JP4644821B2 - ポジショニング機構、及び、それを用いた顕微鏡 - Google Patents

ポジショニング機構、及び、それを用いた顕微鏡 Download PDF

Info

Publication number
JP4644821B2
JP4644821B2 JP2006547825A JP2006547825A JP4644821B2 JP 4644821 B2 JP4644821 B2 JP 4644821B2 JP 2006547825 A JP2006547825 A JP 2006547825A JP 2006547825 A JP2006547825 A JP 2006547825A JP 4644821 B2 JP4644821 B2 JP 4644821B2
Authority
JP
Japan
Prior art keywords
support shaft
guide
positioning mechanism
spherical
spherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006547825A
Other languages
English (en)
Other versions
JPWO2006057300A1 (ja
Inventor
正彦 富取
豊子 新井
穣 中榮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Publication of JPWO2006057300A1 publication Critical patent/JPWO2006057300A1/ja
Application granted granted Critical
Publication of JP4644821B2 publication Critical patent/JP4644821B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/02Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation
    • H01J2237/20235Z movement or adjustment

Description

本発明は、顕微鏡の試料ステージ等の対象物について位置決めを行うポジショニング機構、及び、そのポジショニング機構を備える顕微鏡に関する。
走査型トンネル顕微鏡や原子力間顕微鏡などの走査型プローブ顕微鏡(Scanning Probe Microscope、以下SPMという)は、原子・分子スケールの表面観察のみならず、原子・分子の操作・組み立てにも応用が期待され、ナノテクノロジーに不可欠な装置である。また、インレンズ方式の超高分解能走査型電子顕微鏡(Scanning Electron Microscope、以下SEMという)は、電子ビームを試料上で極限まで絞り込み、分解能は0.4nmに達している。透過型顕微鏡(Transmission Electron Microscope、以下TEMという)は数百エレクトロンボルト以上の高いエネルギーの電子を試料に当て、透過電子強弱により試料の結晶格子まで観察できる電子顕微鏡である。
SPMは、探針と試料の相対的位置制御機構において、ミリメートル単位で移動でき、探針を試料からナノメートルレベルまで近づける粗動機構と、サブピコメートルからマイクロメータスケールで制御する微動機構を有する。SPMの精度は、この粗動・微動の両ポジショニング機構の精度で決まる。下記特許文献には、SPMで用いられているポジショニング機構の例が開示されている。このポジショニング機構は、クランプの先端にサンプルホルダなどの物体が取り付けられ、そのクランプが支軸の端部に設けられた球面を保持し、球面に対するクランプの移動や廻転により先端の物体を三次元方向にポジショニング可能となっている。
特表2004−515769号公報
近年、SPMと、TEMやSEMを複合化して高性能化する試みがある。これには、現在普及しているTEM又はSEMにSPMを組み込む方法と、SPM用真空チャンバーにTEM又はSEMを組み込む方法が考えられるが、高機能を保ちながら複合化するためには、前者が有望である。汎用のSEMに関しては試料領域が大きいため、試料領域にSPMを組み込むことにより、容易にSPMとの複合化が行える。しかしながら、TEM又はインレンズ方式の超高分解能SEMに関しては試料領域がチューブ状の幅狭であるため、従来のポジショニング機構では幅広すぎて、試料ホルダ内にSPMを組み込むこと、特に、三次元方向でのポジショニングを実現する機構を備えるようにSPMを組み込むことは困難であった。
上記特許文献1に記載のポジショニング機構は、コンパクトな構造を有するが、安定性を欠く構成となっている。詳細には、上記ポジショニング機構は、クランプの先端に物体が取り付けられ、球面を保持する箇所を支点として移動や廻転を行うものである。このため、z方向への移動にともないクランプにおける支点の位置が変動し、バランスが維持しにくい構成となっている。また、z方向の移動距離を長くする場合や、廻転によるx方向やy方向への移動を操作に比して大きくする場合には、クランプの長さを長くする必要がある。しかしながら、この構成では、クランプの長さを長くすると、伸長したときに先端の物体により加わる力が大きくなり、不安定な状態となる。安定を確保するためにクランプの末端に錘を付加することも考えられるが、上述のように支点の位置が変動するため錘によってもバランスが保たれず、更に錘が球面に接触してクランプの可動を阻害する恐れがある。また、クランプには複数の錘をバランス良く付ける必要があるため、調整が煩雑である。
また、これらの顕微鏡に用いられる機構は、顕微鏡本来の用途の他に、その原理から様々な応用が考えられている。とくに、ポジショニング機構は、半導体の物性計測に用いられるプローバー、記録媒体中に高分解能で情報を書き込む記録装置、記録媒体中に書き込まれた情報を高分解能で読みだす再生装置、原子・分子の分析などに用いられる計測装置、微細加工装置など、様々な装置への応用が進められている。これらの様々な装置において、ポジショニング機構は、狭ピッチ化・多軸化・複数化する傾向にあり、これを実現するためにも、ポジショニング機構の細幅化や小型化が強く望まれている。
そこで、本発明の目的は細幅化・小型化が可能であり、且つ、安定性にも優れるポジショニング機構、及び、それを用いた顕微鏡を提供することにある。
上述の目的を達成するために、本発明のポジショニング機構は、所定位置に球面部を備える支軸と、当該支軸にほぼ平行に配されるガイドとを備え、三次元方向のうち当該支軸の軸方向をz方向とすると、当該支軸は、球面部の位置において当該ガイドに挟持され、球面部を支点としてxy方向に揺動可能であり、且つ、z方向にスライド可能であることを特徴とする。
この発明によれば、支軸の球面部がガイドに挟持されているため、支軸は、球面部を支点として揺動することでxy方向にポジショニングし、且つ、ガイドに沿って軸方向に滑動することでz方向にポジショニングし、この揺動と滑動の動きにより三次元方向へのポジショニングが可能となる。三次元方向へのポジショニングは、支軸の球面部をガイドで挟持するという簡単な構成で実現されているため、細幅化・小型化が可能である。
また、支軸が可動する構成であり、支点は常に支軸の所定位置に定まっているため、z方向へスライドしても常にバランスが保たれ、安定的な動きが実現される。z方向の移動距離を長くする場合や、揺動によるx方向やy方向への移動を操作に比して大きくする場合には、支軸の長さを長くする必要があるが、この場合においても、支点の位置や錘の付加により簡単に安定を確保することができる。錘は支軸のいずれかの位置に一つだけ付加すればよく、複数の錘を調整する煩雑さもない。
さらに、前記ガイドはレール状であり、前記支軸の球面部は少なくとも三本のレール状のガイドに挟持されていることが望ましい。この発明によれば、支軸の球面部とガイドとは少なくとも三点で点接触するため、球面部を確実に挟持しながらも摩擦は小さく、安定した動作で滑らかな揺動と滑動が行われる。
また、前記ガイドは筒形状であり、前記支軸の球面部は筒形状のガイド内周で挟持されていても良い。この発明によれば、支軸と筒形状のガイドの内周とが線接触するため、安定的で滑らかな支軸の動きを実現することができる。
さらに、本発明のポジショニング機構は、前記支軸に対して衝撃力を加える衝撃力付加手段を備えることが望ましい。この発明によれば、衝撃力付加手段により支軸に衝撃力を与えると、支軸が揺動・滑動し、三次元方向にポジショニングすることができる。衝撃力付加手段としては、圧電素子が好ましい。磁石、ハンマーによる殴打等により、衝撃力を付加しても良い。
さらに、本発明のポジショニング機構は、前記支軸の少なくとも一部を変形させる変形手段を備えることが望ましい。この発明によれば、変形手段により、支軸の一部を伸縮・屈曲などさせて変形させ、ポジショニングを微細に調節することができる。
本発明の顕微鏡は、前記請求項1乃至請求項6のいずれか1項に記載のポジショニング機構を備えることを特徴とする。ここで、本発明の顕微鏡とは、複数の顕微鏡を複合化した複合体としての顕微鏡であっても良いし、複合化前の単体としての顕微鏡であっても良い。この発明によれば、細幅化・小型化可能な本発明のポジショニング機構を用いるため、細幅な領域や狭小な領域にポジショニング機構を組み込むことができる。たとえば、透過型電子顕微鏡(TEM)やインレンズ方式の走査型電子顕微鏡(SEM)と、走査型プローブ顕微鏡(SPM)とを複合化する場合にも、SPMに本発明のポジショニング機構を用いることによりSPM全体を細幅化することができるため、TEMやインレンズ方式のSEMの細幅な試料ホルダにSPMを組み込むことが可能となる。
本発明のポジショニング機構によれば、支軸をガイドで挟持するという簡単な構成で三次元方向へのポジショニングを実現し、細幅化・小型化が可能であるため、細幅・狭小なスペースにポジショニング機構を組み込むことができる。たとえば顕微鏡や再生装置など、様々な装置に組み込むことが可能である。細幅化・小型化が可能なため、複雑な構成中に組み込んだり、狭ピッチ化や多軸化や複数化も可能となる。
また、支軸が可動する構成であり、支点は常に支軸の所定位置に定まっているため、z方向へスライドしても常にバランスが保たれ、安定的な動きが実現される。z方向の移動距離を長くする場合や、揺動によるx軸方向やy方向への移動を操作に比して大きくする場合には、支軸の長さを長くすればよく、この場合においても、支点の位置や錘の付加により簡単に安定を確保することができる。したがって、どのような状態においても三次元方向への安定的なポジショニングが可能となる。錘は支軸のいずれかの位置に一つだけ付加すればよく、複数の錘を調整する煩雑さもない。
とくに、本発明のポジショニング機構は、顕微鏡への応用が期待される。本発明のポジショニング機構は細幅化・小型化が可能であるため、顕微鏡に用いることにより細幅・小型の顕微鏡を実現できる。たとえば、本発明のポジショニング機構は、SPMとTEM、又は、SPMとインレンズ方式のSEMの複合化に有効である。とくに、TEMの試料ホルダは細幅であり、又、インレンズ方式のSEMは細幅なレンズ中に試料を挿入載置する必要があるが、本発明のポジショニング機構は細幅化が可能であるため、このポジショニング機構を備えた細幅のSPMを、TEMやインレンズ方式のSEMの試料ホルダに組み込むことにより、複合化が可能となる。TEMやインレンズ方式のSEMは既存のもので足り、何ら設計変更等を必要としないため、安価且つ簡単に複合化を行うことができる。さらに、複合化後においては、TEMやSEMについてもSPMのポジショニング機構を用いることができるため、従来の複雑なポジショニング機構を省略する設計変更を行い、低コスト化を図ることも可能である。また、試料の同一領域を二種類の顕微鏡で見ることができる。さらに、SEMで試料を見ながら、SPMで原子や分子の操作や組み立てを行うことも可能となる。
第1の実施形態のポジショニング機構の側面図 上記実施形態のポジショニング機構の断面図 上記実施形態のポジショニング機構の内部構造を説明する説明図 上記実施形態の支軸を示す斜視図 上記実施形態の圧電素子を示す斜視図 圧電素子に印加する電圧と時間との関係をグラフ化して説明する図 第2の実施の形態のポジショニング機構を説明する説明図 上記第1の実施形態のポジショニング機構を用いたSPMを示す図 上記第1の実施形態のポジショニング機構を用いたSEMを示す図
符号の説明
101,102 ポジショニング機構
10 支軸
11 球面部
12a 第1の絶縁部
12b 第2の絶縁部
13a 第1の圧電素子
13b 第2の圧電素子
14 錘部
20,21 ガイド
30 ホルダ
31a,31b 開口
32 ネジ孔
33 プローブ
34 固定部
40 対象物(試料ステージ)
50 電子銃
60 試料領域
70 挿入口
80 従来のポジショニング機構
c,c1,c2 スリット
c3 孔
e1〜e6 電極
(第1の実施の形態)
以下、本実施の形態のポジショニング機構101について、図面を参照しながら説明する。図1はポジショニング機構101の側面図であり、図2はその断面図である。図3は、内部構造を説明する説明図である。ポジショニング機構101は、支軸10と、支軸10にほぼ平行に配されるガイド20とを備え、支軸10はxy方向に揺動可能であり、且つ、z方向にスライド可能なように、外周面が球面の一部で構成される球面部11の位置においてガイド20に挟持されている。なお、ここでは、互いに垂直なx方向とy方向とz方向の三次元方向において、支軸10の中心軸pの方向をz方向、その他の二方向をx方向とy方向と仮定する。その具体的構成としては、例えば、支軸10と、支軸10に略並行に配されるレール状のガイド20とを備える。このポジショニング機構101は、支軸10とガイド20とがホルダ30に収納されて一体的に構成され、細幅のスティック状(ペンシル型)となっている。支軸10の先端には、位置決めされる対象物40が取り付けられ、支軸10の動きにより対象物40の位置が操作されるようになっている。位置決めされる対象物40としては、例えば顕微鏡に用いられる場合は、試料ステージやプローブである。その他、操作アームやセンサ用部材など、対象物40は適用される装置に応じて任意である。本実施の形態では、対象物40として試料ステージを例に説明する。
図4は、支軸10を示す斜視図である。支軸10は、略円柱形状であり、中央付近に球面部11を備える。球面部11よりも一方側には、球面部11側から順に、第1の絶縁部12a,第1の圧電素子13a,錘部14を備え、他方側には、第2の絶縁部12b,第2の圧電素子13bを備える。球面部11は球体で構成され、その他の各部12a,12b,13a,13b,14は、略同一直径の円柱形状の別体で構成されており、これらの部材が中心軸pを揃えて並べられて連結され、中央付近に球面部11を備える一条の略スティック状となっている。各部の位置は、これに限定されることはなく、適宜変更可能である。
球面部11は、支軸10のうち球面を備える部分であり、球体の表面により構成されている。この球面部11は、球体が第1の絶縁部12aと第2の絶縁部12bとの間に配されて連結されて構成されており、支軸10の略中央付近に位置している。球面部11を構成する球体の直径は、支軸10の他の円柱形状の部分の直径よりも大きく、球面部11が他の部分よりも膨らんだ状態となっている。球面部11は、摩擦が小さくなるように表面が磨き加工されている。球面部11を構成する球体としては、摩擦が少なく磨耗に強いという観点から、サファイア球が好ましい。
ここで、球面部11は、球体の全表面に限らず、少なくとも部分的に球面であれば良い。たとえば、半球面等のような、球体表面を一部切り取って得られる面を備える場合も、本発明の球面部に含まれると定義する。本実施の形態のように、球体表面の一部領域が絶縁部12a,12bの連結により隠れる場合も、その領域以外は球体表面の一部から構成されており、本発明の球面部に含まれる。たとえば、球面部11として別体の球体を用いることなく、球面部11と絶縁部12a,12bとが一体的に構成されている場合であっても、球面部11は球体表面の一部を備えるため、本発明の球面部11に含まれる。
絶縁部12a,12bは、第1の圧電素子13aと球面部11との間、及び、第2の圧電素子13bと球面部11との間に配されて連結されている。この絶縁部12a,12bは、アルミナ製であり、支軸10が揺動したときに、圧電素子13a,13bの電極部分と、ガイド20やホルダ30とが接触して短絡するのを防ぐ役割を果たす。
ここで、絶縁部12a,12bは、一体的な棒状の部材で構成されており、球面部11の中心を通るように設けられた孔に棒状の部材を挿入することにより、球面部11の両側に絶縁部12a,12bが位置するようにして連結されていても良い。これによれば、球面部11と他の部材との中心軸pを容易にそろえることができる。
第1の圧電素子13aは第1の絶縁部12aと錘部14との間に配されて連結され、第2の圧電素子13bは第2の絶縁部12bの球面部11とは反対側に配されて連結されている。これらの圧電素子13a,13bは、必要に応じて、支軸10に対して衝撃力を加える衝撃力付加手段としての機能を果たしたり、支軸10の先端部分を変形させる変形手段としての機能を果たす。ポジショニング機構101を主に粗動機構として使用する場合は、第1の圧電素子13a又は第2の圧電素子13bのいずれか一方、または、第1の圧電素子13aと第2の圧電素子13bの両方を衝撃力付加手段として用いることにより支軸10に衝撃を加え、大まかなポジショニングを行う。ポジショニング機構101を主に微動機構として使用する場合は、第2の圧電素子13bを変形手段として用いることにより支軸10の先端部分を屈曲・伸縮変形させ、微細なポジショニングを行う。衝撃力付加手段としては、支軸10に衝撃を加えることが可能なものあれば良く、急激な磁場変化による磁石の急峻な移動やハンマーの殴打などにより衝撃を与えるものであっても良い。また、変形手段としては、支軸10の一部を変形させることができるものであれば良く、例えば磁歪素子であっても良い。衝撃力付加手段と変形手段とを同時に実現するという観点からは圧電素子が好ましく、更には小型に3次元的に配置するために円筒型圧電素子(チューブピエゾ素子)が好ましい。同種類の素子を粗動用の衝撃力付加手段および微動用の変形手段の両方に使用することにより、低コスト化などのメリットがあるが、必要に応じて異なる方法により各手段を実現しても良い。
図5は、衝撃力付加手段や変形手段として機能する圧電素子13a,13bの例を示す斜視図である。なお、説明の便宜上、三次元方向として、支軸10の中心軸pを交点として垂直に交差する二方向をx方向とy方向と仮定し、支軸10の中心軸p方向をz方向と仮定する。圧電素子13a,13bは、図示しない配線により駆動電源に接続されており、電圧を印加することにより機械的歪みを発生する。配線は、支軸10の中心を通るように配されており、支軸10の動きを阻害しないようになっている。圧電素子13a,13bには、円筒形状のフレキシブルなチューブ本体と、チューブ本体外面上に円周方向に等間隔で配される四つの矩形状の電極e1,e2,e3,e4と、チューブ本体円周に沿った帯状の電極e5と、チューブ内面に沿って配される内面電極e6が設けられている。この圧電素子13a,13bは、内面電極e6と外面上の電極e1、e2、e3、e4、e5との間にプラス又はマイナスの電圧を印加すると、面方向に電極e1、e2、e3、e4、e5が伸張または収縮する。内面電極e6に対してプラスの電圧で伸張するか、収縮するかは圧電素子の分極方向に依存するので、ここでは規定しない。対向配置される矩形状の電極e1と電極e3、又は、電極e2と電極e4に、一方の電極は伸長し、他方の電極は収縮するように電圧が印加されると、圧電素子13a,13bがx方向やy方向に屈曲する。必ずしも二つに電極に電圧を印加しなくとも、これらの電極e1〜e4の少なくとも一つに電圧を印加しても良い。また、帯状の電極e5に電圧を印加すると、電極e5が中心軸pの方向に伸縮し、これにより、圧電素子13a,13bがz方向に伸縮する。電圧印加を中止すると、圧電素子13a,13bの屈曲・伸縮状態は解除され、基本姿勢に戻る。
この圧電素子13a、13bを、衝撃力付加手段として機能させる場合は、電圧印加を急峻に断ち切る、または逆方向の電圧を印加し、屈曲・伸縮状態から急激に基本姿勢に戻す又は逆方向に屈曲・伸縮させる。この急激な変形により、x方向やy方向に衝撃力が加えられ、この衝撃力が球面部11を支点として支軸10を揺動させ、x方向やy方向へのポジショニングが可能となる。また、電極e5に対する電圧印加を急峻に断ち切る、または逆方向の電圧を印加すると、伸縮状態が解除されて基本状態に戻るまたは逆の伸縮状態になり、この戻り又は逆の伸縮の力によりz方向に衝撃力が加えられる。この衝撃により支軸10がガイド20に沿って滑動し、z方向へのポジショニングが可能となる。
変形手段としては、曲面部11よりも対象物40側に位置する第2の圧電素子13bのみが用いられる。第2の圧電素子13bを、変形手段として機能させる場合は、電圧を調節しながら印加して、第2の圧電素子13bを屈曲・伸縮させ、適当な状態になると電圧を維持し、その屈曲・伸縮状態を保つ。屈曲によりx方向とy方向にポジショニングが可能となり、伸縮によりz方向にポジショニングが可能となる。
なお、本実施の形態では、x方向とy方向へのポジショニング(屈曲)は矩形状の電極e1,e2,e3,e4により実現され、z方向へのポジショニング(伸縮)は帯状の電極e5により実現されているが、矩形状の電極e1〜e4を同時に伸長・収縮させることにより圧電素子13a,13bをz方向へ伸縮させ、三次元方向への動きを実現しても良い。また、矩形状の電極の個数や配置は任意であり、個数や配置を調整することにより、動きをより細かく制御することも可能である。また、本実施の形態の衝撃力付加手段と変形手段は支軸10の一部を構成しているが、必要に応じて支軸10と別体であっても良い。
錘部14は、円筒形状であり、第1の圧電素子13aの端部に連結されている。錘部14は、第2の圧電素子13bの先端に取り付けられる対象物40とほぼ等価な重量を持つ錘であり、支軸10が球面部11を支点として、バランスを保つようになっている。錘部14の重量や位置は、支軸10や対象物40の重量、支点となる球面部11の位置などに応じて、適宜調整すれば良い。
この支軸10は、球面部11において三本のレール状(細長な円柱形状)のガイド20に挟持されている。各ガイド20は、支軸10の動きを案内する役割を果たし、円筒形状のホルダ30に設けられた三つのスリットcに各々嵌め込まれて固定されている。ガイド20は加工のしやすさから金属が好ましいが、金属でなくても良い。ホルダ30のスリットcは、ガイド20の直径よりも幅狭に設けられており、ガイド20はホルダ30の内周側からスリットcに嵌め込まれ、内周側に突出するように取り付けられている。スリットcに嵌め込まれたガイド20は、中心軸pと平行に、且つ、円周方向に等間隔で配されており、内側に支軸10が配されて、支軸10の球面部11を三方向から押圧しながら挟持している。各ガイド20は円柱形状であり、球面部11とは点接触している。なお、摩擦低減の観点からは、三本が好ましいが、四本以上であっても良い。摩擦低減の観点からは、ガイド20は球面部11と接触する表面が、曲面であっても、平面であっても、角であっても、球面部11とは点接触となるため、いずれでも良い。また、球面部11に対する三方向からの押圧力をバランス良く発揮させるためには円柱形状が好ましいが、三角柱形状や四角柱形状など、その他の形状でも良い。
ここで、ホルダ30は、複数のスリットcによって板バネとしての機能を備える。このため、スリットcは、ガイド20が支軸10を挟持可能な程度であり、且つ、支軸10の揺動・スライドが滑らかに行われる程度の押圧力が加わるように、幅や長さを調節しながら形成することが好ましい。
なお、各部材の位置は、上記実施の形態に限られず、本発明の作用を奏する範囲で任意である。たとえば、球面部11は必ずしも支軸10の中心付近である必要はなく、いずれか一方側端部に偏って位置させて、錘部14の重量でバランスが調整されていても良い。
また、本実施の形態のポジショニング機構101は、支軸の長さが91mm、球面部の直径が4.76mmである。ホルダ30は、長さが100mm、外径が8mm、内径が7mm程度の大きさである。また、ホルダ30に設けられるスリットcの幅は1.5mm、ガイド20の直径は1.6mmほどであり、スリットcにより弾性を備えたホルダ30自体が板バネとしての役割を果たすことにより、ガイド20が支軸10の球面部11を適当な圧力で押さえている。なお、サイズはこの大きさに限るものではなく、適宜設計変更可能である。
(動作説明)
以下に、上記ポジショニング機構101の動作説明を行う。ポジショニング機構101を粗動機構として使用する場合は、第1の圧電素子13a、又は/及び、第2の圧電素子13bに電圧を印加する。電圧は、図6に示すように、時間とともに増加し、急峻に断ち切れる鋸歯状電圧が好ましい。たとえば、時間aが経過後、電圧bに達した時点で、電圧印加を急峻に断ち切る。x方向やy方向にポジショニングする場合は、第1の圧電素子13a、又は/及び、第2の圧電素子13bの矩形状の電極e1〜e4の少なくとも一つに電圧を印加して伸縮させた後、急峻に電圧を断ち切って基本姿勢に戻すか、又は、逆方向電圧を印加して逆の伸縮状態とすることにより、x方向やy方向に衝撃力を与える。この衝撃力により、支軸10は曲面部11を支点として揺動し、対象物40のx方向やy方向へのポジショニングが行われる。また、z方向にポジショニングする場合は、帯状の電極e5に電圧を印加して伸縮させ、急峻に電圧を断ち切って基本姿勢に戻すことにより、z方向に衝撃力を加える。この衝撃力により、支軸10はz方向に滑動し、対象物40のz方向へのポジショニングが行われる。すなわち、ポジショニング機構101は細幅でありながらも、三次元方向へのポジショニングを可能としている。二つの圧電素子13a,13bの一方のみに電圧を印加しても良いが、両圧電素子13a,13bに電圧を調整しながら印加することにより、支軸10の回転などの動きの制御を行っても良い。電圧を調整しながら印加して、揺動量や滑動量の制御を行っても良い。
ポジショニング機構101を微動機構として使用する場合は、対象物40側にある第2の圧電素子13bに電圧を印加する。x方向やy方向にポジショニングする場合は、矩形状の電極e1〜e4の少なくとも一つに電圧を印加して第2の圧電素子13bを屈曲させ、適当な状態で電圧を維持して屈曲状態を保つ。支軸10の先端部分である圧電素子13bが屈曲し、対象物40のx方向やy方向へのポジショニングが行われる。また、z方向にポジショニングする場合は、帯状の電極e5に電圧を印加して第2の圧電素子13bを伸縮させ、適当な状態で電圧を維持して伸縮状態を保つ。支軸10の先端部分である第2の圧電素子13bが伸縮し、対象物40のz方向へのポジショニングが行われる。このように微動機構として用いる場合は、電圧を維持して屈曲・伸縮状態を保持するため、衝撃力が加えられることはなく、支軸10全体の揺動・滑動は生じない。これにより、第2の圧電素子13bの変形のみに起因する、三次元方向への微細なポジショニングが可能となる。
また、ポジショニング機構101は支軸10が可動する構成であり、支点は常に支軸10の所定位置に定まっているため、z方向へスライドしても常にバランスが保たれ、安定的な動きが実現される。z方向の移動距離を長くする場合や、揺動によるx方向やy方向への移動を操作に比して大きくする場合には、支軸10の長さを長くする必要があるが、この場合においても、支点の位置や錘14の付加により簡単に安定を確保することができる。錘14は支軸10のいずれかの位置に一つだけ付加すればよく、複数の錘を調整する煩雑さもない。
(第2の実施の形態)
本実施の形態は、ガイド21が円筒形状である場合について説明する。図7は、本実施の形態のポジショニング機構102を示す断面図である。支軸10は上記第1の実施の形態と同様であるが、ガイド21は円筒形状となっており、ホルダ30としての役割も兼務している。ガイド21の内周は、支軸10の球面部11を確実に把持可能であり、且つ、支軸10がガイド21上を揺動・滑動可能な程度の低摩擦となるように、適当な押圧力で支軸10を挟持する大きさを有している。支軸10はガイド21に球面部11で挟持されているため、支軸10が揺動・滑動し、細幅でありながらも三次元方向へのポジショニングが可能となる。球面部11とガイド21とは、常に線接触となっており、安定的且つ滑らかに揺動・滑動が行われる。また、ガイド21は一点のパイプ状部材で構成されており、ガイド21がホルダの役割も兼務するため、部品点数が少なく、複数本のガイドを使用する場合と比較して、組み立て工程の簡素化や、低コスト化を図ることができる。
(SPMの実施の形態)
上記各実施の形態のポジショニング機構101,102は、様々な応用装置に用いることが可能であるが、例えば以下のように顕微鏡に用いられる。図8は、上記第1の実施の形態のポジショニング機構101を用いたSPMを示す図であり、(a)はその上面図、(b)はその側面図、(c)はその下面図である。本実施の形態のSPMは、上記第1の実施の形態と同様のポジショニング機構101が、筒形状のホルダ30に収納されている。ホルダ30には、中心軸pと平行に、且つ、円周方向に等間隔に、六つのスリットc1が設けられ、そのスリットc1の間に両端側が屈曲した四つのスリットc2が設けられ、スリットc1の端部と、そのスリットc1の両隣に設けられたスリットc2の端部に囲まれる領域に台形状の孔c3が設けられている。三つのガイド20は、六つのスリットc1に一つ置きに嵌め込まれている。スリットc1,c2と孔c3は、ホルダ30に板バネとしての機能を与え、このスリットc1,c2と孔c3によりホルダ30が内側に向かって適当な押圧力を発揮し、ガイド20が支軸10を適当な力で挟持するように調節されている。ホルダ30の先端側には、直径を通る線を境として一方側と他方側とに開口31a,31bを備え、ホルダ30内に収納された支軸10の先端に取り付けられた試料ステージ40が開口31a,31bを介して露出する状態となっている。ホルダ30の先端にはネジ孔32が設けられており、このネジ孔32に試料ステージ40と対向する方向でプローブ33が取り付けられている。ホルダ30の先端には、後述するSEMに組み込んだときに、ホルダ30を固定する固定部(サファイア球)34が設けられている。
このSPMを使用する場合は、試料ステージ40に試料を配置し、試料ステージ40上の試料とプローブ33との位置決めを行う。位置決めに際しては、まず、ポジショニング機構101を粗動機構として用いる。粗動機構として用いる場合は、圧電素子13a,13bのいずれか一方又は両方に電圧を印加し、その後に電圧を急峻に断ち切るか、又は、逆方向の電圧を印加することにより支軸10に衝撃力を加え、支軸10を揺動・滑動させて、三次元方向でのポジショニングを行う。粗動によるポジショニングを行った後、さらに微細なポジショニングを行うため、ポジショニング機構101を微動機構として用いる。微動機構として用いる場合は、第2の圧電素子13bに電圧を印加し、第2の圧電素子13bを屈曲・伸縮変形させて、三次元方向での微細なポジショニングを行う。本発明のポジショニング機構101を用いれば、細幅のホルダ30にポジショニング機構101を組み込むことができ、SPMの細幅化が実現される。たとえば、ホルダ30がSEMやTEMなどの試料ホルダである場合、これらの試料ホルダは細幅であるが、本発明のポジショニング機構101を用いることにより、これらの細幅の試料ホルダにもSPMを組み込むことができる。
(SEMの実施の形態)
図9は、上記実施の形態のSPMを試料領域に組み込んだインレンズ方式の走査型電子顕微鏡SEMを説明する説明図である。SEMは、鏡体内が真空となっており、内部には、電子線を照射する電子銃50と、電子線の照射方向に設けられる試料領域60とを備える。上記SPMは、挿入口70から挿入されて試料領域60に組み込まれ、固定部34をその固定部34と嵌合する嵌合孔(図示せず)に取り付けて固定される。試料ステージ40には、電子銃50から電子線が照射される。ポジショニングに際しては、SEM自体に設けられている従来のポジショニング機構80を用いても良いが、SPMに内蔵される本発明のポジショニング機構101を用いても良い。本発明のSPMは細幅であるため、SEMの試料領域に組み込むことができ、SPMとSEMの複合化が容易に実現できる。SEMは既存のもので足り、なんら設計変更などの必要はない。ただし、SPMに内蔵のポジショニング機構101を用いることができるため、SEM自体に設けられている従来の複雑なポジショニング機構80を省略する設計変更を行うことも可能であり、これによりSEMの低コスト化を図ることもできる。また、インレンズ方式のSEMとSPMの複合化により、試料の同一領域を二種類の顕微鏡で見ることができる。さらに、SEMで試料を見ながら、SPMで原子や分子の操作や組み立てを行うことも可能となる。なお、本実施の形態のSEMは、試料領域にSPMが組み込まれる複合体としての顕微鏡を例に説明したが、複合化することなく、単体としての既存のSEMの試料ホルダに本発明のポジショニング機構101を備えるものであっても良い。
上記各実施の形態のポジショニング機構は、顕微鏡に適用する場合を例に説明したが、SPMの応用が期待される記憶装置、再生装置、計測装置、微細加工装置など、様々な装置に利用可能である。また、上記SPM及びSEMの実施の形態では、第1の実施の形態のポジショニング機構101を例に説明したが、第2の実施の形態のポジショニング機構や、その他の形態の本発明のポジショニング機構が用いられたものでも良い。
また、上記実施の形態の顕微鏡は、複合形態の顕微鏡に本発明のポジショニング機構を適用した場合を例に説明したが、SPM、TEM、SEMの各単体に適用しても良い。

Claims (9)

  1. 球体の表面により構成される球面部を備える支軸と、当該支軸にほぼ平行に配されるガイドとを備え、
    三次元方向のうち当該支軸の軸方向をz方向とすると、当該支軸は、球面部の位置において当該ガイドに挟持され、球面部を支点としてxy方向に揺動可能であり、且つ、z方向にスライド可能であり、
    前記ガイドはレール状であり、前記支軸の球面部は少なくとも三本のレール状のガイドに挟持されるか、または、前記ガイドは筒形状であり、前記支軸の球面部は筒形状のガイド内周で挟持され、
    前記支軸が球面部を支点としてバランスを保つことを特徴とするポジショニング機構。
  2. 球体の表面により構成される球面部を備えるとともに、先端に位置決めされる対象物が取り付けられ、後端に錘部が連結される支軸と、当該支軸にほぼ平行に配されるガイドとを備え、
    三次元方向のうち当該支軸の軸方向をz方向とすると、当該支軸は、球面部の位置において当該ガイドに挟持され、球面部を支点としてxy方向に揺動可能であり、且つ、z方向にスライド可能であり、
    前記ガイドはレール状であり、前記支軸の球面部は少なくとも三本のレール状のガイドに挟持されるか、または、前記ガイドは筒形状であり、前記支軸の球面部は筒形状のガイド内周で挟持され、
    前記錘部の重量により、支軸が球面部を支点としてバランスを保つことを特徴とするポジショニング機構。
  3. 前記支軸に対して衝撃力を加える衝撃力付加手段を備えることを特徴とする請求項1又は請求項2に記載のポジショニング機構。
  4. 前記支軸の先端に位置決めされる対象物が取り付けられ、前記球面部に対して位置決めされる対象物とは反対側に前記衝撃力付加手段を備えることを特徴とする請求項3に記載のボジショニング機構。
  5. 前記支軸の先端に位置決めされる対象物が取り付けられ、前記球面部に対して位置決めされる対象物とは同じ側に前記支軸の少なくとも一部を変形させる変形手段を備えることを特徴とする請求項1または請求項2に記載のポジショニング機構。
  6. 前記支軸に対して衝撃力を加える衝撃力付加手段と、前記支軸の先端に位置決めされる対象物が取り付けられ、前記球面部に対して位置決めされる対象物とは同じ側に前記支軸の少なくとも一部を変形させる変形手段とを備え、これら衝撃力付加手段と変形手段が同じ圧電素子、または、磁歪素子であることを特徴とする請求項1又は請求項2に記載のポジショニング機構。
  7. 前記支軸とレール状ガイドとがホルダに収納され、ガイドはホルダに設けられたスリットに各々嵌め込まれて固定されているとともに、ホルダが前記スリットにより板バネとして構成されていることを特徴とする請求項1又は請求項2に記載のポジショニング機構。
  8. 前記筒形状ガイドにスリットがあり、筒形状ガイドが前記スリットにより板バネとして構成されていることを特徴とする請求項1又は請求項2に記載のポジショニング機構。
  9. 前記請求項1乃至請求項8のいずれか1項に記載のポジショニング機構を備えることを特徴とする顕微鏡。
JP2006547825A 2004-11-27 2005-11-24 ポジショニング機構、及び、それを用いた顕微鏡 Active JP4644821B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004374829 2004-11-27
JP2004374829 2004-11-27
PCT/JP2005/021582 WO2006057300A1 (ja) 2004-11-27 2005-11-24 ポジショニング機構、及び、それを用いた顕微鏡

Publications (2)

Publication Number Publication Date
JPWO2006057300A1 JPWO2006057300A1 (ja) 2008-08-07
JP4644821B2 true JP4644821B2 (ja) 2011-03-09

Family

ID=36498036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006547825A Active JP4644821B2 (ja) 2004-11-27 2005-11-24 ポジショニング機構、及び、それを用いた顕微鏡

Country Status (4)

Country Link
US (1) US7672048B2 (ja)
EP (1) EP1826551A4 (ja)
JP (1) JP4644821B2 (ja)
WO (1) WO2006057300A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007035950A1 (de) * 2007-04-24 2008-11-06 Klocke Nanotechnik 3D-Vermessungseinheit in Vakuumkammern
DE112009001338B4 (de) * 2008-06-04 2021-08-05 National University Corporation Kanazawa University Abtastvorrichtung für Rastersondenmikroskop
DE102009013849A1 (de) * 2009-03-18 2010-09-30 Forschungszentrum Jülich GmbH Vorrichtung und Verfahren zur elektromechanischen Positionierung
CN106057618B (zh) * 2016-08-03 2017-11-24 兰州大学 可扩展力电两场透射电子显微镜原位样品杆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269583A (ja) * 1989-04-06 1990-11-02 Prima Meat Packers Ltd マイクロマニピュレータ
JPH08318482A (ja) * 1995-05-19 1996-12-03 Nippondenso Co Ltd 関節機構およびこれを用いたマイクロマニピュレータ
JP2004515769A (ja) * 2000-12-05 2004-05-27 ナノファクトリィ インストルメンツ アクチボラゲット マイクロポジショニング装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3546095A1 (de) * 1985-12-24 1987-06-25 Zeiss Carl Fa Goniometertisch
US6027490A (en) * 1996-01-24 2000-02-22 Radford; Fred R. Contaminated medical waste disposal system and method
DE19622357B4 (de) * 1996-06-04 2005-09-15 Carl Zeiss Jena Gmbh Vorrichtung zur Umschaltung der Betriebsarten eines Mikroskoptubus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269583A (ja) * 1989-04-06 1990-11-02 Prima Meat Packers Ltd マイクロマニピュレータ
JPH08318482A (ja) * 1995-05-19 1996-12-03 Nippondenso Co Ltd 関節機構およびこれを用いたマイクロマニピュレータ
JP2004515769A (ja) * 2000-12-05 2004-05-27 ナノファクトリィ インストルメンツ アクチボラゲット マイクロポジショニング装置

Also Published As

Publication number Publication date
WO2006057300A1 (ja) 2006-06-01
EP1826551A4 (en) 2010-04-14
JPWO2006057300A1 (ja) 2008-08-07
US20080212174A1 (en) 2008-09-04
EP1826551A1 (en) 2007-08-29
US7672048B2 (en) 2010-03-02

Similar Documents

Publication Publication Date Title
Polit et al. Development of a high-bandwidth XY nanopositioning stage for high-rate micro-/nanomanufacturing
US8789425B2 (en) Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer
JP2008173766A (ja) 試料ホルダを回転及び並進させるマニピュレータ
US8148700B2 (en) Speciman holder and speciman holder movement device
JP4644821B2 (ja) ポジショニング機構、及び、それを用いた顕微鏡
SE509017C2 (sv) Mikrodrivanordning
US7567019B2 (en) Actuator system
KR20220052365A (ko) 원자 나노 포지셔닝 장치
EP1947675A1 (en) Manipulator for rotating and translating a sample holder
JP5159607B2 (ja) 曲げ軸を有する顕微鏡のステージ
EP1340112B1 (en) Micropositioning device
CN111613507A (zh) 具备高分辨多维操纵和电学测量的电子显微镜原位样品杆
JPH06186027A (ja) 原子間力顕微鏡
KR100660185B1 (ko) 마이크로 구동기와 그 구동방법
US6525316B1 (en) Multiaxis actuator and measuring head, especially for a scanning probe microscope
KR100589647B1 (ko) 초소형 구동스테이지와 그 구동방법
JPH06288760A (ja) 微動ステージ装置
KR100563665B1 (ko) 초소형 구동스테이지와 그 구동방법
JPH02297003A (ja) 検出部位置決機構、圧電素子微動機構およびこれらを用いた走査型トンネル顕微鏡
RU2242054C2 (ru) Электромеханический модуль запоминающего устройства сверхвысокой (терабитной) емкости
Golubok et al. Microscanner with large scanning field for a probe microscope
Polit Development of a High Throughput Nano-Positioning System with Applications in Micro-Manufacturing.
JP2010287458A (ja) トップエントリステージの駆動方法及び装置
JP2006205523A (ja) 筆記具支持装置及び作図装置
JP2001133382A (ja) 走査型プローブ顕微鏡

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20070510

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20070830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150