JP3161407B2 - Activating catalyst solution for electroless plating and electroless plating method - Google Patents

Activating catalyst solution for electroless plating and electroless plating method

Info

Publication number
JP3161407B2
JP3161407B2 JP4195498A JP4195498A JP3161407B2 JP 3161407 B2 JP3161407 B2 JP 3161407B2 JP 4195498 A JP4195498 A JP 4195498A JP 4195498 A JP4195498 A JP 4195498A JP 3161407 B2 JP3161407 B2 JP 3161407B2
Authority
JP
Japan
Prior art keywords
electroless plating
substrate
palladium
catalyst
lactate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4195498A
Other languages
Japanese (ja)
Other versions
JPH10298770A (en
Inventor
修 加納
育史 吉田
美文 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4195498A priority Critical patent/JP3161407B2/en
Publication of JPH10298770A publication Critical patent/JPH10298770A/en
Application granted granted Critical
Publication of JP3161407B2 publication Critical patent/JP3161407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1868Radiation, e.g. UV, laser

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無電解めっきのた
めの活性化触媒液、およびそれを用いた無電解めっき方
法に関するものである。
The present invention relates to an activating catalyst solution for electroless plating and an electroless plating method using the same.

【0002】[0002]

【従来の技術】例えば、高周波コイル、誘電体フィル
タ、コンデンサ、ハイブリッドICなどのための導体膜
を、アルミナ基板、誘電体セラミック基板、ポリイミド
基板、ガラス基板、ガラス・エポキシ基板、フェライト
基板などの基板上に所定のパターンを持って形成する場
合、無電解めっきが用いられることがある。そして、無
電解めっきを行うためには基板表面を活性化する必要が
あり、この活性化のために活性化触媒液が用いられる。
2. Description of the Related Art For example, a conductor film for a high-frequency coil, a dielectric filter, a capacitor, a hybrid IC or the like is formed on a substrate such as an alumina substrate, a dielectric ceramic substrate, a polyimide substrate, a glass substrate, a glass epoxy substrate, a ferrite substrate, or the like. In the case where a predetermined pattern is formed thereon, electroless plating may be used. In order to perform electroless plating, it is necessary to activate the substrate surface, and an activation catalyst solution is used for the activation.

【0003】活性化触媒液は、基板上に付与され、それ
によって基板上に感光膜が形成される。このような活性
化触媒液は、基板上に付与された後、紫外線またはレー
ザ光等が照射されると、照射された領域においてのみ選
択的に活性化が図られ、したがって特定の領域において
のみ選択的にめっきすることが可能になる。このような
活性化触媒液によれば、フォトリソグラフィ技術を用い
て、微細なパターンの導体膜を効率的に基板上に形成で
きる。
[0003] The activating catalyst liquid is applied on a substrate, whereby a photosensitive film is formed on the substrate. When such an activation catalyst liquid is applied onto a substrate and then irradiated with ultraviolet light or laser light, the activation is selectively performed only in the irradiated area, and therefore, only in a specific area. It becomes possible to perform plating. According to such an activation catalyst solution, a conductor film having a fine pattern can be efficiently formed on a substrate by using a photolithography technique.

【0004】上述のことを可能にする活性化触媒液とし
て、以前より、パラジウムアセチルアセトナートをクロ
ロホルムなどの有機溶剤に溶解したものが用いられてき
た。しかし、この手法を用いた場合、現像工程等におい
て、基板の洗浄のために大量の有機溶剤を用いる必要が
生じていた。しかし、有機溶剤を大量に使用することは
安易には行えず、そのために、基板上に形成されている
感光膜のうちの不要な部分を十分に洗浄して除去するこ
とが困難であった。このように、感光膜の不要な部分が
残存すると、以後の無電解めっき工程において、パター
ン部分以外の部分にまでめっき膜が析出されることにな
るので、パターンの鮮明さに欠けるという問題が生じ
る。
[0004] As an activating catalyst solution that enables the above, a solution in which palladium acetylacetonate is dissolved in an organic solvent such as chloroform has been used. However, when this method is used, it has been necessary to use a large amount of an organic solvent for cleaning the substrate in a developing step or the like. However, it is not easy to use a large amount of an organic solvent, and therefore, it has been difficult to sufficiently wash and remove unnecessary portions of the photosensitive film formed on the substrate. As described above, when an unnecessary portion of the photosensitive film remains, a plating film is deposited even on a portion other than the pattern portion in a subsequent electroless plating process, so that there is a problem that the pattern lacks sharpness. .

【0005】そこで、以上の問題点を解消する活性化触
媒液として、特開平7−336018(以後、従来技術
と呼ぶ)に挙げるものが提案された。
Therefore, as an activating catalyst solution which solves the above problems, there has been proposed an activating catalyst solution described in Japanese Patent Application Laid-Open No. Hei 7-336018 (hereinafter referred to as the prior art).

【0006】本従来技術では、シュウ酸鉄などのシュウ
酸化合物と、塩化パラジウムなどのパラジウム塩と、ア
ルカリ溶液との混合液が活性化触媒液として用いられて
いる。該活性化触媒液は親水性であるため、それまで現
像工程で使用されていた有機溶剤を水で代用することが
可能となった。
In this prior art, a mixture of an oxalic acid compound such as iron oxalate, a palladium salt such as palladium chloride, and an alkaline solution is used as an activation catalyst solution. Since the activated catalyst solution is hydrophilic, the organic solvent used in the developing step can be replaced with water.

【0007】以下、従来技術の活性化触媒液を用いた無
電解めっき方法について説明する。
Hereinafter, a conventional electroless plating method using an activating catalyst solution will be described.

【0008】まず、スピンコート法等の手法によって前
記活性化触媒液が基板上に付与され、基板上に活性化触
媒液からなる感光膜が形成される。次に、該感光膜にレ
ーザ光等の光が照射(露光)され、これによってパラジ
ウム触媒が基板上に析出される。なお、露光に際して
は、フォトマスク等を用いて特定の領域のみに露光し、
選択的にパラジウム触媒の析出を行っても良い。この場
合、感光膜における未露光部分は、水または水を主成分
とする液体で洗浄し除去する。その後、パラジウム触媒
の析出した基板を無電解めっき浴に浸漬することによっ
て、パラジウム触媒を活性化触媒として、無電解めっき
膜が基板上に析出する。
First, the activation catalyst liquid is applied to a substrate by a method such as spin coating, and a photosensitive film made of the activation catalyst liquid is formed on the substrate. Next, the photosensitive film is irradiated (exposed) with light such as laser light, whereby a palladium catalyst is deposited on the substrate. In the exposure, only a specific area is exposed using a photomask or the like,
The palladium catalyst may be selectively deposited. In this case, the unexposed portions of the photosensitive film are removed by washing with water or a liquid containing water as a main component. Thereafter, the substrate on which the palladium catalyst has been deposited is immersed in an electroless plating bath, so that the electroless plating film is deposited on the substrate using the palladium catalyst as an activation catalyst.

【0009】以上のように、従来技術による活性化触媒
液を用いて無電解めっきを行う場合、活性化触媒液が親
水性なので、現像工程において有機溶剤を用いる必要が
なくなる。この結果、活性化触媒液の準備工程から基板
上への付与工程、および現像工程を経て無電解めっき工
程に至るまで、一貫して水系の処理操作とすることがで
きる。また、現像工程において水洗洗浄が可能となるの
で、多量の水を安全に使用でき、不要な感光膜をより効
率的に除去することができる。
As described above, when electroless plating is performed using an activated catalyst solution according to the prior art, since the activated catalyst solution is hydrophilic, it is not necessary to use an organic solvent in the developing step. As a result, an aqueous treatment operation can be performed consistently from the preparation step of the activated catalyst solution to the application step on the substrate and the development step to the electroless plating step. In addition, since washing and washing can be performed in the developing step, a large amount of water can be used safely, and unnecessary photosensitive films can be more efficiently removed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来例の活性化触媒液は、以下のような問題点を有してい
た。
However, the above-mentioned conventional activated catalyst liquid has the following problems.

【0011】まず、該活性化触媒液を作製するためにシ
ュウ酸塩とパラジウム塩とを調合するが、その際に生成
されるシュウ酸パラジウム化合物はアルカリ溶液に溶解
しにくい、と言う性質を有している。このため、アルカ
リ溶液におけるシュウ酸パラジウム化合物の溶解度を高
めることが困難である。特に、従来技術(特開平7−3
36018)に挙げられているシュウ酸鉄は、この点で
の問題が大きい。このことは、感光膜を露光させてパラ
ジウム触媒を基板に析出させるに際して、活性化触媒液
の光感度が低いために、露光部分と非露光部分とのコン
トラストがつきにくい、と言う問題を引き起こす。そし
て、コントラストを明確化するためには長時間の露光が
必要とされ、露光に要するコストの増加、およびめっき
膜の析出の効率の低下等の問題が生じる。
First, an oxalate and a palladium salt are prepared in order to prepare the activated catalyst solution. The palladium oxalate compound produced at that time has a property that it is difficult to dissolve in an alkaline solution. are doing. For this reason, it is difficult to increase the solubility of the palladium oxalate compound in the alkaline solution. In particular, the prior art (Japanese Unexamined Patent Publication No. 7-3
Iron oxalate listed in 36018) has a great problem in this respect. This causes a problem that, when exposing the photosensitive film to deposit the palladium catalyst on the substrate, the photosensitivity of the activating catalyst solution is low, so that the contrast between the exposed portion and the non-exposed portion is hardly obtained. In order to clarify the contrast, long-time exposure is required, which causes problems such as an increase in the cost required for the exposure and a decrease in the efficiency of deposition of the plating film.

【0012】また、露光が完了した段階で感光膜の不要
な部分(未露光部分)は水洗除去されるが、このとき、
感光膜中のシュウ酸鉄と洗浄用の水とが反応して加水分
解を起こし、この結果、パラジウム触媒を含む水酸化物
が生成される。この水酸化物は基板上に固着し、水洗除
去によっても除去されずに残存してしまう。このため、
非露光部分までが活性化され、その後の無電解めっき工
程において、パターン部分(露光部分)以外の部分にも
めっき膜が析出されることになる。このことは、めっき
形成されたパターン同士の相互絶縁性に対する信頼性を
低下させることになる。そして、パターン同士の相互絶
縁性を確保するためには、基板上に固着した水酸化物を
除去するためにpH14以上の水酸化ナトリウム水溶液
に浸漬して再洗浄を施したり、各パターン間の間隔を広
くする必要が生じる。しかし、再洗浄を施す場合、工程
数が増加し、また水酸化ナトリウム水溶液の取り扱いに
は注意を要する等の不都合が生じる。また、各パターン
間の間隔を広くすることは、パターン形成の微細化要求
を犠牲にすることになる。
Unnecessary portions (unexposed portions) of the photosensitive film are washed away with water when the exposure is completed.
Iron oxalate in the photosensitive film reacts with water for washing to cause hydrolysis, and as a result, a hydroxide containing a palladium catalyst is generated. This hydroxide adheres to the substrate, and remains without being removed by washing with water. For this reason,
The non-exposed portion is activated, and in the subsequent electroless plating step, a plating film is deposited also on portions other than the pattern portion (exposed portion). This lowers the reliability with respect to the mutual insulation between the plated patterns. Then, in order to ensure mutual insulation between the patterns, in order to remove the hydroxide adhered to the substrate, the pattern is immersed in an aqueous solution of sodium hydroxide having a pH of 14 or more to perform re-cleaning, or a space between the patterns is removed. Needs to be widened. However, when re-cleaning is performed, the number of steps is increased, and inconveniences such as the need to be careful in handling an aqueous sodium hydroxide solution arise. Increasing the spacing between patterns sacrifices the demand for finer pattern formation.

【0013】従って本発明の目的は、上述の技術的問題
点を解消するものであり、短時間の露光でパラジウム触
媒が析出し、かつ、洗浄工程においてより効率的に感光
膜を除去しうる無電解めっきのための活性化触媒液を提
供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned technical problems. A palladium catalyst is deposited by short-time exposure, and the photosensitive film can be more efficiently removed in the washing step. An object of the present invention is to provide an activating catalyst solution for electrolytic plating.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明にかかる無電解めっきのための活性化触媒液
では、乳酸塩とパラジウム塩とアルカリ溶液とを含む親
水性の活性化触媒液を用いた。より好ましくは、乳酸塩
として、乳酸銅あるいは乳酸亜鉛がそれぞれ単独で、あ
るいは乳酸銅と乳酸亜鉛とが併合して用いられ、パラジ
ウム塩としては塩化パラジウムが、アルカリ溶液として
はアンモニア水等が用いられる。
In order to achieve the above object, an activated catalyst solution for electroless plating according to the present invention comprises a hydrophilic activated catalyst containing a lactate, a palladium salt and an alkaline solution. The liquid was used. More preferably, as a lactate, copper lactate or zinc lactate is used alone, or copper lactate and zinc lactate are used in combination, palladium chloride is used as a palladium salt, and ammonia water or the like is used as an alkaline solution. .

【0015】ここで、乳酸塩とパラジウム塩とを混合し
て生成される乳酸パラジウム化合物は、アルカリ溶液に
溶解しやすい。このため、アルカリ溶液における乳酸パ
ラジウム化合物の溶解度を容易に高めることができる。
乳酸パラジウム化合物の溶解度の高い活性化触媒液を用
いることにより、パラジウム触媒を基板に析出するに際
して、短時間の露光によって露光部分と非露光部分との
コントラストを明確につけることができる。また、乳酸
化合物は水と加水分解を起こしにくいので、現像工程に
おける感光膜の水洗洗浄に際して、不要な化合物を生じ
させることなく効率的に感光膜を除去することが可能と
なる。
Here, the palladium lactate compound formed by mixing a lactate and a palladium salt is easily dissolved in an alkaline solution. For this reason, the solubility of the palladium lactate compound in the alkaline solution can be easily increased.
By using the activated catalyst liquid having a high solubility of the palladium lactate compound, when depositing the palladium catalyst on the substrate, the contrast between the exposed portion and the unexposed portion can be clearly provided by short-time exposure. Further, since the lactic acid compound hardly hydrolyzes with water, it is possible to efficiently remove the photosensitive film without generating unnecessary compounds when washing the photosensitive film with water in the developing step.

【0016】また、乳酸塩として乳酸銅と乳酸亜鉛とを
併合して用いることが好ましいことは上述したが、この
場合、乳酸銅の代わりにその他の銅塩を用いても良い
し、乳酸亜鉛の代わりにその他の亜鉛塩を用いても良
い。
Although it has been described above that copper lactate and zinc lactate are preferably used in combination as the lactate, in this case, other copper salts may be used in place of copper lactate, or zinc lactate may be used. Instead, other zinc salts may be used.

【0017】次に、本発明の活性化触媒液を用いた無電
解めっき方法について説明する。
Next, an electroless plating method using the activated catalyst solution of the present invention will be described.

【0018】まず、スピンコート法等の手法によって本
発明の活性化触媒液が基板上に付与され、基板上に活性
化触媒液からなる感光膜が形成される。次に、該感光膜
にレーザ光等の光が照射され、これによってパラジウム
触媒が基板上に析出される。その後、このパラジウム触
媒が析出した基板が無電解めっき浴に浸漬されることに
よって、パラジウム触媒を活性化触媒として、無電解め
っき膜が基板上に析出する。
First, the activation catalyst solution of the present invention is applied on a substrate by a method such as spin coating, and a photosensitive film made of the activation catalyst solution is formed on the substrate. Next, the photosensitive film is irradiated with light such as a laser beam, whereby a palladium catalyst is deposited on the substrate. Thereafter, the substrate on which the palladium catalyst has been deposited is immersed in an electroless plating bath, so that the electroless plating film is deposited on the substrate using the palladium catalyst as an activation catalyst.

【0019】上述した無電解めっき方法において、感光
膜に光を照射するにあたって、たとえば、フォトマスク
を介して紫外線等の光を照射したり、レーザ光等の光を
走査させたりして、感光膜の特定の領域のみに露光した
場合、感光膜における未露光部を水または水を主成分と
する液体で洗い流す現像工程を備えることが好ましい。
In the above-mentioned electroless plating method, when irradiating the photosensitive film with light, for example, the photosensitive film is irradiated with light such as ultraviolet rays through a photomask or scanned with light such as laser light. When only a specific area is exposed, it is preferable to provide a developing step of washing unexposed portions of the photosensitive film with water or a liquid containing water as a main component.

【0020】また、感光膜に光を照射しパラジウム触媒
を基板上に析出させたあと、該基板を無電解めっき浴に
浸漬する前に、該基板に熱処理を施しても良い。この熱
処理により、基板上に析出したパラジウム触媒が安定化
され、外部環境による影響を受けにくくすることができ
るとともに、無電解めっき浴に浸漬した際により容易に
めっき析出させることが可能となる。この熱処理は窒素
ガス雰囲気中で行うことが望ましく、100℃から30
0℃の範囲の温度内で、より好ましくは140℃から1
80℃の範囲の温度内で、数分から数時間行うことが望
ましい。
After irradiating the photosensitive film with light to deposit a palladium catalyst on the substrate, the substrate may be subjected to a heat treatment before the substrate is immersed in an electroless plating bath. This heat treatment stabilizes the palladium catalyst deposited on the substrate, makes it less susceptible to the external environment, and makes it easier to deposit the plating when immersed in an electroless plating bath. This heat treatment is desirably performed in a nitrogen gas atmosphere.
Within a temperature range of 0 ° C, more preferably from 140 ° C to 1
It is desirable that the heating is performed within a temperature range of 80 ° C. for several minutes to several hours.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を実験
例を基に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on experimental examples.

【0022】[実験例1]試料1〜5にかかる活性化触
媒液約10mlをそれぞれ準備するために、乳酸亜鉛
〔Zn(C3532・3H2O〕、乳酸銅〔Cu(C3
532〕、および塩化パラジウム〔PdCl2〕を以
下の表1に示すような組成比をもって2mlのアンモニ
ア水(28%)で溶解した後、8mlの水で希釈し、そ
の後、この混合液を0.45μmのミリポアフィルタで
濾過した。
[Experimental Example 1] To prepare about 10 ml of the activated catalyst solution according to each of Samples 1 to 5, zinc lactate [Zn (C 3 H 5 O 3 ) 2 .3H 2 O] and copper lactate [Cu (C 3
H 5 O 3) 2], and was dissolved in aqueous ammonia 2 ml (28%) of palladium chloride [PdCl 2] with a composition ratio as shown in Table 1 below, it was diluted with water 8 ml, then this The mixture was filtered with a 0.45 μm Millipore filter.

【0023】[0023]

【表1】 [Table 1]

【0024】次に、上記試料1〜5にかかる活性化触媒
液の各々を、1000rpmの回転速度で、30秒間、
アルミナ基板上にスピンコートして、感光膜を形成し
た。次いで、石英・クロムフォトマスクを介して、感光
膜上にエキシマランプ(波長:172nm)からの紫外
線を、10mmW/cm2の照度で、3秒間、5秒間、
10秒間、30秒間それぞれ照射した後、感光膜の水洗
除去を行い、以下の組成を含有する1リットルの無電解
めっき液(60℃)に10分間浸漬し、無電解めっきを
行った。
Next, each of the activated catalyst solutions according to Samples 1 to 5 was applied at a rotation speed of 1000 rpm for 30 seconds.
A photosensitive film was formed by spin coating on an alumina substrate. Then, ultraviolet light from an excimer lamp (wavelength: 172 nm) was applied to the photosensitive film through a quartz / chrome photomask at an illuminance of 10 mmW / cm 2 for 3 seconds and 5 seconds.
After irradiation for 10 seconds and 30 seconds, respectively, the photosensitive film was washed with water and removed, and immersed in 1 liter of an electroless plating solution (60 ° C.) containing the following composition for 10 minutes to perform electroless plating.

【0025】 NiSO4・6H2O ・・・ 30 g 次亜リン酸ソーダ ・・・ 10 g 酢酸ソーダ(無水) ・・・ 10 g このようにして得られた試料1〜5につき、ニッケル無
電解めっき膜の析出状態を観察した。その結果を以下の
表2に示す。
NiSO 4 .6H 2 O 30 g Sodium hypophosphite 10 g Sodium acetate (anhydrous) 10 g Samples 1 to 5 thus obtained were subjected to nickel electroless treatment. The deposition state of the plating film was observed. The results are shown in Table 2 below.

【0026】[0026]

【表2】 [Table 2]

【0027】上記表2に示すように、乳酸亜鉛、乳酸
銅、塩化パラジウムおよびアンモニア水を含む活性化触
媒液によれば、紫外線の照射時間を30秒にすると、試
料1〜5のすべてにおいて、ニッケル無電解めっき膜が
析出した。また、試料2および3においては、紫外線の
照射時間を3秒間というように極めて短くしてもめっき
膜の析出が可能であった。例えば、試料2の活性化触媒
液を用いて、10秒間の紫外線照射を行った場合、基板
上に厚み0.3μmで解像度(ライン/スペース)が2
5μmのニッケルパターンの形成が確認された。
As shown in Table 2, according to the activated catalyst solution containing zinc lactate, copper lactate, palladium chloride and aqueous ammonia, when the irradiation time of ultraviolet rays is 30 seconds, all of the samples 1 to 5 A nickel electroless plating film was deposited. Further, in Samples 2 and 3, deposition of the plating film was possible even when the irradiation time of ultraviolet rays was extremely short, such as 3 seconds. For example, when the activated catalyst solution of Sample 2 is irradiated with ultraviolet rays for 10 seconds, the resolution (line / space) of 0.3 μm on the substrate is 2 (line / space).
The formation of a 5 μm nickel pattern was confirmed.

【0028】なお、本実験例の試料2をベースとして、
混合する塩化パラジウムの量を0.01g〜0.05g
の範囲で変化させた試料を用いて、同様の実験を行っ
た。この結果、塩化パラジウムの混合量を変化させて
も、ニッケル無電解めっき膜が析出することが判明し
た。
Incidentally, based on the sample 2 of this experimental example,
The amount of palladium chloride to be mixed is 0.01 g to 0.05 g
The same experiment was performed using the sample changed in the range. As a result, it was found that the nickel electroless plating film was deposited even when the mixing amount of palladium chloride was changed.

【0029】[実験例2]実験例1では、乳酸亜鉛、乳
酸銅、塩化パラジウムの組成比を種々に変化させたが、
この実験例2では、乳酸銅の代わりに塩化銅〔CuCl
2・2H2O〕を用いた。乳酸亜鉛、塩化銅および塩化パ
ラジウムを、以下の表3に示したような組成比をもって
2mlのアンモニア水(28%)で溶解した後、8ml
の水で希釈し、その後、この混合液を0.45μmのミ
リポアフィルタで濾過した。
[Experimental Example 2] In Experimental Example 1, the composition ratio of zinc lactate, copper lactate, and palladium chloride was variously changed.
In this experimental example 2, instead of copper lactate, copper chloride [CuCl
2 · 2H 2 O] was used. Zinc lactate, copper chloride and palladium chloride were dissolved in 2 ml of aqueous ammonia (28%) at a composition ratio as shown in Table 3 below, and then dissolved in 8 ml.
The mixture was then filtered through a 0.45 μm Millipore filter.

【0030】[0030]

【表3】 [Table 3]

【0031】次に、上記試料6〜8にかかる活性化触媒
液の各々について、実験例1と同様の方法により、スピ
ンコートして感光膜を形成し、次いで、各感光膜上に同
様の紫外線を10秒間、20秒間、30秒間それぞれ照
射した後、感光膜の水洗除去を行い、同様の無電解めっ
き浴に10分間浸漬し、無電解めっきを行った。
Next, each of the activated catalyst solutions according to Samples 6 to 8 was spin-coated by the same method as in Experimental Example 1 to form a photosensitive film. Was irradiated for 10 seconds, 20 seconds, and 30 seconds, and then the photosensitive film was washed and removed, immersed in a similar electroless plating bath for 10 minutes, and subjected to electroless plating.

【0032】このようにして得られた試料6〜8につ
き、ニッケル無電解めっき膜の析出状態を観察した。そ
の結果を以下の表4に示す。
With respect to the samples 6 to 8 thus obtained, the deposition state of the nickel electroless plating film was observed. The results are shown in Table 4 below.

【0033】[0033]

【表4】 [Table 4]

【0034】上記表4に示すように、照射時間を30秒
間にすると、試料6〜8の全てにおいてめっき膜が析出
した。また、試料7においては20秒間での析出が確認
された。
As shown in Table 4 above, when the irradiation time was set to 30 seconds, plating films were deposited on all of Samples 6 to 8. In Sample 7, precipitation was observed for 20 seconds.

【0035】なお、銅塩として、塩化銅に代えて硫酸銅
を用いた場合でも、同様の結果が得られた。
Similar results were obtained when copper sulfate was used instead of copper chloride as the copper salt.

【0036】[実験例3]実験例1では、乳酸亜鉛、乳
酸銅、塩化パラジウムの組成比を種々に変化させたが、
この実験例3では、乳酸亜鉛の代わりに塩化亜鉛〔Zn
Cl2〕を用いた。塩化亜鉛、乳酸銅および塩化パラジ
ウムを、以下の表5に示すような組成比をもって2ml
のアンモニア水(28%)で溶解した後、8mlの水で
希釈し、その後、この混合液を0.45μmのミリポア
フィルタで濾過した。
Experimental Example 3 In Experimental Example 1, the composition ratio of zinc lactate, copper lactate, and palladium chloride was changed variously.
In this experimental example 3, instead of zinc lactate, zinc chloride [Zn
Cl 2 ] was used. Zinc chloride, copper lactate and palladium chloride were mixed at a composition ratio of 2 ml as shown in Table 5 below.
Was dissolved in aqueous ammonia (28%), diluted with 8 ml of water, and then the mixture was filtered through a 0.45 μm Millipore filter.

【0037】[0037]

【表5】 [Table 5]

【0038】次に、上記試料9〜11にかかる活性化触
媒液の各々について、実験例1と同様の方法により、ス
ピンコートして感光膜を形成し、次いで、各感光膜上に
同様の紫外線を10秒間、20秒間、30秒間それぞれ
照射した後、感光膜の水洗除去を行い、同様の無電解め
っき浴に10分間浸漬して無電解めっきを行った。
Next, each of the activated catalyst solutions according to Samples 9 to 11 was spin-coated by the same method as in Experimental Example 1 to form a photosensitive film, and then the same ultraviolet light was formed on each photosensitive film. For 10 seconds, 20 seconds, and 30 seconds, the photosensitive film was washed and removed, and immersed in a similar electroless plating bath for 10 minutes to perform electroless plating.

【0039】このようにして得られた試料9〜11につ
き、ニッケル無電解めっき膜の析出状態を観察した。そ
の結果を以下の表6に示す。
With respect to the samples 9 to 11 thus obtained, the deposition state of the nickel electroless plating film was observed. The results are shown in Table 6 below.

【0040】[0040]

【表6】 [Table 6]

【0041】上記表6に示すように、照射時間を20秒
間としたときには試料11において、照射時間を30秒
間としたときには試料10、11において、それぞれめ
っき膜の析出が確認できた。なお、試料9においては、
紫外線の照射時間を比較的長時間(具体的には3分間)
とした場合には、無電解めっき浴に浸漬してから2〜3
分してから、めっき膜の析出が確認された。
As shown in Table 6, deposition of a plating film was confirmed in Sample 11 when the irradiation time was set to 20 seconds, and in Samples 10 and 11 when the irradiation time was set to 30 seconds. In sample 9,
UV irradiation time is relatively long (specifically 3 minutes)
Immersed in the electroless plating bath, then 2-3
After the separation, deposition of the plating film was confirmed.

【0042】この実験例より、乳酸亜鉛を用いない場合
であっても、銅塩として乳酸銅を用いれば、紫外線の照
射時間を調整することによってニッケル無電解めっき膜
の析出が可能なことが分かる。
This experimental example shows that even when zinc lactate is not used, a nickel electroless plating film can be deposited by adjusting the irradiation time of ultraviolet rays when copper lactate is used as a copper salt. .

【0043】なお、亜鉛塩として、塩化亜鉛に代えて硫
酸亜鉛を用いた場合でも、同様の結果が得られた。
Similar results were obtained when zinc sulfate was used instead of zinc chloride as the zinc salt.

【0044】[実験例4]この実験例4は、本発明の権
利範囲外の実験である。
[Experiment 4] Experiment 4 is an experiment outside the scope of the present invention.

【0045】実験例1では、乳酸亜鉛、乳酸銅、塩化パ
ラジウムの組成比を種々に変化させたが、この実験例3
では、乳酸亜鉛の代わりに塩化亜鉛〔ZnCl2〕を、
乳酸銅の代わりに塩化銅〔CuCl2・2H2O〕を、そ
れぞれ用いた。塩化亜鉛、塩化銅および塩化パラジウム
を、以下の表7に示すような組成比をもって2mlのア
ンモニア水(28%)で溶解した後、8mlの水で希釈
し、その後、この混合液を0.45μmのミリポアフィ
ルタで濾過した。
In Experimental Example 1, the composition ratio of zinc lactate, copper lactate, and palladium chloride was variously changed.
Then, instead of zinc lactate, zinc chloride [ZnCl 2 ]
Copper chloride [CuCl 2 .2H 2 O] was used instead of copper lactate. Zinc chloride, copper chloride and palladium chloride were dissolved in 2 ml of aqueous ammonia (28%) at a composition ratio as shown in Table 7 below, then diluted with 8 ml of water. Was filtered with a Millipore filter.

【0046】[0046]

【表7】 [Table 7]

【0047】次に、上記試料12〜14にかかる活性化
触媒液の各々について、実験例1と同様の方法により、
スピンコートして感光膜を形成し、次いで、各感光膜上
に同様の紫外線を10秒間、20秒間、30秒間それぞ
れ照射した後、感光膜の水洗除去を行い、同様の無電解
めっき浴に10分間浸漬して無電解めっきを行った。
Next, for each of the activated catalyst solutions according to Samples 12 to 14, the same method as in Experimental Example 1 was used.
After spin-coating to form a photosensitive film, and then irradiating each photosensitive film with the same ultraviolet ray for 10 seconds, 20 seconds, and 30 seconds, the photosensitive film was washed and removed. Electroless plating was performed by immersion for minutes.

【0048】このようにして得られた試料12〜14に
つき、ニッケル無電解めっき膜の析出状態を観察した。
その結果、いずれの試料においても、照射時間に拘わら
ず、めっき膜は析出しなかった。
With respect to the samples 12 to 14 thus obtained, the deposition state of the nickel electroless plating film was observed.
As a result, no plating film was deposited on any of the samples regardless of the irradiation time.

【0049】[実験例5]実験例1では、乳酸亜鉛、乳
酸銅、塩化パラジウムの組成比を種々に変化させたが、
この実験例5では、活性化触媒液に乳酸銅を加えず、乳
酸塩としては乳酸亜鉛のみを用いた。乳酸亜鉛、および
塩化パラジウムを、以下の表8に示すような組成比をも
って2mlのアンモニア水(28%)で溶解した後、8
mlの水で希釈し、その後、この混合液を0.45μm
のミリポアフィルタで濾過した。
Experimental Example 5 In Experimental Example 1, the composition ratio of zinc lactate, copper lactate, and palladium chloride was changed variously.
In Experimental Example 5, copper lactate was not added to the activated catalyst solution, and only zinc lactate was used as the lactate. Zinc lactate and palladium chloride were dissolved in 2 ml of aqueous ammonia (28%) at a composition ratio as shown in Table 8 below.
and then dilute the mixture with 0.45 μm
Was filtered with a Millipore filter.

【0050】[0050]

【表8】 [Table 8]

【0051】次に、上記試料15〜19にかかる活性化
触媒液の各々について、実験例1と同様の方法により、
スピンコートして感光膜を形成し、次いで、各感光膜上
に同様の紫外線を3秒間、5秒間、10秒間それぞれ照
射した後、感光膜の水洗除去を行い、無電解めっき浴に
10分間浸漬して無電解めっきを行った。ただし、本実
験例5においては、無電解めっき浴として、ニッケルめ
っきに代えて以下の組成を含有する1リットルのホルマ
リン系の無電解銅めっき液(36℃)に10分間浸漬
し、無電解めっきを行った。
Next, for each of the activated catalyst solutions according to Samples 15 to 19, a method similar to that of Experimental Example 1 was used.
After spin-coating to form a photosensitive film, and then irradiating each photosensitive film with the same ultraviolet rays for 3 seconds, 5 seconds, and 10 seconds, the photosensitive film is washed off and immersed in an electroless plating bath for 10 minutes. Then, electroless plating was performed. However, in this Experimental Example 5, instead of nickel plating, the electroless plating bath was immersed in 1 liter of formalin-based electroless copper plating solution (36 ° C.) containing the following composition for 10 minutes, and electroless plating was performed. Was done.

【0052】 CuSO4・5H2O ・・・ 70 g EDTA・4H2O ・・・ 100 g NaOH ・・・ 60 g このようにして得られた試料15〜19につき、銅の無
電解めっき膜の析出状態を観察した。その結果を以下の
表9に示す。
CuSO 4 .5H 2 O... 70 g EDTA .4H 2 O... 100 g NaOH... 60 g For each of the samples 15 to 19 thus obtained, the copper electroless plating film The precipitation state was observed. The results are shown in Table 9 below.

【0053】[0053]

【表9】 [Table 9]

【0054】上記表9に示すように、照射時間を10秒
間とすると、試料15〜19のすべてにおいて、銅無電
解めっき膜が析出した。また、試料18および19にお
いては、紫外線の照射時間を3秒間というように極めて
短くしてもめっき膜の析出が可能であった。この実験例
より、乳酸塩として乳酸亜鉛のみを用いた場合、銅めっ
き浴での無電解めっきによって、良好に無電解めっき膜
が析出することが確認できた。そして例えば、試料19
の活性化触媒液を用いて、5秒間の紫外線照射を行った
場合、基板上に厚み0.3μmで解像度(ライン/スペ
ース)が25μmのCuパターンの析出が確認された。
As shown in Table 9, when the irradiation time was 10 seconds, the copper electroless plating films were deposited on all of the samples 15 to 19. In samples 18 and 19, deposition of the plating film was possible even when the irradiation time of the ultraviolet rays was extremely short, such as 3 seconds. From this experimental example, it was confirmed that when only zinc lactate was used as the lactate, the electroless plating film was successfully deposited by the electroless plating in the copper plating bath. And for example, sample 19
When UV irradiation was performed for 5 seconds using the activated catalyst solution of No. 1, a Cu pattern having a thickness of 0.3 μm and a resolution (line / space) of 25 μm was confirmed to be deposited on the substrate.

【0055】[実験例6]実験例1では、乳酸亜鉛、乳
酸銅、塩化パラジウムの組成比を種々に変化させたが、
この実験例5では、活性化触媒液に乳酸亜鉛を加えず、
乳酸塩としては乳酸銅のみを用いた。乳酸銅、および塩
化パラジウムを、以下の表10に示すような組成比をも
って2mlのアンモニア水(28%)で溶解した後、8
mlの水で希釈し、その後、この混合液を0.45μm
のミリポアフィルタで濾過した。
Experimental Example 6 In Experimental Example 1, the composition ratio of zinc lactate, copper lactate, and palladium chloride was changed variously.
In this Experimental Example 5, zinc lactate was not added to the activated catalyst solution,
As lactate, only copper lactate was used. Copper lactate and palladium chloride were dissolved in 2 ml of aqueous ammonia (28%) at a composition ratio as shown in Table 10 below.
and then dilute the mixture with 0.45 μm
Was filtered with a Millipore filter.

【0056】[0056]

【表10】 [Table 10]

【0057】次に、上記試料20〜24にかかる活性化
触媒液の各々について、実験例1と同様の方法により、
スピンコートして感光膜を形成し、次いで、各感光膜上
に同様の紫外線を30秒間、60秒間、180秒間それ
ぞれ照射した後、感光膜の水洗除去を行い、ニッケル無
電解めっき浴に10分間浸漬して無電解めっきを行っ
た。なお、本実験例6で用いる無電解めっき浴は、実験
例1で用いたものと同様の組成である。
Next, for each of the activated catalyst solutions according to Samples 20 to 24, a method similar to that of Experimental Example 1 was used.
After spin-coating to form a photosensitive film, and then irradiating each photosensitive film with the same ultraviolet rays for 30 seconds, 60 seconds, and 180 seconds, the photosensitive film is washed and removed, and placed in a nickel electroless plating bath for 10 minutes. It was immersed for electroless plating. The electroless plating bath used in Experimental Example 6 had the same composition as that used in Experimental Example 1.

【0058】このようにして得られた試料20〜24に
つき、ニッケル無電解めっき膜の析出状態を観察した。
その結果を以下の表11に示す。
With respect to the samples 20 to 24 thus obtained, the deposition state of the nickel electroless plating film was observed.
The results are shown in Table 11 below.

【0059】[0059]

【表11】 [Table 11]

【0060】上記表11に示すように、照射時間を60
秒間としたときには試料24において、照射時間を18
0秒間としたときには全ての試料において、それぞれめ
っき膜の析出が確認できた。
As shown in Table 11 above, the irradiation time was 60
Seconds, the irradiation time for the sample 24 is 18
When the time was set to 0 seconds, the deposition of the plating film was confirmed in all the samples.

【0061】この実験例より、乳酸塩として乳酸銅のみ
を用いた場合であっても、紫外線の照射時間を調整する
ことによってニッケル無電解めっき膜の析出が可能なこ
とが分かる。
From this experimental example, it can be seen that even when only copper lactate is used as the lactate, the nickel electroless plating film can be deposited by adjusting the irradiation time of the ultraviolet light.

【0062】[実験例7]本実験例7は、上記の実験例
1〜6とは異なり、乳酸パラジウム塩とシュウ酸パラジ
ウム塩との、アルカリ溶液への溶解度の差を調べた実験
である。より具体的には、乳酸〔C363〕、シュウ
酸〔C224〕のそれぞれと、2mlのアンモニア水
(28%)、0.1gの塩化パラジウム、および水を、
以下の表12、表13に示すような組成比をもって溶解
させて、乳酸パラジウム塩、シュウ酸パラジウム塩それ
ぞれのアルカリ溶液への溶解度の調べた。
[Experiment 7] Unlike Experiments 1 to 6, Experiment 7 is an experiment in which the difference in solubility between palladium lactate and palladium oxalate in an alkaline solution was examined. More specifically, each of lactic acid [C 3 H 6 O 3 ] and oxalic acid [C 2 H 2 O 4 ], 2 ml of ammonia water (28%), 0.1 g of palladium chloride, and water were
The palladium lactate and the palladium oxalate were dissolved in an alkaline solution by dissolving them in the composition ratios shown in Tables 12 and 13 below.

【0063】[0063]

【表12】 [Table 12]

【0064】[0064]

【表13】 [Table 13]

【0065】上記表12、表13に示す結果から、それ
ぞれ0.1gの乳酸と塩化パラジウムは、アンモニア水
(28%)が2mlあればに完全に溶解することが分か
った。一方、それぞれ0.1gのシュウ酸と塩化パラジ
ウムを完全に溶解するには、少なくとも2mlのアンモ
ニア水(28%)と6mlの水が必要となることが分か
った。以上の結果から、同一分量のアルカリ溶液に対す
るパラジウム塩の溶解度は、シュウ酸塩に比べて乳酸塩
の方が大きいことが判明した。
From the results shown in Tables 12 and 13, it was found that 0.1 g of lactic acid and 0.1 g of palladium chloride were completely dissolved in 2 ml of aqueous ammonia (28%). On the other hand, it was found that at least 2 ml of aqueous ammonia (28%) and 6 ml of water were required to completely dissolve 0.1 g of oxalic acid and palladium chloride, respectively. From the above results, it was found that the solubility of the palladium salt in the same amount of the alkaline solution was larger in the lactate salt than in the oxalate salt.

【0066】[他の実験例]上述した活性化触媒の組成
は、一例に過ぎない。例えば、乳酸亜鉛の含有量は、活
性化触媒液10mlにおいて、0.01〜0.50gの
範囲で変更することができ、乳酸銅の含有量は、0.0
03〜0.50gの範囲で変更することができる。ま
た、塩化パラジウムの含有量は、0.01〜0.30g
の範囲で変更することができ、アンモニア水(28%)
の含有量は、0.5〜5mlの範囲で変更することがで
きる。加えて、塩化パラジウムに代えて、他の親水性の
パラジウム塩、例えばパラジウムの硫酸塩、硝酸塩、酢
酸塩などを用いることもできる。
[Other Experimental Examples] The composition of the activating catalyst described above is only an example. For example, the content of zinc lactate can be changed in the range of 0.01 to 0.50 g in 10 ml of the activated catalyst solution, and the content of copper lactate is 0.0
It can be changed in the range of 03 to 0.50 g. Further, the content of palladium chloride is 0.01 to 0.30 g
Ammonia water (28%)
Can be changed in the range of 0.5 to 5 ml. In addition, other hydrophilic palladium salts such as palladium sulfate, nitrate, acetate and the like can be used in place of palladium chloride.

【0067】また、活性化触媒液をより均一に基板上に
付与するために、たとえば、ポリビニルアルコールのよ
うな親水性のバインダや界面活性剤等を活性化触媒液に
添加しても良い。
In order to more uniformly apply the activated catalyst liquid on the substrate, for example, a hydrophilic binder such as polyvinyl alcohol, a surfactant, or the like may be added to the activated catalyst liquid.

【0068】さらに、感光膜に照射される光の波長とし
ては、100〜400nmの範囲で変更することができ
る。さらに、上記実施例では、ニッケルおよび銅の無電
解めっきを行ったが、銀・パラジウム・金・白金など、
他の金属の無電解めっきを行う場合にもこの発明を適用
することができる。無電解めっきを施される基板として
は、上述のアルミナ基板に限らず、誘電体または磁性体
のセラミック基板、ポリイミド基板、ガラス基板、ガラ
ス・エポキシ基板等のプラスチック基板、半導体基板な
ど、他の基板であっても構わない。
Further, the wavelength of the light applied to the photosensitive film can be changed in the range of 100 to 400 nm. Furthermore, in the above embodiment, electroless plating of nickel and copper was performed, but silver, palladium, gold, platinum, etc.
The present invention can be applied to the case of performing electroless plating of other metals. The substrate on which the electroless plating is performed is not limited to the above-described alumina substrate, and other substrates such as a dielectric or magnetic ceramic substrate, a polyimide substrate, a glass substrate, a plastic substrate such as a glass / epoxy substrate, and a semiconductor substrate. It does not matter.

【0069】この発明にかかる無電解めっき方法は、上
述した水洗による現像工程を省略して実施することもで
きる。たとえば、感光膜の特定領域のみの選択的露光を
行わず、全領域の露光を行った場合はもちろん、特定領
域のみの選択的露光を行った場合でも、析出すべきめっ
き膜の分解能をそれほど高くする必要がないときは、現
像工程を省略しても良い。また、現像工程が実施される
場合、水に代えて、水を主成分とする液体を用いて洗浄
することもできる。さらに、他の液体を用いることを妨
げるものではない。
The electroless plating method according to the present invention can be carried out by omitting the developing step by washing with water described above. For example, the selective exposure of only the specific region of the photosensitive film is not performed, and not only when the entire region is exposed, but also when the selective exposure of only the specific region is performed, the resolution of the plating film to be deposited is so high. If it is not necessary, the developing step may be omitted. In the case where the developing step is performed, washing can be performed using a liquid containing water as a main component instead of water. Furthermore, it does not prevent the use of other liquids.

【0070】また、本発明の無電解めっき方法におい
て、感光膜に光を照射しパラジウム触媒を基板上に析出
させたあと、該基板を無電解めっき浴に浸漬する前に、
該基板に熱処理を施しても良い。熱処理を施すことによ
り、基板上に析出したパラジウム触媒が安定化され、外
部環境による影響を受けにくくすることができるととも
に、後の工程で基板が無電解めっき浴に浸漬された際に
より容易にめっき析出させることが可能となる。この熱
処理は、窒素ガス雰囲気中で行うことが望ましい。熱処
理の温度としては、100℃から300℃の範囲の温度
内で行う。より好ましくは140℃から180℃の範囲
の温度内で、数分から数時間熱処理することが望まし
い。熱処理に際しては、処理温度を高めるほどパラジウ
ム触媒の安定化が図られ、めっき析出しやすくなる。た
だし、高温で処理するほど析出するめっきの解像度は劣
化してしまうため、微細なパターニングの要求される用
途にあっては、140℃から180℃程度の温度で熱処
理することが望ましい。
Further, in the electroless plating method of the present invention, after irradiating the photosensitive film with light to deposit a palladium catalyst on the substrate, and before immersing the substrate in the electroless plating bath,
The substrate may be subjected to a heat treatment. The heat treatment stabilizes the palladium catalyst deposited on the substrate, making it less susceptible to the effects of the external environment, and makes plating easier when the substrate is immersed in an electroless plating bath in a later step. It becomes possible to deposit. This heat treatment is desirably performed in a nitrogen gas atmosphere. The heat treatment is performed at a temperature in the range of 100 ° C. to 300 ° C. More preferably, heat treatment is performed at a temperature in the range of 140 ° C. to 180 ° C. for several minutes to several hours. In the heat treatment, the higher the treatment temperature, the more stable the palladium catalyst is, and the easier it is to deposit the plating. However, the higher the temperature, the lower the resolution of the deposited plating. Therefore, in applications requiring fine patterning, it is desirable to perform the heat treatment at a temperature of about 140 ° C. to 180 ° C.

【0071】ところで、このように熱処理によってパラ
ジウム触媒を安定化させる手法を用いることにより、従
来では困難であった、無電解めっきによって透明な基板
の両主面に一度にパターニングすることが可能となる。
すなわち、熱処理を施さない工法においては、一方主面
にパラジウム触媒を析出させた後に他方主面側から再度
光を照射すると一方主面側のパラジウム触媒が不活性化
されてしまい所望のめっきパターンを得ることができな
かった。
By using the technique of stabilizing the palladium catalyst by the heat treatment, it is possible to pattern the two main surfaces of the transparent substrate at once by electroless plating, which has been difficult in the past. .
In other words, in the method in which the heat treatment is not performed, when the palladium catalyst is deposited on one main surface and then irradiated with light again from the other main surface, the palladium catalyst on the one main surface is inactivated and a desired plating pattern is formed. I couldn't get it.

【0072】以下、そのパターニング方法を説明する。
まず、基板の一方主面に前述の実施例と同様に、活性化
触媒液を塗布、露光しパラジウム触媒を基板に析出させ
る。ここで不要な感光膜を水洗除去した後に、基板に前
述の所定の熱処理を施す。これにより一方主面側の基板
上に析出したパラジウム触媒を安定化させる。次いで、
基板の他方主面側にも同じく活性化触媒液を塗布し、光
を照射してパラジウム触媒を基板に析出させる。その
後、不要な感光膜を水洗除去し、再度前述の熱処理を施
した後、両主面にパラジウム触媒の析出した基板を無電
解めっき浴に浸漬する。これにより、透明な基板の両主
面に、無電解めっきによって一度にパターニングを施す
ことができる。
Hereinafter, the patterning method will be described.
First, an activation catalyst solution is applied to one main surface of a substrate and exposed to light to deposit a palladium catalyst on the substrate, as in the above-described embodiment. Here, after the unnecessary photosensitive film is removed by washing with water, the substrate is subjected to the above-mentioned predetermined heat treatment. This stabilizes the palladium catalyst deposited on the substrate on the one main surface side. Then
The activation catalyst liquid is applied to the other main surface of the substrate in the same manner, and irradiated with light to deposit a palladium catalyst on the substrate. Thereafter, the unnecessary photosensitive film is removed by washing with water, and the above-mentioned heat treatment is performed again. Then, the substrate having the palladium catalyst deposited on both main surfaces is immersed in an electroless plating bath. Thereby, both principal surfaces of the transparent substrate can be patterned at once by electroless plating.

【0073】[0073]

【発明の効果】以上の説明からも明らかなように、本発
明の活性化触媒液を用いることによって以下のような優
れた効果を得られる。
As is clear from the above description, the following excellent effects can be obtained by using the activated catalyst liquid of the present invention.

【0074】まず、本発明の活性化触媒液は親水性なの
で、前述したような親水性であることによるメリットを
享受することができる。すなわち、水を用いて現像工程
を行えるようになるため、大量の水を用いた効率的な洗
浄を安全かつ安価に行えるようになる。これにより、不
要な感光膜の除去をより完全に行うことができるので、
めっき膜のパターンの分解能を高めることが可能とな
る。
First, since the activated catalyst liquid of the present invention is hydrophilic, the advantages of the above-mentioned hydrophilicity can be enjoyed. That is, since the developing process can be performed using water, efficient cleaning using a large amount of water can be performed safely and inexpensively. This makes it possible to more completely remove unnecessary photosensitive films,
It is possible to increase the resolution of the pattern of the plating film.

【0075】また、本発明の活性化触媒液の組成として
用いられている乳酸塩は、アルカリ溶液に非常に溶解し
やすいので、高濃度の活性化触媒液を容易に得ることが
できる。そしてこれにより、活性化触媒であるパラジウ
ム触媒の基板への析出速度を速めることができる。これ
により、より短い露光時間でパラジウム触媒を基板上に
析出することが可能となる。例えば、波長172nmの
エキシマランプを用いて、10mmW/cm2の照度で
照射したとき、最適実施例では3秒という極めて短い露
光時間でのパラジウム触媒が析出しており、無電解めっ
き工程でのめっき膜の析出が確認されている。このパラ
ジウム触媒の析出時間の短縮化により、露光に要するコ
ストを抑制し、かつめっき膜の析出の効率を上げること
が可能となる。
The lactate used as the composition of the activated catalyst solution of the present invention is very easily dissolved in an alkaline solution, so that a high-concentration activated catalyst solution can be easily obtained. Thus, the deposition rate of the palladium catalyst as the activation catalyst on the substrate can be increased. This makes it possible to deposit the palladium catalyst on the substrate in a shorter exposure time. For example, when irradiation is performed at an illuminance of 10 mmW / cm 2 using an excimer lamp having a wavelength of 172 nm, the palladium catalyst is deposited in an extremely short exposure time of 3 seconds in the optimal embodiment, and plating in the electroless plating process Deposition of the film has been confirmed. By shortening the deposition time of the palladium catalyst, the cost required for exposure can be suppressed, and the efficiency of depositing the plating film can be increased.

【0076】次に、本発明の活性化触媒液は、水と加水
分解を起こしにくいので、現像工程において、水酸化物
等の不要な化合物を生じさせることなく、より効率的に
感光膜の未露光部分を除去することができる。これによ
って、以後の無電解めっき工程において、パターン部分
以外の部分にめっき膜が析出しにくくなり、形成される
パターンの鮮明さを向上させることができる。
Next, since the activated catalyst solution of the present invention hardly hydrolyzes with water, it does not generate unnecessary compounds such as hydroxides in the developing step, so that the photosensitive film can be efficiently removed. The exposed part can be removed. As a result, in the subsequent electroless plating step, the plating film is less likely to be deposited on portions other than the pattern portion, and the sharpness of the formed pattern can be improved.

【0077】さらに、本発明の活性化触媒液を用いて実
施された無電解めっきによるめっき膜は、水酸化鉄等の
不要な介在物がないため、基板に対して高い密着強度を
有している。このため、基板に対して予めエッチングを
施さなくても十分な密着強度を与えることができる。ま
た、エッチングを施すことが困難な基板に対しても、十
分な密着強度を持ってめっき膜を析出することができ
る。
Furthermore, the plating film formed by the electroless plating performed using the activating catalyst solution of the present invention has a high adhesion strength to the substrate because there is no unnecessary inclusion such as iron hydroxide. I have. For this reason, sufficient adhesion strength can be provided even without etching the substrate in advance. In addition, a plating film can be deposited with sufficient adhesion strength even on a substrate on which etching is difficult.

【0078】加えて、不要な介在物がないことにより、
析出されるめっき膜の電気伝導度を向上させることがで
きる、という効果をも得られる。従って、高い電気伝導
度をより強く求められる高周波回路のパターン形成に対
しても、このめっき膜を問題なく適用することができ
る。
In addition, since there are no unnecessary inclusions,
The effect that the electrical conductivity of the deposited plating film can be improved can also be obtained. Therefore, this plating film can be applied without problem to pattern formation of a high-frequency circuit that requires a higher electric conductivity.

【0079】また、活性化触媒液を露光してパラジウム
触媒を基板上に析出させた後、基板に熱処理を加えるこ
とによって、パラジウム触媒を安定化させることができ
る。これにより、析出させたパラジウム触媒への外部環
境による影響を受けにくくすることができる。その結
果、例えば透明な基板の表裏両主面に、無電解めっきに
よって一度にパターニングを施すことも実現できる。さ
らに、熱処理によって無電解めっき浴に浸漬した際によ
り容易にめっき析出させることが可能となるので、同程
度のめっき析出を実現するために必要な露光時間を短縮
することも可能になる。
After exposing the activated catalyst liquid to deposit the palladium catalyst on the substrate, the substrate is subjected to a heat treatment, whereby the palladium catalyst can be stabilized. Thereby, it is possible to make the deposited palladium catalyst less affected by the external environment. As a result, for example, it is possible to realize patterning at once by electroless plating on both front and back main surfaces of a transparent substrate. Further, since the heat treatment makes it easier to deposit the plating when immersed in the electroless plating bath, the exposure time required to achieve the same level of plating deposition can be shortened.

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 乳酸塩とパラジウム塩とアルカリ溶液と
を含む、親水性の無電解めっきのための活性化触媒液。
1. An activated catalyst solution for hydrophilic electroless plating, comprising a lactate, a palladium salt and an alkaline solution.
【請求項2】 請求項1記載の乳酸塩に、乳酸銅、乳酸
亜鉛の少なくとも一種を用いたことを特徴とする親水性
の無電解めっきのための活性化触媒液。
2. An activated catalyst solution for hydrophilic electroless plating, wherein at least one of copper lactate and zinc lactate is used as the lactate according to claim 1.
【請求項3】 請求項2記載の親水性の無電解めっきの
ための活性化触媒液であって、亜鉛塩または銅塩の少な
くとも一種を混合することを特徴とする親水性の無電解
めっきのための活性化触媒液。
3. The activation catalyst liquid for hydrophilic electroless plating according to claim 2, wherein at least one of a zinc salt and a copper salt is mixed. Activated catalyst solution for
【請求項4】 前記パラジウム塩に、塩化パラジウムを
用いたことを特徴とする請求項1から請求項3記載のい
ずれかに記載の無電解めっきのための活性化触媒液。
4. The activation catalyst solution for electroless plating according to claim 1, wherein palladium chloride is used as the palladium salt.
【請求項5】 前記アルカリ溶液に、アンモニア水を用
いたことを特徴とする請求項1から請求項4記載のいず
れかに記載の無電解めっきのための活性化触媒液。
5. The activating catalyst solution for electroless plating according to claim 1, wherein ammonia water is used for the alkaline solution.
【請求項6】 請求項1から請求項5のいずれかに記載
した活性化触媒液を基板上に付与して、基板上に活性化
触媒液からなる感光膜を形成する工程と、 前記感光膜に光を照射して、パラジウム触媒を前記基板
上に析出させる工程と、 前記パラジウム触媒が析出した前記基板を無電解めっき
浴に浸漬し、前記パラジウム触媒を活性化触媒として無
電解めっきを施す工程と、を有することを特徴とする無
電解めっき方法。
6. A step of applying the activation catalyst liquid according to claim 1 on a substrate to form a photosensitive film made of the activation catalyst liquid on the substrate; Irradiating the substrate with light to deposit a palladium catalyst on the substrate; and immersing the substrate on which the palladium catalyst has been deposited in an electroless plating bath, and performing electroless plating using the palladium catalyst as an activation catalyst. And an electroless plating method comprising:
【請求項7】 前記感光膜に光を照射する工程におい
て、前記光は前記感光膜の特定の領域にのみ照射され、
さらに、前記感光膜における前記光が照射されなかった
領域を、水または水を主成分とする液体で洗い流す工程
を備えたことを特徴とする請求項6記載の無電解めっき
方法。
7. In the step of irradiating the photosensitive film with light, the light is applied only to a specific region of the photosensitive film,
7. The electroless plating method according to claim 6, further comprising a step of rinsing a region of the photosensitive film not irradiated with the light with water or a liquid containing water as a main component.
【請求項8】 パラジウム触媒を基板上に析出させる工
程と、該基板を無電解めっき浴に浸漬する工程との間
に、該基板に熱処理を施す工程を有することを特徴とす
る請求項6または請求項7に記載の無電解めっき方法。
8. The method according to claim 6, further comprising a step of subjecting the substrate to a heat treatment between the step of depositing the palladium catalyst on the substrate and the step of immersing the substrate in an electroless plating bath. The electroless plating method according to claim 7.
【請求項9】 前記熱処理は、140℃〜180℃の範
囲の温度で行われるものであることを特徴とする請求項
8に記載の無電解めっき方法。
9. The electroless plating method according to claim 8, wherein the heat treatment is performed at a temperature in a range from 140 ° C. to 180 ° C.
【請求項10】 前記熱処理は、窒素ガス雰囲気中で行
われるものであることを特徴とする請求項8または請求
項9に記載の無電解めっき方法。
10. The electroless plating method according to claim 8, wherein the heat treatment is performed in a nitrogen gas atmosphere.
JP4195498A 1997-02-26 1998-02-24 Activating catalyst solution for electroless plating and electroless plating method Expired - Fee Related JP3161407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4195498A JP3161407B2 (en) 1997-02-26 1998-02-24 Activating catalyst solution for electroless plating and electroless plating method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4239497 1997-02-26
JP9-42394 1997-02-26
JP4195498A JP3161407B2 (en) 1997-02-26 1998-02-24 Activating catalyst solution for electroless plating and electroless plating method

Publications (2)

Publication Number Publication Date
JPH10298770A JPH10298770A (en) 1998-11-10
JP3161407B2 true JP3161407B2 (en) 2001-04-25

Family

ID=26381603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4195498A Expired - Fee Related JP3161407B2 (en) 1997-02-26 1998-02-24 Activating catalyst solution for electroless plating and electroless plating method

Country Status (1)

Country Link
JP (1) JP3161407B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957130A1 (en) * 1999-11-26 2001-05-31 Infineon Technologies Ag Metallizing dielectric materials comprises applying a photosensitive dielectric to a substrate, irradiating the dielectric through a mask, growing a metal, subjecting to high temperatures and chemically metallizing
JP4581182B2 (en) * 2000-05-26 2010-11-17 株式会社村田製作所 Conductor forming method and electronic component
JP3399434B2 (en) * 2001-03-02 2003-04-21 オムロン株式会社 Method for forming plating of polymer molding material, circuit forming part, and method for manufacturing this circuit forming part

Also Published As

Publication number Publication date
JPH10298770A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
US6210781B1 (en) Method for photoselective seeding and metallization of three-dimensional materials
US5380560A (en) Palladium sulfate solution for the selective seeding of the metal interconnections on polyimide dielectrics for electroless metal deposition
US4753821A (en) Process for the partial metallization of substrate surfaces
EP0098346B1 (en) A method for depositing a metal layer on polyesters
JPH07188936A (en) Production of metallic pattern on electrical insulation substrate in electroless process
JPH0455553B2 (en)
JP3486864B2 (en) Method for forming copper wiring on substrate and substrate on which copper wiring is formed
KR100959751B1 (en) Method for forming Metal Pattern and EMI Filter using this pattern
KR20080016025A (en) Novel method for forming metal pattern and flat panel display using the metal pattern
KR20060007503A (en) Method for forming highly conductive metal pattern on a flexible substrate and emi filter using the same
JPH09260808A (en) Method of forming metal wiring by photocatalystic reaction and base board
US5874125A (en) Activating catalytic solution for electroless plating and method of electroless plating
KR100292652B1 (en) Activation Catalysts for Electroless Plating and Electroless Plating Methods
JP3111891B2 (en) Activating catalyst solution for electroless plating and electroless plating method
JP2004019003A (en) Printed circuit board and plating method thereon
JP3161407B2 (en) Activating catalyst solution for electroless plating and electroless plating method
US3839083A (en) Selective metallization process
JP2003082469A (en) Metallic film pattern forming method
JPH048958B2 (en)
US6635410B2 (en) Metallizing method for dielectrics
JP2572430B2 (en) Method of providing metal locally on the surface of a substrate
JP2000144437A (en) Electroless plating method, electroless plating device, production of wiring board and device for producing wiring board
KR20080055983A (en) Catalyst treatment methdo, electroless plating method, and method for formation of circuit by using the electroless plating method
JP2001335951A (en) Method for forming conductor and electronic parts
JP2007016279A (en) Electroless plating method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees