルめっきを行うた
めには、界面活性剤による処理が必須であることが明ら
かである。
Therefore, it is clear that treatment with a surfactant is essential in order to perform uniform electroless nickel plating on the surface of a substrate having a positive photoresist layer as described above.

なお、以上の各実施例および比較例においては、光デイ
スク製造用のスタンパ−の作成を前提とした説明を行っ
たが、本発明はこれに限定されるものではなく、ポジ型
フォトレジスト層上に無電解ニッケルめっきを施す方法
として広く適用され得るものである。
Although the above examples and comparative examples have been explained based on the premise of creating a stamper for manufacturing optical disks, the present invention is not limited to this, and the present invention is not limited to this. This method can be widely applied as a method for electroless nickel plating.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明の無電解ニッ
ケルめっき方法を適用すれば、予め所定のパターンに形
成されたポジ型フォトレジスト層を有する基体上に均一
な無電解ニッケルめっきを施すことができる。しかも、
本発明は安価な設備にて生産性良く、高い信頼性をもっ
て実施することが可能である。
As is clear from the above explanation, by applying the electroless nickel plating method of the present invention, uniform electroless nickel plating can be performed on a substrate having a positive photoresist layer formed in a predetermined pattern in advance. I can do it. Moreover,
The present invention can be implemented with high productivity and high reliability using inexpensive equipment.

本発明をたとえば光デイスク製造用のスタンバ−の作成
に適用すれば、信号ピット等の微細なパターンを忠実に
反映したパターンを有する信頼性の高いスタンパ−を、
経済的に作成することができる。
For example, if the present invention is applied to the creation of a stamper for manufacturing optical discs, a highly reliable stamper with a pattern that faithfully reflects minute patterns such as signal pits can be created.
Can be created economically.

Claims (1)

【特許請求の範囲】[Claims] 予め所定のパターンを有するポジ型フォトレジスト層が
形成されてなる基体の表面に、第4級アンモニウム系、
ベタイン系、アミンオキサイド系、アミンカルボン酸塩
系、およびポリオキシエチレンアルキルアミン系から選
ばれる少なくとも1種類の界面活性剤を吸着させた後、
錫−パラジウム系活性剤による活性化処理を経て前記基
体を無電解ニッケルめっき浴に浸漬することを特徴とす
る無電解ニッケルめっき方法。
A quaternary ammonium based,
After adsorbing at least one type of surfactant selected from betaine type, amine oxide type, amine carboxylate type, and polyoxyethylene alkylamine type,
An electroless nickel plating method comprising immersing the substrate in an electroless nickel plating bath after undergoing activation treatment with a tin-palladium activator.
JP31980489A 1989-12-08 1989-12-08 How to make an optical disc master Expired - Fee Related JP2881871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31980489A JP2881871B2 (en) 1989-12-08 1989-12-08 How to make an optical disc master

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31980489A JP2881871B2 (en) 1989-12-08 1989-12-08 How to make an optical disc master

Publications (2)

Publication Number Publication Date
JPH03180476A true JPH03180476A (en) 1991-08-06
JP2881871B2 JP2881871B2 (en) 1999-04-12

Family

ID=18114380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31980489A Expired - Fee Related JP2881871B2 (en) 1989-12-08 1989-12-08 How to make an optical disc master

Country Status (1)

Country Link
JP (1) JP2881871B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0729293A1 (en) * 1994-12-19 1996-08-28 Gary S. Calabrese Selective metallization process
JP2003514995A (en) * 1999-11-26 2003-04-22 インフィネオン テクノロジーズ アクチェンゲゼルシャフト Dielectric metallization method
WO2003058613A1 (en) * 2001-12-28 2003-07-17 Tdk Corporation Method for manufacturing stamper for information medium manufacture, stamper, and photoresist original disk
JP2005116989A (en) * 2003-10-10 2005-04-28 21 Aomori Sangyo Sogo Shien Center Wiring manufacturing method
US7204188B2 (en) 2002-01-08 2007-04-17 Tdk Corporation Method of manufacturing stamper for manufacturing information medium, stamper, and photoresist master
US7297472B2 (en) 2002-03-11 2007-11-20 Tdk Corporation Processing method for photoresist master, production method for recording medium-use mater, production method for recording medium, photoresist master, recording medium-use master and recording medium
WO2016039016A1 (en) * 2014-09-11 2016-03-17 石原ケミカル株式会社 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating, and electroless nickel or nickel alloy plating method
KR20190026857A (en) 2016-07-08 2019-03-13 이시하라 케미칼 가부시키가이샤 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
CN111479954A (en) * 2018-11-08 2020-07-31 西部数据技术公司 Enhanced nickel plating process

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0729293A1 (en) * 1994-12-19 1996-08-28 Gary S. Calabrese Selective metallization process
JP2003514995A (en) * 1999-11-26 2003-04-22 インフィネオン テクノロジーズ アクチェンゲゼルシャフト Dielectric metallization method
WO2003058613A1 (en) * 2001-12-28 2003-07-17 Tdk Corporation Method for manufacturing stamper for information medium manufacture, stamper, and photoresist original disk
US7204188B2 (en) 2002-01-08 2007-04-17 Tdk Corporation Method of manufacturing stamper for manufacturing information medium, stamper, and photoresist master
US7297472B2 (en) 2002-03-11 2007-11-20 Tdk Corporation Processing method for photoresist master, production method for recording medium-use mater, production method for recording medium, photoresist master, recording medium-use master and recording medium
JP4649557B2 (en) * 2003-10-10 2011-03-09 財団法人21あおもり産業総合支援センター Wiring manufacturing method
JP2005116989A (en) * 2003-10-10 2005-04-28 21 Aomori Sangyo Sogo Shien Center Wiring manufacturing method
WO2016039016A1 (en) * 2014-09-11 2016-03-17 石原ケミカル株式会社 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating, and electroless nickel or nickel alloy plating method
JP2016056421A (en) * 2014-09-11 2016-04-21 石原ケミカル株式会社 Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating, and plating method of electroless nickel or nickel alloy
TWI621736B (en) * 2014-09-11 2018-04-21 石原化學股份有限公司 Nickle colloidal catalyst solution for electroless nickle or nickle alloy plating and electroless nickle or nickle alloy plating method
KR20190026857A (en) 2016-07-08 2019-03-13 이시하라 케미칼 가부시키가이샤 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
KR20200128202A (en) 2016-07-08 2020-11-11 이시하라 케미칼 가부시키가이샤 Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating, and method for electroless nickel or nickel alloy plating
CN111479954A (en) * 2018-11-08 2020-07-31 西部数据技术公司 Enhanced nickel plating process
US11192822B2 (en) 2018-11-08 2021-12-07 Western Digital Technologies, Inc. Enhanced nickel plating process

Also Published As

Publication number Publication date
JP2881871B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
KR910002491B1 (en) Selective catalytic activation of polymeric films
US6902765B2 (en) Method for electroless metal plating
US3116159A (en) Process of fabricating magnetic data storage devices
JPH022949B2 (en)
JP6317090B2 (en) Method for electroless plating and solution used therefor
US3219471A (en) Process of depositing ferromagnetic compositions
JPS586781B2 (en) Kinzoku Haku Makakei Seihou
JPH04259381A (en) Surface reformed synthetic resin material and its production
JPH03180476A (en) Electroless nickel plating method
US3877981A (en) Method of electroless plating
TWI734804B (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or a nickel alloy plating method
EP0163089B1 (en) Process for activating a substrate for electroless deposition of a conductive metal
EP0070595B1 (en) Method of manufacturing an article of a synthetic resin which has a metal layer
JPH05214547A (en) Electroless plating method
JPH08283950A (en) Electroless plating method and production of stamper
JPS599161A (en) Surface treatment of metal
JPH0978250A (en) Forming method of conductive pattern
JP2572430B2 (en) Method of providing metal locally on the surface of a substrate
JP3121421B2 (en) Non-conductive material plating method
US3857733A (en) Method of electroless metal deposition
JPH09109276A (en) Manufacture of stamper for optical disc
JPS6083395A (en) Method of adjusting surface of dielectric substrate for electrolessly plating
JPH0499283A (en) Method for depositing catalytic metal
JPS6220152A (en) Stamper for molding optical disk and its manufacture
JP2020029584A (en) Additive for electroless plating silver catalyst imparting agent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees