JP4646759B2 - パターン形成材料、並びにパターン形成装置及びパターン形成方法 - Google Patents

パターン形成材料、並びにパターン形成装置及びパターン形成方法 Download PDF

Info

Publication number
JP4646759B2
JP4646759B2 JP2005272902A JP2005272902A JP4646759B2 JP 4646759 B2 JP4646759 B2 JP 4646759B2 JP 2005272902 A JP2005272902 A JP 2005272902A JP 2005272902 A JP2005272902 A JP 2005272902A JP 4646759 B2 JP4646759 B2 JP 4646759B2
Authority
JP
Japan
Prior art keywords
group
meth
pattern forming
compound
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005272902A
Other languages
English (en)
Other versions
JP2007086224A (ja
Inventor
正伸 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2005272902A priority Critical patent/JP4646759B2/ja
Publication of JP2007086224A publication Critical patent/JP2007086224A/ja
Application granted granted Critical
Publication of JP4646759B2 publication Critical patent/JP4646759B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、露光によりパターン形成可能なドライフィルムレジスト(DFR)、及び液状レジスト等に好適な感光性組成物に関する。特に、該感光性組成物を用いたパターン形成材料、並びに該パターン形成材料を備えたパターン形成装置、高精細な配線パターン、永久パターン(保護膜、層間絶縁膜、ソルダーレジストパターンなど)等のパターン形成方法に関する。
プリント配線基板の分野では、通常は、まず銅張積層板に対してDFRを用いて銅の配線パターンを形成する。更に半導体やコンデンサ、抵抗等の部品が形成された配線パターンの上に半田付けされる。この場合、例えば、IRリフロー等のソルダリング工程において、半田が、半田付けの不必要な部分に付着するのを防ぐため、保護膜、絶縁膜として、前記半田付けの不要部分に相当する永久パターンを形成する方法が採用されている。また、保護膜の永久パターンとしては、ソルダーレジスト等のパターン形成材料が用いられている。他方、プリント配線板のパターンを形成した後、保護膜として残さないドライフィルムレジストなどのパターン形成材料も用いられている(特許文献1及び2参照)。
前記パターン形成材料への露光は、マスクを用いて露光を行うことが一般に行われてきたが、近年では、生産性、解像性等の観点からデジタル・マイクロミラー・デバイス(DMD)等を用いたレーザ光によるマスクレス露光装置も盛んに研究されている。
しかし、前記露光の際には、ラミネート時に付着したゴミ等によるパターンの断線を防ぐために、設定した露光量よりも最大40%程度過剰に露光することがある。また、テント性が不要なパターン作成の際には、より高解像度を求めるために最大40%程度露光量を減らして露光することがある。このように最大±40%程度露光量を変えて露光することが、解像度、密着性、及びエッジラフネスなどの変動の原因となっていた。
また、ラジカルや酸等の有用基を発生することを目的として、増感剤が使用されることが知られているが、この増感剤の種類によっては、感度が低下してしまうという問題があった。
一方、前記パターン形成材料における前記感光層には、一般にバインダー及び増感剤が含まれるが、支持体のヘイズ値を規定しつつ、前記バインダーのI/O値及び増感剤の種類を規定した場合には、最大で±40%程度露光量を変えても、解像度、密着性、及びエッジラフネスの変動が抑制され、かつ、感度が向上することについては何ら開示されていない。
よって、支持体のヘイズ値を規定しつつ、前記バインダーのI/O値及び増感剤の種類を規定することにより、最大で±40%程度露光量を変えても、解像度、密着性、及びエッジラフネスの変動が抑制され、かつ、感度を向上させることができるパターン形成材料を形成可能な感光性組成物、該感光性組成物により形成された感光層を有するパターン形成材料、並びにパターン形成装置、及びパターン形成方法は未だ提供されておらず、更なる改良開発が望まれているのが現状である。
国際公開第01/071428号パンフレット 特開2004−252421号公報
本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、支持体のヘイズ値を規定しつつ、前記バインダーのI/O値及び増感剤の種類を規定することにより、最大で±40%程度露光量を変えても、解像度、密着性、及びエッジラフネスの変動が抑制され、かつ、感度を向上させることができるパターン形成材料、並びにパターン形成装置、及びパターン形成方法を提供することを目的とする。
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 支持体と、該支持体上に、バインダー、重合性化合物、光重合開始系化合物、及び増感剤を少なくとも含む感光性組成物からなる感光層を少なくとも有し、
前記支持体のヘイズ値が5.0%以下であり、前記バインダーのI/O値が、0.300〜0.650であり、前記増感剤が、縮環系化合物の少なくとも1種であることを特徴とするパターン形成材料である。該<1>に記載のパターン形成材料においては、前記支持体のヘイズ値が5.0%以下であり、バインダーのI/O値が、0.300〜0.650であり、かつ、増感剤が、縮環系化合物の少なくとも1種であることにより、最大で±40%程度露光量を変えても、解像度、密着性、及びエッジラフネスの変動が抑制され、かつ、感度を向上させることができる。
<2> 支持体の全光線透過率が、86%以上である前記<1>に記載のパターン形成材料である。
<3> 支持体のヘイズ値、及び、支持体の全光線透過率を求める場合の光の波長が、405nmである前記<1>から<2>のいずれかに記載のパターン形成材料である。
<4> バインダーのガラス転移温度(Tg)が、80℃以上である前記<1>から<3>のいずれかに記載のパターン形成材料である。
<5> バインダーの酸価が、100〜250mgKOH/gである前記<1>から<4>のいずれかに記載のパターン形成材料である。
<6> バインダーが、共重合体を含み、該共重合体がスチレン及びスチレン誘導体の少なくともいずれかに由来する構造単位を有する前記<1>から<5>のいずれかに記載のパターン形成材料である。
<7> バインダーが、エポキシアクリレート化合物の少なくとも1種、並びに、側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体の少なくとも1種の少なくともいずれかを含む前記<1>から<6>のいずれかに記載のパターン形成材料である。
<8> 縮環系化合物が、アクリドン系化合物、チオキサントン系化合物、アクリジン系化合物から選択される少なくとも1種を含む前記<1>から<7>のいずれかに記載のパターン形成材料である。
<9> アクリドン系化合物が、下記一般式(I)で表される化合物である前記<8>に記載のパターン形成材料である。
ただし、前記一般式(I)中、R、R、R、R、R、R、R、及びRは、それぞれ独立して、水素原子、及び一価の置換基のいずれかを表し、Rは、脂肪族基、及び芳香族基のいずれかを表す。
また、互いに隣り合う基は結合して環を形成していてもよい。
<10> チオキサントン系化合物が、下記一般式(II)で表される化合物である前記<8>に記載のパターン形成材料である。
ただし、前記一般式(II)中、R、R、R、R、R、R、R、及びRは、前記一般式(I)におけるR〜Rと同じ意を表す。
<11> 重合性化合物が、ウレタン基及びアリール基の少なくともいずれかを有するモノマーを含む前記<1>から<10>のいずれかに記載のパターン形成材料である。
<12> 重合性化合物が、エチレンオキサイド基及びプロピレンオキサイド基の少なくともいずれかを有するモノマーを含む前記<1>から<11>のいずれかに記載のパターン形成材料である。
<13> 重合性化合物が、分子内に重合性基を2個有する重合性化合物の少なくとも1種と、分子内に重合性基を3個以上有する重合性化合物の少なくとも1種、及び、分子内に重合性基を1個有する重合性化合物の少なくとも1種の、少なくともいずれかとを含む前記<11>から<12>のいずれかに記載のパターン形成材料である。
<14> 光重合開始系化合物が、ハロゲン化炭化水素誘導体、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタロセン類、及びアシルホスフィンオキシド化合物から選択される少なくとも1種のラジカル発生剤を含む前記<1>から<13>のいずれかに記載のパターン形成材料である。
<15> 熱架橋剤を含み、バインダーがエポキシアクリレート化合物の少なくとも1種、並びに、側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体の少なくとも1種の少なくともいずれかを含む前記<1>から<14>のいずれかに記載のパターン形成材料である。
<16> 熱架橋剤を含み、バインダーが無水マレイン酸共重合体の無水物基に対して0.1〜1.2当量の1級アミン化合物を反応させて得られる共重合体である前記<1>から<15>のいずれかに記載のパターン形成材料である。
<17> 熱架橋剤を含み、バインダーが(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体と、からなる共重合体の無水物基に対して0.1〜1.0当量の1級アミン化合物を反応させて得られる前記<1>から<16>のいずれかに記載のパターン形成材料である。
<18> 熱架橋剤が、エポキシ化合物、オキセタン化合物、ポリイソシアネート化合物、ポリイソシアネート化合物にブロック剤を反応させて得られる化合物、及びメラミン誘導体から選択される少なくとも1種である前記<15>から<17>のいずれかに記パターン形成材料である。
<19> メラミン誘導体が、アルキル化メチロールメラミンである前記<18>に記載のパターン形成材料である。
<20> バインダーを10〜90質量%含有し、重合性化合物を5〜90質量%含有する前記<1>から<19>のいずれかに記載のパターン形成材料である。
<21> 支持体上に、クッション層と感光層とをこの順に有する前記<1>から<20>のいずれかに記載のパターン形成材料である。
<22> 支持体が、合成樹脂を含み、かつ透明である前記<1>から<21>のいずれかに記載のパターン形成材料である。
<23> 支持体が、長尺状である前記<1>から<22>のいずれかに記載のパターン形成材料である。
<24> 長尺状であり、ロール状に巻かれてなる前記<1>から<23>のいずれかに記載のパターン形成材料である。
<25> 感光層上に保護フィルムを有する前記<1>から<24>のいずれかに記載のパターン形成材料である。
<26> 前記<1>から<25>のいずれかに記載のパターン形成材料を備えており、
光を照射可能な光照射手段と、該光照射手段からの光を変調し、前記パターン形成材料における感光層に対して露光を行う光変調手段とを少なくとも有することを特徴とするパターン形成装置である。該<26>に記載のパターン形成装置においては、前記光照射手段が、前記光変調手段に向けて光を照射する。前記光変調手段が、前記光照射手段から受けた光を変調する。前記光変調手段により変調した光が前記感光層に対して露光させる。例えば、その後、前記感光層を現像すると、高精細なパターンが形成される。
<27> 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させる前記<26>に記載のパターン形成装置である。該<27>に記載のパターン形成装置においては、前記光変調手段が前記パターン信号生成手段を有することにより、前記光照射手段から照射される光が該パターン信号生成手段により生成した制御信号に応じて変調される。
<28> 光変調手段が、n個の描素部を有してなり、該n個の描素部の中から連続的に配置された任意のn個未満の前記描素部を、形成するパターン情報に応じて制御可能である前記<26>から<27>のいずれかに記載のパターン形成装置である。該<28>に記載のパターン形成装置においては、前記光変調手段におけるn個の描素部の中から連続的に配置された任意のn個未満の描素部をパターン情報に応じて制御することにより、前記光照射手段からの光が高速で変調される。
<29> 光変調手段が、空間光変調素子である前記<26>から<28>のいずれかに記載のパターン形成装置である。
<30> 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である前記<29>に記載のパターン形成装置である。
<31> 描素部が、マイクロミラーである前記<28>から<30>のいずれかに記載のパターン形成装置である。
<32> 光照射手段が、2以上の光を合成して照射可能である前記<26>から<31>のいずれかに記載のパターン形成装置である。該<32>に記載のパターン形成装置においては、前記光照射手段が2以上の光を合成して照射可能であることにより、露光が焦点深度の深い露光光によって行われる。この結果、前記感光層への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<33> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザ光を集光して前記マルチモード光ファイバに結合させる集合光学系とを有する前記<26>から<32>のいずれかに記載のパターン形成装置である。該<33>に記載のパターン形成装置においては、前記光照射手段が、前記複数のレーザからそれぞれ照射されたレーザ光が前記集合光学系により集光され、前記マルチモード光ファイバに結合可能であることにより、露光が焦点深度の深い露光光で行われる。この結果、前記感光層への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<34> 前記<1>から<25>のいずれかに記載のパターン形成材料における感光層に対し、露光を行うことを少なくとも含むことを特徴とするパターン形成方法である。
<35> 前記<1>から<25>のいずれかに記載のパターン形成材料における感光層を、加熱及び加圧の少なくともいずれかの下において基材の表面に積層した後、該感光層に対して露光を行う前記<34>に記載のパターン形成方法である。
<36> 露光が、350〜415nmの波長のレーザ光を用いて行われる前記<34>から<35>のいずれかに記載のパターン形成方法である。
<37> 露光が、形成するパターン情報に基づいて像様に行われる前記<34>から<36>のいずれかに記載のパターン形成方法である。
<38> 感光層に対し、光照射手段、及び前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて行われる前記<34>から<37>に記載のパターン形成方法である。該<38>に記載のパターン形成方法においては、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部が指定され、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部が制御される。前記露光ヘッドを、前記感光層に対し走査方向に相対的に移動させて露光が行われることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<39> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域におけるN重露光を実現するために使用する前記描素部を指定する前記<38>に記載のパターン形成方法である。該<39>に記載のパターン形成方法においては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域におけるN重露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<40> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけるN重露光を実現するために使用する前記描素部を指定する前記<39>に記載のパターン形成方法である。該<40>に記載のパターン形成方法においては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外におけるN重露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域以外に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<41> 設定傾斜角度θが、N重露光数のN、描素部の列方向の個数s、前記描素部の列方向の間隔p、及び露光ヘッドを傾斜させた状態において該露光ヘッドの走査方向と直交する方向に沿った描素部の列方向のピッチδに対し、次式、spsinθideal≧Nδを満たすθidealに対し、θ≧θidealの関係を満たすように設定される前記<38>から<40>のいずれかに記載のパターン形成方法である。
<42> N重露光のNが、3以上の自然数である前記<38>から<41>のいずれかに記載のパターン形成方法である。該<42>に記載のパターン形成方法においては、N重露光のNが、3以上の自然数であることにより、多重描画が行われる。この結果、埋め合わせの効果により、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらが、より精密に均される。
<43> 使用描素部指定手段が、
描素部により生成されて被露光面上の露光領域を構成する描素単位としての光点位置を、被露光面上において検出する光点位置検出手段と、
前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段と
を備える前記<38>から<42>のいずれかに記載のパターン形成方法である。
<44> 使用描素部指定手段が、N重露光を実現するために使用する使用描素部を、行単位で指定する前記<38>から<43>のいずれかに記載のパターン形成方法である。
<45>光点位置検出手段が、検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす実傾斜角度θ´を特定し、描素部選択手段が、前記実傾斜角度θ´と設定傾斜角度θとの誤差を吸収するように使用描素部を選択する前記<43>から<44>のいずれかに記載のパターン形成方法である。
<46> 実傾斜角度θ´が、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、中央値、最大値、及び最小値のいずれかである前記<45>に記載のパターン形成方法である。
<47> 描素部選択手段が、実傾斜角度θ´に基づき、ttanθ´=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における1行目から前記T行目の前記描素部を、使用描素部として選択する前記<43>から<46>のいずれかに記載のパターン形成方法である。
<48> 描素部選択手段が、実傾斜角度θ´に基づき、ttanθ´=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における、(T+1)行目からm行目の前記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する前記<43>から<46>のいずれかに記載のパターン形成方法である。
<49> 描素部選択手段が、複数の描素部列により形成される被露光面上の重複露光領域を少なくとも含む領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、使用描素部を選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、使用描素部を選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、使用描素部を選択する手段、及び
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、使用描素部を選択する手段
のいずれかである前記<43>から<48>に記載のパターン形成方法である。
<50> 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、及び、
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
のいずれかである前記<43>から<49>のいずれかに記載のパターン形成方法である。
<51> 不使用描素部が、行単位で特定される前記<50>に記載のパターン形成方法である。
<52> 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、(N−1)列毎の描素部列を構成する前記描素部のみを使用して参照露光を行う前記<38>から<51>のいずれかに記載のパターン形成方法である。該<52>に記載のパターン形成方法においては、使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、(N−1)列毎の描素部列を構成する前記描素部のみを使用して参照露光が行われ、略1重描画の単純なパターンが得られる。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。
<53> 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、1/N行毎の描素部行を構成する前記描素部のみを使用して参照露光を行う前記<38>から<52>のいずれかに記載のパターン形成方法である。該<53>に記載のパターン形成方法においては、使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、1/N行毎の描素部列を構成する前記描素部のみを使用して参照露光が行われ、略1重描画の単純なパターンが得られる。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。
<54> 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器、並びに描素部選択手段として前記光検出器と接続された演算装置を有する前記<38>から<53>のいずれかに記載のパターン形成方法である。
<55> N重露光のNが、3以上7以下の自然数である前記<38>から<54>のいずれかに記載のパターン形成方法である。
<56> パターン情報が表すパターンの所定部分の寸法が、指定された使用描素部により実現できる対応部分の寸法と一致するように前記パターン情報を変換する前記<38>から<55>のいずれかに記載のパターン形成方法である。
<57> 露光が行われた後、感光層の現像を行う前記<34>から<56>のいずれかに記載のパターン形成方法である。
<58> 現像が行われた後、エッチング処理及びメッキ処理の少なくともいずれかを行う前記<57>に記載のパターン形成方法である。
<59> 現像が行われた後、感光層に対して硬化処理を行う前記<57>に記載のパターン形成方法である。
<60> 硬化処理が、全面露光処理及び120〜200℃で行われる全面加熱処理の少なくともいずれかである前記<59>に記載のパターン形成方法である。該<60>に記載のパターン形成方法においては、前記全面露光処理において、前記感光性組成物中の樹脂の硬化が促進される。また、前記温度条件で行われる全面加熱処理において、硬化膜の膜強度が高められる。
<61> 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれかを形成する前記<60>に記載のパターン形成方法である。
本発明によると、従来における問題を解決することができ、支持体のヘイズ値を規定しつつ、前記バインダーのI/O値及び増感剤の種類を規定することにより、最大で±40%程度露光量を変えても、解像度、密着性、及びエッジラフネスの変動が抑制され、かつ、感度を向上させることができるパターン形成材料、並びにパターン形成装置、及びパターン形成方法を提供することができる。
本発明は、感光性組成物からなる感光層を積層してなるパターン形成材料、並びにパターン形成装置及びパターン形成方法であり、以下順に説明する。
(パターン形成材料)
前記パターン形成材料は、支持体と、該支持体上に、バインダー、重合性化合物、光重合開始系化合物、及び増感剤を少なくとも含む感光性組成物からなる感光層を少なくとも有し、目的に応じて、クッション層等の適宜選択されるその他の層を積層してなる。
前記感光性組成物としては、前記回路形成用レジスト、及びソルダーレジストのいずれかの感光性組成物が含まれる。
<支持体>
前記支持体としては、ヘイズ値が5.0%以下であれば特に制限はなく、目的に応じて適宜選択することができるが、前記感光層を剥離可能であり、かつ光の透過性が良好であるものが好ましく、更に表面の平滑性が良好であることがより好ましい。
−ヘイズ値−
前記支持体のヘイズ値は、405nmの光に対するヘイズ値が5.0%以下であることが必要であり、3.0%以下であることが好ましく、1.0%以下であることがより好ましい。前記ヘイズ値が5.0%を超えると、前記感光層内の光散乱量が増加し、ファインピッチを求める際の解像性が低下したり、密着性の低下、エッジラフネスが大きくなる等の弊害が生ずることがある。
また、前記支持体の405nmの光に対する全光線透過率が86%以上であることが好ましく、87%以上であることがより好ましい。
前記ヘイズ値及び全光線透過率の測定方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、以下に説明する方法が挙げられる。
まず、(1)全光線透過率を測定する。前記全光線透過率の測定方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、積分球と、405nmの光を照射可能な分光光度計(例えば、島津製作所社製、UV−2400)とを用いて測定する方法が挙げられる。(2)前記全光線透過率の測定方法において、前記積分球を使用しない以外は前記全光線透過率の測定方法と同様にして平行光線透過率を測定する。次に、(3)次計算式、前記全光線透過率−前記平行光線透過率、から求められる拡散光透過率を計算し、(4)次計算式、前記拡散光透過率/前記全光線透過率×100、から前記ヘイズ値を求めることができる。
なお、前記全光線透過率及び前記ヘイズ値を求める際の測定サンプルの厚みは16μmである。
前記支持体は、少なくとも片面に不活性微粒子が塗布されていてもよい。前記不活性微粒子は、前記感光層が形成される面と反対の面に塗布されていることが好ましい。
前記不活性微粒子としては、例えば、架橋ポリマー粒子、無機粒子(例えば、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等)、有機粒子(例えば、ヘキサメチレンビスベヘンアミド、ヘキサメチレンビスステアリルアミド、N,N′−ジステアリルテレフタルアミド、シリコーン、シュウ酸カルシウム等)、ポリエステル重合時に生成させる析出粒子などが挙げられ、これらの中でもシリカ、炭酸カルシウム、ヘキサメチレンビスベヘンアミドが好ましい。
前記析出粒子とは、例えば、エステル交換触媒としてアルカリ金属又はアルカリ土類金属化合物を用いた系を常法により重合させることにより反応系内に析出するものを言い、エステル交換反応又は重縮合反応時にテレフタル酸を添加することにより析出させたものでもよい。前記エステル交換反応又は重縮合反応においては、リン酸、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、酸性リン酸エチル、亜リン酸、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリブチル等のリン化合物の1種以上を存在させてもよい。
前記不活性微粒子の平均粒子径は、0.01〜2.0μmが好ましく、0.02〜1.5μmがより好ましく、0.03〜1.0μmがさらに好ましく、0.04〜0.5μmが特に好ましい。
前記不活性微粒子の平均粒子径が、0.01μm未満であると、前記パターン形成材料の搬送性が悪化することがあり、搬送性を得るために前記不活性微粒子を多量に含有させることによって、前記支持体のヘイズ値が上昇することがある。また、前記不活性微粒子の平均粒子径が2.0μmを超えると、露光光の散乱によって解像度が低下することがある。
前記不活性微粒子の塗布方法としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、前記支持体となる合成樹脂製フィルム製造後に公知の方法で前記不活性微粒子を含有する塗布液を塗布する方法が挙げられる。また、前記不活性微粒子を含有させた合成樹脂を溶融し、ダイから吐出して前記支持体となる合成樹脂製フィルム上に成形してもよい。さらに、特開2000−221688号公報に記載の方法により形成してもよい。
前記支持体における前記不活性微粒子を含有する塗布層の厚みは、0.02〜3.0μmが好ましく、0.03〜2.0μmがより好ましく、0.04〜1.0μmが特に好ましい。
前記支持体となる合成樹脂製フィルムは、透明であるものが好ましく、例えば、ポリエステル樹脂製フィルムが好ましく、二軸延伸ポリエステルフィルムであることが特に好ましい。
前記ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ(メタ)アクリル酸エステル共重合体、ポリ(メタ)アクリル酸アルキルエステル、ポリエチレン−2,6−ナフタレート、ポリテトラメチレンテレフタレート、ポリテトラメチレン−2,6−ナフタレート等が挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記ポリエステル樹脂以外の樹脂としては、例えば、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セルロース系樹脂、ナイロン樹脂などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記合成樹脂製フィルムは1層からなるものであってもよく、2層以上の層からなるものであってもよい。2層以上の層からなる場合、感光層から最も遠くに位置する層に前記不活性微粒子を含有させることが好ましい。
また、前記合成樹脂製フィルムは、機械的強度特性及び光学的特性の観点から二軸延伸ポリエステルフィルムであることが好ましい。
前記二軸延伸ポリエステルフィルムの二軸配向方法は、特に制限はなく、目的に応じて適宜選択することができる。例えば、前記ポリエステル樹脂をシート状に溶融押出し、急冷して未延伸フィルムをつくり、該未延伸フィルムを二軸延伸する際に延伸温度を85〜145℃、縦方向及び横方向の延伸倍率を2.6〜4.0倍とし、必要に応じて二軸延伸した後のフィルムを150〜210℃で熱固定することにより調製することができる。
前記二軸延伸は、未延伸フィルムを縦方向又は横方向に延伸して一軸延伸フィルムとし、次いで該一軸延伸フィルムを横方向又は縦方向に延伸することによる逐次二軸延伸法であってもよく、該未延伸フィルムを縦方向及び横方向に同時に延伸する同時二軸延伸法であってもよい。また、前記二軸延伸フィルムは必要に応じて縦方向及び横方向の少なくともいずれかの方向に更に延伸することができる。
前記支持体の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、例えば、2〜150μmが好ましく、5〜100μmがより好ましく、8〜50μmが特に好ましい。
前記支持体の形状は、特に制限はなく、目的に応じて適宜選択することができるが、長尺状が好ましい。前記長尺状の支持体の長さは、特に制限はなく、例えば、10〜20,000mの長さのものが挙げられる。
<感光層>
前記感光層は、前記感光性組成物により形成される。前記感光層の前記パターン形成材料において設けられる箇所は、特に制限はなく、目的に応じて適宜選択することができ、通常、前記支持体上に積層される。
前記感光層としては、単層であってもよく、複数層であってもよい。
<感光性組成物>
前記感光性組成物は、バインダー、重合性化合物、光重合開始系化合物、及び増感剤を少なくとも含み、前記バインダーのI/O値が、0.300〜0.650であり、前記増感剤が、縮環系化合物の少なくとも1種であり、必要に応じて適宜選択されたその他の成分を含む。
なお、前記感光性組成物としては、配線パターン等を形成する際に用いられる回路形成用レジストとしての感光性組成物、及び保護膜、層間絶縁膜、ソルダーレジストパターン等の永久パターンを形成する際に用いられるソルダーレジストとしての感光性組成物が含まれる。
−バインダー−
前記バインダーとしては、I/O値が0.300〜0.650である限り、特に制限は無く、目的に応じて適宜選択することができる。前記I/O値が、0.650を超えると、密着性が低下したり、エッジラフネスが大きくなるという弊害がある。
前記I/O値の上限値は、例えば、解像度及びテント性の少なくともいずれかを更に向上させる観点から0.630がより好ましく、0.600が特に好ましい。
前記I/O値の下限値は、例えば、現像性を向上させる観点から0.350がより好ましく、0.400が特に好ましい。
前記バインダーのI/O値を調整する方法としては、共重合体を構成するモノマーの種類及び、該モノマーを重合させる際の重合比(含有量)の少なくともいずれかを適宜選択することにより、例えば、0.300〜0.650の範囲に調整することができる。
前記I/O値は、(無機性値)/(有機性値)とも呼ばれる各種有機化合物の極性を有機概念的に取り扱った値であり、各官能基にパラメータを設定する官能基寄与法の一つである。前記I/O値は、詳しくは、有機概念図(甲田善生 著、三共出版(1984));KUMAMOTO PHARMACEUTICAL BULLETIN,第1号、第1〜16項(1954年);化学の領域、第11巻、第10号、719〜725項(1957年);フレグランスジャーナル、第34号、第97〜111項(1979年);フレグランスジャーナル、第50号、第79〜82項(1981年);などの文献に詳細に説明されている。
前記I/O値の概念は、化合物の性質を、共有結合性を表わす有機性基と、イオン結合性を表わす無機性基とに分け、すべての有機化合物を有機軸と無機軸と名付けた直行座標上の1点ずつに位置づけて示すものである。
前記無機性値とは、有機化合物が有している種々の置換基や結合等の沸点への影響力の大小を、水酸基を基準に数値化したものである。具体的には、直鎖アルコールの沸点曲線と直鎖パラフィンの沸点曲線との距離を炭素数5の付近で取ると約100℃となるので、水酸基1個の影響力を数値で100と定め、この数値に基づいて、各種置換基或いは各種結合などの沸点への影響力を数値化した値が、有機化合物が有している置換基の無機性値である。例えば、−COOH基の無機性値は150であり、2重結合の無機性値は2である。従って、ある種の有機化合物の無機性値とは、該化合物が有している各種置換基や結合等の無機性値の総和を意味する。
前記有機性値とは、分子内のメチレン基を単位とし、そのメチレン基を代表する炭素原子の沸点への影響力を基準にして定めたものである。即ち、直鎖飽和炭化水素化合物の炭素数5〜10付近での炭素1個加わることによる沸点上昇の平均値は20℃であるから、これを基準に、炭素原子1個の有機性値を20と定め、これを基礎として、各種置換基や結合等の沸点への影響力を数値化した値が有機性値である。例えば、ニトロ基(−NO2)の有機性値は70である。
前記I/O値は、0に近いほど非極性(疎水性、有機性の大きな)の有機化合物であることを示し、大きいほど極性(親水性、無機性の大きな)の有機化合物であることを示す。
以下において前記I/O値の計算方法の一例を説明する。
メタクリル酸/メタクリル酸メチル/スチレン共重合体(共重合体組成(モル比):2/5/3)のI/O値は、該共重合体の無機性値及び有機性値を以下の方法により計算し、次式、(前記共重合体の無機性値)/(前記共重合体の有機性値)、を計算することにより求められる。
前記共重合体の無機性値は、前記メタクリル酸の無機性値×前記メタクリル酸のモル比と、前記メタクリル酸メチルの無機性値×前記メタクリル酸メチルのモル比と、前記スチレンの無機性値×前記スチレンのモル比との合計を求めることにより計算される。
前記メタクリル酸は、カルボキシル基を1個有し、前記メタクリル酸メチルは、エステル基を1個有し、前記スチレンは、芳香環を1個有するため、
前記メタクリル酸の無機性値は、150(カルボキシル基の無機性値)×1(カルボキシル基の個数)=150、
前記メタクリル酸メチルの無機性値は、60(エステル基の無機性値)×1(エステル基の個数)=60、
前記スチレンの無機性値は、15(芳香環の無機性値)×1(芳香環の個数)=15、である。
よって、前記共重合体の無機性値は、次式、150×2(メタクリル酸のモル比)+60×5(メタクリル酸メチルのモル比)+15×3(スチレンのモル比)、を計算することにより、645であることが計算される。
前記共重合体の有機性値は、前記メタクリル酸の有機性値×前記メタクリル酸のモル比と、前記メタクリル酸メチルの有機性値×前記メタクリル酸メチルのモル比と、前記スチレンの有機性値×前記スチレンのモル比との合計を求めることにより計算される。
前記メタクリル酸は、炭素原子4個を有し、前記メタクリル酸メチルは、炭素原子5個を有し、前記スチレンは、炭素原子8個を有するため、
前記メタクリル酸の有機性値は、20(炭素原子の有機性値)×4(炭素原子数)=80、
前記メタクリル酸メチルの有機性値は、20(炭素原子の有機性値)×5(炭素原子数)=100、
前記スチレンの有機性値は、20(炭素原子の有機性値)×8(炭素原子数)=160、である。
よって、前記共重合体の有機性値は、次式、80×2(前記メタクリル酸のモル比)+100×5(前記メタクリル酸メチルのモル比)+160×3(前記スチレンのモル比)、を計算することにより、1140であることが計算される。
よって、前記共重合体のI/O値は、645(前記共重合体の無機性値)/1140(前記共重合体の有機性値)=0.566であることが判る。
前記バインダーがガラス転移温度を有する物質である場合、該ガラス転移温度は、80℃以上であれば特に制限は無く、目的に応じて適宜選択することができるが、100℃以上であることが好ましく、115℃以上であることがより好ましい。
前記ガラス転移温度が80℃未満となると、形成した前記感光層のタックが増加したり、パターン形成材料を製造した際に、前記感光層と前記支持体との剥離性が悪化したりすることがあり、また、露光量を変えた場合に、解像等の変動が大きくなることがある。
前記I/O値が0.300〜0.650であるバインダーとしては、例えば、共重合体を含み、該共重合体がスチレン及びスチレン誘導体の少なくともいずれかに由来する構造単位を有するのが好ましい。また、前記スチレン及びスチレン誘導体の少なくともいずれかに由来する構造単位の他に、共重合する成分の組合せとしては、例えば、少なくとも(メタ)アクリル酸及びアルキル(メタ)アクリレートを含む組合せ、(メタ)アクリル酸とアルキル(メタ)アクリレート及びベンジル(メタ)アクリレートを含む組合せ、(メタ)アクリル酸及びベンジル(メタ)アクリレートを含む組合せなどがより好ましい。
前記アルキル(メタ)アクリレートのアルキル基としては、メチル基、エチル基が特に好ましい。
前記I/O値が0.300〜0.650であり、かつ、前記ガラス転移温度が80℃以上である前記バインダーとしては、例えば、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37)、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):23/8/15/54)メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):29/16/35/20)、メタクリル酸/メチルメタクリレート/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/25/39/11)、メタクリル酸/メチルメタクリレート/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/25/45/5)、メタクリル酸/メチルメタクリレート/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/10/45/20)、メタクリル酸/シクロヘキシルメタクリレート/2−エチルヘキシルメタクリレート共重合体(共重合体組成(質量比):25/70/5)、メタクリル酸/シクロヘキシルメタクリレート/2−エチルヘキシルメタクリレート共重合体(共重合体組成(質量比):23/70/7)、メタクリル酸/スチレン/メチルアクリレート共重合体(共重合体組成(質量比):25/60/15)、メタクリル酸/スチレン/メチルアクリレート共重合体(共重合体組成(質量比):25/50/25)、メタクリル酸/スチレン/メチルアクリレート共重合体(共重合体組成(質量比):29/61/10)、メタクリル酸/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):23/60/17)、メタクリル酸/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):29/61/10)、メタクリル酸/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/70/5)、メタクリル酸/スチレン共重合体(共重合組成比(質量比):20/80)、メタクリル酸/スチレン共重合体(共重合組成比(質量比):28/72)、メタクリル酸/スチレン共重合体(共重合組成比(質量比):32/68)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):25/65/10)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):30/61/9)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/60/11)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/47/24)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):25/22/40/13)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/15/47/9)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/18/50/3)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):25/15/40/20)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):25/15/35/25)、メタクリル酸/スチレン/シクロヘキシルメタクリレート共重合体(共重合組成比(質量比):31/64/5)、メタクリル酸/スチレン/シクロヘキシルメタクリレート共重合体(共重合組成比(質量比):25/15/60)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):25/27/46/2)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):29/15/50/6)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):25/27/36/12)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):29/13/38/20)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):29/5/31/35)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):25/29/46)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):20/53/27)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):29/19/52)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):30/13/57)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):28/13/59)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):32/8/60)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):29/31/40)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):25/41/34)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):20/56/24)、メタクリル酸/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):30/15/55)、メタクリル酸/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):30/25/45)、及びメタクリル酸/メチルスチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):30/15/55)などが挙げられる。
これらの中でもメタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37)、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):29/16/35/20)、メタクリル酸/メチルメタクリレート/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/25/39/11)、メタクリル酸/メチルメタクリレート/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/25/45/5)、メタクリル酸/スチレン/メチルアクリレート共重合体(共重合体組成(質量比):25/60/15)、メタクリル酸/スチレン/メチルアクリレート共重合体(共重合体組成(質量比):29/61/10)、メタクリル酸/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):29/61/10)、メタクリル酸/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/70/5)、メタクリル酸/スチレン共重合体(共重合組成比(質量比):20/80)、メタクリル酸/スチレン共重合体(共重合組成比(質量比):28/72)、メタクリル酸/スチレン共重合体(共重合組成比(質量比):32/68)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):25/65/10)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):30/61/9)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/60/11)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):25/22/40/13)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/15/47/9)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/18/50/3)、メタクリル酸/スチレン/シクロヘキシルメタクリレート共重合体(共重合組成比(質量比):31/64/5)、メタクリル酸/スチレン/シクロヘキシルメタクリレート共重合体(共重合組成比(質量比):25/15/60)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):25/27/46/2)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):29/15/50/6)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):25/27/36/12)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):29/13/38/20)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):25/29/46)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):20/53/27)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):29/19/52)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):30/13/57)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):28/13/59)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):32/8/60)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):29/31/40)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):25/41/34)、メタクリル酸/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):30/15/55)、メタクリル酸/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):30/25/45)、及びメタクリル酸/メチルスチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):30/15/55)が好ましい。
更に、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):29/16/35/20)、メタクリル酸/メチルメタクリレート/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/25/45/5)、メタクリル酸/スチレン/メチルアクリレート共重合体(共重合体組成(質量比):29/61/10)、メタクリル酸/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/70/5)、メタクリル酸/スチレン共重合体(共重合組成比(質量比):32/68)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):30/61/9)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/60/11)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/15/47/9)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/18/50/3)、メタクリル酸/スチレン/シクロヘキシルメタクリレート共重合体(共重合組成比(質量比):31/64/5)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):25/27/46/2)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):29/15/50/6)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):25/29/46)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):20/53/27)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):29/19/52)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):30/13/57)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):28/13/59)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):32/8/60)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):29/31/40)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):25/41/34)、メタクリル酸/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):30/15/55)、メタクリル酸/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):30/25/45)、及びメタクリル酸/メチルスチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):30/15/55)が特に好ましい。
〔回路形成用レジスト〕
前記回路形成用レジストとしての感光性組成物としては、I/O値が0.300〜0.650であるバインダー、重合性化合物、及び光重合開始系化合物として、縮環系化合物を増感剤として少なくとも含み、必要に応じて、適宜選択したその他の成分を含む。
−バインダー−
前記回路形成用レジストとしての感光性組成物における前記バインダーとしては、前記I/O値が上記数値範囲内である限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アルカリ性液に対して膨潤性であることが好ましく、アルカリ性液に対して可溶性であることがより好ましい。
アルカリ性液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
前記バインダーの酸性基の含有量(酸価)は、前記I/O値が上記数値範囲内である限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記バインダーの酸価が100〜250mgKOH/gであるものが好ましく、120〜220mgKOH/gがより好ましく、150〜220mgKOH/gが特に好ましい。
前記酸価が、100mgKOH/g未満であると、現像性が不足したり、解像性が劣り、高精細なパターンを得ることができないことがあり、250mgKOH/gを超えると、パターンの耐現像液性及び密着性の少なくともいずれかが悪化し、高精細なパターンを得ることができないことがある。
前記酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜物性の調整の容易さ等の観点からカルボキシル基を有するビニル共重合体が好ましい。また、現像性の観点から、スチレン及びスチレン誘導体の少なくともいずれかの共重合体も好ましい。
前記カルボキシル基を有するビニル共重合体は、少なくとも(1)カルボキシル基を有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得ることができる。
前記カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
前記その他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類(例えば、スチレン、スチレン誘導体等)、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基)を有するビニルモノマーなどが挙げられ、これらの中でも配線パターンなどの永久パターンを高精細に形成することができる点、及び前記テント性を向上させることができる点で、前記スチレン類(スチレン及びスチレン誘導体)が好ましい。
前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。
前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。
前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。
前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。
前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。
前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。
前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。
前記スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えば、t-Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレンなどが挙げられる。
前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。
前記官能基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。
前記イソシアナート基を有するモノマーとしては、例えば、下記構造式(1)〜(3)で表される化合物が挙げられる。
但し、前記構造式(1)〜(3)中、R´は水素原子又はメチル基を表す。
前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。
前記水酸基を有するモノマーとしては、例えば、下記構造式(4)〜(12)で表される化合物が挙げられる。
但し、前記構造式(4)〜(12)中、R´は水素原子又はメチル基を表し、n、n、及びnは、それぞれ1以上の整数を表す。
前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i―プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フロロエタノール、トリフロロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノール等が挙げられる。
前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。
前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i―プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフロロエチルアミン、ヘキサフロロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。
また、上記以外の前記その他の共重合可能なモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、スチレン、クロルスチレン、ブロモスチレン、ヒドロキシスチレンなどが好適に挙げられる。
前記その他の共重合可能なモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
前記ビニル共重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。
前記溶液重合法で用いられる適当な溶媒としては、特に制限はなく、使用するモノマー、及び生成する共重合体の溶解性等に応じて適宜選択することができ、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1−メトキシ−2−プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メトキシプロピルアセテート、乳酸エチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、クロロホルム、トルエンなどが挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。
前記ラジカル重合開始剤としては、特に制限はなく、例えば、2,2’−アゾビス(イソブチロニトリル)(AIBN)、2,2’−アゾビス−(2,4’−ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド等の過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩などが挙げられる。
前記ビニル共重合体におけるカルボキシル基を有する重合性化合物の含有率は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜50モル%が好ましく、10〜40モル%がより好ましく、15〜35モル%が特に好ましい。
前記含有率が、5モル%未満であると、アルカリ水への現像性が不足することがあり、50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。
前記カルボキシル基を有するバインダーの分子量は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、質量平均分子量として、2,000〜300,000が好ましく、4,000〜150,000がより好ましい。
前記質量平均分子量が、2,000未満であると、膜の強度が不足しやすく、また安定な製造が困難になることがあり、300,000を超えると、現像性が低下することがある。
前記カルボキシル基を有するバインダーは、1種単独で使用してもよく、2種以上を併用してもよい。前記バインダーを2種以上併用する場合としては、例えば、異なる共重合成分からなる2種以上のバインダー、異なる質量平均分子量の2種以上のバインダー、異なる分散度の2種以上のバインダー、などの組合せが挙げられる。
前記カルボキシル基を有するバインダーは、そのカルボキシル基の一部又は全部が塩基性物質で中和されていてもよい。また、前記バインダーは、さらにポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルアルコール、ゼラチン等の構造の異なる樹脂を併用してもよい。
また、前記バインダーとしては、特許2873889号等に記載のアルカリ性液に可溶な樹脂などを用いることができる。
前記感光性組成物における前記バインダーの含有量は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、10〜90質量%が好ましく、20〜80質量%がより好ましく、40〜80質量%が特に好ましい。
前記含有量が10質量%未満であると、アルカリ現像性やプリント配線板形成用基板(例えば、銅張積層板)との密着性が低下することがあり、90質量%を超えると、現像時間に対する安定性や、硬化膜(テント膜)の強度が低下することがある。なお、前記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であってもよい。
−重合性化合物−
前記回路形成用レジストとしての感光性組成物における前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ウレタン基及びアリール基の少なくともいずれかを有するモノマー又はオリゴマーが好適に挙げられる。また、これらは、重合性基を2種以上有することが好ましい。
前記重合性基としては、例えば、エチレン性不飽和結合(例えば、(メタ)アクリロイル基、(メタ)アクリルアミド基、スチリル基、ビニルエステルやビニルエーテル等のビニル基、アリルエーテルやアリルエステル等のアリル基など)、重合可能な環状エーテル基(例えば、エポキシ基、オキセタン基等)などが挙げられ、これらの中でもエチレン性不飽和結合が好ましい。
−−ウレタン基を有するモノマー−−
前記ウレタン基を有するモノマーとしては、ウレタン基を有する限り、特に制限は無く、目的に応じて適宜選択することができるが、例えば、特公昭48−41708、特開昭51−37193、特公平5−50737、特公平7−7208、特開2001−154346、特開2001−356476号公報等に記載されている化合物などが挙げられ、例えば、分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物と分子中に水酸基を有するビニルモノマーとの付加物などが挙げられる。
前記分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、トルエンジイソシアネート、フェニレンジイソシアネート、ノルボルネンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、3,3’ジメチル−4,4’−ジフェニルジイソシアネート等のジイソシアネート;該ジイソシアネートを更に2官能アルコールとの重付加物(この場合も両末端はイソシアネート基);該ジイソシアネートのビュレット体やイソシアヌレート等の3量体;該ジイソシアネート若しくはジイソシアネート類と、トリメチロールプロパン、ペンタエリトリトール、グリセリン等の多官能アルコール、又はこれらのエチレンオキシド付加物等の得られる他官能アルコールとの付加体などが挙げられる。
前記分子中に水酸基を有するビニルモノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、オクタエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ジブチレングリコールモノ(メタ)アクリレート、トリブチレングリコールモノ(メタ)アクリレート、テトラブチレングリコールモノ(メタ)アクリレート、オクタブチレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレートなどが挙げられる。また、エチレンオキシドとプロピレンオキシドの共重合体(ランダム、ブロック等)などの異なるアルキレンオキシド部を有するジオール体の片末端(メタ)アクリレート体などが挙げられる。
また、前記ウレタン基を有するモノマーとしては、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ジ(メタ)アクリル化イソシアヌレート、エチレンオキシド変性イソシアヌル酸のトリ(メタ)アクリレート等のイソシアヌレート環を有する化合物が挙げられる。これらの中でも、下記構造式(13)、又は構造式(14)で表される化合物が好ましく、テント性の観点から、前記構造式(14)で示される化合物を少なくとも含むことが特に好ましい。また、これらの化合物は、1種単独で使用してもよく、2種以上を併用してもよい。
前記構造式(13)及び(14)中、R´〜R´は、それぞれ水素原子又はメチル基を表す。X〜Xは、アルキレンオキサイドを表し、1種単独でもよく、2種以上を併用してもよい。
前記アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、ヘキシレンオキサイド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)などが好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらの組み合わせた基が好ましく、エチレンオキサイド基、プロピレンオキサイド基がより好ましい。
前記構造式(13)及び(14)中、m〜mは、1〜60の整数を表し、2〜30が好ましく、4〜15がより好ましい。
前記構造式(13)及び(14)中、Y及びYは、炭素原子数2〜30の2価の有機基を表し、例えば、アルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基(−CO−)、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、スルホニル基(−SO−)又はこれらを組み合わせた基などが好適に挙げられ、これらの中でも、アルキレン基、アリーレン基、又はこれらを組み合わせた基が好ましい。
前記アルキレン基は、分岐構造又は環状構造を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペンチレン基、ネオペンチレン基、ヘキシレン基、トリメチルヘキシレン基、シクロへキシレン基、ヘプチレン基、オクチレン基、2−エチルヘキシレン基、ノニレン基、デシレン基、ドデシレン基、オクタデシレン基、又は下記に示すいずれかの基などが好適に挙げられる。
前記アリーレン基としては、炭化水素基で置換されていてもよく、例えば、フェニレン基、トリレン基、ジフェニレン基、ナフチレン基、又は下記に示す基などが好適に挙げられる。
前記これらを組み合わせた基としては、例えば、キシリレン基などが挙げられる。
前記アルキレン基、アリーレン基、又はこれらを組み合わせた基としては、更に置換基を有していてもよく、該置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−エトキシエトキシ基)、アリールオキシ基(例えば、フェノキシ基)、アシル基(例えば、アセチル基、プロピオニル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)などが挙げられる。
前記構造式(13)及び(14)中、nは3〜6の整数を表し、重合性モノマーを合成するための原料供給性などの観点から、3、4又は6が好ましい。
前記構造式(13)及び(14)中、Zはn価(3価〜6価)の連結基を表し、例えば、下記に示すいずれかの基などが挙げられる。
但し、Xはアルキレンオキサイドを表す。mは、1〜20の整数を表す。nは、3〜6の整数を表す。Aは、n価(3価〜6価)の有機基を表す。
前記Aとしては、例えば、3価〜6価の脂肪族基、3価〜6価の芳香族基、又はこれらとアルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基、酸素原子、硫黄原子、イミノ基、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、又はスルホニル基とを組み合わせた基が好ましく、3価〜6価の脂肪族基、3価〜6価の芳香族基、又はこれらとアルキレン基、アリーレン基、酸素原子とを組み合わせた基がより好ましく、3価〜6価の脂肪族基、3価〜6価の脂肪族基とアルキレン基、酸素原子とを組み合わせた基が特に好ましい。
前記Aの炭素原子数としては、例えば、1〜100の整数が好ましく、1〜50の整数がより好ましく、3〜30の整数が特に好ましい。
前記n価(3価〜6価)の脂肪族基としては、分岐構造又は環状構造を有していてもよい。
前記脂肪族基の炭素原子数としては、例えば、1〜30の整数が好ましく、1〜20の整数がより好ましく、3〜10の整数が特に好ましい。
前記芳香族基の炭素原子数としては、6〜100の整数が好ましく、6〜50の整数がより好ましく、6〜30の整数が特に好ましい。
前記n価(3価〜6価)の脂肪族基、又は芳香族基は、更に置換基を有していてもよく、該置換基としては、例えば、ヒドロキシル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−エトキシエトキシ基)、アリールオキシ基(例えば、フェノキシ基)、アシル基(例えば、アセチル基、プロピオニル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)などが挙げられる。
前記アルキレン基は、分岐構造又は環状構造を有していてもよい。
前記アルキレン基の炭素原子数は、例えば、1〜18の整数が好ましく、1〜10の整数がより好ましい。
前記アリーレン基は、炭化水素基で更に置換されていてもよい。
前記アリーレン基の炭素原子数は、6〜18の整数が好ましく、6〜10の整数がより好ましい。
前記置換イミノ基の1価の炭化水素基の炭素原子数は、1〜18の整数が好ましく、1〜10の整数がより好ましい。
前記Aの好ましい例は以下の通りである。
前記構造式(13)及び(14)で表される化合物としては、例えば下記構造式(15)〜(34)で表される化合物などが挙げられる。
但し、前記構造式(15)〜(34)中、n、n、n10、及びmは、1〜60の整数を意味し、lは、1〜20の整数を意味し、Rは、水素原子又はメチル基を表す。
−−アリール基を有するモノマー−−
前記アリール基を有するモノマーとしては、アリール基を有する限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アリール基を有する多価アルコール化合物、多価アミン化合物及び多価アミノアルコール化合物の少なくともいずれかと不飽和カルボン酸とのエステル又はアミドなどが挙げられる。
前記アリール基を有する多価アルコール化合物、多価アミン化合物又は多価アミノアルコール化合物としては、例えば、ポリスチレンオキサイド、キシリレンジオール、ジ−(β−ヒドロキシエトキシ)ベンゼン、1,5−ジヒドロキシ−1,2,3,4−テトラヒドロナフタレン、2、2−ジフェニル−1,3−プロパンジオール、ヒドロキシベンジルアルコール、ヒドロキシエチルレゾルシノール、1−フェニル−1,2−エタンジオール、2,3,5,6−テトラメチル−p−キシレン−α,α’−ジオール、1,1,4,4−テトラフェニル−1,4−ブタンジオール、1,1,4,4−テトラフェニル−2−ブチン−1,4−ジオール、1,1’−ビ−2−ナフトール、ジヒドロキシナフタレン、1,1’−メチレン−ジ−2−ナフトール、1,2,4−ベンゼントリオール、ビフェノール、2,2’−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(ヒドロキシフェニル)メタン、カテコール、4−クロルレゾルシノール、ハイドロキノン、ヒドロキシベンジルアルコール、メチルハイドロキノン、メチレン−2,4,6−トリヒドロキシベンゾエート、フロログリシノール、ピロガロール、レゾルシノール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、3−アミノ−4−ヒドロキシフェニルスルホンなどが挙げられる。また、この他、キシリレンビス(メタ)アクリルアミド、ノボラック型エポキシ樹脂やビスフェノールAジグリシジルエーテル等のグリシジル化合物にα、β−不飽和カルボン酸を付加して得られる化合物、フタル酸やトリメリット酸などと分子中に水酸基を含有するビニルモノマーから得られるエステル化物、フタル酸ジアリル、トリメリット酸トリアリル、ベンゼンジスルホン酸ジアリル、重合性モノマーとしてカチオン重合性のジビニルエーテル類(例えば、ビスフェノールAジビニルエーテル)、エポキシ化合物(例えば、ノボラック型エポキシ樹脂、ビスフェノールAジグリシジルエーテル等)、ビニルエステル類(例えば、ジビニルフタレート、ジビニルテレフタレート、ジビニルベンゼン−1,3−ジスルホネート等)、スチレン化合物(例えば、ジビニルベンゼン、p−アリルスチレン、p−イソプロペンスチレン等)が挙げられる。これらの中でも下記構造式(35)で表される化合物が好ましい。
前記構造式(35)中、R´、R´は、水素原子又はアルキル基を表す。
前記構造式(35)中、X及びXは、アルキレンオキサイド基を表し、1種単独でもよく、2種以上を併用してもよい。該アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、ヘキシレンオキサイド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)、などが好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらを組み合わせた基が好ましく、エチレンオキサイド基、プロピレンオキサイド基がより好ましい。
前記構造式(35)中、m、m10は、1〜60の整数が好ましく、2〜30の整数がより好ましく、4〜15の整数が特に好ましい。
前記構造式(35)中、Tは、2価の連結基を表し、例えば、メチレン、エチレン、MeCMe、CFCCF、CO、SOなどが挙げられる。
前記構造式(35)中、Ar、Arは、置換基を有していてもよいアリール基を表し、例えば、フェニレン、ナフチレンなどが挙げられる。前記置換基としては、例えば、アルキル基、アリール基、アラルキル基、ハロゲン基、アルコキシ基、又はこれらの組合せなどが挙げられる。
前記アリール基を有するモノマーの具体例としては、2,2−ビス〔4−(3−(メタ)アクリルオキシ−2−ヒドロキシプロポキシ)フェニル〕プロパン、2,2−ビス〔4−((メタ)アクリルオキシエトキシ)フェニル〕プロパン、フェノール性のOH基1個に置換しさせたエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリエトキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカエトキシ)フェニル)プロパン等)、2,2−ビス〔4−((メタ)アクリルオキシプロポキシ)フェニル〕プロパン、フェノール性のOH基1個に置換させたエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリプロポキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカプロポキシ)フェニル)プロパン等)、又はこれらの化合物のポリエーテル部位として同一分子中にポリエチレンオキシド骨格とポリプロピレンオキシド骨格の両方を含む化合物(例えば、WO01/98832号公報に記載の化合物等、又は、市販品として、新中村化学工業社製、BPE−200、BPE−500、BPE−1000)、ビスフェノール骨格とウレタン基とを有する重合性化合物などが挙げられる。なお、これらは、ビスフェノールA骨格に由来する部分をビスフェノールF又はビスフェノールS等に変更した化合物であってもよい。
前記ビスフェノール骨格とウレタン基とを有する重合性化合物としては、例えば、ビスフェノールとエチレンオキシド又はプロピレンオキシド等の付加物、重付加物として得られる末端に水酸基を有する化合物にイソシアネート基と重合性基とを有する化合物(例えば、2−イソシアネートエチル(メタ)アクリレート、α,α−ジメチル−ビニルベンジルイソシアネート等)などが挙げられる。
−−その他の重合性モノマー−−
前記感光性組成物中には、該感光性組成物を用いて形成する感光層の特性を悪化させない範囲で、前記ウレタン基を含有するモノマー、アリール基を有するモノマー以外の重合性モノマーを併用してもよい。
前記ウレタン基を含有するモノマー、芳香環を含有するモノマー以外の重合性モノマーとしては、例えば、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と多価アミン化合物とのアミドなどが挙げられる。
前記不飽和カルボン酸と脂肪族多価アルコール化合物とのエステルのモノマーとしては、例えば、(メタ)アクリル酸エステルとして、エチレングリコールジ(メタ)アクリレート、エチレン基の数が2〜18であるポリエチレングリコールジ(メタ)アクリレート(例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、ドデカエチレングリコールジ(メタ)アクリレート、テトラデカエチレングリコールジ(メタ)アクリレート等)、プロピレングリコールジ(メタ)アクリレート、プロピレン基の数が2から18であるポリプロピレングリコールジ(メタ)アクリレート(例えば、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ドデカプロピレングリコールジ(メタ)アクリレート等)、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、トリメチロールエタントリ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,5−ベンタンジオール(メタ)アクリレート、ペンタエリトリトールジ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、エチレングリコール鎖/プロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ(メタ)アクリレート(例えば、WO01/98832号公報に記載の化合物等)、エチレンオキサイド及びプロピレンオキサイドの少なくともいずれかを付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステル、ポリブチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、キシレノールジ(メタ)アクリレートなどが挙げられる。
前記(メタ)アクリル酸エステル類の中でも、その入手の容易さ等の観点から、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレングリコール鎖/プロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリアクリレート、ペンタエリトリトールジ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジグリセリンジ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,5−ペンタンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステルなどが好ましい。
前記イタコン酸と前記脂肪族多価アルコール化合物とのエステル(イタコン酸エステル)としては、例えば、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1,3−ブタンジオールジイタコネート、1,4ーブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリトリトールジイタコネート、及びソルビトールテトライタコネートなどが挙げられる。
前記クロトン酸と前記脂肪族多価アルコール化合物とのエステル(クロトン酸エステル)としては、例えば、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリトリトールジクロトネート、ソルビトールテトラジクロトネートなどが挙げられる。
前記イソクロトン酸と前記脂肪族多価アルコール化合物とのエステル(イソクロトン酸エステル)としては、例えば、エチレングリコールジイソクロトネート、ペンタエリトリトールジイソクロトネート、ソルビトールテトライソクロトネートなどが挙げられる。
前記マレイン酸と前記脂肪族多価アルコール化合物とのエステル(マレイン酸エステル)としては、例えば、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリトリトールジマレート、ソルビトールテトラマレートなどが挙げられる。
前記多価アミン化合物と前記不飽和カルボン酸類から誘導されるアミドとしては、例えば、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、1,6−ヘキサメチレンビス(メタ)アクリルアミド、オクタメチレンビス(メタ)アクリルアミド、ジエチレントリアミントリス(メタ)アクリルアミド、ジエチレントリアミンビス(メタ)アクリルアミド、などが挙げられる。
また、上記以外にも、前記重合性モノマーとして、例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等のグリシジル基含有化合物にα,β−不飽和カルボン酸を付加して得られる化合物、特開昭48−64183号、特公昭49−43191号、特公昭52−30490号各公報に記載されているようなポリエステルアクリレートやポリエステル(メタ)アクリレートオリゴマー類、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテルなど)と(メタ)アクリル酸を反応させたエポキシアクリレート類等の多官能のアクリレートやメタクリレート、日本接着協会誌vol.20、No.7、300〜308ページ(1984年)に記載の光硬化性モノマー及びオリゴマー、アリルエステル(例えば、フタル酸ジアリル、アジピン酸ジアリル、マロン酸ジアリル、ジアリルアミド(例えば、ジアリルアセトアミド等)、カチオン重合性のジビニルエーテル類(例えば、ブタンジオール−1,4−ジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリトリトールテトラビニルエーテル、グリセリントリビニルエーテル等)、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等)、オキセタン類(例えば、1,4−ビス〔(3−エチルー3−オキセタニルメトキシ)メチル〕ベンゼン等)、エポキシ化合物、オキセタン類(例えば、WO01/22165号公報に記載の化合物)、N−β−ヒドロキシエチル−β−(メタクリルアミド)エチルアクリレート、N,N−ビス(β−メタクリロキシエチル)アクリルアミド、アリルメタクリレート等の異なったエチレン性不飽和二重結合を2個以上有する化合物などが挙げられる。
前記ビニルエステル類としては、例えば、ジビニルサクシネート、ジビニルアジペートなどが挙げられる。
これらの多官能モノマー又はオリゴマーは、1種単独で使用してもよく、2種以上を併用してもよい。
前記重合性モノマーは、必要に応じて、分子内に重合性基を1個有する重合性化合物(単官能モノマー)を併用してもよい。
前記単官能モノマーとしては、例えば、前記バインダーの原料として例示した化合物、特開平6−236031号公報に記載されている2塩基のモノ((メタ)アクリロイルオキシアルキルエステル)モノ(ハロヒドロキシアルキルエステル)等の単官能モノマー(例えば、γ−クロロ−β−ヒドロキシプロピル−β′−メタクリロイルオキシエチル−o−フタレート等)、特許2744643号公報、WO00/52529号パンフレット、特許2548016号公報等に記載の化合物が挙げられる。
前記重合性化合物の組み合わせとしては、感度が高く、露光量を変動した場合の解像度等のばらつきが少ない観点から、分子内に重合性基を2個有する重合性化合物の少なくとも1種と、分子内に重合性基を3個以上有する重合性化合物の少なくとも1種との組み合わせ、及び、分子内に重合性基を2個有する重合性化合物の少なくとも1種と、分子内に重合性基を1個有する重合性化合物の少なくとも1種の組み合わせの少なくともいずれかが好ましい。
前記感光性組成物における重合性化合物の含有量は、例えば、5〜90質量%が好ましく、15〜60質量%がより好ましく、20〜50質量%が特に好ましい。
前記含有量が、5質量%未満となると、テント膜の強度が低下することがあり、90質量%を超えると、前記パターン形成材料の保存時のエッジフュージョン(ロール端部からのしみだし故障)が悪化することがある。
また、重合性化合物中に前記重合性基を2個以上有する多官能モノマーの含有量は、5〜100質量%が好ましく、20〜100質量%がより好ましく、40〜100質量%が特に好ましい。
−光重合開始系化合物−
前記光重合開始系化合物としては、前記縮環系化合物である前記増感剤を少なくとも含み、更に、後述する光重合開始剤(ラジカル発生剤、及び水素供与体等)を含んでなる。
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、光励起された前記増感剤と何らかの作用を生じ、活性ラジカルを生成するラジカル発生剤、モノマーの種類に応じてカチオン重合を開始させるような開始剤等を含んでいてもよい。
前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの等)、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタロセン類などが挙げられる。これらの中でも、感光層の感度、保存性、及び感光層とプリント配線板形成用基板との密着性等の観点から、トリアジン骨格を有するハロゲン化炭化水素、オキシム誘導体、ケトン化合物、ヘキサアリールビイミダゾール系化合物が好ましい。
前記ヘキサアリールビイミダゾールとしては、例えば、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(o−フロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−ブロモフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2,4−ジクロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラ(3−メトキシフェニル)ビイミダゾール、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラ(4−メトキシフェニル)ビイミダゾール、2,2′−ビス(4−メトキシフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2,4−ジクロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−ニトロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−メチルフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−トリフルオロメチルフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、WO00/52529号公報に記載の化合物などが挙げられる。
前記ビイミダゾール類は、例えば、Bull.Chem.Soc.Japan,33,565(1960)、及びJ.Org.Chem,36(16)2262(1971)に開示されている方法により容易に合成することができる。
トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物が挙げられる。
前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。
前記米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。
本発明で好適に用いられるオキシム誘導体としては、例えば、下記構造式(36)〜(69)で表される化合物が挙げられる。
前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシー2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。
前記メタロセン類としては、例えば、ビス(η−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフロロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、η−シクロペンタジエニル−η−クメニル−アイアン(1+)−ヘキサフロロホスフェート(1−)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。
前記アシルホスフィンオキシド化合物としては、例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキシド、LucirinTPOなどが挙げられる。
また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9、9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB,ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)などが挙げられる。
更に、米国特許第2367660号明細書に記載されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載されているα−炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書及び同第2951758号明細書に記載の多核キノン化合物、特開2002−229194号公報に記載の有機ホウ素化合物、ラジカル発生剤、トリアリールスルホニウム塩(例えば、ヘキサフロロアンチモンやヘキサフロロホスフェートとの塩)、ホスホニウム塩化合物(例えば、(フェニルチオフェニル)ジフェニルスルホニウム塩等)(カチオン重合開始剤として有効)、WO01/71428号公報記載のオニウム塩化合物などが挙げられる。
前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。2種以上の組合せとしては、例えば、米国特許第3549367号明細書に記載のヘキサアリールビイミダゾールと4−アミノケトン類との組合せ、特公昭51−48516号公報に記載のベンゾチアゾール化合物とトリハロメチル−s−トリアジン化合物の組合せ、また、芳香族ケトン化合物(例えば、チオキサントン等)と水素供与体(例えば、ジアルキルアミノ含有化合物、フェノール化合物等)の組合せ、ヘキサアリールビイミダゾールとチタノセンとの組合せ、クマリン類とチタノセンとフェニルグリシン類との組合せなどが挙げられる。
前記光重合開始剤の含有量は、前記感光性組成物中0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。
−増感剤−
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
前記増感剤は、既に述べたように、芳香族環や複素環が縮環した化合物(縮環系化合物)の少なくとも1種である。前記増感剤として、縮環系化合物以外を使用すると、感度が低下するという弊害がある。
前記縮環系化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アクリドン系化合物、チオキサントン系化合物、アクリジン系化合物、などが好ましい。
−−アクリドン化合物−−
前記アクリドン系化合物は、下記一般式(I)で表される化合物であることが好ましい。
前記一般式(I)中、R、R、R、R、R、R、R、及びRは、それぞれ独立して、水素原子、及び一価の置換基のいずれかを表し、Rは、脂肪族基、及び芳香族基のいずれかを表す。
また、互いに隣り合う基は結合して環を形成していてもよい。
前記一般式(I)中、前記一価の置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ヒドロキシエチル基、トリフルオロメチル基、ベンジル基、スルホプロピル基、ジエチルアミノエチル基、シアノプロピル基、アダマンチル基、p−クロロフェネチル基、エトキシエチル基、エチルチオエチル基、フェノキシエチル基、カルバモイルエチル基、カルボキシエチル基、エトキシカルボニルメチル基、アセチルアミノエチル基等)、アルケニル基(例えば、アリル基、スチリル基等)、アリール基(例えば、フェニル基、ナフチル基、p−カルボキシフェニル基、3,5−ジカルボキシフェニル基、m−スルホフェニル基、p−アセトアミドフェニル基、3−カプリルアミドフェニル基、p−スルファモイルフェニル基、m−ヒドロキシフェニル基、p−ニトロフェニル基、3,5−ジクロロフェニル基、p−アニシル基、o−アニシル基、p−シアノフェニル基、p−N−メチルウレイドフェニル基、m−フルオロフェニル基、p−トリル基、m−トリル基等)、ヘテロ環基(例えば、ピリジル基、5−メチル−2−ピリジル基、チエニル基等)、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子等)、メルカプト基、シアノ基、カルボキシル基、スルホ基、ヒドロキシ基、カルバモイル基、スルファモイル基、ニトロ基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−メトキシエトキシ基、2−フェニルエトキシ基等)、アリーロキシ基(例えば、フェノキシ基、p−メチルフェノキシ基、p−クロロフェノシキ基、α−ナフトキシ基等)、アシル基(例えば、アセチル基、ベンゾイル基等)、アシルアミノ基(例えば、アセチルアミノ基、カプロイルアミノ基等)、スルホニル基(例えば、メタンスルホニル基、ベンゼンスルホニル基等)、スルホニルアミノ基(例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基等)、アミノ基(例えば、ジエチルアミノ基、ヒドロキシアミノ基等)、アルキルチオ基又はアリールチオ基(例えば、メチルチオ基、カルボキシエチル基、スルホブチルチオ基、フェニルチオ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基)、アリーロキシカルボニル基(例えば、フェノキシカルボニル基等)などが挙げられる。これらは、更に置換基を有していてもよい。
前記一般式(I)中、Rとしては、アルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、アシル基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリーロキシカルボニル基が好ましく、アルキル基、アリール基、アルケニル基、アシル基が特に好ましい。これらは、さらに置換基を有していてもよい。
前記アクリドン系化合物としては、具体的には、N−メチルアクリドン、1−クロル−N−メチルアクリドン、1−ブロム−N−メチルアクリドン、2−クロル−N−メチルアクリドン、3−クロル−N−メチルアクリドン、4−クロル−N−メチルアクリドン、2−クロル−N−(2−フェノキシエチル)アクリドン、3−クロル−N−(n−ブチル)アクリドン、2,3−ジクロル−N−メチルアクリドン、2,6−ジクロル−N−メチルアクリドン、2−クロル−6−ブロム−N−メチルアクリドン、2−クロル−N−エチルアクリドン、2−クロル−N−(n−ブチル)アクリドン、2,6−ジクロル−N−(n−ブチル)アクリドン、2,7−ジクロル−N−(n−ブチル)アクリドン、2,7−ジブロム−N−(n−ブチル)アクリドン、2−ブロム−N−オクチルアクリドン、2−クロル−N−アリルアクリドン、3−クロル−N−ベンジルアクリドン、2,3−ジエトキシ−N−(n−ブチル)アクリドン、2−フェニル−N−(n−ブチル)アクリドン、2−エトキシカルボニル−N−(n−ブチル)アクリドン、N−フェニルアクリドン、2−フェノキシカルボニル−N−(n−ブチル)アクリドン、2−シアノ−N−(n−ブチル)アクリドン、2−メチルスルホニル−N−(n−ブチル)アクリドン、2,7−ビス(エトキシカルボニル)−N−(n−ブチル)アクリドン、N−(n−ブチル)−1,2−ベンズアクリドン、N−(n−ブチル)−2,3−ベンズアクリドン、アクリドン、2−(N,N−ジエチルアミノ)−N’−エチルアクリドン、3,6−ビス(N,N−ジエチルアミノ)−N’−エチルアクリドン、2−フェノキシカルボニル−N−(2−メトキシエチル)アクリドン、2,4,5,7−テトラクロロ−N−メチルアクリドン、N−エトキシカルボニルメチルアクリドン、3−トリフルオロメチル−N−(n−ヘキシル)アクリドン、4,5−ジクロロアクリドン、N−(n−ブチル)−3,4−ベンズアクリドン、2−ベンゾイル−N−(n−ヘキシル)アクリドン、2−フェノキシ−N−(2−ヒドロキシエチル)アクリドン、2−フェニルチオ−N−エチルアクリドン、2−クロロ−N−プロパルギルアクリドン、3−ヒドロキシカルボニル−N−(n−ブチル)アクリドン、2,3−ビス(フェノキシカルボニル)−N−(n−ブチル)アクリドン、2,4,5,7−テトラブロム−N−メチルアクリドン、N−メチルチオアクリドン、N−n−ブチルチオアクリドン、N−n−ブチル−2−メトキシチオアクリドン、N−n−ブチル−2−クロロチオアクリドン、N−n−ブチル−2,7−ジクロロチオアクリドン、N−エチル−3−ジエチルアミノチオアクリドン、N−n−ブチル−2−ベンゾイルチオアクリドン、N−(n−ブチル)−1,2−ベンゾチオアクリドン、N−(2−ジエチルアミノエチル)−2−ブロモチオアクリドン、N−メチル−2,3−ジエトキシチオアクリドン、10−n−ブチル−9,10−ジヒドロアクリジン−9−イリデン−エチルアミン、10−n−ヘキシル−9,10−ジヒドロアクリジン−9−イリデン−ベンジルアミン、10−(2−メトキシエチル)−9,10−ジヒドロアクリジン−9−イリデン−n−ブチルアミン、10−エチル−2−ベンゾイル−9,10−ジヒドロアクリジン−9−イリデン−エトキシアミン、10−n−ブチル−2−メチル−9,10−ジヒドロアクリジン−9−イリデン−アニリン、10−n−ヘキシル−3−クロロ−9,10−ジヒドロアクリジン−9−イリデン−プロパノイルアミド、10−エチル−9,10−ジヒドロアクリジン−9−イリデン−ベンゾイルオキシアミン、10−メチル−9,10−ジヒドロアクリジン−9−イリデン−p−トルエンスルホニルオキシアミン、10−エチル−2−フェノキシカルボニル−9,10−ジヒドロアクリジン−9−イリデン−フェニルカルバモイルオキシアミン、10−フェニル−9,10−ジヒドロアクリジン−9−イリデン−エトキシカルボニルオキシアミンなどが好適に挙げられ、これらの中でも、2−クロル−N−(n−ブチル)アクリドンやN−メチルアクリドンがより好適に挙げられる
−−チオキサントン系化合物−−
前記チオキサントン系化合物としては、下記一般式(II)で表される化合物であることが好ましい。
前記一般式(II)中、R、R、R、R、R、R、R、及びRは、前記一般式(I)におけるR〜Rと同じ意を表す。
前記チオキサントン化合物としては、具体的には、イソプロピルチオキサントン、1−クロロ−4−プロピルオキシチオキサントンなどが好適に挙げられる。
−−アクリジン化合物−−
前記アクリジン系化合物としては、例えば、例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン、9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタンなどが挙げられる。
前記感光性組成物における増感剤の含有量は、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。
−その他の成分−
前記回路形成用レジストとしての感光性組成物におけるその他の成分としては、例えば、公知の熱重合禁止剤、界面活性剤、可塑剤、発色剤、着色剤などが挙げられ、更に基体表面への密着促進剤及びその他の助剤類(例えば、顔料、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、熱架橋剤、表面張力調整剤、連鎖移動剤等)を併用してもよい。これらの成分を適宜含有させることにより、目的とする前記感光層(前記パターン形成材料)の安定性、写真性、焼きだし性、膜物性等の性質を調整することもできる。
−−熱重合禁止剤−−
前記熱重合禁止剤は、前記感光性組成物からなる前記感光層における前記重合性化合物の熱的な重合又は経時的な重合を防止するために添加してもよい。
前記熱重合禁止剤としては、例えば、4−メトキシフェノール、ハイドロキノン、アルキルまたはアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレート、などが挙げられる。
前記熱重合禁止剤の含有量は、前記重合性化合物に対して0.001〜5質量%が好ましく、0.005〜2質量%がより好ましく、0.01〜1質量%が特に好ましい。
前記含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
−−可塑剤−−
前記可塑剤は、前記感光性組成物からなる感光層の膜物性(可撓性)をコントロールするために添加してもよい。
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジフェニルフタレート、ジアリルフタレート、オクチルカプリールフタレート等のフタル酸エステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート、ジメチルグリコースフタレート、エチルフタリールエチルグリコレート、メチルフタリールエチルグリコレート、ブチルフタリールブチルグリコレート、トリエチレングリコールジカブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフェニルホスフェート等のリン酸エステル類;4−トルエンスルホンアミド、ベンゼンスルホンアミド、N−n−ブチルベンゼンスルホンアミド、N−n−ブチルアセトアミド等のアミド類;ジイソブチルアジペート、ジオクチルアジペート、ジメチルセバケート、ジブチルセパケート、ジオクチルセパケート、ジオクチルアゼレート、ジブチルマレート等の脂肪族二塩基酸エステル類;クエン酸トリエチル、クエン酸トリブチル、グリセリントリアセチルエステル、ラウリン酸ブチル、4,5−ジエポキシシクロヘキサン−1,2−ジカルボン酸ジオクチル等、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。
前記可塑剤の含有量は、前記感光性組成物の全成分に対して0.1〜50質量%が好ましく、0.5〜40質量%がより好ましく、1〜30質量%が特に好ましい。
−−発色剤−−
前記発色剤は、露光後の前記感光層に可視像を与える(焼きだし機能)ために添加してもよい。
前記発色剤としては、例えば、トリス(4−ジメチルアミノフェニル)メタン(ロイコクリスタルバイオレット)、トリス(4−ジエチルアミノフェニル)メタン、トリス(4−ジメチルアミノ−2−メチルフェニル)メタン、トリス(4−ジエチルアミノ−2−メチルフェニル)メタン、ビス(4−ジブチルアミノフェニル)−〔4−(2−シアノエチル)メチルアミノフェニル〕メタン、ビス(4−ジメチルアミノフェニル)−2−キノリルメタン、トリス(4−ジプロピルアミノフェニル)メタン等のアミノトリアリールメタン類;3,6−ビス(ジメチルアミノ)−9−フェニルキサンチン、3−アミノ−6−ジメチルアミノ−2−メチル−9−(2−クロロフェニル)キサンチン等のアミノキサンチン類;3,6−ビス(ジエチルアミノ)−9−(2−エトキシカルボニルフェニル)チオキサンテン、3,6−ビス(ジメチルアミノ)チオキサンテン等のアミノチオキサンテン類;3,6−ビス(ジエチルアミノ)−9,10−ジヒドロ−9−フェニルアクリジン、3,6−ビス(ベンジルアミノ)−9,10−ジビドロ−9−メチルアクリジン等のアミノ−9,10−ジヒドロアクリジン類;3,7−ビス(ジエチルアミノ)フェノキサジン等のアミノフェノキサジン類;3,7−ビス(エチルアミノ)フェノチアゾン等のアミノフェノチアジン類;3,7−ビス(ジエチルアミノ)−5−ヘキシル−5,10−ジヒドロフェナジン等のアミノジヒドロフェナジン類;ビス(4−ジメチルアミノフェニル)アニリノメタン等のアミノフェニルメタン類;4−アミノ−4’−ジメチルアミノジフェニルアミン、4−アミノ−α、β−ジシアノヒドロケイ皮酸メチルエステル等のアミノヒドロケイ皮酸類;1−(2−ナフチル)−2−フェニルヒドラジン等のヒドラジン類;1,4−ビス(エチルアミノ)−2,3−ジヒドロアントラキノン類のアミノ−2,3−ジヒドロアントラキノン類;N,N−ジエチル−4−フェネチルアニリン等のフェネチルアニリン類;10−アセチル−3,7−ビス(ジメチルアミノ)フェノチアジン等の塩基性NHを含むロイコ色素のアシル誘導体;トリス(4−ジエチルアミノ−2−トリル)エトキシカルボニルメンタン等の酸化しうる水素をもっていないが、発色化合物に酸化しうるロイコ様化合物;ロイコインジゴイド色素;米国特許3,042,515号及び同第3,042,517号に記載されているような発色形に酸化しうるような有機アミン類(例、4,4’−エチレンジアミン、ジフェニルアミン、N,N−ジメチルアニリン、4,4’−メチレンジアミントリフェニルアミン、N−ビニルカルバゾール)が挙げられ、これらの中でも、ロイコクリスタルバイオレット等のトリアリールメタン系化合物が好ましい。
更に、前記発色剤は、前記ロイコ体を発色させるためなどの目的で、ハロゲン化合物と組み合わせることが一般に知られている。
前記ハロゲン化合物としては、例えば、ハロゲン化炭化水素(例えば、四臭化炭素、ヨードホルム、臭化エチレン、臭化メチレン、臭化アミル、臭化イソアミル、ヨウ化アミル、臭化イソブチレン、ヨウ化ブチル、臭化ジフェニルメチル、ヘキサクロロエタン、1,2−ジブロモエタン、1,1,2,2−テトラブロモエタン、1,2−ジブロモ−1,1,2−トリクロロエタン、1,2,3トリブロモプロパン、1−ブロモ−4−クロロブタン、1,2,3,4−テトラブロモブタン、テトラクロロシクロプロペン、ヘキサクロロシクロペンタジエン、ジブロモシキロヘキサン、1,1,1−トリクロロ−2,2−ビス(4−クロロフェニル)エタンなど);ハロゲン化アルコール化合物(例えば、2,2,2−トリクロロエタノール、トリブロモエタノール、1,3−ジクロロ−2−プロパノール、1,1,1−トリクロロ−2−プロパノール、ジ(ヨードヘキサメチレン)アミノイソプロパノール、トリブロモ−t−ブチルアルコール、2,2,3−トリクロロブタン−1,4−ジオールなど);ハロゲン化カルボニル化合物(例えば1,1−ジクロロアセトン、1,3−ジクロロアセトン、ヘキサクロロアセトン、ヘキサブロモアセトン、1,1,3,3−テトラクロロアセトン、1,1,1−トリクロロアセトン、3,4−ジブロモ−2−ブタノン、1,4−ジクロロ−2−ブタノン−ジブロモシクロヘキサノン等);ハロゲン化エーテル化合物(例えば2−ブロモエチルメチルエーテル、2−ブロモエチルエチルエーテル、ジ(2−ブロモエチル)エーテル、1,2−ジクロロエチルエチルエーテル等);ハロゲン化エステル化合物(例えば、酢酸ブロモエチル、トリクロロ酢酸エチル、トリクロロ酢酸トリクロロエチル、2,3−ジブロモプロピルアクリレートのホモポリマー及び共重合体、ジブロモプロピオン酸トリクロロエチル、α,β−ジグロロアクリル酸エチル等);ハロゲン化アミド化合物(例えば、クロロアセトアミド、ブロモアセトアミド、ジクロロアセトアミド、トリクロロアセトアミド、トリブロモアセトアミド、トリクロロエチルトリクロロアセトアミド、2−ブロモイソプロピオンアミド、2,2,2−トリクロロプロピオンアミド、N−クロロスクシンイミド、N−ブロモスクシンイミドなど);硫黄やリンを有する化合物(例えば、トリブロモメチルフェニルスルホン、4−ニトロフェニルトリブロモメチルスルホン、4−クロルフェニルトリブロモメチルスルホン、トリス(2,3−ジブロモプロピル)ホスフェート等)、2,4−ビス(トリクロロメチル)6−フェニルトリアゾールなどが挙げられる。有機ハロゲン化合物では、同一炭素原子に結合した2個以上のハロゲン原子を持つハロゲン化合物が好ましく、1個の炭素原子に3個のハロゲン原子を持つハロゲン化合物がより好ましい。前記有機ハロゲン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、トリブロモメチルフェニルスルホン、2,4−ビス(トリクロロメチル)−6−フェニルトリアゾールが好ましい。
前記発色剤の含有量は、前記感光性組成物の全成分に対して0.01〜20質量%が好ましく、0.05〜10質量%がより好ましく、0.1〜5質量%が特に好ましい。また、前記ハロゲン化合物の含有量は、前記感光性組成物の全成分に対し0.001〜5質量%が好ましく、0.005〜1質量%がより好ましい。
−−着色剤−−
前記着色剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、例えば、赤色、緑色、青色、黄色、紫色、マゼンタ色、シアン色、黒色等の公知の顔料又は染料が挙げられ、具体的には、ビクトリア・ピュアーブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメントエロー12)、パーマネント・エローGR(C.I.ピグメント・エロー17)、パーマネント・エローHR(C.I.ピグメント・エロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)、ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)、モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボンブラックが挙げられる。
−−染料−−
前記感光性組成物には、取り扱い性の向上のため、又は保存安定性を付与する目的として、染料を用いることができる。
前記染料としては、ブリリアントグリーン(例えば、その硫酸塩)、エオシン、エチルバイオレット、エリスロシンB、メチルグリーン、クリスタルバイオレット、ベイシックフクシン、フェノールフタレイン、1,3−ジフェニルトリアジン、アリザリンレッドS、チモールフタレイン、メチルバイオレット2B、キナルジンレッド、ローズベンガル、メタニル−イエロー、チモールスルホフタレイン、キシレノールブルー、メチルオレンジ、オレンジIV、ジフェニルチロカルバゾン、2,7−ジクロロフルオレセイン、パラメチルレッド、コンゴーレッド、ベンゾプルプリン4B、α−ナフチル−レッド、ナイルブルーA、フェナセタリン、メチルバイオレット、マラカイトグリーン、パラフクシン、オイルブルー#603(オリエント化学工業社製)、ローダミンB、ローダミン6G、ビクトリアピュアブルーBOHなどを挙げることができ、これらの中でもカチオン染料(例えば、マラカイトグリーンシュウ酸塩、マラカイトグリーン硫酸塩等)が好ましい。該カチオン染料の対アニオンとしては、有機酸又は無機酸の残基であればよく、例えば、臭素酸、ヨウ素酸、硫酸、リン酸、シュウ酸、メタンスルホン酸、トルエンスルホン酸等の残基(アニオン)などが挙げられる。
前記染料の含有量は、前記感光性組成物の全成分に対して0.001〜10質量%が好ましく、0.01〜5質量%がより好ましく、0.1〜2質量%が特に好ましい。
−−密着促進剤−−
前記感光性組成物には、該感光性組成物を用いて形成する感光層の密着性(前記パターン形成材料としたときの他の層との密着性、又は基体との密着性)を向上させるために、各層に公知のいわゆる密着促進剤を用いることができる。
前記密着促進剤としては、例えば、特開平5−11439号公報、特開平5−341532号公報、及び特開平6−43638号公報等に記載の密着促進剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、3−モルホリノメチル−1−フェニル−トリアゾール−2−チオン、3−モルホリノメチル−5−フェニル−オキサジアゾール−2−チオン、5−アミノ−3−モルホリノメチル−チアジアゾール−2−チオン、及び2−メルカプト−5−メチルチオ−チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール、シランカップリング剤などが挙げられる。
前記密着促進剤の含有量は、前記感光性組成物の全成分に対して0.001質量%〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.1質量%〜5質量%が特に好ましい。
また、前記感光性組成物は、例えば、J.コーサー著「ライトセンシテイブシステムズ」第5章に記載されているような有機硫黄化合物、過酸化物、レドックス系化合物、アゾ又はジアゾ化合物、光還元性色素、有機ハロゲン化合物などを含んでいてもよい。
前記有機硫黄化合物としては、例えば、ジ−n−ブチルジサルファイド、ジベンジルジサルファイド、2−メルカプトベンズチアゾール、2−メルカプトベンズオキサゾール、チオフェノール、エチルトリクロロメタンスルフェネート、2−メルカプトベンズイミダゾールなどが挙げられる。
前記過酸化物としては、例えば、ジ−t−ブチルパーオキサイド、過酸化ベンゾイル、メチルエチルケトンパーオキサイドを挙げることができる。
前記レドックス化合物は、過酸化物と還元剤の組合せからなるものであり、第一鉄イオンと過硫酸イオン、第二鉄イオンと過酸化物などを挙げることができる。
前記アゾ及びジアゾ化合物としては、例えば、α,α’−アゾビスイリブチロニトリル、2−アゾビス−2−メチルブチロニトリル、4−アミノジフェニルアミンのジアゾニウム類が挙げられる。
前記光還元性色素としては、例えば、ローズベンガル、エリスロシン、エオシン、アクリフラビン、リポフラビン、チオニンが挙げられる。
−−界面活性剤−−
前記感光性組成物は、前記感光層を形成する際に発生する面状ムラを改善させるために、公知の界面活性剤を添加することができる。
前記界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤、フッ素含有界面活性剤などから適宜選択できる。
前記界面活性剤の含有量は、前記感光性組成物の固形分に対し、0.001〜10質量%が好ましい。
前記含有量が、0.001質量%未満になると、面状改良の効果が得られなくことがあり、10質量%を超えると、密着性が低下することがある。
前記界面活性剤としては、上述の界面活性剤の他、フッ素系の界面活性剤として、炭素鎖3〜20でフッ素原子を40質量%以上含み、かつ、非結合末端から数えて少なくとも3個の炭素原子に結合した水素原子がフッ素置換されているフルオロ脂肪族基を有するアクリレート又はメタクリレートを共重合成分として有する高分子界面活性剤も好適に挙げられる。
〔ソルダーレジスト〕
前記ソルダーレジストとしての感光性組成物としては、I/O値が0.300〜0.650であるバインダー、重合性化合物、光重合開始系化合物、及び縮環系化合物の少なくとも1種である増感剤、並びに熱架橋剤を少なくとも含み、必要に応じて、適宜選択したその他の成分を含む。
−バインダー−
前記バインダーとしては、前記I/O値が上記数値範囲内である限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、特開昭51−131706号、特開昭52−94388号、特開昭64−62375号、特開平2−97513号、特開平3−289656号、特開平61−243869号、特開2002−296776号などの各公報に記載の酸性基を有するエポキシアクリレート化合物、並びに、側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体、エポキシアクリレート化合物と側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体、無水マレイン酸共重合体などが挙げられる。
また、前記回路形成用レジストとしての感光性組成物に含まれるバインダーとして例示されたものと同様のものを用いることができる。
前記エポキシアクリレート化合物とは、エポキシ化合物由来の骨格を有し、かつ分子中にエチレン性不飽和二重結合とカルボキシル基を含有する化合物である。このような化合物は、例えば、多官能エポキシ化合物とカルボキシル基含有モノマーとを反応させ、更に多塩基酸無水物を付加させる方法などで得られる。
前記多官能エポキシ化合物としては、例えば、ビキシレノール型もしくはビスフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾ−ルノボラック型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂(例えばテトラグリシジルジアミノジフェニルメタン等)、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」等)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」等);フェノール、o−クレゾール、ナフトール等のフェノール化合物と、フェノール性水酸基を有する芳香族アルデヒドとの縮合反応により得られるポリフェノール化合物とエピクロルヒドリンとの反応物;フェノール化合物とジビニルベンゼンやジシクロペンタジエン等のジオレフィン化合物との付加反応によって得られるポリフェノール化合物と、エピクロルヒドリンとの反応物;4−ビニルシクロヘキセン−1−オキサイドの開環重合物を過酢酸等でエポキシ化したもの;トリグリシジルイソシアヌレート等の複素環を有するエポキシ樹脂;グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂;フェノール及びクレゾールから選択される1種とp−ヒドロキシベンズアルデヒド縮合体をグリシジルエーテル化したエポキシ樹脂;ビス(グリシジルオキシフェニル)フルオレン型エポキシ樹脂;、ビス(グリシジルオキシフェニル)アダマンタン型エポキシ樹脂、などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
またカルボキシル基含有モノマーの例としては、例えば(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、ソルビン酸、α−シアノ桂皮酸、アクリル酸ダイマー;この他、2−ヒドロキシエチル(メタ)アクリレート等の水酸基を有する単量体と無水マレイン酸、無水フタル酸、シクロヘキサンジカルボン酸無水物等の環状酸無水物との付加反応物;ハロゲン含有カルボン酸化合物との反応生成物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレート、などが挙げられる。さらに、市販品としては、東亜合成化学工業(株)製のアロニックスM−5300、M−5400、M−5500およびM−5600、新中村化学工業(株)製のNKエステルCB−1およびCBX−1、共栄社油脂化学工業(株)製のHOA−MPおよびHOA−MS、大阪有機化学工業(株)製のビスコート#2100などを用いることができる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
また、多塩基酸無水物としては、例えば、無水コハク酸、無水メチルコハク酸、無水2,3−ジメチルコハク酸、無水2,2−ジメチルコハク酸、無水エチルコハク酸、無水ドデセニルコハク酸、無水ノネニルコハク酸、無水マレイン酸、無水メチルマレイン酸、無水2,3−ジメチルマレイン酸、無水2−クロロマレイン酸、無水2,3−ジクロロマレイン酸、無水ブロモマレイン酸、無水イタコン酸、無水シトラコン酸、無水シスアコット酸、無水フタル酸、テトラヒドロ無水フタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水クロレンド酸および5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物などの二塩基酸無水物、無水トリメリット酸、無水ピロメリット酸、3,3′,4,4′−ベンゾフェノンテトラカルボン酸等の多塩基酸無水物なども使用できる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
それぞれを順次反応させて、エポキシアクリレートを得るが、それらを反応させる比率は、多官能エポキシ化合物のエポキシ基1当量に対して、カルボキシル基含有モノマーのカルボキシル基0.8〜1.2当量、好ましくは、0.9〜1.1当量であり、多塩基酸無水物0.1〜1.0当量、好ましくは、0.3〜1.0当量である。
また、特開平5−70528号公報記載のフルオレン骨格を有するエポキシアクリレート(カルボキシル基を有してはいない化合物)に酸無水物を付加させて得られる化合物なども本発明のエポキシアクリレートとして利用できる。
前記エポキシアクリレート化合物の分子量は、1,000〜100,000が好ましく、2,000〜50,000がより好ましい。該分子量が1,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、100,000を超えると、現像性が劣化することがある。また樹脂の合成も困難となる。
また、特開平6−295060号公報記載の酸性基、二重結合等の重合可能な基を少なくとも1つ有するアクリル樹脂も用いることができる。具体的には、分子内に少なくとも1つの重合可能な二重結合、例えば、(メタ)アクリレート基又は(メタ)アクリルアミド基等のアクリル基、カルボン酸のビニルエステル、ビニルエーテル、アリルエーテル等の各種重合性二重結合を用いることができる。より具体的には、酸性基としてカルボキシル基を含有するアクリル樹脂に、グリシジルアクリレート、グリシジルメタクリレート、桂皮酸等の不飽和脂肪酸のグリシジルエステルや、同一分子中にシクロヘキセンオキシド等のエポキシ基と(メタ)アクリロイル基を有する化合物等のエポキシ基含有の重合性化合物を付加させて得られる化合物などが挙げられる。また、酸性基及び水酸基を含有するアクリル樹脂に、イソシアナートエチル(メタ)アクリレート等のイソシアネート基含有の重合性化合物を付加させて得られる化合物、無水物基を含有するアクリル樹脂に、ヒドロキシアルキル(メタ)アクリレート等の水酸基を含有する重合性化合物を付加させて得られる化合物なども挙げられる。
さらに、前記バインダーとしては、側鎖に(メタ)アクリロイル基、及び酸性基を有するビニル共重合体を用いることができ、具体的には、例えば(1)酸性基を有するビニルモノマー、(2)必要に応じて後述する高分子反応に利用可能な官能基を有するビニルモノマー、及び(3)必要に応じてその他の共重合可能なビニルモノマーのビニル(共)重合で得られた(共)重合体を合成し、更に(4)該(共)重合体中の酸性基、又は高分子反応に利用可能な官能基の少なくとも1種に対して反応性を有する官能基と(メタ)アクリロイル基を有する化合物とを高分子反応させることによって得られる。
前記(1)酸性基を有するビニルモノマーの酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。またこれらのモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
前記(2)の高分子反応に利用可能な官能基を有するビニルモノマーにおける、高分子反応に利用可能な官能基としては水酸基、アミノ基、イソシアネート基、エポキシ基、酸ハライド基、活性ハライド基、などが挙げられる。また前述(1)のカルボシキル基や酸無水物基も利用可能な官能基として挙げられる。
前記水酸基を有するビニルモノマーとしては、例えば、前記構造式(7)〜(15)で表される化合物が挙げられる。
前記アミノ基を有するビニルモノマーとしては、例えば、ビニルベンジルアミン、アミノエチルメタクリレート、などが挙げられる。
前記イソシアネート基を有するモノマーとしては、例えば、前記構造式(4)〜(6)で表される化合物が挙げられる。
前記エポキシ基を有するビニルモノマーとしては、例えば、グリシジル(メタ)アクリレート、下記構造式(70)で表される化合物などが挙げられる。
但し、前記構造式(70)中、R´は、水素原子及びメチル基のいずれかを表す。
前記酸ハライド基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸クロリド、などが挙げられる。
前記活性ハライド基を有するビニルモノマーとしては、例えば、クロロメチルスチレン、などが挙げられる。
また、前記各モノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
前記(3)の必要に応じて用いられるその他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類(例えば、スチレン、スチレン誘導体等)、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、イミド基)を有するビニルモノマーなどが挙げられる。
前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。
前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。
前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。
前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。
前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。
前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。
前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。
前記スチレン類としては、例えば、前記スチレン、前記スチレン誘導体(例えば、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、酸性物質により脱保護可能な基(例えば、t−Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレン等)、などが挙げられる。
前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。
前記官能基としてウレタン基又はウレア基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。
前記イソシアナート基を有するモノマーとしては、例えば、前述の(2)に示したものと同様に、前記構造式(4)〜(6)で表される化合物が挙げられる。
前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。
前記水酸基を有するモノマーとしては、例えば、前述の(2)に示したものと同様に、前記構造式(7)〜(15)で表される化合物が挙げられる。
前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フロロエタノール、トリフロロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノール等が挙げられる。
前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。
前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i−プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフロロエチルアミン、ヘキサフロロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。
また、これらのモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
これらをビニル(共)重合させることにより酸性基、酸無水物基および必要に応じて水酸基、アミノ基、イソシアネート基、エポキシ基、酸ハライド基、活性ハライド基などを含有する(共)重合体が得られる。前記ビニル(共)重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。
このようにして得られた(共)重合体に対して、前記(4)として、これらの共重合体中の酸性基、および必要に応じて水酸基、アミノ基、イソシアネート基、グリシジル基、酸ハライド基の少なくとも1種に対して反応性を有する官能基と(メタ)アクリロイル基を有する化合物とを高分子反応させることによって得られる。
前記(4)の(共)重合体中の酸性基、又は高分子反応に利用可能な官能基の少なくとも1種に対して反応性を有する官能基と(メタ)アクリロイル基を有する化合物としては、前述の(2)に示した化合物などが利用できる。
これらの高分子反応を行なう場合の官能基の組合せの例としては、例えば、酸性基(カルボキシル基など)を有する共重合体とエポキシ基を有するビニルモノマーの組合せ、アミノ基を有する共重合体とエポキシ基を有するビニルモノマーの組合せ、アミノ基を有する共重合体とイソシアネート基を有するビニルモノマーの組合せ、水酸基を有する共重合体とイソシアネート基を有するビニルモノマーの組合せ、水酸基を有する共重合体と酸ハライド基を有するビニルモノマーの組合せ、アミノ基を有する共重合体と活性ハライド基を有するビニルモノマーの組合わせ、酸無水物基を有する共重合体と水酸基を有するビニルモノマーの組合せ、イソシアネート基を有する共重合体とアミノ基を有するビニルモノマーの組合せ、イソシアネート基を有する共重合体と水酸基を有するビニルモノマーの組合せ、活性ハライド基を有する共重合体とアミノ基を有するビニルモノマーの組合わせ、などが挙げられる。またこれらの組合せは2種以上を併用しても構わない。
前記バインダーの市販品としては、例えば、「カネカレジンAXE;鐘淵化学工業(株)製」、「サイクロマー(CYCLOMER) A−200;ダイセル化学工業(株)製」、「サイクロマー(CYCLOMER) M−200;ダイセル化学工業(株)製」、「SPCP1X、SPCP2X、SPCP3X;昭和高分子(株)製」などを用いることができる。
更に、特開昭50−59315号公報記載のヒドロキシアルキルアクリレート又はヒドロキシアルキルメタクリレートとポリカルボン酸無水物及びエピハロヒドリンのいずれかとの反応物などを用いることができる。
また、特開平5−70528号公報記載のフルオレン骨格を有するエポキシアクリレートに酸無水物を付加させて得られる化合物、特開平11−288087号公報記載のポリアミド(イミド)樹脂、特開平2−097502号公報や特開平11−282155号公報記載のポリイミド前駆体などを用いることができる。これらは1種単独で使用してもよいし、2種以上を混合して使用してもよい。
前記アクリル樹脂、フルオレン骨格を有するエポキシアクリレート、ポリアミド(イミド)、アミド基含有スチレン/酸無水物共重合体、あるいは、ポリイミド前駆体などのバインダーの分子量は、3,000〜500,000が好ましく、5,000〜100,000がより好ましい。該分子量が3,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、500,000を超えると、現像性が劣化することがある。
前記バインダーとしては、無水マレイン酸共重合体の無水物基に対して1級アミン化合物を1種以上反応させて得られる共重合体も利用できる。該共重合体は下記構造式(71)で表される、マレイン酸ハーフアミド構造を有するマレアミド酸ユニットBと、前記マレイン酸ハーフアミド構造を有しないユニットAと、を少なくとも含むマレアミド酸系共重合体であるのが好ましい。
前記ユニットAは1種であってもよいし、2種以上であってもよい。例えば、前記ユニットBが1種であるとすると、前記ユニットAが1種である場合には、前記マレアミド酸系共重合体が2元共重合体を意味することになり、前記ユニットAが2種である場合には、前記マレアミド酸系共重合体が3元共重合体を意味することになる。
前記ユニットAとしては、置換基を有していてもよいアリール基と、後述するビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体(c)との組合せが好適に挙げられる。
ただし、前記構造式(71)中、R93及びR94は水素原子及び低級アルキル基のいずれかを表す。x及びyは繰り返し単位のモル分率を表し、例えば、前記ユニットAが1種の場合、xは85〜50モル%であり、yは15〜50モル%である。
前記構造式(71)中、R91としては、例えば、(−COOR95)、(−CONR9697)、置換基を有していてもよいアリール基、(−OCOR98)、(−OR99)、(−COR100)などの置換基が挙げられる。ここで、前記R95〜R100は、水素原子(−H)、置換基を有していてもよいアルキル基、アリール基及びアラルキル基のいずれかを表す。該アルキル基、アリール基及びアラルキル基は、環状構造又は分岐構造を有していてもよい。
前記R95〜R100としては、例えば、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、t−ブチル、ペンチル、アリル、n−ヘキシル、シクロへキシル、2−エチルヘキシル、ドデシル、メトキシエチル、フェニル、メチルフェニル、メトキシフェニル、ベンジル、フェネチル、ナフチル、クロロフェニルなどが挙げられる。
前記R91の具体例としては、例えば、フェニル、α−メチルフェニル、2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、2,4−ジメチルフェニル等のベンゼン誘導体;n−プロピルオキシカルボニル、n−ブチルオキシカルボニル、ペンチルオキシカルボニル、ヘキシルオキシカルボニル、n−ブチルオキシカルボニル、n−ヘキシルオキシカルボニル、2−エチルヘキシルオキシカルボニル、メチルオキシカルボニルなどが挙げられる。
前記R92としては、置換基を有していてもよいアルキル基、アリール基、アラルキル基などが挙げられる。これらは、環状構造又は分岐構造を有していてもよい。前記R92の具体例としては、例えば、ベンジル、フェネチル、3−フェニル−1−プロピル、4−フェニル−1−ブチル、5−フェニル−1−ペンチル、6−フェニル−1−ヘキシル、α−メチルベンジル、2−メチルベンジル、3−メチルベンジル、4−メチルベンジル、2−(p−トリル)エチル、β―メチルフェネチル、1−メチル−3−フェニルプロピル、2−クロロベンジル、3−クロロベンジル、4−クロロベンジル、2−フロロベンジル、3−フロロベンジル、4−フロロベンジル、4−ブロモフェネチル、2−(2−クロロフェニル)エチル、2−(3−クロロフェニル)エチル、2−(4−クロロフェニル)エチル、2−(2−フロロフェニル)エチル、2−(3−フロロフェニル)エチル、2−(4−フロロフェニル)エチル、4−フロロ−α,α−ジメチルフェネチル、2−メトキシベンジル、3−メトキシベンジル、4−メトキシベンジル、2−エトキシベンジル、2−メトキシフェネチル、3−メトキシフェネチル、4−メトキシフェネチル、メチル、エチル、プロピル、i−プロピル、ブチル、t−ブチル、sec−ブチル、ペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ラウリル、フェニル、1−ナフチル、メトキシメチル、2−メトキシエチル、2−エトキシエチル、3−メトキシプロピル、2−ブトキシエチル、2−シクロへキシルオキシエチル、3−エトキシプロピル、3−プロポキシプロピル、3−イソプロポキシプロピルアミンなどが挙げられる。
前記バインダーは、特に、(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体と、からなる共重合体の無水物基に対して1級アミン化合物を反応させて得られる共重合体であるのが好ましい。該(a)成分と、該(b)成分と、からなる共重合体では、後述する感光層の高い表面硬度を得ることはできるものの、ラミネート性の確保が困難になることがある。また、該(a)成分と、該(c)成分と、からなる共重合体では、ラミネート性は確保することができるものの、前記表面硬度の確保が困難になることがある。
−−(b)芳香族ビニル単量体−−
前記芳香族ビニル単量体としては、特に制限はなく、目的に応じて適宜選択することができるが、本発明のパターン形成材料を用いて形成される感光層の表面硬度を高くすることができる点で、ホモポリマーのガラス転移温度(Tg)が80℃以上である化合物が好ましく、100℃以上である化合物がより好ましい。
前記芳香族ビニル単量体の具体例としては、例えば、スチレン(ホモポリマーのTg=100℃)、α−メチルスチレン(ホモポリマーのTg=168℃)、2−メチルスチレン(ホモポリマーのTg=136℃)、3−メチルスチレン(ホモポリマーのTg=97℃)、4−メチルスチレン(ホモポリマーのTg=93℃)、2,4−ジメチルスチレン(ホモポリマーのTg=112℃)などのスチレン誘導体が好適に挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
−−(c)ビニル単量体−−
前記ビニル単量体は、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であることが必要であり、40℃以下が好ましく、0℃以下がより好ましい。
前記ビニル単量体としては、例えば、n−プロピルアクリレート(ホモポリマーのTg=−37℃)、n−ブチルアクリレート(ホモポリマーのTg=−54℃)、ペンチルアクリレート、あるいはヘキシルアクリレート(ホモポリマーのTg=−57℃)、n−ブチルメタクリレート(ホモポリマーのTg=−24℃)、n−ヘキシルメタクリレート(ホモポリマーのTg=−5℃)などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
−−1級アミン化合物−−
前記1級アミン化合物としては、例えば、ベンジルアミン、フェネチルアミン、3−フェニル−1−プロピルアミン、4−フェニル−1−ブチルアミン、5−フェニル−1−ペンチルアミン、6−フェニル−1−ヘキシルアミン、α−メチルベンジルアミン、2−メチルベンジルアミン、3−メチルベンジルアミン、4−メチルベンジルアミン、2−(p−トリル)エチルアミン、β−メチルフェネチルアミン、1−メチル−3−フェニルプロピルアミン、2−クロロベンジルアミン、3−クロロベンジルアミン、4−クロロベンジルアミン、2−フロロベンジルアミン、3−フロロベンジルアミン、4−フロロベンジルアミン、4−ブロモフェネチルアミン、2−(2−クロロフェニル)エチルアミン、2−(3−クロロフェニル)エチルアミン、2−(4−クロロフェニル)エチルアミン、2−(2−フロロフェニル)エチルアミン、2−(3−フロロフェニル)エチルアミン、2−(4−フロロフェニル)エチルアミン、4−フロロ−α,α−ジメチルフェネチルアミン、2−メトキシベンジルアミン、3−メトキシベンジルアミン、4−メトキシベンジルアミン、2−エトキシベンジルアミン、2−メトキシフェネチルアミン、3−メトキシフェネチルアミン、4−メトキシフェネチルアミン、メチルアミン、エチルアミン、プロピルアミン、1−プロピルアミン、ブチルアミン、t−ブチルアミン、sec−ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ラウリルアミン、アニリン、オクチルアニリン、アニシジン、4−クロルアニリン、1−ナフチルアミン、メトキシメチルアミン、2−メトキシエチルアミン、2−エトキシエチルアミン、3−メトキシプロピルアミン、2−ブトキシエチルアミン、2−シクロヘキシルオキシエチルアミン、3−エトキシプロピルアミン、3−プロポキシプロピルアミン、3−イソプロポキシプロピルアミンなどが挙げられる。これらの中でも、ベンジルアミン、フェネチルアミンが特に好ましい。
前記1級アミン化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記1級アミン化合物の反応量は、前記無水物基に対して0.1〜1.2当量であることが必要であり、0.1〜1.0当量が好ましい。該反応量が1.2当量を超えると、前記1級アミン化合物を1種以上反応させた場合に、溶解性が著しく悪化することがある。
前記(a)無水マレイン酸の前記バインダーにおける含有量は、15〜50mol%が好ましく、20〜45mol%がより好ましく、20〜40mol%が特に好ましい。該含有量が15mol%未満であると、アルカリ現像性の付与ができず、50mol%を超えると、耐アルカリ性が劣化し、また、前記共重合体の合成が困難になり、正常な永久パターンの形成を行うことができないことがある。また、この場合における、前記(b)芳香族ビニル単量体、及び(c)ホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体の前記バインダーにおける含有量は、それぞれ20〜60mol%、15〜40mol%が好ましい。該含有量が該数値範囲を満たす場合には、表面硬度及びラミネート性の両立を図ることができる。
前記アクリル樹脂、フルオレン骨格を有するエポキシアクリレート、ポリアミド(イミド)、前記無水マレイン酸共重合体の無水物基に1級アミン化合物を反応させた化合物、あるいは、ポリイミド前駆体などのバインダーの分子量は、3,000〜500,000が好ましく、5,000〜100,000がより好ましい。該分子量が3,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、500,000を超えると、現像性が劣化することがある。
前記バインダーの前記感光性組成物の固形分中の固形分含有量は、5〜80質量%が好ましく、10〜70質量%がより好ましい。該固形分含有量が、5質量%未満であると、感光層の膜強度が弱くなりやすく、該感光層の表面のタック性が悪化することがあり、50質量%を超えると、露光感度が低下することがある。
−重合性化合物−
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、前記回路形成用レジストとしての感光性組成物に含まれる重合性化合物として例示されたものと同様のものを用いることができ、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
前記(メタ)アクリル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノール等の多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48−41708号、特公昭50−6034号、特開昭51−37193号等の各公報に記載されているウレタンアクリレート類;特開昭48−64183号、特公昭49−43191号、特公昭52−30490号等の各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが特に好ましい。
前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、5〜50質量%が好ましく、10〜40質量%がより好ましい。該固形分含有量が5質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、50質量%を超えると、感光層の粘着性が強くなりすぎることがあり、好ましくない。
−光重合開始系化合物及び増感剤−
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、目的に応じて適宜選択することができ、前記回路形成用レジストとしての感光性組成物に含まれる光重合開始剤として例示されたものと同様のものを用いることができる。
前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と増感剤としての縮環系化合物とを組み合わせた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
前記光重合開始剤の前記感光性組成物中の固形分含有量は、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。
前記増感剤としては、前記回路形成用レジストの説明において既に述べた通りであり、前記回路形成用レジストとしての感光性組成物に含まれる増感剤として例示されたものと同様のものを好適に用いることができる。
前記増感剤の前記感光性組成物中の固形分含有量は、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。
−熱架橋剤−
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光層の硬化後の膜強度を改良するために、現像性等に悪影響を与えない範囲で、例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物を用いることができる。
前記1分子中に少なくとも2つのオキシラン環を有するエポキシ化合物としては、例えば、ビキシレノール型もしくはビフェノール型エポキシ樹脂(「YX4000ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾ−ルノボラック型エポキシ樹脂、ハロゲン化エポキシ樹脂(例えば低臭素化エポキシ樹脂、高ハロゲン化エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂など)、アリル基含有ビスフェノールA型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ジフェニルジメタノール型エポキシ樹脂、フェノールビフェニレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」等)、グリシジルアミン型エポキシ樹脂(ジアミノジフェニルメタン型エポキシ樹脂、ジグリシジルアニリン、トリグリシジルアミノフェノール等)、グリジジルエステル型エポキシ樹脂(フタル酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル等)ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂(3,4−エポキシシクロヘキシルメチル−3’、4’−エポキシシクロヘキサンカルボキシレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ジシクロペンタジエンジエポキシド、「GT−300、GT−400、ZEHPE3150;ダイセル化学工業製」等、)、イミド型脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(ナフトールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、4官能ナフタレン型エポキシ樹脂、市販品としては「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」等)、フェノール化合物とジビニルベンゼンやジシクロペンタジエン等のジオレフィン化合物との付加反応によって得られるポリフェノール化合物と、エピクロルヒドリンとの反応物、4−ビニルシクロヘキセン−1−オキサイドの開環重合物を過酢酸等でエポキシ化したもの、線状含リン構造を有するエポキシ樹脂、環状含リン構造を有するエポキシ樹脂、α―メチルスチルベン型液晶エポキシ樹脂、ジベンゾイルオキシベンゼン型液晶エポキシ樹脂、アゾフェニル型液晶エポキシ樹脂、アゾメチンフェニル型液晶エポキシ樹脂、ビナフチル型液晶エポキシ樹脂、アジン型エポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂、ビス(グリシジルオキシフェニル)フルオレン型エポキシ樹脂、ビス(グリシジルオキシフェニル)アダマンタン型エポキシ樹脂などが挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
また、1分子中に少なくとも2つのオキシラン環を有する前記エポキシ化合物以外に、β位にアルキル基を有するエポキシ基を少なくとも1分子中に2つ含むエポキシ化合物を用いることが出来、β位がアルキル基で置換されたエポキシ基(より具体的には、β−アルキル置換グリシジル基など)を含む化合物が特に好ましい。
前記β位にアルキル基を有するエポキシ基を少なくとも含むエポキシ化合物は、1分子中に含まれる2個以上のエポキシ基のすべてがβ−アルキル置換グリシジル基であってもよく、少なくとも1個のエポキシ基がβ−アルキル置換グリシジル基であってもよい。
前記β位にアルキル基を有するエポキシ基を含むエポキシ化合物は、室温における保存安定性の観点から、前記感光性組成物中に含まれる前記エポキシ化合物全量中における、全エポキシ基中のβ−アルキル置換グリシジル基の割合が、30%以上であるのが好ましく、40%以上であるのがより好ましく、50%以上であるのが特に好ましい。
前記β−アルキル置換グリシジル基としては、特に制限は無く、目的に応じて適宜選択することができ、例えば、β−メチルグリシジル基、β−エチルグリシジル基、β−プロピルグリシジル基、β−ブチルグリシジル基、などが挙げられ、これらの中でも、前記感光性樹脂組成物の保存安定性を向上させる観点、及び合成の容易性の観点から、β−メチルグリシジル基が好ましい。
前記β位にアルキル基を有するエポキシ基を含むエポキシ化合物としては、例えば、多価フェノール化合物とβ−アルキルエピハロヒドリンとから誘導されたエポキシ化合物が好ましい。
前記β−アルキルエピハロヒドリンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、β−メチルエピクロロヒドリン、β−メチルエピブロモヒドリン、β−メチルエピフロロヒドリン等のβ−メチルエピハロヒドリン;β−エチルエピクロロヒドリン、β−エチルエピブロモヒドリン、β−エチルエピフロロヒドリン等のβ−エチルエピハロヒドリン;β−プロピルエピクロロヒドリン、β−プロピルエピブロモヒドリン、β−プロピルエピフロロヒドリン等のβ−プロピルエピハロヒドリン;β−ブチルエピクロロヒドリン、β−ブチルエピブロモヒドリン、β−ブチルエピフロロヒドリン等のβ−ブチルエピハロヒドリン;などが挙げられる。これらの中でも、前記多価フェノールとの反応性及び流動性の観点から、β−メチルエピハロヒドリンが好ましい。
前記多価フェノール化合物としては、1分子中に2以上の芳香族性水酸基を含有する化合物であれば、特に制限は無く、目的に応じて適宜選択することができ、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール化合物、ビフェノール、テトラメチルビフェノール等のビフェノール化合物、ジヒドロキシナフタレン、ビナフトール等のナフトール化合物、フェノール−ホルムアルデヒド重縮合物等のフェノールノボラック樹脂、クレゾール−ホルムアルデヒド重縮合物等の炭素数1〜10のモノアルキル置換フェノール−ホルムアルデヒド重縮合物、キシレノール−ホルムアルデヒド重縮合物等の炭素数1〜10のジアルキル置換フェノール−ホルムアルデヒド重縮合物、ビスフェノールA−ホルムアルデヒド重縮合物等のビスフェノール化合物−ホルムアルデヒド重縮合物、フェノールと炭素数1〜10のモノアルキル置換フェノールとホルムアルデヒドとの共重縮合物、フェノール化合物とジビニルベンゼンの重付加物などが挙げられる。これらの中でも、例えば、流動性及び保存安定性を向上させる目的で選択する場合には、前記ビスフェノール化合物が好ましい。
前記β位にアルキル基を有するエポキシ基を含むエポキシ化合物としては、例えば、ビスフェノールAのジ−β−アルキルグリシジルエーテル、ビスフェノールFのジ−β−アルキルグリシジルエーテル、ビスフェノールSのジ−β−アルキルグリシジルエーテル等のビスフェノール化合物のジ−β−アルキルグリシジルエーテル;ビフェノールのジ−β−アルキルグリシジルエーテル、テトラメチルビフェノールのジ−β−アルキルグリシジルエーテル等のビフェノール化合物のジ−β−アルキルグリシジルエーテル;ジヒドロキシナフタレンのジ−β−アルキルグリシジルエーテル、ビナフトールのジ−β−アルキルグリシジルエーテル等のナフトール化合物のβ−アルキルグリシジルエーテル;フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;クレゾール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル等の炭素数1〜10のモノアルキル置換フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;キシレノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル等の炭素数1〜10のジアルキル置換フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;ビスフェノールA−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル等のビスフェノール化合物−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;フェノール化合物とジビニルベンゼンの重付加物のポリ−β−アルキルグリシジルエーテル;などが挙げられる。
これらの中でも、下記構造式(i)で表されるビスフェノール化合物、及びこれとエピクロロフドリンなどから得られる重合体から誘導されるβ−アルキルグリシジルエーテル、及び下記構造式(ii)で表されるフェノール化合物−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテルが好ましい。
ただし、前記構造式(i)中、R”は水素原子及び炭素数1〜6のアルキル基のいずれかを表し、n11は0〜20の整数を表す。
ただし、前記構造式(ii)中、R”は水素原子及び炭素数1〜6のアルキル基のいずれかを表し、R´は水素原子、及びCHのいずれかを表し、nは0〜20の整数を表す。
これらβ位にアルキル基を有するエポキシ基を含むエポキシ化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。また1分子中に少なくとも2つのオキシラン環を有するエポキシ化合物、及びβ位にアルキル基を有するエポキシ基を含むエポキシ化合物を併用することも可能である。
前記オキセタン化合物としては、例えば、ビス[(3−メチル−3−オキセタニルメトキシ)メチル]エーテル、ビス[(3−エチル−3−オキセタニルメトキシ)メチル]エーテル、1,4−ビス[(3−メチル−3−オキセタニルメトキシ)メチル]ベンゼン、1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、(3−メチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メチルアクリレート、(3−メチル−3−オキセタニル)メチルメタクリレート、(3−エチル−3−オキセタニル)メチルメタクリレート又はこれらのオリゴマーあるいは共重合体等の多官能オキセタン類の他、オキセタン基を有する化合物と、ノボラック樹脂、ポリ(p−ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、シルセスキオキサン等の水酸基を有する樹脂など、とのエーテル化合物が挙げられ、この他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
また、前記エポキシ化合物や前記オキセタン化合物の熱硬化を促進するため、例えば、アミン化合物(例えば、ジシアンジアミド、ベンジルジメチルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミン等)、4級アンモニウム塩化合物(例えば、トリエチルベンジルアンモニウムクロリド等)、ブロックイソシアネート化合物(例えば、ジメチルアミン等)、イミダゾール誘導体二環式アミジン化合物及びその塩(例えば、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、4−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール等)、リン化合物(例えば、トリフェニルホスフィン等)、グアナミン化合物(例えば、メラミン、グアナミン、アセトグアナミン、ベンゾグアナミン等)、S−トリアジン誘導体(例えば、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン、2−ビニル−2,4−ジアミノ−S−トリアジン、2−ビニル−4,6−ジアミノ−S−トリアジン・イソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸付加物等)などを用いることができる。これらは1種単独で使用してもよく、2種以上を併用してもよい。なお、前記エポキシ樹脂化合物や前記オキセタン化合物の硬化触媒、あるいは、これらとカルボキシル基の反応を促進することができるものであれば、特に制限はなく、上記以外の熱硬化を促進可能な化合物を用いてもよい。
前記エポキシ化合物、前記オキセタン化合物、及びこれらとカルボン酸との熱硬化を促進可能な化合物の前記感光性組成物中の固形分含有量は、通常0.01〜15質量%である。
また、前記熱架橋剤としては、特開平5−9407号公報記載のポリイソシアネート化合物を用いることができ、該ポリイソシアネート化合物は、少なくとも2つのイソシアネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されていてもよい。具体的には、2官能イソシアネート(例えば、1,3−フェニレンジイソシアネートと1,4−フェニレンジイソシアネートとの混合物、2,4−及び2,6−トルエンジイソシアネート、1,3−及び1,4−キシリレンジイソシアネート、ビス(4−イソシアネート−フェニル)メタン、ビス(4−イソシアネートシクロヘキシル)メタン、イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等)、該2官能イソシアネートと、トリメチロールプロパン、ペンタリスルトール、グリセリン等との多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記2官能イソシアネートとの付加体;ヘキサメチレンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネート及びその誘導体等の環式三量体;などが挙げられる。
更に、本発明の感光性組成物を用いて形成してなる感光層を有する前記パターン形成材料の保存性を向上させることを目的として、前記ポリイソシアネート及びその誘導体のイソシアネート基にブロック剤を反応させて得られる化合物を用いてもよい。
前記イソシアネート基ブロック剤としては、アルコール類(例えば、イソプロパノール、tert−ブタノール等)、ラクタム類(例えば、ε−カプロラクタム等)、フェノール類(例えば、フェノール、クレゾール、p−tert−ブチルフェノール、p−sec−ブチルフェノール、p−sec−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール等)、複素環式ヒドロキシル化合物(例えば、3−ヒドロキシピリジン、8−ヒドロキシキノリン等)、活性メチレン化合物(例えば、ジアルキルマロネート、メチルエチルケトキシム、アセチルアセトン、アルキルアセトアセテートオキシム、アセトオキシム、シクロヘキサノンオキシム等)などが挙げられる。これらの他、特開平6−295060号公報記載の分子内に少なくとも1つの重合可能な二重結合及び少なくとも1つのブロックイソシアネート基のいずれかを有する化合物などを用いることができる。
また、前記熱架橋剤として、メラミン誘導体を用いることができる。該メラミン誘導体としては、例えば、メチロールメラミン、アルキル化メチロールメラミン(メチロール基を、メチル、エチル、ブチルなどでエーテル化した化合物)などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、保存安定性が良好で、感光層の表面硬度あるいは硬化膜の膜強度自体の向上に有効である点で、アルキル化メチロールメラミンが好ましく、ヘキサメチル化メチロールメラミンが特に好ましい。
前記感光性組成物中の前記熱架橋剤の固形分含有量は、1〜50質量%が好ましく、3〜30質量%がより好ましい。該固形分含有量が1質量%未満であると、硬化膜の膜強度の向上が認められず、50質量%を超えると、現像性の低下や露光感度の低下を生ずることがある。
−その他の成分−
前記ソルダーレジストとしての感光性組成物におけるその他の成分としては、例えば、体質顔料、重合禁止剤、着色剤(着色顔料あるいは染料)などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。
これらの成分は、前記回路形成用レジストとしての感光性組成物に含まれるものと同じものとしてもよく、これらを適宜含有させることにより、目的とする感光層の安定性、写真性、膜物性などの性質を調整することができる。
−−体質顔料−−
前記体質顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無機顔料や有機微粒子などが挙げられる。
前記ソルダーレジストとしての感光性組成物には、必要に応じて、永久パターンの表面硬度の向上、あるいは線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く抑えることを目的として、前記無機顔料や有機微粒子を添加することができる。
前記無機顔料としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカなどが挙げられる。
前記無機顔料の平均粒径は、10μm未満が好ましく、3μm以下がより好ましい。該平均粒径が10μm以上であると、光錯乱により解像度が劣化することがある。
前記有機微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミン樹脂、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂などが挙げられる。また、平均粒径1〜5μm、吸油量100〜200m/g程度のシリカ、架橋樹脂からなる球状多孔質微粒子などを用いることができる。
前記体質顔料の添加量は、5〜60質量%が好ましい。該添加量が5質量%未満であると、十分に線膨張係数を低下させることができないことがあり、60質量%を超えると、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、配線の保護膜としての機能が損なわれることがある。
−−重合禁止剤−−
前記重合禁止剤は、前記重合性化合物の熱的な重合又は経時的な重合を防止するために添加してもよい。前記重合禁止剤としては、例えば、4−メトキシフェノールなど、前記回路形成用レジストとしての感光性組成物に用いられる前記熱重合禁止剤と同じ化合物が挙げられる。
前記重合禁止剤の含有量は、前記重合性化合物に対して0.001〜5質量%が好ましく、0.005〜2質量%がより好ましく、0.01〜1質量%が特に好ましい。該含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
<その他の層>
前記パターン形成材料におけるその他の層としては、例えば、特に制限はなく、目的に応じて適宜選択することができ、例えば、クッション層、酸素遮断層(PC層)、剥離層、接着層、光吸収層、表面保護層などの層を有してもよい。これらの層を1種単独で有していてもよく、2種以上を有していてもよい。また、前記感光層上に保護フィルムを有していてもよい。
−クッション層−
前記クッション層としては、特に制限はなく、目的に応じて適宜選択することができ、アルカリ性液に対して膨潤性乃至可溶性であってもよく、不溶性であってもよい。
前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には、前記熱可塑性樹脂としては、例えば、エチレンとアクリル酸エステル共重合体のケン化物、スチレンと(メタ)アクリル酸エステル共重合体のケン化物、ビニルトルエンと(メタ)アクリル酸エステル共重合体のケン化物、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等の(メタ)アクリル酸エステル共重合体等のケン化物、(メタ)アクリル酸エステルと(メタ)アクリル酸との共重合体、スチレンと(メタ)アクリル酸エステルと(メタ)アクリル酸との共重合体などが挙げられる。
この場合の熱可塑性樹脂の軟化点(Vicat)としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、80℃以下が好ましい。
前記軟化点が80℃以下の熱可塑性樹脂としては、上述した熱可塑性樹脂の他、「プラスチック性能便覧」(日本プラスチック工業連盟、全日本プラスチック成形工業連合会編著、工業調査会発行、1968年10月25日発行)による軟化点が約80℃以下の有機高分子の内、アルカリ性液に可溶なものが挙げられる。また、軟化点が80℃以上の有機高分子物質においても、該有機高分子物質中に該有機高分子物質と相溶性のある各種の可塑剤を添加して実質的な軟化点を80℃以下に下げることも可能である。
また、前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には、前記パターン形成材料の層間接着力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、各層の層間接着力の中で、前記支持体と前記クッション層との間の層間接着力が、最も小さいことが好ましい。このような層間接着力とすることにより、前記積層体から前記支持体のみを剥離し、前記クッション層を介して前記感光層を露光した後、アルカリ性の現像液を用いて該感光層を現像することができる。また、前記支持体を残したまま、前記感光層を露光した後、前記積層体から前記支持体のみを剥離し、アルカリ性の現像液を用いて該感光層を現像することもできる。
前記層間接着力の調整方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記熱可塑性樹脂中に公知のポリマー、過冷却物質、密着改良剤、界面活性剤、離型剤などを添加する方法が挙げられる。
前記可塑剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ポリプロピレングリコール、ポリエチレングリコール、ジオクチルフタレート、ジヘプチルフタレート、ジブチルフタレート、トリクレジルフォスフェート、クレジルジフェニルフォスフェート、ビフェニルジフェニルフォスフェート等のアルコール類やエステル類;トルエンスルホンアミド等のアミド類、などが挙げられる。
前記クッション層がアルカリ性液に対して不溶性である場合には、前記熱可塑性樹脂としては、例えば、主成分がエチレンを必須の共重合成分とする共重合体が挙げられる。
前記エチレンを必須の共重合成分とする共重合体としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、エチレン−酢酸ビニル共重合体(EVA)、エチレン−エチルアクリレート共重合体(EEA)などが挙げられる。
前記クッション層がアルカリ性液に対して不溶性である場合には、前記パターン形成材料の層間接着力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、各層の層間接着力の中で、前記感光層と前記クッション層との接着力が、最も小さいことが好ましい。このような層間接着力とすることにより、前記積層体から前記支持体及びクッション層を剥離し、前記感光層を露光した後、アルカリ性の現像液を用いて該感光層を現像することができる。また、前記支持体を残したまま、前記感光層を露光した後、前記積層体から前記支持体と前記クッション層を剥離し、アルカリ性の現像液を用いて該感光層を現像することもできる。
前記層間接着力の調整方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記熱可塑性樹脂中に各種のポリマー、過冷却物質、密着改良剤、界面活性剤、離型剤などを添加する方法、以下に説明するエチレン共重合比を調整する方法などが挙げられる。
前記エチレンを必須の共重合成分とする共重合体におけるエチレン共重合比は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、60〜90質量%が好ましく、60〜80質量%がより好ましく、65〜80質量%が特に好ましい。
前記エチレンの共重合比が、60質量%未満になると、前記クッション層と前記感光層との層間接着力が高くなり、該クッション層と該感光層との界面で剥離することが困難となることがあり、90質量%を超えると、前記クッション層と前記感光層との層間接着力が小さくなりすぎるため、該クッション層と該感光層との間で非常に剥離しやすく、前記クッション層を含むパターン形成材料の製造が困難となることがある。
前記クッション層の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜50μmが好ましく、10〜50μmがより好ましく、15〜40μmが特に好ましい。
前記厚みが、5μm未満になると、基体の表面における凹凸や、気泡等への凹凸追従性が低下し、高精細な永久パターンを形成できないことがあり、50μmを超えると、製造上の乾燥負荷増大等の不具合が生じることがある。
−酸素遮断層(PC層)−
前記酸素遮断層は、通常ポリビニルアルコールを主成分として形成されることが好ましく、厚みが0.5〜5μm程度の被膜であることが好ましい。
−保護フィルム−
前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有する。
前記保護フィルムの前記パターン形成材料において設けられる箇所は、特に制限はなく、目的に応じて適宜選択することができ、通常、前記感光層上に設けられる。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みは、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜100μmが好ましく、8〜30μmがより好ましい。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとが、接着力A>接着力Bの関係であることが好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
また、前記支持体と前記保護フィルムとの静摩擦係数は、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコール等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。
〔パターン形成材料の製造方法〕
前記パターン形成材料は、例えば、次のようにして製造することができる。
まず、前記感光性組成物に含まれる材料を、水又は溶剤に溶解、乳化又は分散させて、パターン形成材料用の感光性樹脂組成物溶液を調製する。
前記溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。
次に、前記支持体上に前記感光性樹脂組成物溶液を塗布し、乾燥させて感光層を形成し、パターン形成材料を製造することができる。
前記感光性樹脂組成物溶液の塗布方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、スプレー法、ロールコート法、回転塗布法、スリットコート法、エクストルージョンコート法、カーテンコート法、ダイコート法、グラビアコート法、ワイヤーバーコート法、ナイフコート法等の各種の塗布方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
<積層体の形成>
本発明のパターン形成材料を用いてパターン形成を行う際には、該パターン形成材料の感光層を基体上へ積層して積層体を形成する。
前記積層体における感光層としては、前記回路形成用レジストとしての前記感光性組成物からなる回路形成用レジスト層、及び前記ソルダーレジストとしての前記感光性組成物からなるソルダーレジスト層のいずれかである。
−基体−
前記基体は、感光層が形成される被処理基体、又は本発明のパターン形成材料の少なくとも感光層が転写される被転写体となるもので、特に制限はなく、目的に応じて適宜選択することができ、例えば、表面平滑性の高いものから凸凹のある表面を持つものまで任意に選択できる。板状の基体が好ましく、いわゆる基板が使用される。具体的には、公知のプリント配線板製造用の基板、ガラス板(ソーダガラス板など)、合成樹脂性のフィルム、紙、金属板などが挙げられる。
前記積層体の形成方法としては、第1の態様として、前記感光性組成物を前記基体の表面に塗布し乾燥する方法が挙げられ、第2の態様として、本発明のパターン形成材料における少なくとも感光層を加熱及び加圧の少なくともいずれかを行いながら転写して積層する方法が挙げられる。
前記第1の態様の積層体の形成方法は、前記基体上に、前記感光性組成物を塗布及び乾燥して感光層を形成する。
前記塗布及び乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基体の表面に、前記感光性組成物を、水又は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が挙げられる。
前記感光性組成物溶液の溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記パターン形成材料に用いたものと同じ溶剤が挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。
前記塗布方法及び乾燥条件としては、特に制限はなく、目的に応じて適宜選択することができ、前記パターン形成材料に用いたものと同じ方法及び条件で行う。
前記第2の態様の積層体の形成方法は、前記基体の表面に本発明のパターン形成材料を加熱及び加圧の少なくともいずれかを行いながら積層する。なお、前記パターン形成材料が前記保護フィルムを有する場合には、該保護フィルムを剥離し、前記基体に前記感光層が重なるようにして積層するのが好ましい。
前記加熱温度は、特に制限はなく、目的に応じて適宜選択することができ、例えば、15〜180℃が好ましく、60〜140℃がより好ましい。
前記加圧の圧力は、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.1〜1.0MPaが好ましく、0.2〜0.8MPaがより好ましい。
前記加熱の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラミネーター(例えば、大成ラミネータ社製、VP−II)などが好適に挙げられる。
(パターン形成装置及びパターン形成方法)
本発明のパターン形成装置は、本発明の前記パターン形成材料を備えており、光照射手段と光変調手段とを少なくとも有する。
本発明のパターン形成方法は、露光工程を少なくとも含み、適宜選択した現像工程等のその他の工程を含む。
なお、本発明の前記パターン形成装置は、本発明の前記パターン形成方法の説明を通じて明らかにする。
[露光工程]
前記露光工程は、本発明のパターン形成材料における前記感光層に対し、露光を行う工程である。
前記露光としては、特に制限はなく、目的に応じて適宜選択することができ、デジタル露光、アナログ露光等が挙げられるが、これらの中でもデジタル露光が好ましい。
前記デジタル露光の手段としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、光を照射する光照射手段、形成するパターン情報に基づいて該光照射手段から照射される光を変調させる光変調手段などが挙げられる。
前記デジタル露光としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、形成するパターン形成情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行うことが好ましく、例えば、前記感光層に対し、光照射手段、及び前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて行う方法が好ましい。
本発明において「N重露光」とは、前記感光層の被露光面上の露光領域の略すべての領域において、前記露光ヘッドの走査方向に平行な直線が、前記被露光面上に照射されたN本の光点列(画素列)と交わるような設定による露光を指す。ここで、「光点列(画素列)」とは、前記描素部により生成された描素単位としての光点(画素)の並びうち、前記露光ヘッドの走査方向となす角度がより小さい方向の並びを指すものとする。なお、前記描素部の配置は、必ずしも矩形格子状でなくてもよく、たとえば平行四辺形状の配置等であってもよい。 ここで、露光領域の「略すべての領域」と述べたのは、各描素部の両側縁部では、描素部列を傾斜させたことにより、前記露光ヘッドの走査方向に平行な直線と交わる使用描素部の描素部列の数が減るため、かかる場合に複数の露光ヘッドをつなぎ合わせるように使用したとしても、該露光ヘッドの取付角度や配置等の誤差により、走査方向に平行な直線と交わる使用描素部の描素部列の数がわずかに増減することがあるため、また、各使用描素部の描素部列間のつなぎの、解像度分以下のごくわずかな部分では、取付角度や描素部配置等の誤差により、走査方向と直交する方向に沿った描素部のピッチが他の部分の描素部のピッチと厳密に一致せず、走査方向に平行な直線と交わる使用描素部の描素部列の数が±1の範囲で増減することがあるためである。なお、以下の説明では、Nが2以上の自然数であるN重露光を総称して「多重露光」という。さらに、以下の説明では、本発明のパターン形成装置(露光装置)又は露光方法を、描画装置又は描画方法として実施した形態について、「N重露光」及び「多重露光」に対応する用語として、「N重描画」及び「多重描画」という用語を用いるものとする。
前記N重露光のNとしては、2以上の自然数であれば、特に制限はなく、目的に応じて適宜選択することができるが、3以上の自然数が好ましく、3以上7以下の自然数がより好ましい。
<パターン形成装置>
本発明のパターン形成方法に係るパターン形成装置の一例について図面を参照しながら説明する。
前記パターン形成装置としては、いわゆるフラットベッドタイプの露光装置とされており、図1に示すように、前記パターン形成材料における少なくとも前記感光層が積層されてなるシート状の積層体12(以下、「感光材料12」、「感光層12」ということがある)を表面に吸着して保持する平板状の移動ステージ14を備えている。4本の脚部16に支持された厚い板状の設置台18の上面には、ステージ移動方向に沿って延びた2本のガイド20が設置されている。ステージ14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド20によって往復移動可能に支持されている。なお、このパターン形成装置10には、ステージ14をガイド20に沿って駆動するステージ駆動装置(図示せず)が設けられている。
設置台18の中央部には、ステージ14の移動経路を跨ぐようにコの字状のゲート22が設けられている。コの字状のゲート22の端部の各々は、設置台18の両側面に固定されている。このゲート22を挟んで一方の側にはスキャナ24が設けられ、他方の側には感光材料12の先端及び後端を検知する複数(たとえば2個)のセンサ26が設けられている。スキャナ24及びセンサ26はゲート22に各々取り付けられて、ステージ14の移動経路の上方に固定配置されている。なお、スキャナ24及びセンサ26は、これらを制御する図示しないコントローラに接続されている。
ここで、説明のため、ステージ14の表面と平行な平面内に、図1に示すように、互いに直交するX軸及びY軸を規定する。
ステージ14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の端縁部には、X軸の方向に向かって開く「く」の字型に形成されたスリット28が、等間隔で10本形成されている。各スリット28は、上流側に位置するスリット28aと下流側に位置するスリット28bとからなっている。スリット28aとスリット28bとは互いに直交するとともに、X軸に対してスリット28aは−45度、スリット28bは+45度の角度を有している。
スリット28の位置は、前記露光ヘッド30の中心と略一致させられている。また、各スリット28の大きさは、対応する露光ヘッド30による露光エリア32の幅を十分覆う大きさとされている。また、スリット28の位置としては、隣接する露光済み領域34間の重複部分の中心位置と略一致させてもよい。この場合、各スリット28の大きさは、露光済み領域34間の重複部分の幅を十分覆う大きさとする。
ステージ14内部の各スリット28の下方の位置には、それぞれ、後述する使用描素部指定処理において、描素単位としての光点を検出する光点位置検出手段としての単一セル型の光検出器(図示せず)が組み込まれている。また、各光検出器は、後述する使用描素部指定処理において、前記描素部の選択を行う描素部選択手段としての演算装置(図示せず)に接続されている。
露光時における前記パターン形成装置の動作形態はとしては、露光ヘッドを常に移動させながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移動させながら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であってもよい。
<<露光ヘッド>>
各露光ヘッド30は、後述する内部のデジタル・マイクロミラー・デバイス(DMD)36の各描素部(マイクロミラー)列方向が、走査方向と所定の設定傾斜角度θをなすように、スキャナ24に取り付けられている。このため、各露光ヘッド30による露光エリア32は、走査方向に対して傾斜した矩形状のエリアとなる。ステージ14の移動に伴い、感光層12には露光ヘッド30ごとに帯状の露光済み領域34が形成される。図2及び図3Bに示す例では、2行5列の略マトリックス状に配列された10個の露光ヘッドが、スキャナ24に備えられている。
なお、以下において、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド30mnと表記し、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア32mnと表記する。
また、図3A及び図3Bに示すように、帯状の露光済み領域34のそれぞれが、隣接する露光済み領域34と部分的に重なるように、ライン状に配列された各行の露光ヘッド30の各々は、その配列方向に所定間隔(露光エリアの長辺の自然数倍、本実施形態では2倍)ずらして配置されている。このため、1行目の露光エリア3211と露光エリア3212との間の露光できない部分は、2行目の露光エリア3221により露光することができる。
露光ヘッド30の各々は、図4及び図5に示すように、入射された光を画像データに応じて描素部ごとに変調する光変調手段(描素部ごとに変調する空間光変調素子)として、DMD36(米国テキサス・インスツルメンツ社製)を備えている。このDMD36は、データ処理部とミラー駆動制御部とを備えた描素部制御手段としてのコントローラに接続されている。このコントローラのデータ処理部では、入力された画像データに基づいて、露光ヘッド30ごとに、DMD36上の使用領域内の各マイクロミラーを駆動制御する制御信号を生成する。また、ミラー駆動制御部では、画像データ処理部で生成した制御信号に基づいて、露光ヘッド30ごとに、DMD36の各マイクロミラーの反射面の角度を制御する。
図4に示すように、DMD36の光入射側には、光ファイバの出射端部(発光点)が露光エリア32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源38、ファイバアレイ光源38から出射されたレーザ光を補正してDMD上に集光させるレンズ系40、このレンズ系40を透過したレーザ光をDMD36に向けて反射するミラー42がこの順に配置されている。なお図4では、レンズ系40を概略的に示してある。
上記レンズ系40は、図5に詳しく示すように、ファイバアレイ光源38から出射されたレーザ光を平行光化する1対の組合せレンズ44、平行光化されたレーザ光の光量分布が均一になるように補正する1対の組合せレンズ46、及び光量分布が補正されたレーザ光をDMD36上に集光する集光レンズ48で構成されている。
また、DMD36の光反射側には、DMD36で反射されたレーザ光を感光層12の被露光面上に結像するレンズ系50が配置されている。レンズ系50は、DMD36と感光層12の被露光面とが共役な関係となるように配置された、2枚のレンズ52及び54からなる。
本実施形態では、ファイバアレイ光源38から出射されたレーザ光は、実質的に5倍に拡大された後、DMD36上の各マイクロミラーからの光線が上記のレンズ系50によって約5μmに絞られるように設定されている。
‐光変調手段‐
前記光変調手段としては、n個(ただし、nは2以上の自然数)の2次元状に配列された前記描素部を有し、前記パターン情報に応じて前記描素部を制御可能なものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、空間光変調素子が好ましい。
前記空間光変調素子としては、例えば、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが挙げられ、これらの中でもDMDが好適に挙げられる。
また、前記光変調手段は、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を有することが好ましい。この場合、前記光変調手段は、前記パターン信号生成手段が生成した制御信号に応じて光を変調させる。
前記制御信号としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル信号が好適に挙げられる。
以下、前記光変調手段の一例について図面を参照しながら説明する。
DMD36は図6に示すように、SRAMセル(メモリセル)56上に、各々描素(ピクセル)を構成する描素部として、多数のマイクロミラー58が格子状に配列されてなるミラーデバイスである。本実施形態では、1024列×768行のマイクロミラー58が配されてなるDMD36を使用するが、このうちDMD36に接続されたコントローラにより駆動可能すなわち使用可能なマイクロミラー58は、1024列×256行のみであるとする。DMD36のデータ処理速度には限界があり、使用するマイクロミラー数に比例して1ライン当りの変調速度が決定されるので、このように一部のマイクロミラーのみを使用することにより1ライン当りの変調速度が速くなる。各マイクロミラー58は支柱に支えられており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、本実施形態では、各マイクロミラー58の反射率は90%以上であり、その配列ピッチは縦方向、横方向ともに13.7μmである。SRAMセル56は、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのものであり、全体はモノリシック(一体型)に構成されている。
DMD36のSRAMセル(メモリセル)56に、所望の2次元パターンを構成する各点の濃度を2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー58が、対角線を中心としてDMD36が配置された基板側に対して±α度(たとえば±10度)のいずれかに傾く。図7Aは、マイクロミラー58がオン状態である+α度に傾いた状態を示し、図7Bは、マイクロミラー58がオフ状態である−α度に傾いた状態を示す。このように、画像信号に応じて、DMD36の各ピクセルにおけるマイクロミラー58の傾きを、図6に示すように制御することによって、DMD36に入射したレーザ光Bはそれぞれのマイクロミラー58の傾き方向へ反射される。
図6には、DMD36の一部を拡大し、各マイクロミラー58が+α度又はα度に制御されている状態の一例を示す。それぞれのマイクロミラー58のオンオフ制御は、DMD36に接続された上記のコントローラによって行われる。また、オフ状態のマイクロミラー58で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。
‐光照射手段‐
前記光照射手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、半導体レーザ等の公知光源、又は2以上の光を合成して照射可能な手段が挙げられ、これらの中でも2以上の光を合成して照射可能な手段が好ましい。
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う場合には、該支持体を透過し、かつ用いられる光重合開始系化合物や増感剤を活性化する電磁波、紫外から可視光線、電子線、X線、レーザ光などが挙げられ、これらの中でもレーザ光が好ましく、2以上の光を合成したレーザ(以下、「合波レーザ」と称することがある)がより好ましい。また支持体を剥離してから光照射を行う場合でも、同様の光を用いることができる。
前記紫外から可視光線の波長としては、例えば、300〜1500nmが好ましく、320〜800nmがより好ましく、330〜650nmが特に好ましい。
前記レーザ光の波長としては、例えば、200〜1500nmが好ましく、300〜800nmがより好ましく、330〜500nmが更に好ましく、400〜450nmが特に好ましい。
前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザビームを集光して前記マルチモード光ファイバに結合させる集合光学系とを有する手段が好ましい。
以下、前記合波レーザを照射可能な手段(ファイバアレイ光源)について図を参照しながら説明する。
ファイバアレイ光源38は、図8に示すように、複数(たとえば14個)のレーザモジュール60を備えており、各レーザモジュール60には、マルチモード光ファイバ62の一端が結合されている。マルチモード光ファイバ62の他端には、マルチモード光ファイバ62より小さいクラッド径を有する光ファイバ64が結合されている。図9に詳しく示すように、光ファイバ64のマルチモード光ファイバ62と反対側の端部は走査方向と直交する方向に沿って7個並べられ、それが2列に配列されてレーザ出射部66が構成されている。
光ファイバ64の端部で構成されるレーザ出射部66は、図9に示すように、表面が平坦な2枚の支持板68に挟み込まれて固定されている。また、光ファイバ64の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。光ファイバ64の光出射端面は、光密度が高いため集塵しやすく劣化しやすいが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。
このような光ファイバは、例えば、図25に示すように、クラッド径が大きいマルチモード光ファイバ62のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ64を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ64の入射端面が、マルチモード光ファイバ62の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ64のコア64aの径は、マルチモード光ファイバ62のコア62aの径と同じ大きさである。
また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ62の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ64を、マルチモード光ファイバ62の出射端部と称する場合がある。
マルチモード光ファイバ62及び光ファイバ64としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ62及び光ファイバ64は、ステップインデックス型光ファイバであり、マルチモード光ファイバ62は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ64は、クラッド径=60μm、コア径=50μm、NA=0.2である。
一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。
但し、光ファイバのクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ64のクラッド径は10μm以上が好ましい。
レーザモジュール60は、図26に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック110上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1、LD2、LD3、LD4、LD5、LD6、及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズL1、L2、L3、L4、L5、L6及びL7と、1つの集光レンズ200と、1本のマルチモード光ファイバ62と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。
GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。
前記合波レーザ光源は、図27及び図28に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ400内に収納されている。パッケージ400は、その開口を閉じるように作成されたパッケージ蓋410を備えており、脱気処理後に封止ガスを導入し、パッケージ400の開口をパッケージ蓋410で閉じることにより、パッケージ400とパッケージ蓋410とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。
パッケージ400の底面にはベース板420が固定されており、このベース板420の上面には、前記ヒートブロック110と、集光レンズ200を保持する集光レンズホルダー450と、マルチモード光ファイバ62の入射端部を保持するファイバホルダー460とが取り付けられている。マルチモード光ファイバ62の出射端部は、パッケージ400の壁面に形成された開口からパッケージ外に引き出されている。
また、ヒートブロック110の側面にはコリメータレンズホルダー440が取り付けられており、コリメータレンズL1〜L7が保持されている。パッケージ400の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線470がパッケージ外に引き出されている。
なお、図28においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズL7にのみ番号を付している。
図29は、前記コリメータレンズL1〜L7の取り付け部分の正面形状を示すものである。コリメータレンズL1〜L7の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズL1〜L7は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図29の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。
一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザビームB1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。
したがって、各発光点から発せられたレーザビームB1〜B7は、上述のように細長形状の各コリメータレンズL1〜L7に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズL1〜L7の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザビームB1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズL1〜L7の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
集光レンズ200は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズL1〜L7の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ200は、焦点距離f=23mm、NA=0.2である。この集光レンズ200も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。
また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、パターン形成装置の低コスト化が図られる。
また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。
また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。
また、複数の発光点を備えた光照射手段としては、例えば、図30に示すように、ヒートブロック110上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図31Aに示す、複数(例えば、5個)の発光点111aが所定方向に配列されたチップ状のマルチキャビティレーザ110が知られている。マルチキャビティレーザ111は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザビームを合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキャビティレーザ111に撓みが発生し易くなるため、発光点111aの個数は5個以下とするのが好ましい。
前記光照射手段としては、このマルチキャビティレーザ111や、図31Bに示すように、ヒートブロック110上に、複数のマルチキャビティレーザ111が各チップの発光点111aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。
また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図32に示すように、複数(例えば、3個)の発光点111aを有するチップ状のマルチキャビティレーザ111を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ111と、1本のマルチモード光ファイバ62と、集光レンズ200と、を備えて構成されている。マルチキャビティレーザ111は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。
前記構成では、マルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、集光レンズ200によって集光され、マルチモード光ファイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
マルチキャビティレーザ111の複数の発光点111aを、上記マルチモード光ファイバ62のコア径と略等しい幅内に並設すると共に、集光レンズ200として、マルチモード光ファイバ62のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ111からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザビームBのマルチモード光ファイバ62への結合効率を上げることができる。
また、図33に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ111を用い、ヒートブロック110上に複数(例えば、9個)のマルチキャビティレーザ111が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ111は、各チップの発光点111aの配列方向と同じ方向に配列されて固定されている。
この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ111に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。
上記の構成では、複数のマルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザビームLは、集光レンズ200によって集光され、マルチモード光ファイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図34A及び図34Bに示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ111が、各チップの発光点111aの配列方向と同じ方向に等間隔で配列されて固定されている。
略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。
マルチキャビティレーザ111のレーザ光出射側には、各チップの発光点111aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザビームの拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。
また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ62と、このマルチモード光ファイバ62の入射端にレーザビームを集光して結合する集光レンズ200と、が配置されている。
前記構成では、レーザブロック180、182上に配置された複数のマルチキヤビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ200によって集光されて、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明のパターン形成装置のレーザ光源を構成するファイバ光源として特に好適である。
なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ62の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。
また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。
<<使用描素部指定手段>>
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上において検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段とを少なくとも備えることが好ましい。
以下、前記使用描素部指定手段による、N重露光に使用する描素部の指定方法の例について説明する。
(1)単一露光ヘッド内における使用描素部の指定方法
本実施形態(1)では、パターン形成装置10により、感光材料12に対して2重露光を行う場合であって、各露光ヘッド30の取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
露光ヘッド30の走査方向に対する描素部(マイクロミラー58)の列方向の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部を使用してちょうど2重露光となる角度θidealよりも、若干大きい角度を採用するものとする。
この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
となる。本実施形態(1)では、上記のとおりs=256、N=2であるので、前記式3より、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度程度の角度を採用するとよい。パターン形成装置10は、調整可能な範囲内で、各露光ヘッド30すなわち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
図10は、上記のように初期調整されたパターン形成装置10において、1つの露光ヘッド30の取付角度誤差、及びパターン歪みの影響により、被露光面上のパターンに生じるむらの例を示した説明図である。以下の図面及び説明においては、各描素部(マイクロミラー)により生成され、被露光面上の露光領域を構成する描素単位としての光点について、第m行目の光点をr(m)、第n列目の光点をc(n)、第m行第n列の光点をP(m,n)とそれぞれ表記するものとする。
図10の上段部分は、ステージ14を静止させた状態で感光材料12の被露光面上に投影される、使用可能なマイクロミラー58からの光点群のパターンを示し、下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示したものである。
なお、図10では、説明の便宜のため、使用可能なマイクロミラー58の奇数列による露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図10の例では、設定傾斜角度θを上記の角度θidealよりも若干大きい角度を採用した結果として、また露光ヘッド30の取付角度の微調整が困難であるために、実際の取付角度と上記の設定傾斜角度θとが誤差を有する結果として、被露光面上のいずれの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーによる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域において、理想的な2重露光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。
さらに、図10の例では、被露光面上に現れるパターン歪みの一例であって、被露光面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じている。このような角度歪みが生じる原因としては、DMD36と被露光面間の光学系の各種収差やアラインメントずれ、及びDMD36自体の歪みやマイクロミラーの配置誤差等が挙げられる。
図10の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど小さく、図の右方の列ほど大きくなっている形態の歪みである。この角度歪みの結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく、図の右方に示した被露光面上ほど大きくなっている。
上記したような、複数の描素部列により形成された、被露光面上の重複露光領域における濃度むらを軽減するために、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド30ごとに実傾斜角度θ´を特定し、該実傾斜角度θ´に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
実傾斜角度θ´は、光点位置検出手段が検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす角度により特定される。
以下、図11及び12を用いて、前記実傾斜角度θ´の特定、及び使用画素選択処理について説明する。
−実傾斜角度θ´の特定−
図11は、1つのDMD36による露光エリア32と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光エリア32の幅を十分覆う大きさとされている。
本実施形態(1)の例では、露光エリア32の略中心に位置する第512列目の光点列と露光ヘッド30の走査方向とがなす角度を、上記の実傾斜角度θ´として測定する。具体的には、DMD36上の第1行目第512列目のマイクロミラー58、及び第256行目第512列目のマイクロミラー58をオン状態とし、それぞれに対応する被露光面上の光点P(1,512)及びP(256,512)の位置を検出し、それらを結ぶ直線と露光ヘッドの走査方向とがなす角度を実傾斜角度θ´として特定する。
図12は、光点P(256,512)の位置の検出手法を説明した上面図である。
まず、第256行目第512列目のマイクロミラー58を点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256,512)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0,Y0)とする。この座標(X0,Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
次に、ステージ14を移動させ、スリット28をY軸に沿って図12における右方に相対移動させる。そして、図12において二点鎖線で示すように、光点P(256,512)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y1)を、光点P(256,512)の位置として記録する。
次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図12における左方に相対移動させる。そして、図12において二点鎖線で示すように、光点P(256,512)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y2)を光点P(256,512)の位置として記録する。
以上の測定結果から、光点P(256,512)の被露光面上における位置を示す座標(X,Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。同様の測定により、P(1,512)の位置を示す座標も決定し、それぞれの座標を結ぶ直線と、露光ヘッド30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度θ´として特定する。
‐使用描素部の選択‐
このようにして特定された実傾斜角度θ´を用い、前記光検出器に接続された前記演算装置は、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを導出し、DMD36上の1行目からT行目のマイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行う。これにより、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、値t以下の最大の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
図13は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミラーが生成した光点のみを用いて行った露光において、図10に示した被露光面上のむらがどのように改善されるかを示した説明図である。
この例では、上記の自然数TとしてT=253が導出され、第1行目から第253行目のマイクロミラーが選択されたものとする。選択されなかった第254行目から第256行目のマイクロミラーに対しては、前記描素部制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図13に示すとおり、第512列目付近の露光領域では、露光過多及び露光不足は、ほぼ完全に解消され、理想的な2重露光に極めて近い均一な露光が実現される。
一方、図13の左方の領域(図中のc(1)付近)では、前記角度歪みにより、被露光面上における光点列の傾斜角度が中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも小さくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーのみによる露光では、偶数列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的な2重露光に対して露光不足となる領域がわずかに生じてしまう。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補完され、前記角度歪みによる露光むらを、2重露光による埋め合わせの効果で最小とすることができる。
また、図13の右方の領域(図中のc(1024)付近)では、前記角度歪みにより、被露光面上における光線列の傾斜角度が、中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも大きくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーによる露光では、図に示すように、理想的な2重露光に対して露光過多となる領域がわずかに生じてしまう。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完され、前記角度歪による濃度むらを、2重露光による埋め合わせの効果で最小とすることができる。
本実施形態(1)では、上述のとおり、第512列目の光線列の実傾斜角度θ´が測定され、該実傾斜角度θ´を用い、前記式(4)により導出されたTに基づいて使用するマイクロミラー58を選択したが、前記実傾斜角度θ´の特定方法としては、複数の描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを実傾斜角度θ´として特定し、前記式4等によって実際の露光時に実際に使用するマイクロミラーを選択する形態としてもよい。
前記平均値又は前記中央値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現することができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最小に抑えられ、かつ、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるような露光を実現することが可能である。
また、前記最大値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光過多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を実現することが可能である。
さらに、前記最小値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光不足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を実現することが可能である。
一方、前記実傾斜角度θ´の特定は、同一の描素部の列(光点列)中の少なくとも2つの光点の位置に基づく方法に限定されない。例えば、同一描素部列c(n)中の1つ又は複数の光点の位置と、該c(n)近傍の列中の1つ又は複数の光点の位置とから求めた角度を、実傾斜角度θ´として特定してもよい。
具体的には、c(n)中の1つの光点位置と、露光ヘッドの走査方向に沿って直線上かつ近傍の光点列に含まれる1つ又は複数の光点位置とを検出し、これらの位置情報から、実傾斜角度θ´を求めることができる。さらに、c(n)列近傍の光点列中の少なくとも2つの光点(たとえば、c(n)を跨ぐように配置された2つの光点)の位置に基づいて求めた角度を、実傾斜角度θ´として特定してもよい。
以上のように、パターン形成装置10を用いた本実施形態(1)の使用描素部の指定方法によれば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度のばらつきや濃度のむらを軽減し、理想的なN重露光を実現することができる。
(2)複数露光ヘッド間における使用描素部の指定方法<1>
本実施形態(2)では、パターン形成装置10により、感光材料12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
各露光ヘッド30すなわち各DMD36の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部マイクロミラー58を使用してちょうど2重露光となる角度θidealを採用するものとする。
この角度θidealは、上記の実施形態(1)と同様にして前記式1〜3から求められる。本実施形態(2)において、パターン形成装置10は、各露光ヘッド30すなわち各DMD36の取付角度がこの角度θidealとなるように、初期調整されているものとする。
図14は、上記のように初期調整されたパターン形成装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれの影響により、被露光面上のパターンに生じる濃度むらの例を示した説明図である。各露光ヘッドのX軸方向に関する相対位置のずれは、露光ヘッド間の相対位置の微調整が困難であるために生じ得るものである。
図14の上段部分は、ステージ14を静止させた状態で感光材料12の被露光面上に投影される、露光ヘッド3012と3021が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した図である。図14の下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、露光エリア3212と3221について示したものである。
なお、図14では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図14の例では、上記したX軸方向に関する露光ヘッド3012と3021との間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光の状態よりも露光量過多な部分が生じてしまっている。
上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021からの光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点のいくつかについて、その位置(座標)を検出する。該位置(座標)に基づいて、前記描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
−位置(座標)の検出−
図15は、図14と同様の露光エリア3212及び3221と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光ヘッド3012と3021による露光済み領域34間の重複部分の幅を十分覆う大きさ、すなわち、露光ヘッド3012と3021により被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。
図16は、一例として露光エリア3221の光点P(256,1024)の位置を検出する際の検出手法を説明した上面図である。
まず、第256行目第1024列目のマイクロミラーを点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256,1024)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0,Y0)とする。この座標(X0,Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
次に、ステージ14を移動させ、スリット28をY軸に沿って図16における右方に相対移動させる。そして、図16において二点鎖線で示すように、光点P(256,1024)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y1)を、光点P(256,1024)の位置として記録する。
次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図16における左方に相対移動させる。そして、図16において二点鎖線で示すように、光点P(256,1024)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y2)を、光点P(256,1024)として記録する。
以上の測定結果から、光点P(256,1024)の被露光面における位置を示す座標(X,Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。
−不使用描素部の特定−
図14の例では、まず、露光エリア3212の光点P(256,1)の位置を、上記の光点位置検出手段としてスリット28と光検出器の組により検出する。続いて、露光エリア3221の第256行目の光点行r(256)上の各光点の位置を、P(256,1024)、P(256,1023)・・・と順番に検出していき、露光エリア3212の光点P(256,1)よりも大きいX座標を示す露光エリア3221の光点P(256,n)が検出されたところで、検出動作を終了する。そして、露光エリア3221の光点列c(n+1)からc(1024)を構成する光点に対応するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特定する。
例えば、図14において、露光エリア3221の光点P(256,1020)が、露光エリア3212の光点P(256,1)よりも大きいX座標を示し、その露光エリア3221の光点P(256,1020)が検出されたところで検出動作が終了したとすると、図17において斜線で覆われた部分70に相当する露光エリア3221の第1021行から第1024行を構成する光点に対応するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定される。
次に、N重露光の数Nに対して、露光エリア3212の光点P(256,N)の位置が検出される。本実施形態(2)では、N=2であるので、光点P(256,2)の位置が検出される。
続いて、露光エリア3221の光点列のうち、上記で本露光時に使用しないマイクロミラーに対応する光点列として特定されたものを除き、最も右側の第1020列を構成する光点の位置を、P(1,1020)から順番にP(1,1020)、P(2,1020)・・・と検出していき、露光エリア3212の光点P(256,2)よりも大きいX座標を示す光点P(m,1020)が検出されたところで、検出動作を終了する。
その後、前記光検出器に接続された演算装置において、露光エリア3212の光点P(256,2)のX座標と、露光エリア3221の光点P(m,1020)及びP(m−1,1020)のX座標とが比較され、露光エリア3221の光点P(m,1020)のX座標の方が露光エリア3212の光点P(256,2)のX座標に近い場合は、露光エリア3221の光点P(1,1020)からP(m−1,1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラーとして特定される。
また、露光エリア3221の光点P(m−1,1020)のX座標の方が露光エリア3212の光点P(256,2)のX座標に近い場合は、露光エリア3221の光点P(1,1020)からP(m−2,1020)に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。
さらに、露光エリア3212の光点P(256,N−1)すなわち光点P(256,1)の位置と、露光エリア3221の次列である第1019列を構成する各光点の位置についても、同様の検出処理及び使用しないマイクロミラーの特定が行われる。
その結果、たとえば、図17において網掛けで覆われた領域72を構成する光点に対応するマイクロミラーが、実際の露光時に使用しないマイクロミラーとして追加される。これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。
このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイクロミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択することにより、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができ、図17の下段に示すように、理想的な2重露光に極めて近い均一な露光を実現することができる。
なお、上記の例においては、図17において網掛けで覆われた領域72を構成する光点の特定に際し、露光エリア3212の光点P(256,2)のX座標と、露光エリア3221の光点P(m,1020)及びP(m−1,1020)のX座標との比較を行わずに、ただちに、露光エリア3221の光点P(1,1020)からP(m−2,1020)に対応するマイクロミラーを、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、露光エリア3221の光点P(1,1020)からP(m−1,1020)に対応するマイクロミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
さらに、前記ヘッド間つなぎ領域において、理想的な2重描画に対して露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。
以上のように、パターン形成装置10を用いた本実施形態(2)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。
(3)複数露光ヘッド間における使用描素部の指定方法<2>
本実施形態(3)では、パターン形成装置10により、感光材料12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光ヘッドの取付角度誤差、及び2つの露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
各露光ヘッド30すなわち各DMD36の設定傾斜角度としては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部(マイクロミラー58)を使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用するものとする。
この角度θidealは、前記式1〜3を用いて上記(1)の実施形態と同様にして求められる値であり、本実施形態では、上記のとおりs=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度程度の角度を採用するとよい。パターン形成装置10は、調整可能な範囲内で、各露光ヘッド30すなわち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
図18は、上記のように各露光ヘッド30すなわち各DMD36の取付角度が初期調整されたパターン形成装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)の取付角度誤差、並びに各露光ヘッド3012と3021間の相対取付角度誤差及び相対位置のずれの影響により、被露光面上のパターンに生じるむらの例を示した説明図である。
図18の例では、図14の例と同様の、X軸方向に関する露光ヘッド3012と3021の相対位置のずれの結果として、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、露光エリア3212と3221の被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光量過多な領域74が生じ、これが濃度むらを引き起こしている。
さらに、図18の例では、各露光ヘッドの設定傾斜角度θを前記式(1)を満たす角度θidealよりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整が困難であるために、実際の取付角度が上記の設定傾斜角度θからずれてしまったことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域以外の領域でも、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域である描素部列間つなぎ領域において、理想的な2重露光の状態よりも露光過多となる領域76が生じ、これがさらなる濃度むらを引き起こしている。
本実施形態(3)では、まず、各露光ヘッド3012と3021の取付角度誤差及び相対取付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。
具体的には、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021のそれぞれについて、実傾斜角度θ´を特定し、該実傾斜角度θ´に基づき、前記描素部選択手段として光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
−実傾斜角度θ´の特定−
実傾斜角度θ´の特定は、露光ヘッド3012ついては露光エリア3212内の光点P(1,1)とP(256,1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1,1024)とP(256,1024)の位置を、それぞれ上述した実施形態(2)で用いたスリット28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定することにより行われる。
−不使用描素部の特定−
そのようにして特定された実傾斜角度θ´を用いて、光検出器に接続された演算装置は、上述した実施形態(1)における演算装置と同様、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出し、DMD36上の第(T+1)行目から第256行目のマイクロミラーを、本露光に使用しないマイクロミラーとして特定する処理を行う。
例えば、露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255が導出されたとすると、図19において斜線で覆われた部分78及び80を構成する光点に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。これにより、露光エリア3212と3221のうちヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光量過多となる面積が最小になり、かつ露光量不足となる面積が生じないようになすことができる。
あるいは、値t以下の最大の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになすことができる。
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、本露光時に使用しないマイクロミラーを特定することとしてもよい。
その後、図19において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、図14から17を用いて説明した本実施形態(3)と同様の処理がなされ、図19において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加される。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。
以上のように、パターン形成装置10を用いた本実施形態(3)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれ、並びに各露光ヘッドの取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。
以上、パターン形成装置10による使用描素部指定方法ついて詳細に説明したが、上記実施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の変更が可能である。
また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するための手段として、スリット28と単一セル型の光検出器の組を用いたが、これに限られずいかなる形態のものを用いてもよく、たとえば2次元検出器等を用いてもよい。
さらに、上記の実施形態(1)〜(3)では、スリット28と光検出器の組による被露光面上の光点の位置検出結果から実傾斜角度θ´を求め、その実傾斜角度θ´に基づいて使用するマイクロミラーを選択したが、実傾斜角度θ´の導出を介さずに使用可能なマイクロミラーを選択する形態としてもよい。さらには、たとえばすべての使用可能なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も、本発明の範囲に含まれるものである。
なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの他にも、種々の形態が存在する。
一例としては、図20Aに示すように、DMD36上の各マイクロミラー58からの光線が、異なる倍率で露光面上の露光エリア32に到達してしまう倍率歪みの形態がある。
また、別の例として、図20Bに示すように、DMD36上の各マイクロミラー58からの光線が、異なるビーム径で被露光面上の露光エリア32に到達してしまうビーム径歪みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、DMD36と被露光面間の光学系の各種収差やアラインメントずれに起因して生じる。
さらに別の例として、DMD36上の各マイクロミラー58からの光線が、異なる光量で被露光面上の露光エリア32に到達してしまう光量歪みの形態もある。この光量歪みは、各種収差やアラインメントずれのほか、DMD36と被露光面間の光学要素(たとえば1枚レンズである図5のレンズ52及び54)の透過率の位置依存性や、DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、被露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。
上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要素と同様、多重露光による埋め合わせの効果で均すことができ、解像度や濃度のむらを、各露光ヘッドの露光領域全体にわたって軽減することができる。
<<参照露光>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N−1)列おきのマイクロミラー列、又は全光点行のうち1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行い、均一な露光を実現できるように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマイクロミラーを特定することとしてもよい。
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するなどの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であってもよい。
図21は、単一露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図21Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図21Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
図22は、複数の露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図22に実線で示した、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)の奇数列の光点列に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図22に斜線で覆って示す領域86及び網掛けで示す領域88内の光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点を構成するマイクロミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において、理想的な2重露光に近い状態が実現できる。
図23は、単一露光ヘッドを用い、全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図23Aに実線で示した1行目から128(=256/2)行目の光点に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを指定することができる。
例えば、図23Bに斜線で覆って示す光点群に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定され得る。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
図24は、複数の露光ヘッドを用い、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)について、それぞれ全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図24に実線で示した第1行目から第128(=256/2)行目の光点に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミラーを指定することができる。
例えば、図24に斜線で覆って示す領域90及び網掛けで示す領域92内の光点列に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定される。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において理想的な2重露光に近い状態が実現できる。
以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を2重露光とする場合について説明したが、これに限定されず、2重露光以上のいかなる多重露光としてもよい。特に3重露光から7重露光程度とすることにより、高解像度を確保し、解像度のばらつき及び濃度むらが軽減された露光を実現することができる。
また、上記の実施形態及び変更例に係る露光装置には、さらに、画像データが表す2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応部分の寸法と一致するように、画像データを変換する機構が設けられていることが好ましい。そのように画像データを変換することによって、所望の2次元パターンどおりの高精細なパターンを被露光面上に形成することができる。
[その他の工程]
前記その他の工程としては、特に制限はなく、公知のパターン形成における工程の中から適宜選択することが挙げられるが、例えば、現像工程、エッチング工程、メッキ工程、及び硬化処理工程などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した領域を硬化させた後、未硬化領域を除去することにより現像し、パターンを形成する工程である。
−現像工程−
前記現像工程は、例えば、現像手段により好適に実施することができる。
前記現像手段としては、現像液を用いて現像することができる限り特に制限はなく、目的に応じて適宜選択することができ、例えば、前記現像液を噴霧する手段、前記現像液を塗布する手段、前記現像液に浸漬させる手段などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
また、前記現像手段は、前記現像液を交換する現像液交換手段、前記現像液を供給する現像液供給手段などを有していてもよい。
前記現像液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルカリ性液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ性液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。
前記弱アルカリ性の水溶液のpHとしては、例えば、約8〜12が好ましく、約9〜11がより好ましい。前記弱アルカリ性の水溶液としては、例えば、0.1〜5質量%の炭酸ナトリウム水溶液又は炭酸カリウム水溶液などが挙げられる。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができ、例えば、約25℃〜40℃が好ましい。
前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。
−エッチング工程−
前記エッチング工程としては、公知のエッチング処理方法の中から適宜選択した方法により行うことができる。
前記エッチング処理に用いられるエッチング液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。また、公知のサンドブラスト法を用いることができる。
前記エッチング工程によりエッチング処理した後に前記パターンを除去することにより、前記基体の表面に配線パターン(回路)を形成することができる。
−メッキ工程−
前記メッキ工程としては、公知のメッキ処理の中から適宜選択した適宜選択した方法により行うことができる。
前記メッキ処理としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイスローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなど処理が挙げられる。
前記メッキ工程によりメッキ処理した後に前記パターンを除去することにより、また更に必要に応じて不要部をレジスト剥離処理等で除去することにより、前記基体の表面に金属配線パターン(回路)を形成することができる。
−硬化処理工程−
前記硬化処理工程は、前記ソルダーレジストとしての感光性組成物からなる前記感光層に対し、前記現像工程が行われた後、形成された永久パターンに対して硬化処理を行う工程である。
前記硬化処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、前記永久パターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記永久パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
〔プリント配線板の製造方法〕
本発明の前記パターン形成方法は、プリント配線板の製造、特にスルーホール又はビアホールなどのホール部を有するプリント配線板の製造に好適に使用することができる。以下、本発明のパターン形成方法を利用したプリント配線板の製造方法の一例について説明する。
スルーホール又はビアホールなどのホール部を有するプリント配線板の製造方法としては、(1)前記基体としてホール部を有するプリント配線板形成用基板上に、前記パターン形成材料を、その感光層が前記基体側となる位置関係にて積層して積層体を形成し、(2)前記積層体の前記基体とは反対の側から、所望の領域に光照射行い感光層を硬化させ、(3)前記積層体から前記パターン形成材料における支持体を除去し、(4)前記積層体における感光層を現像して、該積層体中の未硬化部分を除去することによりパターンを形成することができる。
なお、前記(3)における前記支持体の除去は、前記(2)と前記(4)との間で行う代わりに、前記(1)と前記(2)との間で行ってもよい。
その後、プリント配線板を得るには、前記形成したパターンを用いて、前記プリント配線板形成用基板をエッチング処理又はメッキ処理する方法(例えば、公知のサブトラクティブ法又はアディティブ法(例えば、セミアディティブ法、フルアディティブ法))により処理すればよい。これらの中でも、工業的に有利なテンティングでプリント配線板を形成するためには、前記サブトラクティブ法が好ましい。前記処理後プリント配線板形成用基板に残存する硬化樹脂は剥離させ、また、前記セミアディティブ法の場合は、剥離後さらに銅薄膜部をエッチングすることにより、所望のプリント配線板を製造することができる。また、多層プリント配線板も、前記プリント配線板の製造法と同様に製造が可能である。
次に、前記パターン形成材料を用いたスルーホールを有するプリント配線板の製造方法について、更に説明する。
まずスルーホールを有し、表面が金属メッキ層で覆われたプリント配線板形成用基板を用意する。前記プリント配線板形成用基板としては、例えば、銅張積層基板及びガラス−エポキシなどの絶縁基体に銅メッキ層を形成した基板又はこれらの基板に層間絶縁膜を積層し、銅メッキ層を形成した基板(積層基板)を用いることができる。
次に、前記パターン形成材料上に保護フィルムを有する場合には、該保護フィルムを剥離して、前記パターン形成材料における感光層が前記プリント配線板形成用基板の表面に接するようにして加圧ローラを用いて圧着する(積層工程)。これにより、前記プリント配線板形成用基板と前記積層体とをこの順に有する積層体が得られる。
前記パターン形成材料の積層温度としては、特に制限はなく、例えば、室温(15〜30℃)又は加熱下(30〜180℃)が挙げられ、これらの中でも、加温下(60〜140℃)が好ましい。
前記圧着ロールのロール圧としては、特に制限はなく、例えば、0.1〜1MPaが好ましい。
前記圧着の速度としては、特に制限はなく、1〜3m/分が好ましい。また、前記プリント配線板形成用基板を予備加熱しておいてもよく、また、減圧下で積層してもよい。
前記積層体の形成は、前記プリント配線板形成用基板上に前記パターン形成材料を積層してもよく、また、前記パターン形成材料製造用の感光性組成物溶液などを前記プリント配線板形成用基板の表面に直接塗布し、乾燥させることにより前記プリント配線板形成用基板上に感光層及び支持体を積層してもよい。
次に、前記積層体の基体とは反対側の面から、光を照射して感光層を硬化させる。なお、この際、必要に応じて(例えば、支持体の光透過性が不十分な場合など)前記支持体を剥離してから露光を行ってもよい。
この時点で、前記支持体を未だ剥離していない場合には、前記積層体から前記支持体を剥離する(剥離工程)。
次に、前記プリント配線板形成用基板上の感光層の未硬化領域を、適当な現像液にて溶解除去して、配線パターン形成用の硬化層とスルーホールの金属層保護用硬化層のパターンを形成し、前記プリント配線板形成用基板の表面に金属層を露出させる(現像工程)。
また、現像後に必要に応じて後加熱処理や後露光処理によって、硬化部の硬化反応を更に促進させる処理をおこなってもよい。現像は上記のようなウエット現像法であってもよく、ドライ現像法であってもよい。
次いで、前記プリント配線板形成用基板の表面に露出した金属層をエッチング液で溶解除去する(エッチング工程)。スルーホールの開口部は、硬化樹脂組成物(テント膜)で覆われているので、エッチング液がスルーホール内に入り込んでスルーホール内の金属メッキを腐食することなく、スルーホールの金属メッキは所定の形状で残ることになる。これより、前記プリント配線板形成用基板に配線パターンが形成される。
前記エッチング液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。
次に、強アルカリ水溶液などにて前記硬化層を剥離片として、前記プリント配線板形成用基板から除去する(硬化物除去工程)。
前記強アルカリ水溶液における塩基成分としては、特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
前記強アルカリ水溶液のpHとしては、例えば、約12〜14が好ましく、約13〜14がより好ましい。
前記強アルカリ水溶液としては、特に制限はなく、例えば、1〜10質量%の水酸化ナトリウム水溶液又は水酸化カリウム水溶液などが挙げられる。
また、プリント配線板は、多層構成のプリント配線板であってもよい。なお、前記パターン形成材料は上記のエッチングプロセスのみでなく、メッキプロセスに使用してもよい。前記メッキ法としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイフローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなどが挙げられる。
なお、前記基体が多層配線基板などのプリント配線板である場合は、該プリント配線板上に前記ソルダーレジスト用感光性組成物からなる感光層を形成し、更に、以下のように半田付けを行うことができる。
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜あるいは絶縁膜(層間絶縁膜)としての機能を発揮し、外部からの衝撃や隣同士の電極の導通が防止される。
以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
−パターン形成材料の製造−
前記支持体として厚み16μmのPET(ポリエチレンテレフタレート)フィルム(東レ社製、16QS52)に、下記の組成からなる感光性組成物溶液を塗布し乾燥させて、15μm厚の感光層(回路形成用レジスト層)を形成し、次いで、該感光層の上に、前記保護フィルムとして20μm厚のポリプロピレンフィルムをラミネートで積層し、前記パターン形成材料を製造した。
[感光性組成物溶液の組成]
・メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(
共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg
:105℃) 15質量部
・下記構造式(72)で表される重合性モノマー 7.0質量部
・デカメチレンジイソシアネートとテトラエチレンオキシドモノメタアクリレートの
1/2モル比付加物 6.0質量部
・N−メチルアクリドン 0.08質量部
・2,2’−ビス(o−クロロフェニル)−4,4’,5,5’−テトラフェニルビイ
ミダゾール 2.00質量部
・2−メルカプトベンズイミダゾール 0.13質量部
・マラカイトグリーンシュウ酸塩 0.02質量部
・ロイコクリスタルバイオレット 0.26質量部
・F780F(大日本インキ(株)製)の30質量%濃度品(メチルエチルケトン溶液)
0.04質量部
・メチルエチルケトン 40質量部
・1−メトキシ−2−プロパノール 20質量部
なお、前記バインダーとしてのメタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37のI/O値は、上述のように算出すると0.554であった。
ただし、構造式(72)中、EOは、エチレンオキサイド基を表し、POは、プロピレンオキサイド基を表し、POは下記構造式(iii)及び(iv)のいずれであってもよく、r+sの平均値は10であり、p+qの平均値は4である。
前記基体として、表面を研磨、水洗、乾燥した銅張積層板(スルーホールなし、銅厚み12μm)の表面に、前記パターン形成材料の保護フィルムを剥がしながら、該パターン形成材料の感光層が前記銅張積層板に接するようにしてラミネーター(MODEL8B−720−PH、大成ラミネーター(株)製)を用いて圧着させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された積層体を調製した。
圧着条件は、圧着ロール温度105℃、圧着ロール圧力0.3MPa、ラミネート速度1m/分とした。
前記支持体について、全光線透過率及びヘイズ値を測定した。
また、前記積層体を用い、前記感光性組成物からなる感光層を露光し、該感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を下記の方法により測定した。結果を表1及び表2に示す。
<全光線透過率の測定>
分光光度計(島津製作所社製、UV−2400)に積分球を組み込んだ装置を用いて、前記支持体の405nmでの全光線透過率を測定した。結果を表1に示す。
<ヘイズ値の測定>
前記全光線透過率の測定方法において、前記積分球を使用しない以外は前記全光線透過率の測定方法と同様にして平行線透過率を測定した。次に、次計算式、拡散光透過率=前記全光線透過率−前記平行光線透過率、を計算し、更に、次計算式、ヘイズ値=前記拡散光透過率/前記全光線透過率×100、を計算することにより求めた。結果を表1に示す。
<感度の測定>
前記性積層体における前記パターン形成材料の感光層に対し、前記ポリエチレンテレフタレートフィルム(支持体)側から、前記光照射手段としての405nmのレーザ光源を有するパターン形成装置を用いて、0.1mJ/cmから21/6倍間隔で100mJ/cmまでの光エネルギー量の異なる光を照射して露光し、前記感光層の一部の領域を硬化させた。室温にて15分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の前記感光層の全面に、炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて、下記の方法により求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去し、残った硬化領域の厚みを測定した。
次いで、光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を得た。こうして得た感度曲線から硬化領域の厚さが露光前と同じ厚みとなった時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量とした。このようにして求めた前記感光層を硬化させるために必要な光エネルギー量(感度)を表1に示す。
なお、前記パターン形成装置は、前記DMDからなる光変調手段を有している。
−最短現像時間の測定−
前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の前記感光層の全面に30℃の1質量%炭酸ナトリウム水溶液を0.15MPaの圧力にてスプレーし、炭酸ナトリウム水溶液のスプレー開始から銅張積層板上の感光層が溶解除去されるまでに要した時間を測定し、これを最短現像時間とした。
この結果、前記最短現像時間は、10秒であった。
<解像度の測定>
上記と同様の方法により前記積層体を作成し、室温(23℃、55%RH)にて10分間静置した。得られた前記積層体のポリエチレンテレフタレートフィルム(支持体)上から、前記パターン形成装置を用いて、ライン/スペース=1/1でライン幅5μm〜20μmまで1μm刻みで各線幅の露光を行い、ライン幅20μm〜50μmまで5μm刻みで各線幅の露光を行った。この際の露光量は、前記感度の測定で求めた前記パターン形成材料の感光層を硬化させるために必要な光エネルギー量である。室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取った。銅張積層板上の感光層の全面に、前記現像液として炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて前記の方法により求めた最短現像時間の2倍の時間スプレーし、未硬化領域を溶解除去した。この様にして得られた硬化樹脂パターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化樹脂パターンのラインにツマリ、ヨレ等の異常のない最小のライン幅を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。
<密着性の測定>
フォトマスクにライン/スペース=1/3、ライン幅10〜100μmのものを用いる以外は、前記解像度の評価方法と同じ操作を行い、硬化樹脂パターンのラインに剥がれやヨレ等の異常のない最小のライン幅を測定し、これを密着していると評価した。したがって、数値が小さいほど密着性が良好である。結果を表1に示す。
<エッジラフネスの測定>
前記パターン形成装置を用いて、前記露光ヘッドの走査方向と直交する方向の横線パターンが形成されるように露光を行った以外は、前記解像度の測定と同様にしてパターンを形成した。得られたパターンのうち、ライン幅30μmのラインの任意の5箇所について、レーザ顕微鏡(VK−9500、キーエンス(株)製;対物レンズ50倍)を用いて観察し、視野内のエッジ位置のうち、最も膨らんだ箇所(山頂部)と、最もくびれた箇所(谷底部)との差を絶対値として求め、観察した5箇所の平均値を算出し、これをエッジラフネスとした。該エッジラフネスは、値が小さい程、良好な性能を示すため好ましい。
<解像度等の変動の測定>
前記露光量を、パターン形成材料の感光層を硬化させるために必要な最小の光エネルギー量より40%多くした場合、及び、40%少なくした場合のそれぞれにおいて、既に述べた方法により、解像度、密着性、及びエッジラフネスの評価を行った。したがって、これらの値と、露光量がパターン形成材料の感光層を硬化させるために必要な最小の光エネルギー量の場合の値との差が少ないほど、解像度等の変動が少なく結果が良好である。結果を表2に示す。
(実施例2)
実施例1において、前記感光性組成物中のN−メチルアクリドンを、2−クロロ−10−ブチルアクリドンに代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例3)
実施例1において、前記感光性組成物中のN−メチルアクリドンを、イソプロピルチオキサントンに代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例4)
実施例1において、前記感光性組成物中のN−メチルアクリドンを、1−クロロ−4−プロピルオキシチオキサントンに代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例5)
実施例1において、前記感光性組成物中のN−メチルアクリドンを、9−フェニルアクリジンに代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例6)
実施例1において、前記パターン形成装置を、下記に説明するものに代えて2重露光を行った以外は、実施例1と同様にして前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を実施例1と同様にして測定した。結果を表1及び表2に示す。
<<パターン形成装置>>
前記光照射手段として図8〜9及び図25〜29に示した合波レーザ光源と、前記光変調手段として図6に概略図を示した主走査方向にマイクロミラー58が1024個配列されたマイクロミラー列が、副走査方向に768組配列された内、1024個×256列のみを駆動するように制御したDMD36と、図5に示した光を前記感光層の被露光面に結像する光学系とを有する露光ヘッド30を備えたパターン形成装置10を用いた。
各露光ヘッド30すなわち各DMD36の設定傾斜角度としては、使用可能な1024列×256行のマイクロミラー58を使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用した。この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
であり、s=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度を採用した。
まず、2重露光における解像度のばらつきと露光むらを補正するため、被露光面の露光パターンの状態を調べた。結果を図18に示した。図18においては、ステージ14を静止させた状態で積層体12の被露光面上に投影される、露光ヘッド3012と3021が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した。また、下段部分に、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、露光エリア3212と3221について示した。なお、図18では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示したが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図18に示したとおり、露光ヘッド3012と3021の間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光過多な領域が生じていることが判る。
前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012ついては露光エリア3212内の光点P(1,1)とP(256,1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1,1024)とP(256,1024)の位置を検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定した。
実傾斜角度θ´を用いて、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出した。露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255がそれぞれ導出された。その結果、図19において斜線で覆われた部分78及び80を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。
その後、図19において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、同様にして図19において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加された。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しないように制御した。
これにより、露光エリア3212と3221のうち、複数の前記露光ヘッドで形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
(実施例7)
実施例1において、前記感光性組成物中の前記バインダーとして、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg:105℃)を、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合体組成(質量比):25/15/40/20、質量平均分子量:130,000、Tg:93℃)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
なお、前記メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合体組成(質量比):25/15/40/20)のI/O値は、上述のように算出すると0.520であった。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例8)
実施例1において、前記感光性組成物中のバインダーとして、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg:105℃)を、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):25/29/46、質量平均分子量:43,000、Tg:127℃)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
なお、前記メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):25/29/46)のI/O値は、上述のように算出すると0.550であった。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例9)
実施例1において、前記感光性組成物中のバインダーとして、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg:105℃)を、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):20/56/24、質量平均分子量:75,000、Tg:123℃)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
なお、前記メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):20/56/24)のI/O値は、上述のように算出すると0.645であった。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例10)
実施例1において、前記感光性組成物中のバインダーとして、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg:105℃)を、メタクリル酸/スチレン共重合体(共重合体組成(質量比):28/72、質量平均分子量:53,100、Tg:129℃)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
なお、前記メタクリル酸/スチレン共重合体(共重合体組成(質量比):28/72)のI/O値は、上述のように算出すると0.433であった。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例11)
実施例1において、前記感光性組成物中のバインダーとして、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg:105℃)を、メタクリル酸/スチレン共重合体(共重合体組成(質量比):20/80、質量平均分子量:43,700、Tg:120℃)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
なお、前記メタクリル酸/スチレン共重合体(共重合体組成(質量比):20/80)のI/O値は、上述のように算出すると0.328であった。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例12)
実施例1において、前記感光性組成物中のバインダーとして、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg:105℃)を、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合体組成(質量比):25/22/40/13、質量平均分子量:55,000、Tg:105℃)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
なお、前記メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合体組成(質量比):25/22/40/13)のI/O値は、上述のように算出すると0.543であった。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例13)
実施例1において、前記感光性組成物中のバインダーとして、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg:105℃)を、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):29/19/52、質量平均分子量:49,900、Tg:131℃)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
なお、前記メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):29/19/52)のI/O値は、上述のように算出すると0.552であった。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例14)
実施例1において、前記感光性組成物中のバインダーとして、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg:105℃)を、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):29/31/40、質量平均分子量:60,500、Tg:132℃)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
なお、前記メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):29/31/40)のI/O値は、上述のように算出すると0.627であった。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例15)
実施例1において、前記感光性組成物中のバインダーとして、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg:105℃)を、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):25/41/34、質量平均分子量:58,500、Tg:128℃)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
なお、前記メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):25/41/34)のI/O値は、上述のように算出すると0.627であった。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例16)
実施例1において、重合性モノマーとして、前記構造式(72)で示される2官能モノマー7質量部のうちの4質量部を、下記構造式(73)で表される3官能モノマー2質量部及びγ−クロロ−β−ヒドロキシプロピル−β’−メタクリロイルオキシエチル−オルト−フタレート2質量部を追加した以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例17)
実施例1において、支持体を16μmのPET(ポリエチレンテレフタレート)フィルム(三菱ポリエステル社製、R340G)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
前記支持体について、全光線透過率及びヘイズ値を測定した。
また、得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例18)
実施例1において、支持体を16μmのPET(ポリエチレンテレフタレート)フィルム(東洋紡社製、A1517)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
前記支持体について、全光線透過率及びヘイズ値を測定した。
また、得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(実施例19)
実施例1において、支持体を16μmのPETフィルム(東レ社製、16FB50)に代えたこと以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
前記支持体について、全光線透過率及びヘイズ値を測定した。
また、得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(比較例1)
実施例1において、前記感光性組成物中のバインダーとして、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37、質量平均分子量:68,800、Tg:105℃)を、スチレン/メチルメタクリレート/n−ブチルメタクリレート/2−エチルヘキシルアクリレート/2−ヒドロキシエチルメタクリレート/メタクリル酸共重合体(モル比:10/35/10/10/15/20、酸価:144KOH・mg/g、重量平均分子量:62,300、I/O値:0.76)に代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(比較例2)
実施例1において、前記感光性組成物中のN−メチルアクリドンを、オルト−ジエチルアミノ安息香酸フェニルエステルに代えた以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
(比較例3)
実施例1において、支持体を16μmのPETフィルム(帝人デュポン社製、G2)に代えたこと以外は、実施例1と同様にしてパターン形成材料、及び積層体を製造した。
前記支持体について、全光線透過率及びヘイズ値を測定した。
また、得られた前記積層体を用い、前記感光層の感度、解像度、密着性、エッジラフネス、及び解像度等の変動を同様にして測定した。結果を表1及び表2に示す。
表1の結果より、前記バインダーのI/O値が0.300〜0.650の範囲内であり、増感剤が縮環系化合物の少なくとも1種で、支持体のヘイズ値が5.0%以下である実施例1〜19のパターン形成材料は、露光量が±40%変動しても、解像度、密着性、及びエッジラフネスの変動が抑制され、かつ、高い感度を有することがわかった。さらに、本発明のパターン形成方法において、2重露光における解像度のばらつきと露光むらを補正した実施例6は高精細であり、エッジラフネスが極めて小さいことがわかった。
本発明の感光性組成物、該感光性組成物により形成された感光層を有する前記パターン形成材料は、高感度であるとともに、感度の経時安定性が極めて高く、配線パターン等のパターンを高精細に、かつ、効率よく形成可能であるため、各種パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができる。
本発明のパターン形成装置及びパターン形成方法は、本発明の前記パターン形成材料を備えているため、各種パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができる。
図1は、パターン形成装置の一例の外観を示す斜視図である。 図2は、パターン形成装置のスキャナの構成の一例を示す斜視図である。 図3Aは、感光層の被露光面上に形成される露光済み領域を示す平面図である。 図3Bは、各露光ヘッドによる露光エリアの配列を示す平面図である。 図4は、露光ヘッドの概略構成の一例を示す斜視図である。 図5Aは、露光ヘッドの詳細な構成の一例を示す上面図である。 図5Bは、露光ヘッドの詳細な構成の一例を示す側面図である。 図6は、図1のパターン形成装置のDMDの一例を示す部分拡大図である。 図7Aは、DMDの動作を説明するための斜視図である。 図7Bは、DMDの動作を説明するための斜視図である。 図8は、ファイバアレイ光源の構成の一例を示す斜視図である。 図9は、ファイバアレイ光源のレーザ出射部における発光点の配列の一例を示す正面図である。 図10は、露光ヘッドの取付角度誤差及びパターン歪みがある際に、被露光面上のパターンに生じるむらの例を示した説明図である。 図11は、1つのDMDによる露光エリアと、対応するスリットとの位置関係を示した上面図である。 図12は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明するための上面図である。 図13は、選択されたマイクロミラーのみが露光に使用された結果、被露光面上のパターンに生じるむらが改善された状態を示す説明図である。 図14は、隣接する露光ヘッド間に相対位置のずれがある際に、被露光面上のパターンに生じるむらの例を示した説明図である。 図15は、隣接する2つの露光ヘッドによる露光エリアと、対応するスリットとの位置関係を示した上面図である。 図16は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明するための上面図である。 図17は、図14の例において選択された使用画素のみが実動され、被露光面上のパターンに生じるむらが改善された状態を示す説明図である。 図18は、隣接する露光ヘッド間に相対位置のずれ及び取付角度誤差がある際に、被露光面上のパターンに生じるむらの例を示した説明図である。 図19は、図18の例において選択された使用描素部のみを用いた露光を示す説明図である。 図20Aは、倍率歪みの例を示した説明図である。 図20Bは、ビーム径歪みの例を示した説明図である。 図21Aは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図である。 図21Bは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図である。 図22は、複数露光ヘッドを用いた参照露光の第一の例を示した説明図である。 図23Aは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図である。 図23Bは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図である。 図24は、複数露光ヘッドを用いた参照露光の第二の例を示した説明図である。 図25は、マルチモード光ファイバの構成を示す図の一例である。 図26は、合波レーザ光源の構成を示す平面図の一例である。 図27は、レーザモジュールの構成を示す平面図の一例である。 図28は、図27に示すレーザモジュールの構成を示す側面図の一例である。 図29は、図27に示すレーザモジュールの構成を示す部分側面図である。 図30は、レーザアレイの構成を示す斜視図の一例である。 図31Aは、マルチキャビティレーザの構成を示す斜視図の一例である。 図31Bは、図31Aに示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの斜視図の一例である。 図32は、合波レーザ光源の他の構成を示す平面図の一例である。 図33は、合波レーザ光源の他の構成を示す平面図の一例である。 図34Aは、合波レーザ光源の他の構成を示す平面図の一例である。 図34Bは、図34Aの光軸に沿った断面図の一例である。
符号の説明
B1〜B7 レーザビーム
L1〜L7 コリメータレンズ
LD1〜LD7 GaN系半導体レーザ
10 パターン形成装置
12 積層体(感光層、感光材料)
14 移動ステージ
18 設置台
20 ガイド
22 ゲート
24 スキャナ
26 センサ
28 スリット
30 露光ヘッド
32 露光エリア
36 デジタル・マイクロミラー・デバイス(DMD)
38 ファイバアレイ光源
58 マイクロミラー(描素部)
60 レーザモジュール
62 マルチモード光ファイバ
64 光ファイバ
66 レーザ出射部
110 ヒートブロック
111 マルチキャビティレーザ
113 ロッドレンズ
114 レンズアレイ
140 レーザアレイ
200 集光レンズ

Claims (16)

  1. 支持体と、該支持体上に、バインダー、重合性化合物、光重合開始系化合物、及び増感剤を少なくとも含む感光性組成物からなる感光層を少なくとも有するパターン形成材であって、
    光の波長405nmで測定したときの前記支持体のヘイズ値5.0%以下であり、
    前記バインダーは、共重合体を含み、該共重合体がスチレン及び/又はスチレン誘導体に由来する構造単位を有し、前記バインダーのI/O値、0.300〜0.650であり、
    前記重合性化合物が、ウレタン基及び/又はアリール基を有するモノマーを含み、
    前記増感剤が、縮環系化合物の少なくとも1種であることを特徴とするパターン形成材。
  2. 光の波長405nmで測定したときの前記支持体の全光線透過率が、86%以上である請求項1に記載のパターン形成材。
  3. 前記バインダーのガラス転移温度(Tg)が、80℃以上である請求項1又は2に記載のパターン形成材。
  4. 前記縮環系化合物が、アクリドン系化合物、チオキサントン系化合物、アクリジン系化合物から選択される少なくとも1種である、請求項1〜3のいずれか1項に記載のパターン形成材。
  5. 前記アクリドン系化合物が、下記一般式(I)
    {式中、、R、R、R、R、R、R、及びRは、それぞれ独立して、水素原子又は一価の置換基を表し、Rは、脂肪族基又は芳香族基をし、そして互いに隣り合う基は結合して環を形成していてもよい。
    で表される化合物である請求項に記載のパターン形成材。
  6. 前記チオキサントン系化合物が、下記一般式(II)
    {式中、、R、R、R、R、R、R、及びRは、前記一般式(I)におけるR〜Rと同じ意である。}
    で表される化合物である請求項に記載のパターン形成材。
  7. 前記重合性化合物が、エチレンオキサイド基及び/又はプロピレンオキサイド基有するモノマーを含む請求項1〜6のいずれか1項に記載のパターン形成材。
  8. 前記重合性化合物が、分子内に重合性基を2個有する重合性化合物、分子内に重合性基を3個以上有する重合性化合物、及び/又は分子内に重合性基を1個有する重合性化合物を含む請求項1〜7のいずれか1項に記載のパターン形成材。
  9. 前記光重合開始系化合物が、ハロゲン化炭化水素誘導体、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタロセン類、及びアシルホスフィンオキシド化合物から成る群から選択されるラジカル発生剤を含む請求項1〜8のいずれか1項に記載のパターン形成材。
  10. 熱架橋剤をさらに含み、そして前記バインダーがエポキシアクリレート化合物、及び/又は側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体を含む請求項1〜9のいずれか1項に記載のパターン形成材。
  11. 請求項1〜10のいずれか1項に記載のパターン形成材を備え、かつ
    光を照射可能な光照射手段と、該光照射手段からの光を変調し、前記パターン形成材の感光層に対して露光を行う光変調手段とを有することを特徴とするパターン形成装置。
  12. 請求項1〜10のいずれか1項に記載のパターン形成材の感光層に対し、露光を行う工程を含むことを特徴とするパターン形成方法。
  13. 以下の工程:
    感光層に対し、光照射手段、及び前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、
    前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
    前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、そして
    前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させてパターンを形成することを含む、請求項12に記載のパターン形成方法。
  14. 露光が行われた後、感光層の現像を行う請求項12又は13に記載のパターン形成方法。
  15. 現像が行われた後、エッチング処理及び/又はメッキ処理行う請求項14に記載のパターン形成方法。
  16. 現像が行われた後、感光層に対して硬化処理を行う請求項14に記載のパターン形成方法。
JP2005272902A 2005-09-20 2005-09-20 パターン形成材料、並びにパターン形成装置及びパターン形成方法 Active JP4646759B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272902A JP4646759B2 (ja) 2005-09-20 2005-09-20 パターン形成材料、並びにパターン形成装置及びパターン形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272902A JP4646759B2 (ja) 2005-09-20 2005-09-20 パターン形成材料、並びにパターン形成装置及びパターン形成方法

Publications (2)

Publication Number Publication Date
JP2007086224A JP2007086224A (ja) 2007-04-05
JP4646759B2 true JP4646759B2 (ja) 2011-03-09

Family

ID=37973294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272902A Active JP4646759B2 (ja) 2005-09-20 2005-09-20 パターン形成材料、並びにパターン形成装置及びパターン形成方法

Country Status (1)

Country Link
JP (1) JP4646759B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931533B2 (ja) * 2005-09-28 2012-05-16 旭化成イーマテリアルズ株式会社 感光性樹脂組成物およびその積層体
KR100951874B1 (ko) * 2006-04-24 2010-04-12 주식회사 코오롱 Ldi용 드라이 필름 포토레지스트 수지 조성물
JP5126354B2 (ja) * 2008-03-17 2013-01-23 日立化成工業株式会社 感光性樹脂組成物、並びにこれを用いた感光性エレメント、ソルダーレジスト及びプリント配線板
KR20120021488A (ko) * 2010-08-03 2012-03-09 주식회사 동진쎄미켐 네가티브 감광성 수지 조성물
KR102281035B1 (ko) * 2012-11-20 2021-07-22 쇼와덴코머티리얼즈가부시끼가이샤 감광성 수지 조성물, 감광성 엘리먼트, 레지스터 패턴의 형성 방법 및 프린트 배선판의 제조 방법
CN107407880B (zh) * 2015-04-08 2022-02-08 旭化成株式会社 感光性树脂组合物
WO2017033835A1 (ja) * 2015-08-21 2017-03-02 旭硝子株式会社 ネガ型感光性樹脂組成物、樹脂硬化膜、隔壁ならびに光学素子およびその製造方法
JP6514346B2 (ja) * 2015-09-11 2019-05-15 旭化成株式会社 感光性樹脂組成物
TWI781193B (zh) * 2017-08-24 2022-10-21 日商索尼股份有限公司 發光模組、光源單元、光造形裝置
JPWO2022196615A1 (ja) * 2021-03-16 2022-09-22

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006440A (ja) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd レーザ装置、露光ヘッド、及び露光装置
JP2005107191A (ja) * 2003-09-30 2005-04-21 Mitsubishi Chemicals Corp 青紫色レーザー感光性画像形成材料、青紫色レーザー感光性画像形成材及び画像形成方法
JP2005121790A (ja) * 2003-10-15 2005-05-12 Tokyo Ohka Kogyo Co Ltd 感光性樹脂組成物およびこれを用いた感光性ドライフィルム
JP2005227398A (ja) * 2004-02-10 2005-08-25 Fuji Photo Film Co Ltd 感光性転写シート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006440A (ja) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd レーザ装置、露光ヘッド、及び露光装置
JP2005107191A (ja) * 2003-09-30 2005-04-21 Mitsubishi Chemicals Corp 青紫色レーザー感光性画像形成材料、青紫色レーザー感光性画像形成材及び画像形成方法
JP2005121790A (ja) * 2003-10-15 2005-05-12 Tokyo Ohka Kogyo Co Ltd 感光性樹脂組成物およびこれを用いた感光性ドライフィルム
JP2005227398A (ja) * 2004-02-10 2005-08-25 Fuji Photo Film Co Ltd 感光性転写シート

Also Published As

Publication number Publication date
JP2007086224A (ja) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4646759B2 (ja) パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP2011065171A (ja) 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
JP2006011371A (ja) パターン形成方法
JP2006154740A (ja) 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
JP2007079120A (ja) 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
JP2007197390A (ja) オキシム誘導体、感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
JP2006284842A (ja) パターン形成方法
JP2007108629A (ja) 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
JP4651524B2 (ja) パターン形成材料、並びに、パターン形成装置及びパターン形成方法
JP4500657B2 (ja) パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP4546393B2 (ja) パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP2006184840A (ja) パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP2006220858A (ja) パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP5063764B2 (ja) パターン形成材料、並びに、パターン形成装置及びパターン形成方法
JP2007187924A (ja) パターン形成材料、並びに、パターン形成装置及びパターン形成方法
JP2007286480A (ja) パターン形成方法
JP2007165416A (ja) 回路基板の製造方法及び回路基板
JP2007108628A (ja) 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
JP4942969B2 (ja) パターン形成材料及びパターン形成方法
JP4520879B2 (ja) パターン形成材料、及びパターン形成装置並びにパターン形成方法
JP2007025398A (ja) パターン形成方法
JP2006261629A (ja) パターン形成方法
JP2007171610A (ja) パターン形成方法
JP2007003661A (ja) パターン形成方法
JP2007079114A (ja) 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100427

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350