JP4643319B2 - COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MATERIAL MANUFACTURING DEVICE - Google Patents

COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MATERIAL MANUFACTURING DEVICE Download PDF

Info

Publication number
JP4643319B2
JP4643319B2 JP2005072287A JP2005072287A JP4643319B2 JP 4643319 B2 JP4643319 B2 JP 4643319B2 JP 2005072287 A JP2005072287 A JP 2005072287A JP 2005072287 A JP2005072287 A JP 2005072287A JP 4643319 B2 JP4643319 B2 JP 4643319B2
Authority
JP
Japan
Prior art keywords
composite material
friction
bonding
laminated
friction stir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005072287A
Other languages
Japanese (ja)
Other versions
JP2006255711A (en
Inventor
雅士 高橋
義紀 片山
光吉 佐藤
隆之 芝野
剛 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005072287A priority Critical patent/JP4643319B2/en
Publication of JP2006255711A publication Critical patent/JP2006255711A/en
Application granted granted Critical
Publication of JP4643319B2 publication Critical patent/JP4643319B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は複合材料、その製造方法および複合材料製造装置に係り、特に低温度で接合が可能であり、接合界面に脆性層が形成されず、残留応力の発生および酸化を効果的に防止することが可能な複合材料、その製造方法および複合材料製造装置に関する。   The present invention relates to a composite material, a manufacturing method thereof, and a composite material manufacturing apparatus, and particularly capable of bonding at a low temperature, without forming a brittle layer at a bonding interface, and effectively preventing generation of residual stress and oxidation. The present invention relates to a composite material, a manufacturing method thereof, and a composite material manufacturing apparatus.

発電プラント、化学プラント、航空機、自動車などの機械構造物を構成する材料においては、破壊することがない十分な構造強度を備えることは当然のこととして、さらに使用環境に対応して耐食性や耐摩耗性などの種々の特性機能が要求される。それぞれの使用環境に応じた特性機能を満足させるための方法の一つとして、特性機能が異なる複数の材料を組み合わせて複合化する方法が採用されている。従来から、複数の材料を組み合わせた接合構造やそれを実現させるための製造技術については、種々数多く検討されている。   Naturally, materials that make up mechanical structures such as power plants, chemical plants, aircraft, and automobiles must have sufficient structural strength that does not break down, and in addition to corrosion resistance and wear resistance corresponding to the usage environment. Various characteristic functions, such as sexiness, are required. As one of the methods for satisfying the characteristic function corresponding to each use environment, a method of combining a plurality of materials having different characteristic functions is adopted. Conventionally, many studies have been made on a joining structure in which a plurality of materials are combined and a manufacturing technique for realizing the joining structure.

上記複数の材料を組み合わせて複合材料を製造する方法の一例として、異種材料の接合による複合化が各種分野で試行されている。例えば、化学プラントを例に取れば、構造物としての基本強度に加えて、腐食性液体やガスに対する耐食性・耐久性が要求される。この耐食性を向上させるための材料として、TiやZrなどの活性金属が有効なことが知られている。これらの金属は、いずれも反応性に富むために活性金属と呼ばれており、これらの金属材料表面に化学的に安定な不働態皮膜を形成することにより、優れた耐食性を示す成分である。ここで、上記構造強度と耐食性とを同時に満足させる材料を実現する一つの方法として、鉄鋼材料、Ni基合金やCo基合金などの超合金に代表される機械構造用材料を骨格とする一方、腐食性液体やガスに接する機械構造用材料の表面にTiやZrなどの活性金属を含有する被覆材料を接合して一体化する方法が一般的に広く採用されている。   As an example of a method of manufacturing a composite material by combining the above-mentioned plurality of materials, compounding by joining different materials has been tried in various fields. For example, taking a chemical plant as an example, in addition to the basic strength as a structure, corrosion resistance and durability against corrosive liquids and gases are required. It is known that an active metal such as Ti or Zr is effective as a material for improving the corrosion resistance. All of these metals are called active metals because of their high reactivity, and are components that exhibit excellent corrosion resistance by forming a chemically stable passive film on the surface of these metal materials. Here, as one method for realizing a material that satisfies both the structural strength and the corrosion resistance at the same time, a skeleton is made of a mechanical structural material represented by a superalloy such as a steel material, a Ni-based alloy, or a Co-based alloy, In general, a method of joining and integrating a coating material containing an active metal such as Ti or Zr on the surface of a mechanical structural material in contact with a corrosive liquid or gas is widely used.

しかしながら、機械構造材料に活性金属を接合して一体化する場合に、アーク溶接などの構成材料を一旦溶融する一般的な融接法を採用すると、以下のような不利な事象が発生し易い。
(1)機械構造材料と活性金属材料との接合界面に脆性が高い金属間化合物を生じ、接合強度が弱くなり複合材の構造強度や靭性値が低下し易くなる。
(2)機械構造材料と活性金属材料との熱膨張差により多大の熱応力が発生するために、残留応力による割れ、接合界面における剥離や変形が生じやすく、複合材の疲労強度や耐久性が劣化し易くなる。接合部に生じた残留応力を除去するための焼鈍操作が必要になるなど、後処理工程での工数および設備費が増加する。
(3)溶融熱による高温度環境で活性金属が酸素との反応によって酸化物を生じ易く、接合不良を生じると共に材料特性が劣化する。
However, when the active metal is joined and integrated with the mechanical structural material, the following disadvantageous events are likely to occur if a general fusion welding method for once melting the constituent materials such as arc welding is employed.
(1) An intermetallic compound having high brittleness is generated at the joint interface between the mechanical structural material and the active metal material, the joint strength is weakened, and the structural strength and toughness value of the composite material are easily lowered.
(2) Since a great amount of thermal stress is generated due to the difference in thermal expansion between the mechanical structural material and the active metal material, cracking due to residual stress, peeling and deformation at the joint interface are likely to occur, and the fatigue strength and durability of the composite material are increased. It becomes easy to deteriorate. The number of man-hours and equipment costs in the post-treatment process increase, such as the need for an annealing operation to remove the residual stress generated in the joint.
(3) In a high temperature environment due to heat of fusion, the active metal tends to generate oxides by reaction with oxygen, resulting in poor bonding and material properties.

また、上記のような不利な事象が複合的に生起する結果、接合時に材料界面において割れの発生や活性金属の著しい酸化などが生じ、要求される耐食性が維持できないという問題点もあった。   In addition, as a result of the disadvantageous events as described above occurring in combination, cracks and significant oxidation of the active metal occur at the material interface during bonding, and the required corrosion resistance cannot be maintained.

上記問題点を解消する異種材料の接合方法として、溶融相を形成しない摩擦接合法や拡散接合法などの固相接合法が開発されている。ここで摩擦接合法は、2つの部材を突き合わせて接触させ加圧しながら接触面の相対運動によって摩擦熱を発生させ高温度での圧接により部材を一体化する方法である。   As joining methods of different materials that solve the above problems, solid phase joining methods such as a friction joining method and a diffusion joining method that do not form a melt phase have been developed. Here, the friction welding method is a method in which two members are brought into contact with each other and pressed to generate frictional heat by relative movement of the contact surface, and the members are integrated by pressure welding at a high temperature.

また拡散接合法は、固相域で温度・圧力を高め、原子の拡散によって材料を結合する方法であり、具体的には、接合金属製品に他種金属を高温において接触せしめ、接触面から金属成分を拡散浸透させて両金属部材を一体に接合する方法である。   The diffusion bonding method is a method in which the temperature and pressure are increased in the solid phase region, and the material is bonded by atomic diffusion. In this method, the components are diffused and penetrated to join the two metal members together.

これらの固相接合方法では、高温度の溶融相を形成しないために活性金属の温度上昇を低く抑制することが可能になり、前記の(1)から(3)までの不利な事象の発生を低減することができる。しかし、前者の摩擦接合法は小型部品にしか適用できない欠点がある一方、後者の拡散接合法は原子の拡散時間が長く接合処理に多大の時間を要するなどの問題点があるために、広く適用されるには至っていないのが現状である。   In these solid-phase joining methods, it is possible to suppress a rise in the temperature of the active metal to a low level because no high-temperature molten phase is formed, and the occurrence of adverse events (1) to (3) described above can be prevented. Can be reduced. However, while the former friction welding method has a drawback that it can only be applied to small parts, the latter diffusion bonding method has a problem that the diffusion time of atoms is long and it takes a lot of time for the bonding process, so it is widely applied. The current situation is that it has not been achieved.

一方で近年、固相接合法の一種として摩擦攪拌接合法が開発され、広く実用化され始めている。摩擦攪拌接合法は、硬質材料から成る裏当ての上に、アルミニウム合金材等の軟質材を突き合せて拘束し、軟質材より硬質な摩擦接合工具の圧入ピンを突合せ部に高速回転させながら圧入・移動させて、軟質材同士を摩擦接合する方法である。   On the other hand, in recent years, a friction stir welding method has been developed as a kind of solid phase bonding method and has begun to be widely put into practical use. In the friction stir welding method, a soft material such as an aluminum alloy material is abutted and constrained on a backing made of a hard material, and press-fitting is performed while rotating the press-fit pin of a friction welding tool harder than the soft material into the abutting part. -It is a method of moving and softly joining soft materials together.

この摩擦攪拌接合法は、溶融相を形成しない低温度条件での接合法であると同時に、従来からの固相接合法と比較して接合操作が迅速であり接合効率が高いという利点を有する。さらに、局部施工が可能であり熱処理工程も不要であるために、大型の部品や構造物への適用も可能である。   This friction stir welding method is a bonding method under a low temperature condition in which a melt phase is not formed, and at the same time, has an advantage that the bonding operation is quicker and the bonding efficiency is higher than the conventional solid phase bonding method. Furthermore, since local construction is possible and a heat treatment process is unnecessary, it can be applied to large parts and structures.

このような摩擦攪拌接合法を、AlやCuなどを主成分とした低融点で軟質な材料に対して適用した例が下記特許文献1,2,3に開示されている。また、鉄鋼材料などの比較的高融点で硬質な材料へ適用した例が下記特許文献4に記載されている。さらに、鉄鋼材料とAl合金やTi合金とを組み合わせた異種金属の接合に適用した例が下記特許文献5,6に記載されている。また、MgやTiなどの活性金属同士の接合に適用した例が下記特許文献7に記載されている。
特開2000−170280号公報 特開2001−259863号公報 特開2003−94177号公報 特開2002−273579号公報 特開2003−170280号公報 特開2003−305586号公報 特開2000−301363号公報
Examples in which such a friction stir welding method is applied to a soft material having a low melting point mainly composed of Al, Cu, or the like are disclosed in the following Patent Documents 1, 2, and 3. An example applied to a hard material with a relatively high melting point such as a steel material is described in Patent Document 4 below. Furthermore, the following patent documents 5 and 6 describe an example applied to the joining of dissimilar metals combining a steel material and an Al alloy or Ti alloy. Moreover, the example applied to joining of active metals, such as Mg and Ti, is described in the following patent document 7.
JP 2000-170280 A JP 2001-259863 A JP 2003-94177 A JP 2002-273579 A JP 2003-170280 A JP 2003-305586 A JP 2000-301363 A

しかしながら、鉄鋼材料とAl合金やTi合金との組み合わせる異種金属接合を対象とした特開2003−170280号公報(特許文献5)に示す接合法では、融点が低い側の材料に接合工具を挿入して摩擦攪拌することを特徴としている。この場合、炭素鋼とTi合金の組み合わせでは融点が低い炭素鋼側に工具を挿入することになる。一般的には、炭素鋼には強度が求められる一方、Ti合金には耐食性が求められる場合が多く、高強度部材としての炭素鋼が厚くなり、耐食性部材としてのTi合金が薄いという構造になる場合が多い。しかしながら、接合工具を挿入する低融点側の材料の厚さが大きくなると、接合操作が困難になり、この接合法を適用できる材料系や構造に限界があり、接合材の用途が限定され設計の自由度が低下する難点があった。   However, in the joining method shown in Japanese Patent Application Laid-Open No. 2003-170280 (Patent Document 5) for dissimilar metal joining in which a steel material and an Al alloy or Ti alloy are combined, a joining tool is inserted into the material having a lower melting point. It is characterized by friction stir. In this case, in the combination of carbon steel and Ti alloy, a tool is inserted into the carbon steel side having a low melting point. In general, while carbon steel is required to have strength, Ti alloy is often required to have corrosion resistance, and carbon steel as a high-strength member is thick and Ti alloy as a corrosion-resistant member is thin. There are many cases. However, if the thickness of the material on the low melting point side where the welding tool is inserted becomes large, the joining operation becomes difficult, and there are limits to the material system and structure to which this joining method can be applied, and the use of the joining material is limited. There was a difficulty in reducing the degree of freedom.

また、鉄鋼材料とAlやTi合金の組み合わせなどの異種金属接合を対象とした特開2003−305586号公報(特許文献6)に記載された接合法では、異種金属界面にろう材を挿入しておき、摩擦攪拌接合を行うと同時に、その際に発生する摩擦熱でろう付することを特徴とし、ろう付け部が摩擦攪拌接合の接合強度を補うようにしたことを特徴としている。この場合、ろう付材料の温度が最適になるように摩擦熱の発生量を厳密に制御する必要がある。さらに摩擦熱による接合を行う工具を挿入する材料の軟化も摩擦攪拌接合では重要な要素である。しかしながら、上記摩擦熱がろう付温度によって制限されるために、接合工具を挿入する材料が軟化しない場合もあり、結果として接合工具の寿命から適用できる材料系や構造が制限される問題点があった。   Further, in the joining method described in Japanese Patent Application Laid-Open No. 2003-305586 (Patent Document 6) for joining dissimilar metals such as a combination of a steel material and Al or Ti alloy, a brazing material is inserted into the dissimilar metal interface. In addition, the friction stir welding is performed at the same time as brazing with the frictional heat generated at that time, and the brazing portion supplements the joint strength of the friction stir welding. In this case, it is necessary to strictly control the amount of generated frictional heat so that the temperature of the brazing material becomes optimum. Furthermore, softening of the material into which a tool for joining by frictional heat is inserted is also an important factor in friction stir welding. However, since the frictional heat is limited by the brazing temperature, the material into which the joining tool is inserted may not be softened. As a result, there is a problem that the applicable material system and structure are restricted from the life of the joining tool. It was.

一方、MgやTiなどの活性金属同士の接合を対象とした特開2000−301363号公報(特許文献7)に記載された接合法は、活性金属同士を突合せ接合するものである。金属やセラミック基材表面上に活性金属を形成した複合材ではなく、強度部材に耐食性などの機能を付加するという構造や材料系には属さず、耐食性に優れた構造物の構成材としては使用できない問題点があった。   On the other hand, the joining method described in Japanese Patent Application Laid-Open No. 2000-301363 (Patent Document 7) for joining active metals such as Mg and Ti butt-joins active metals. It is not a composite material in which an active metal is formed on the surface of a metal or ceramic substrate, but does not belong to a structure or material system that adds a function such as corrosion resistance to a strength member, and is used as a component of a structure with excellent corrosion resistance There was a problem that could not be done.

本発明は、上記従来の問題点を解決するためになされたものであり、低温度で接合が可能であり、接合界面に脆性層が形成されず、残留応力の発生および酸化を効果的に防止することが可能な複合材料、その製造方法および複合材料製造装置を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and can be bonded at a low temperature, and a brittle layer is not formed at the bonding interface, effectively preventing the occurrence of residual stress and oxidation. An object of the present invention is to provide a composite material, a method for manufacturing the composite material, and a composite material manufacturing apparatus.

上記の目的を達成するために本発明に係る複合材料は、金属またはセラミックスから成る基材表面上に、活性金属または活性金属合金から成る合せ材を接合した複合材料において、前記活性金属はZrであり、上記合せ材に摩擦熱を発生させて合せ材を軟化させると共に攪拌して形成した摩擦攪拌層の部位で上記基材と合せ材とが一体に摩擦接合されていることを特徴とする。 Composite material according to the present invention in order to achieve the above object, on the substrate surface made of a metal or ceramics, the composite material obtained by bonding a cladding material consisting of active metal or active metal alloy, wherein the active metal is Zr In addition, the base material and the bonding material are integrally friction-bonded at a portion of the friction stir layer formed by generating frictional heat in the bonding material to soften the bonding material and stirring.

本発明に係る複合材料で使用する基材としては、複合材料の基本的な構造強度を担う金属材や耐食性・耐熱性等を担うセラミックスが使用される。また、合せ材としては活性金属または活性金属合金から成る金属材が使用される。   As the base material used in the composite material according to the present invention, a metal material responsible for the basic structural strength of the composite material and ceramics responsible for corrosion resistance, heat resistance, and the like are used. Further, a metal material made of an active metal or an active metal alloy is used as the bonding material.

ここで活性金属は反応性に富む金属であり、少量の摩擦熱でも低温度で摩擦攪拌層が形成でき基材と合せ材との接合が容易になる。上記活性金属の具体例としては比較的に低温度で化合物を形成し易いZr,Mg,Tiなどが好適に使用できる。上記合せ材としては、活性金属単体から成るものや、複数の活性金属を含む合金材、あるいは1種以上の活性金属と他の金属元素との合金材を使用できる。   Here, the active metal is a metal rich in reactivity, and a friction stir layer can be formed at a low temperature even with a small amount of frictional heat, so that the base material and the laminated material can be easily joined. As specific examples of the active metal, Zr, Mg, Ti, etc., which can easily form a compound at a relatively low temperature, can be suitably used. As the above-mentioned laminated material, an active metal simple substance, an alloy material containing a plurality of active metals, or an alloy material of one or more active metals and other metal elements can be used.

本発明において、基本的な構造強度を基材としての金属材に担わせる一方、耐摩耗性および耐食性を合せ材に担わせる構造は勿論のこと、構造強度を合せ材としての金属材に担わせる一方、耐摩耗性および耐食性をセラミックス製基材に担わせる構造としても良い。   In the present invention, the basic structural strength is borne by the metal material as the base material, while the structural strength is borne by the metal material as the laminated material as well as the structure in which the laminated material is borne by the wear resistance and corrosion resistance. On the other hand, it is good also as a structure which makes a ceramic base material bear abrasion resistance and corrosion resistance.

上記複合材料によれば、製造時に構成部材の溶融を必要としないために、接合時の温度上昇が抑制され、接合対象材料の構成元素の拡散が効果的に低減できる。その結果、接合界面での脆性金属間化合物の形成が抑制され、高い接合強度を有する接合が可能となり、耐久性に優れた複合材料を提供することができる。また、構成部材が溶融されないために接合時の温度上昇が抑制され、構成材料の線膨張係数の差による残留応力を効果的に低減できる。その結果、残留応力による割れ、接合界面での部材の剥離および変形が抑制され、変形のない信頼性が高い接合が可能となり、信頼性が高い複合材料を提供することができる。   According to the composite material, since the component member does not need to be melted at the time of manufacture, an increase in temperature at the time of joining is suppressed, and diffusion of constituent elements of the joining target material can be effectively reduced. As a result, formation of a brittle intermetallic compound at the bonding interface is suppressed, bonding having high bonding strength is possible, and a composite material having excellent durability can be provided. Further, since the constituent members are not melted, the temperature rise at the time of joining is suppressed, and the residual stress due to the difference in the linear expansion coefficients of the constituent materials can be effectively reduced. As a result, cracking due to residual stress, separation and deformation of the member at the bonding interface are suppressed, high-reliability bonding without deformation becomes possible, and a highly reliable composite material can be provided.

また上記複合材料において、前記摩擦攪拌層が合せ材に点状に形成されており、前記基材と合せ材とが点接合で摩擦接合されていることが好ましい。点接合のみで所定の接合強度が得られる場合であれば、この点接合構造のみで迅速に複合材料を製造できる。   In the composite material, it is preferable that the friction stir layer is formed in a spot shape on the laminated material, and the base material and the laminated material are friction-bonded by point bonding. In the case where a predetermined bonding strength can be obtained only by point bonding, a composite material can be rapidly produced only by this point bonding structure.

さらに上記複合材料において、前記摩擦攪拌層が合せ材に線状に形成されており、前記基材と合せ材とが線接合で摩擦接合されていることが好ましい。この線接合のみで所定の接合強度が得られる場合であれば、この線接合構造のみで迅速に複合材料を製造できる。   Furthermore, in the composite material, it is preferable that the friction stir layer is linearly formed on the laminated material, and the base material and the laminated material are friction bonded by wire bonding. If a predetermined bonding strength can be obtained only by this wire bonding, a composite material can be quickly produced only by this wire bonding structure.

また上記複合材料において、前記摩擦攪拌層が合せ材に面状に形成されており、前記基材と合せ材とが面接合で摩擦接合されていることが好ましい。この面接合構造によれば、上記点接合構造および線接合構造と比較すれば、接合処理対象部の長さは増大化するが、複合材料の接合強度をより高めることができる。   In the composite material, it is preferable that the friction stir layer is formed in a planar shape on the laminated material, and the base material and the laminated material are friction bonded by surface bonding. According to this surface bonding structure, the length of the bonding target portion is increased as compared with the point bonding structure and the line bonding structure, but the bonding strength of the composite material can be further increased.

さらに上記複合材料において、前記接合する合せ材の厚さが0.1mmから10mmの範囲であることが好ましい。上記合せ材の厚さが0.1mm未満である場合には、活性金属の反応活性が不十分であり、十分な耐食層および摩擦攪拌層が形成されず構成部材の接合強度が低下する。一方、合せ材の厚さが10mmを超えるように過大に設定しても、接合強度の改善効果は飽和すると共に、後述するように接合部の体積に占める摩擦攪拌層の体積割合が相対的に減少し接合強度が却って低下する場合がある。したがって、上記合せ材の厚さは0.1mmから10mmの範囲に設定されるが、1mmから8mmの範囲がより好ましい。   Furthermore, in the composite material, it is preferable that the thickness of the bonding material to be joined is in the range of 0.1 mm to 10 mm. When the thickness of the laminated material is less than 0.1 mm, the reaction activity of the active metal is insufficient, and a sufficient corrosion-resistant layer and friction stir layer are not formed, resulting in a decrease in bonding strength of the constituent members. On the other hand, even if the thickness of the laminated material is set excessively so as to exceed 10 mm, the effect of improving the bonding strength is saturated, and the volume ratio of the friction stir layer occupying the volume of the bonded portion as described later is relatively It may decrease and the joint strength may decrease instead. Therefore, the thickness of the laminated material is set in the range of 0.1 mm to 10 mm, and more preferably in the range of 1 mm to 8 mm.

また上記複合材料において、前記合せ材の接合部の体積に占める摩擦攪拌層の体積割合が20%以上であることが好ましい。上記摩擦攪拌層の体積割合が20%未満である場合には、十分な摩擦攪拌層が形成されず構成部材の接合強度が低下してしまう。   Moreover, in the composite material, it is preferable that the volume ratio of the friction stir layer to the volume of the joint portion of the laminated material is 20% or more. When the volume ratio of the friction stir layer is less than 20%, a sufficient friction stir layer is not formed and the bonding strength of the constituent members is lowered.

ここで上記摩擦攪拌層の体積割合Vxは、図7の模式図で斜線で示すように合せ材2の摩擦攪拌領域3の各幅と厚さ(高さ)との積を全幅に渡って積分して求めた体積をVaとし、摩擦攪拌領域3の表面積と合せ材の厚さとの積である接合部の体積をVbとすると、下記(1)式で与えられる。なお上記摩擦攪拌領域3の体積Vaは、接合部の中心を通る切断面で切断して得られる断面組織写真で、摩擦攪拌領域3の断面形状の回転体体積として算出しても良い。
[数1]
Vx(%)=Va/Vb×100 …(1)
Here, the volume ratio Vx of the friction stir layer is obtained by integrating the product of each width and thickness (height) of the friction stir zone 3 of the laminated material 2 over the entire width as shown by the oblique lines in the schematic diagram of FIG. If the volume obtained in this way is Va and the volume of the joint, which is the product of the surface area of the friction stir zone 3 and the thickness of the laminated material, is Vb, the following equation (1) is given. The volume Va of the friction stir zone 3 may be calculated as a rotating body volume having a cross-sectional shape of the friction stir zone 3 by a cross-sectional structure photograph obtained by cutting along a cut surface passing through the center of the joint.
[Equation 1]
Vx (%) = Va / Vb × 100 (1)

さらに上記複合材料において、前記活性金属が、4A族元素であるTi、Zr、Hfと、3A族元素であるSc、Y、元素番号が57から71のランタノイド系希土類元素と、5A族元素であるV、Nb、Taとから成る元素群から選択された少なくとも1種であることが好ましい。上記活性金属元素は反応性に富む金属であり、少量の摩擦熱でも低温度で摩擦攪拌層が形成でき基材と合せ材との接合操作を迅速化できる。   Further, in the composite material, the active metals are Ti, Zr, Hf that are Group 4A elements, Sc, Y that are Group 3A elements, lanthanoid rare earth elements having element numbers 57 to 71, and Group 5A elements. It is preferably at least one selected from the group consisting of V, Nb and Ta. The active metal element is a highly reactive metal, and a friction stir layer can be formed at a low temperature even with a small amount of frictional heat, thus speeding up the joining operation between the base material and the laminated material.

本発明に係る複合材料の製造方法は、金属またはセラミックスから成る基材表面上に、活性金属であるZrまたはそのZr合金から成る合せ材を重ね合わせ、その合せ材表面に加圧棒を押し付けながら回転させることにより摩擦熱を発生させて合せ材を軟化させると共に攪拌して摩擦攪拌層を形成し、この摩擦攪拌層を形成した部位において上記基材と合せ材とを一体に摩擦接合することを特徴とする。 In the method for producing a composite material according to the present invention, a laminated material made of Zr which is an active metal or a Zr alloy thereof is superposed on the surface of a base material made of metal or ceramics, and a pressure bar is pressed against the surface of the laminated material. By rotating and generating frictional heat, the laminated material is softened and stirred to form a friction stirring layer, and the base material and the bonding material are integrally friction-bonded at the site where the friction stirring layer is formed. Features.

また上記複合材料の製造方法において、前記摩擦熱で加熱される合せ材表面の雰囲気の酸素分圧を10Pa以下(約0.1atm以下)に調整することが好ましい。合せ材表面の雰囲気の酸素分圧を10Pa以下に調整することにより、構成部材の酸化よる劣化を効果的に防止することができる。具体的な酸素濃度としては5体積%以下、より好ましくは1体積%以下である。 In the method for producing a composite material, it is preferable to adjust the oxygen partial pressure of the atmosphere on the surface of the laminated material heated by the frictional heat to 10 4 Pa or less (about 0.1 atm or less). The partial pressure of oxygen in the atmosphere of cladding material surface by adjusting below 10 4 Pa, it is possible to prevent the deterioration due to oxidation of the components effectively. The specific oxygen concentration is 5% by volume or less, more preferably 1% by volume or less.

本発明に係る複合材料の製造装置は、被接合材としての基材および活性金属であるZrまたはそのZr合金から成る合せ材を重ね合わせた積層体を移動する移動機構と、合せ材表面から積層体を加圧しかつモータによって回転する加圧棒と、上記加圧棒を積層体表面に沿って走行させる走行機構と、上記加圧棒による積層体の加圧部の雰囲気を遮断する遮断機構と、上記加圧部の雰囲気中の酸素分圧を低減する酸素低減機構と、上記各機構の動作を制御するための制御機構とを備え、上記加圧棒による積層体の加圧部の雰囲気を遮断する遮断機構が、加圧部周辺の雰囲気を局所的に遮蔽するガスカーテンであることを特徴とする。 An apparatus for producing a composite material according to the present invention includes a moving mechanism for moving a laminated body in which a base material as a material to be joined and a laminated material made of Zr which is an active metal or its Zr alloy are laminated, and lamination from the surface of the laminated material. A pressure bar that pressurizes the body and is rotated by a motor; a travel mechanism that causes the pressure bar to travel along the surface of the laminate; and a blocking mechanism that blocks an atmosphere of the pressurization portion of the laminate by the pressure bar; And an oxygen reduction mechanism for reducing the oxygen partial pressure in the atmosphere of the pressurizing unit, and a control mechanism for controlling the operation of each mechanism, and the atmosphere of the pressurizing unit of the laminate by the pressurizing rod interruption mechanism for interrupting, wherein the gas curtain der Rukoto locally shielding atmosphere around pressing.

上記製造装置において、ロードセルによって上記加圧棒に加圧力が付与されると同時に、モータによって加圧棒に回転力が付与され、基材および合せ材を重ね合わせた積層体の合せ材表面から押圧される。加圧棒を押圧された合せ材は、その接触部分に摩擦熱を発生し、該部が軟化されつつ攪拌されて摩擦攪拌層が形成され、この摩擦攪拌層を形成した部位において上記基材と合せ材とが一体に摩擦接合される。   In the manufacturing apparatus, a pressing force is applied to the pressure bar by the load cell, and at the same time, a rotational force is applied to the pressure bar by the motor, and the pressure is applied from the surface of the laminated material in which the base material and the laminated material are stacked. Is done. The laminated material pressed by the pressure bar generates frictional heat at the contact portion, and is stirred while the portion is softened to form a friction stir layer. The laminated material is integrally friction bonded.

点接合部を複数設ける場合、線接合部を形成する場合、面接合部を形成する場合には、走行機構を駆動せしめて加圧棒を積層体表面に沿って走行させたり、移動機構を駆動せしめて積層体を移動したりして積層体と加圧棒との相対位置を調整する。   When providing multiple point joints, forming line joints, or forming surface joints, drive the travel mechanism to drive the pressure rod along the surface of the laminate or drive the moving mechanism. The relative position between the laminate and the pressure rod is adjusted by moving the laminate at least.

上記複合材料の製造装置によれば、製造時に構成部材の溶融を必要としないために、接合時の温度上昇が抑制され、接合対象材料の構成元素の拡散が効果的に低減できる。その結果、接合界面での脆性金属間化合物の形成が抑制され、高い接合強度を有する接合が可能となり、耐久性に優れた複合材料を提供することができる。   According to the composite material manufacturing apparatus, since melting of the constituent members is not required at the time of manufacturing, the temperature rise at the time of joining is suppressed, and the diffusion of constituent elements of the joining target material can be effectively reduced. As a result, formation of a brittle intermetallic compound at the bonding interface is suppressed, bonding having high bonding strength is possible, and a composite material having excellent durability can be provided.

また接合部材を軟化させるための加熱炉などを必要とせず、加圧棒が設置できる場所があれば容易に接合操作に対応できるために、対象物として大型部品から小型部品まで幅広い用途分野において接合操作が可能となる。さらに加圧棒の大きさ(径)を変えたり、接合対象物を相対的に移動したりすることにより、点接合から線接合、さらには面接合までのあらゆる接合形態に対応することができる。   In addition, there is no need for a heating furnace to soften the joining member, and if there is a place where a pressure rod can be installed, it can be easily used for joining operations. Operation becomes possible. Furthermore, by changing the size (diameter) of the pressure rod or relatively moving the object to be joined, it is possible to cope with all joining forms from point joining to line joining and further to surface joining.

また、上記加圧棒による積層体の加圧部の雰囲気を遮断する遮断機構と、上記加圧部の雰囲気中の酸素分圧を低減する酸素低減機構とを備えているために、接合部の酸化による劣化が効果的に防止できる。   In addition, since it includes a shut-off mechanism that shuts off the atmosphere of the pressurizing part of the laminate by the pressurizing rod and an oxygen reduction mechanism that reduces the oxygen partial pressure in the atmosphere of the pressurizing part, Degradation due to oxidation can be effectively prevented.

さらに上記複合材料の製造装置において、前記合せ材表面から積層体を加圧するための加圧棒の主成分が、硬質高融点金属であるW、Mo、Nb,Taと、硬質高融点炭化物系セラミックスであるSiC、BC、ダイヤモンドと、硬質高融点窒化物系セラミックスであるSi、c−BN(立方晶窒化ほう素)と、硬質高融点酸化物系セラミックスであるAl、SiOとから成る群より選択された少なくとも1種であることが好ましい。 Furthermore, in the composite material manufacturing apparatus, the main components of the pressure rod for pressing the laminated body from the surface of the laminated material are hard refractory metals W, Mo, Nb, Ta and hard refractory carbide ceramics. SiC, B 4 C and diamond, Si 3 N 4 and c-BN (cubic boron nitride) which are hard high melting point nitride ceramics, and Al 2 O 3 which is hard high melting point oxide ceramics , Preferably at least one selected from the group consisting of SiO 2 .

上記硬質高融点金属および硬質高融点セラミックスは、いずれも高硬度で耐熱性に優れており、これらの材料を加圧棒の主成分とした場合には、接合部の変形を起こさずに加圧棒を長期にわたって安定した状態で使用できる。   The hard refractory metal and the hard refractory ceramic are both high in hardness and excellent in heat resistance. When these materials are used as the main component of the pressure rod, pressure is applied without causing deformation of the joint. The rod can be used in a stable state for a long time.

また、上記複合材料の製造装置において、前記加圧棒が丸棒形状であることが好ましい。加圧棒を丸棒形状に形成することにより、角棒状等の断面が非円形状の加圧棒と比較して回転力が円滑に伝達される。また、積層体を移動する移動機構および合せ材表面から積層体を加圧するための加圧棒の移動操作を円滑に実施できる。   In the composite material manufacturing apparatus, it is preferable that the pressure bar has a round bar shape. By forming the pressure bar in a round bar shape, the rotational force is transmitted smoothly compared to a pressure bar having a non-circular cross section such as a square bar shape. Moreover, the movement mechanism of moving a laminated body and the movement operation | movement of the pressurization rod for pressurizing a laminated body from the surface of a laminated material can be implemented smoothly.

さらに上記複合材料の製造装置において、前記丸棒形状である加圧棒の先端が曲面状に形成されているか、または丸棒直径よりも細径の突起物を備えるように形成されていることが好ましい。加圧棒の先端を曲面状に形成することにより、加圧棒の軸中心部における加圧力(面圧)を増大化させることができ、摩擦攪拌操作を接合部の中心部から周辺部へと順次進めることができる。また、加圧棒の先端に丸棒直径よりも細径の突起物を設けることにより、摩擦攪拌力を高めることができる。   Further, in the composite material manufacturing apparatus, the tip of the pressure bar that is in the shape of the round bar is formed in a curved surface shape, or is formed so as to have a protrusion having a diameter smaller than the diameter of the round bar. preferable. By forming the tip of the pressure rod into a curved surface, the pressure (surface pressure) at the axial center of the pressure rod can be increased, and the friction stirring operation can be performed from the center of the joint to the periphery. You can proceed sequentially. Further, the friction stir force can be increased by providing a protrusion having a diameter smaller than the diameter of the round bar at the tip of the pressure bar.

また上記複合材料の製造装置において、上記加圧棒による積層体の加圧部の雰囲気を遮断する遮断機構が、加圧部周辺の雰囲気を局所的に遮蔽するガスカーテンであることが好ましい。上記ガスカーテンによる非酸化ガスの噴出し効果により、加圧部周辺の雰囲気を局所的に遮蔽することができ、雰囲気ガス(空気)中の酸化性ガス(酸素)による接合部の劣化が効果的に防止できる。   In the composite material manufacturing apparatus, it is preferable that the shut-off mechanism for shutting off the atmosphere of the pressurizing portion of the laminate by the pressurizing rod is a gas curtain that locally shields the atmosphere around the pressurizing portion. By the non-oxidizing gas ejection effect by the gas curtain, the atmosphere around the pressurizing part can be shielded locally, and the deterioration of the joint part by the oxidizing gas (oxygen) in the atmospheric gas (air) is effective. Can be prevented.

さらに上記複合材料の製造装置によって製造された複合材料を、放射性廃棄物を収容する放射性廃棄物容器の構成材として使用した場合には、構造強度、耐食性および耐久性に優れた放射性廃棄物容器を提供することができる。   Furthermore, when the composite material manufactured by the composite material manufacturing apparatus is used as a constituent material of a radioactive waste container for containing radioactive waste, a radioactive waste container excellent in structural strength, corrosion resistance and durability is used. Can be provided.

本発明に係る複合材料、その製造方法および複合材料製造装置によれば、複合材料の製造時に構成部材の溶融を必要としないために、接合時の温度上昇が抑制され、接合対象材料の構成元素の拡散が効果的に低減できる。その結果、接合界面での脆性金属間化合物の形成が抑制され、高い接合強度を有する接合が可能となり、耐久性に優れた複合材料を提供することができる。また、構成部材が溶融されないために接合時の温度上昇が抑制され、構成材料の線膨張係数の差による残留応力を効果的に低減できる。その結果、残留応力による割れ、接合界面での部材の剥離および変形が抑制され、変形のない信頼性が高い接合が可能となり、信頼性が高い複合材料を提供することができる。   According to the composite material, the manufacturing method thereof, and the composite material manufacturing apparatus according to the present invention, it is not necessary to melt the constituent members at the time of manufacturing the composite material. Can be effectively reduced. As a result, formation of a brittle intermetallic compound at the bonding interface is suppressed, bonding having high bonding strength is possible, and a composite material having excellent durability can be provided. Further, since the constituent members are not melted, the temperature rise at the time of joining is suppressed, and the residual stress due to the difference in the linear expansion coefficients of the constituent materials can be effectively reduced. As a result, cracking due to residual stress, separation and deformation of the member at the bonding interface are suppressed, high-reliability bonding without deformation becomes possible, and a highly reliable composite material can be provided.

次に本発明に係る複合材料、その製造方法および複合材料製造装置の実施形態について添付図面を参照して具体的に説明する。   Next, embodiments of a composite material, a manufacturing method thereof, and a composite material manufacturing apparatus according to the present invention will be specifically described with reference to the accompanying drawings.

図1は本実施例に係る複合材料を製造するための装置の構成を示す斜視図である。すなわち本実施例に係る複合材料の製造装置は、被接合材としての基材(炭素鋼)1および合せ材(Zr合金)2を重ね合わせた積層体20を移動させる移動機構11と、合せ材2表面から積層体20を加圧し、かつモータ9によって回転するW製加圧棒5と、上記加圧棒5を積層体表面に沿って走行させる走行機構15と、上記加圧棒5による積層体20の加圧部の雰囲気を遮断する遮断機構12と、上記加圧部の雰囲気中の酸素分圧を低減させる酸素低減機構13と、上記各機構の動作を制御するための制御機構14とを備えて構成される。上記酸素低減機構13としては、例えば雰囲気遮断機構12を構成する気密容器から酸化雰囲気を排出する真空ポンプまたは気密容器に不活性ガス等の非酸化性ガスを供給するガス供給装置等から構成される。被接合材料としての炭素鋼基材1およびZr合金2は酸素を遮断する気密容器(カバー)内に載置されている。なお、上記加圧棒5に付与する加圧力はロードセル10によって検出される。 FIG. 1 is a perspective view showing a configuration of an apparatus for producing a composite material according to the present embodiment. That is, the composite material manufacturing apparatus according to the present embodiment includes a moving mechanism 11 that moves a laminated body 20 in which a base material (carbon steel) 1 and a bonding material (Zr alloy) 2 as bonded materials are stacked, and a bonding material. under pressure laminate 20 from the second surface, and a W-made pushing rods 5 which is rotated by a motor 9, a driving mechanism 15 for running along the upper Symbol pressure rod 5 to the laminate surface, the pushing rod 5 The shut-off mechanism 12 that shuts off the atmosphere of the pressurizing part of the laminate 20 by the above, the oxygen reducing mechanism 13 that reduces the oxygen partial pressure in the atmosphere of the pressurizing part, and the control mechanism for controlling the operation of each of the mechanisms 14. The oxygen reduction mechanism 13 includes, for example, a vacuum pump that discharges an oxidizing atmosphere from an airtight container that constitutes the atmosphere blocking mechanism 12 or a gas supply device that supplies a nonoxidizing gas such as an inert gas to the airtight container. . The carbon steel base material 1 and the Zr alloy 2 as the materials to be joined are placed in an airtight container (cover) that blocks oxygen. The pressure applied to the pressure bar 5 is detected by the load cell 10.

上記製造装置を運転すると、図1および図2に示すように、制御機構14からの制御信号に基づいてロードセル10が駆動し上記加圧棒5に加圧力6が付与されると同時に、モータ9によって加圧棒5に矢印7方向の回転力が付与され、炭素鋼基材1および合せ材2としてのZr合金を重ね合わせた積層体20のZr合金(合せ材)2側表面から押圧される。加圧棒5が押圧されたZr合金2は、その接触部分で摩擦熱が発生し、該部が軟化されつつ攪拌される結果、図3に示すように押圧攪拌部に摩擦攪拌層3が形成され、この摩擦攪拌層3が形成された部位において上記炭素鋼基材1と合せ材2としてのZr合金とが一体に摩擦接合されて複合材料が調製される。そして点接合の複合材料を製造するためには、図2に示すように所定の位置で加圧棒5を押圧して回転せしめ摩擦攪拌処理を実施することにより、図3に示すような接合構造を有する複合材料を製造することができる。   When the manufacturing apparatus is operated, as shown in FIGS. 1 and 2, the load cell 10 is driven based on the control signal from the control mechanism 14 to apply the pressure 6 to the pressure bar 5, and at the same time, the motor 9. As a result, a rotational force in the direction of arrow 7 is applied to the pressure bar 5 and pressed from the Zr alloy (lamination material) 2 side surface of the laminate 20 in which the carbon steel base material 1 and the Zr alloy as the lamination material 2 are overlapped. . The Zr alloy 2 pressed by the pressure bar 5 generates frictional heat at the contact portion, and is agitated while being softened. As a result, the friction stirrer layer 3 is formed in the press stirrer as shown in FIG. Then, the carbon steel substrate 1 and the Zr alloy as the laminated material 2 are integrally friction-bonded at the portion where the friction stir layer 3 is formed to prepare a composite material. And in order to manufacture the composite material of point joining, as shown in FIG. 2, the pressurizing rod 5 is pressed and rotated at a predetermined position, and the friction stir processing is performed, so that the joining structure as shown in FIG. Can be produced.

また、図1に示す移動機構11を駆動して積層体を矢印8方向(図2)に移動したり、または走行機構15を駆動して加圧棒5を押圧回転させた状態で積層体表面に沿って矢印8方向(図2)に走行させることにより、摩擦攪拌層3を線状に形成したり、面状に形成したりすることができる。   1 is driven to move the laminated body in the direction of arrow 8 (FIG. 2), or the traveling mechanism 15 is driven to press and rotate the pressure bar 5 to rotate the surface of the laminated body. , The friction stir layer 3 can be formed in a linear shape or a planar shape.

具体的に摩擦攪拌層の形状を変えた接合形態について以下の実施例で説明する。   The following embodiments will be described with respect to a bonding form in which the shape of the friction stir layer is specifically changed.

[実施例1]
図3は炭素鋼基材1表面に活性金属としてのZrを含有するZr合金を摩擦接合した複合材料の構造を示す断面図である。具体的には、炭素鋼基材1上に活性金属のZr合金2が、摩擦攪拌領域3を介して炭素鋼とZr合金とが点接合で摩擦接合されている。図4は図3に示す複合材料のZr合金2側から見た平面図である。図4に示すように、Zr合金2中には円弧上の複数の摩擦攪拌領域3が存在しており、この部分で炭素鋼基材1とZr合金2とが点接合された構造となっている。
[Example 1]
FIG. 3 is a cross-sectional view showing the structure of a composite material in which a Zr alloy containing Zr as an active metal is friction bonded to the surface of the carbon steel substrate 1. More specifically, an active metal Zr alloy 2 is friction bonded to the carbon steel base material 1 via a friction stir zone 3 by point bonding. FIG. 4 is a plan view of the composite material shown in FIG. 3 viewed from the Zr alloy 2 side. As shown in FIG. 4, the Zr alloy 2 has a plurality of friction stir zones 3 on the arc, and the carbon steel base material 1 and the Zr alloy 2 are spot-bonded at this portion. Yes.

[実施例2]
次に、図5は、実施例2に係る複合材料の摩擦接合構造を示す平面図である。具体的に、この実施例2では、炭素鋼基材1上に活性金属としてのZrを含有するZr合金2が、摩擦攪拌領域3を介して炭素鋼とZr合金とが線接合で一体化されて複合材料を構成している。この線接合は、図1に示す移動機構11を駆動して積層体を矢印4方向(図5)に移動したり、または走行機構15を駆動して加圧棒5を押圧回転させた状態で積層体表面に沿って矢印4方向(図5)に走行させたりすることにより、実施例1の点接合を線状に連続させたものであり、Zr合金2中には線状の複数の摩擦攪拌領域3,3が存在しており、この領域部分を介して炭素鋼基材とZr合金2とが線接合された構造となっている。
[Example 2]
Next, FIG. 5 is a plan view showing the friction bonding structure of the composite material according to the second embodiment. Specifically, in Example 2, the Zr alloy 2 containing Zr as the active metal on the carbon steel substrate 1 is integrated with the carbon steel and the Zr alloy through the friction stir zone 3 by wire bonding. Make up composite material. In this line joining, the moving mechanism 11 shown in FIG. 1 is driven to move the laminate in the direction of arrow 4 (FIG. 5), or the traveling mechanism 15 is driven to press and rotate the pressure rod 5. The point joint of Example 1 is linearly continued by running in the direction of arrow 4 (FIG. 5) along the surface of the laminate, and the Zr alloy 2 has a plurality of linear frictions. Stirring regions 3 and 3 exist, and the carbon steel base material and the Zr alloy 2 are wire-bonded through these region portions.

[実施例3]
さらに、図6は実施例3に係る複合材料の摩擦接合構造を示す平面図である。この複合材料は下記の手順で製造された。すなわち、図2に示すように炭素鋼基材1上にZr合金2を重ねて積層体とした後、その積層体のZr合金2表面に、先端が円弧上の丸棒形状のW加圧棒5を押圧し、同時に加圧力6を付加しながら高速で矢印7方向に回転させる。そして、図1に示す移動機構11を駆動して積層体を矢印4方向(図6)に移動したり、または走行機構15を駆動して加圧棒5を押圧回転させた状態で積層体表面に沿って矢印4方向(図6)に走行させたりすることにより、実施例1の点接合を面状に連続させたものである。Zr合金2中には面状の摩擦攪拌領域3が形成されている。この面接合は実施例1における点接合を連続させた後に、さらにこの線接合を連続させたものであり、Zr合金2の全面に渡って摩擦攪拌領域3が形成されており、この領域3を介して炭素鋼基材とZr合金2とが面接合された構造となっている。
[Example 3]
FIG. 6 is a plan view showing a composite material friction bonding structure according to the third embodiment. This composite material was manufactured by the following procedure. That is, as shown in FIG. 2, after a Zr alloy 2 is laminated on a carbon steel base material 1 to form a laminate, a round bar-shaped W pressure rod 5 with a circular arc at the tip is formed on the Zr alloy 2 surface of the laminate. Press and simultaneously rotate in the direction of arrow 7 while applying pressure 6. The moving mechanism 11 shown in FIG. 1 is driven to move the laminated body in the direction of arrow 4 (FIG. 6), or the traveling mechanism 15 is driven to press and rotate the pressure bar 5 to rotate the surface of the laminated body. The point joining in Example 1 is continued in a planar shape by running in the direction of the arrow 4 (FIG. 6) along the line. A planar friction stir zone 3 is formed in the Zr alloy 2. In this surface joining, the point joining in Example 1 was continued, and then this line joining was further continued. A friction stir zone 3 was formed over the entire surface of the Zr alloy 2. Thus, the carbon steel substrate and the Zr alloy 2 are surface-bonded.

[実施例4]
点接合によって炭素鋼基材1と合せ材としてのZr合金2とを一体に接合した実施例1の複合材料の製造方法において、加圧棒に印加する加圧力、加圧棒の回転数、摩擦攪拌時間を種々変化させて接合部における摩擦攪拌領域の体積割合が異なる実施例4に係る複合材料を多数調製した。
[Example 4]
In the manufacturing method of the composite material of Example 1 in which the carbon steel base material 1 and the Zr alloy 2 as a laminated material are integrally joined by spot joining, the pressure applied to the pressure rod, the rotation speed of the pressure rod, and the friction A number of composite materials according to Example 4 were prepared by varying the agitation time and varying the volume ratio of the friction agitation region at the joint.

各実施例4に係る複合材料について、各接合部の中心を通る切断面で複合材料の断面組織を観察し、摩擦攪拌領域(層)の断面形状から、その接合部に占める体積割合を計測した。具体的には、図7のグラフ中に図示するように、摩擦攪拌領域3の体積割合Vxは、Zr合金の摩擦攪拌領域3の各幅と厚さ(高さ)との積を全幅に渡って積分して求めた体積をVaとし、摩擦攪拌領域3の表面積と合せ材の厚さとの積である接合部の体積をVbとして、前記した(1)式{Vx(%)=Va/Vb×100}により算出した。   About the composite material which concerns on each Example 4, the cross-sectional structure | tissue of the composite material was observed in the cut surface which passes along the center of each junction part, and the volume ratio which occupies for the junction part was measured from the cross-sectional shape of the friction stirring area | region (layer). . Specifically, as shown in the graph of FIG. 7, the volume ratio Vx of the friction stir zone 3 is the product of each width and thickness (height) of the friction stir zone 3 of the Zr alloy over the entire width. Assuming that the volume obtained by integration is Va, and the volume of the joint, which is the product of the surface area of the friction stir zone 3 and the thickness of the laminated material, is Vb, the above equation (1) {Vx (%) = Va / Vb × 100}.

また、各実施例4に係る複合材料について、接合部の接合強度を測定した。なお、この接合強度はZr合金の引張強度に対する比率として算出した。上記摩擦攪拌領域の体積割合Vxと接合強度(相対値)との関係を図7に示す。図7に示すグラフから明らかなように、定性的にはZr合金2内に形成された摩擦攪拌領域3の体積割合Vxが増加することにより炭素鋼基材1とZr合金2との接合強度が増加することが判明した。具体的には、摩擦攪拌領域3の体積割合Vxが約20%に増加した時点からZr合金2の炭素鋼基材1への接合が始まり、体積割合Vxが50%を超えると、ほぼZr合金の引張り強度並みの接合強度を示すことが確認できた。   Moreover, the joint strength of the joint portion of each composite material according to Example 4 was measured. This bonding strength was calculated as a ratio to the tensile strength of the Zr alloy. FIG. 7 shows the relationship between the volume ratio Vx of the friction stir zone and the bonding strength (relative value). As is clear from the graph shown in FIG. 7, qualitatively, the bonding strength between the carbon steel substrate 1 and the Zr alloy 2 is increased by increasing the volume ratio Vx of the friction stir zone 3 formed in the Zr alloy 2. It turned out to increase. Specifically, when the volume ratio Vx of the friction stir zone 3 increases to about 20%, the joining of the Zr alloy 2 to the carbon steel substrate 1 starts, and when the volume ratio Vx exceeds 50%, the Zr alloy 2 is almost It was confirmed that the joint strength was comparable to the tensile strength.

図3は、実施例1と同様に実施例4に係る複合材料の接合部の組織形態を示す断面図であり、炭素鋼基材1上にZr合金2を重ねた後、そのZr合金2の表面を先端が円弧上の丸棒形状のW製加圧棒を加圧しながら高速で回転しながら移動した後の断面組織を示している。この図3からも明らかなように、Zr合金2内には摩擦攪拌領域3が形成され、この領域を介して炭素鋼基材1とZr合金2とが良好に接合していることが確認できる。   FIG. 3 is a cross-sectional view showing the structure of the joint portion of the composite material according to Example 4 in the same manner as in Example 1. After the Zr alloy 2 was stacked on the carbon steel base material 1, The cross-sectional structure is shown after the surface is moved while rotating at high speed while pressing a round bar-shaped pressure bar whose tip is an arc. As is apparent from FIG. 3, a friction stir zone 3 is formed in the Zr alloy 2, and it can be confirmed that the carbon steel substrate 1 and the Zr alloy 2 are well bonded through this zone. .

また、炭素鋼基材上に摩擦攪拌領域を介してZr合金を摩擦接合する本実施例に係る摩擦攪拌接合に基づく複合材料の製造方法と、従来からのレ−ザ溶接法、TIG溶接法、HIP(高温等方性加圧)接合法に基づく複合材料の製造方法とについて、複合材料の温度上昇性、変形量、接合施工速度、部品サイズの制約、小型部品への対応性の観点から長所短所を比較し評価した結果を下記表1に示す。

Figure 0004643319
Also, a method for producing a composite material based on friction stir welding according to the present embodiment, in which a Zr alloy is friction bonded on a carbon steel substrate via a friction stir zone, a conventional laser welding method, a TIG welding method, The composite material manufacturing method based on the HIP (high temperature isotropic pressure) bonding method has advantages from the viewpoint of temperature rise of the composite material, deformation, bonding speed, part size constraints, and compatibility with small parts The results of comparing and evaluating the disadvantages are shown in Table 1 below.
Figure 0004643319

上記表1にまとめて示すように、本実施例に係る複合材料の製造装置(接合システム)を用いることにより、図7および図3に示すような摩擦接合構造と摩擦接合方法が容易に実現でき、炭素鋼基材1上にZr合金2を強固に一体化することができる。特に本実施例方法の特徴として、接合時の温度上昇が小さい、変形量が小さい、接合施工速度が比較的早く高効率な施工法となる。また接合材を加熱軟化させるための加熱炉を必要としないので大きな対象物への適用も容易である。さらに加圧棒の寸法(外径)を適宜小型に変更することにより、小さな対象物にも適用できるなどの長所がある。すなわち、従来からのレ−ザ溶接法、TIG溶接法、HIP(高温等方性加圧)接合法と比較すると、本実施例方法、装置は基材上への活性金属含有材料の摩擦接合方法、装置として総合的に優れている。   As summarized in Table 1 above, by using the composite material manufacturing apparatus (joining system) according to this example, the friction joining structure and the friction joining method as shown in FIGS. 7 and 3 can be easily realized. The Zr alloy 2 can be firmly integrated on the carbon steel substrate 1. In particular, as a feature of the method of the present embodiment, the temperature rise at the time of joining is small, the amount of deformation is small, the joining construction speed is relatively fast, and the construction method is highly efficient. Moreover, since a heating furnace for heating and softening the bonding material is not required, application to a large object is easy. Furthermore, there is an advantage that it can be applied to a small object by appropriately changing the size (outer diameter) of the pressure rod to a small size. That is, when compared with the conventional laser welding method, TIG welding method, and HIP (high temperature isotropic pressurization) bonding method, the present embodiment method and apparatus is a friction bonding method of an active metal-containing material on a substrate. As a device, it is excellent overall.

このように本実施例に係る複合材料、その製造方法および製造装置によれば、下記のような作用効果が得られる。
(1)接合時に接合材料の溶融がないために、接合時の温度上昇が抑制され、対象物の炭素鋼基材1やZr合金2の構成元素の拡散が低減できる。その結果、接合界面におけるFe−Zr系などの脆性金属間化合物の形成が効果的に抑制され、高い接合強度を有する複合材料を得ることが可能となる。
(2)接合材の溶融を必要としないために、接合時の温度上昇が抑制され、構成材料の線膨張係数の差による残留応力が低減できる。その結果、残留応力による割れ、接合界面における剥離および変形が抑制され、信頼性が高い接合が可能となる。
(3)酸素遮断カバーのような密閉容器中に接合材料を収容して酸素分圧が低い状態で接合することにより、反応性が高い活性金属であるZr等の酸化が効果的に抑制でき、Zr等の酸化が少なく信頼性が高い接合が可能となる。
(4)接合材を加熱軟化させるための加熱炉などを必要とせず、製造装置を小型化できる。特に加圧棒5が設置できる空間があれば接合システムを構築できるために、対象物として大型の構造物から小型の部品まで幅広い用途で炭素鋼とZr合金との接合が可能となる。
(5)加圧棒5の大きさを適宜変えたり、加圧棒5に対して対象物(積層体)を相対的に移動したりすることにより、点接合から線接合、さらには面接合までのあらゆる接合形態に対応することができる。また、加圧棒5の径を増加させたり、対象物の移動速度を高めたり、複数の加圧棒で同時に接合するなど、施工法を工夫することにより、大きな接合面積でも短時間で効率良く接合することができる、など工業的に優れた効果が発揮できる。
As described above, according to the composite material, the manufacturing method, and the manufacturing apparatus according to the present embodiment, the following effects can be obtained.
(1) Since there is no melting of the bonding material at the time of bonding, the temperature rise at the time of bonding is suppressed, and the diffusion of constituent elements of the carbon steel base material 1 and the Zr alloy 2 as the object can be reduced. As a result, formation of a brittle intermetallic compound such as an Fe—Zr system at the bonding interface is effectively suppressed, and a composite material having high bonding strength can be obtained.
(2) Since it is not necessary to melt the bonding material, the temperature rise during bonding is suppressed, and the residual stress due to the difference in the coefficient of linear expansion of the constituent materials can be reduced. As a result, cracking due to residual stress, separation and deformation at the bonding interface are suppressed, and highly reliable bonding is possible.
(3) By containing the bonding material in a closed container such as an oxygen barrier cover and bonding in a state where the oxygen partial pressure is low, oxidation of Zr or the like which is a highly reactive active metal can be effectively suppressed, A highly reliable bonding with less oxidation of Zr or the like becomes possible.
(4) A manufacturing furnace can be reduced in size without requiring a heating furnace or the like for heating and softening the bonding material. In particular, since a joining system can be constructed if there is a space in which the pressure rod 5 can be installed, it is possible to join carbon steel and a Zr alloy in a wide range of applications from large structures to small parts.
(5) By changing the size of the pressure rod 5 as appropriate, or by moving the object (laminated body) relative to the pressure rod 5, from point joining to line joining, and further to surface joining. It is possible to correspond to any bonding form. In addition, by increasing the diameter of the pressure rod 5, increasing the moving speed of the object, and simultaneously joining with a plurality of pressure rods, the construction method is devised so that even a large joint area can be efficiently obtained in a short time. Industrially superior effects such as being able to be joined can be exhibited.

なお、上記各実施例においては、基材1として炭素鋼を用いた複合材料を示しているが、基材としてSiC等の炭化物セラミックス、Al等の酸化物セラミックス,AlN,Si3N4等の窒化物セラミックスを使用して、それらの表面に活性金属を含有する合せ材を摩擦攪拌接合によって接合した場合においても,接合強度が高く耐久性に優れた複合材料が得られている。 In each of the above embodiments, a composite material using carbon steel as the base material 1 is shown. However, as the base material, carbide ceramics such as SiC, oxide ceramics such as Al 2 O 3 , AlN, Si3N4, etc. Even when nitride ceramics are used and bonded materials containing active metals on their surfaces are bonded by friction stir welding, composite materials having high bonding strength and excellent durability have been obtained.

本発明に係る複合材料を製造するための製造装置の構成を示す斜視図。The perspective view which shows the structure of the manufacturing apparatus for manufacturing the composite material which concerns on this invention. 本発明に係る複合材料を製造する際に炭素鋼基材上へZr合金を摩擦接合する状態を示す断面図。Sectional drawing which shows the state which friction-joins Zr alloy on a carbon steel base material when manufacturing the composite material which concerns on this invention. 炭素鋼基材上に摩擦攪拌領域を介してZr合金を摩擦接合する接合方法で作製した複合材料の断面組織を示す断面図。Sectional drawing which shows the cross-sectional structure | tissue of the composite material produced with the joining method which friction-joins a Zr alloy on a carbon steel base material via a friction stirring area | region. 本発明に係る複合材料の一実施例であり、複数の摩擦攪拌領域を形成して点接合によって炭素鋼基材上へZr合金を接合した摩擦接合構造を示す平面図。The top view which is one Example of the composite material which concerns on this invention, and shows the friction joining structure which formed the several friction stirring area | region and joined the Zr alloy on the carbon steel base material by point joining. 本発明に係る複合材料の他の実施例であり、複数の帯状の摩擦攪拌領域を形成して線接合によって炭素鋼基材上へZr合金を一体に接合した摩擦接合構造を示す平面図。The top view which shows the friction joining structure which is another Example of the composite material which concerns on this invention, and formed the some strip | belt-shaped friction stirring area | region, and joined Zr alloy integrally on the carbon steel base material by wire joining. 本発明に係る複合材料のその他の実施例であり、面状の摩擦攪拌領域を形成して面接合によって炭素鋼基材上へZr合金を一体に接合した摩擦接合構造を示す平面図。The top view which shows the friction joining structure which is another Example of the composite material which concerns on this invention, formed the planar friction stirring area | region, and joined Zr alloy integrally on the carbon steel base material by surface joining. Zr合金中に形成した摩擦攪拌領域を介して炭素鋼基材上にZr合金を摩擦接合した複合材料の接合部における摩擦攪拌領域の体積割合と接合強度との関係を示すグラフ。The graph which shows the relationship between the volume ratio of the friction stirring area | region and joining strength in the junction part of the composite material which frictionally joined the Zr alloy on the carbon steel base material through the friction stirring area | region formed in Zr alloy.

符号の説明Explanation of symbols

1 基材(炭素鋼基材)
2 合せ材(Zr合金)
3 摩擦攪拌領域(摩擦攪拌層)
4 加圧棒の移動方向
5 加圧棒(W加圧棒)
6 加圧力
7 回転方向
8 移動方向
9 モータ
10 ロードセル
11 接合材料の移動機構
12 遮断機構(気密容器、酸素遮断カバー)
13 酸素低減機構
14 制御機構(制御用PC)
15 加圧棒の走行機構
20 積層体
1 Base material (Carbon steel base material)
2 Laminate (Zr alloy)
3 Friction stir zone (friction stir layer)
4 Moving direction of pressure bar 5 Pressure bar (W pressure bar)
6 Pressurizing force 7 Rotating direction 8 Moving direction 9 Motor 10 Load cell 11 Bonding material moving mechanism 12 Blocking mechanism (airtight container, oxygen blocking cover)
13 Oxygen reduction mechanism 14 Control mechanism (PC for control)
15 Pressure rod travel mechanism 20 Laminate

Claims (13)

金属またはセラミックスから成る基材表面上に、活性金属または活性金属合金から成る合せ材を接合した複合材料において、
前記活性金属はZrであり、上記合せ材に摩擦熱を発生させて合せ材を軟化させると共に攪拌して形成した摩擦攪拌層の部位で上記基材と合せ材とが一体に摩擦接合されていることを特徴とする複合材料。
In a composite material in which a laminated material made of an active metal or an active metal alloy is bonded on the surface of a base material made of metal or ceramics,
The active metal is Zr, and the base material and the composite material are integrally friction-bonded at a portion of the friction stir layer formed by generating friction heat in the composite material to soften the composite material and stirring. A composite material characterized by that.
前記摩擦攪拌層が合せ材に点状に形成されており、前記基材と合せ材とが点接合で摩擦接合されていることを特徴とする請求項1記載の複合材料。 2. The composite material according to claim 1, wherein the friction stir layer is formed in a spot shape on the laminated material, and the base material and the laminated material are friction bonded by point bonding. 前記摩擦攪拌層が合せ材に線状に形成されており、前記基材と合せ材とが線接合で摩擦接合されていることを特徴とする請求項1記載の複合材料。 2. The composite material according to claim 1, wherein the friction stir layer is linearly formed on the laminated material, and the base material and the laminated material are friction bonded by wire bonding. 前記摩擦攪拌層が合せ材に面状に形成されており、前記基材と合せ材とが面接合で摩擦接合されていることを特徴とする請求項1記載の複合材料。 2. The composite material according to claim 1, wherein the friction stir layer is formed in a planar shape on a laminated material, and the base material and the laminated material are friction bonded by surface bonding. 前記接合する合せ材の厚さが0.1mmから10mmの範囲であることを特徴とする請求項1記載の複合材料。 The composite material according to claim 1, wherein a thickness of the joining material to be joined is in a range of 0.1 mm to 10 mm. 前記合せ材の接合部の体積に占める摩擦攪拌層の体積割合が20%以上であることを特徴とする請求項1記載の複合材料。 The composite material according to claim 1, wherein the volume ratio of the friction stir layer to the volume of the joint portion of the laminated material is 20% or more. 金属またはセラミックスから成る基材表面上に、活性金属であるZrまたはそのZr合金から成る合せ材を重ね合わせ、その合せ材表面に加圧棒を押し付けながら回転させることにより摩擦熱を発生させて合せ材を軟化させると共に攪拌して摩擦攪拌層を形成し、この摩擦攪拌層を形成した部位において上記基材と合せ材とを一体に摩擦接合することを特徴とする複合材料の製造方法。 A laminated material made of Zr, which is an active metal, or a Zr alloy thereof is superimposed on the surface of a base material made of metal or ceramics, and frictional heat is generated by rotating while pressing a pressure bar on the surface of the laminated material. A method for producing a composite material comprising: softening and stirring a material to form a friction stir layer, and integrally friction-bonding the base material and the laminated material at a portion where the friction stir layer is formed. 前記摩擦熱で加熱される合せ材表面の雰囲気の酸素分圧を10Pa以下に調整することを特徴とする請求項7記載の複合材料の製造方法。 The method for producing a composite material according to claim 7, wherein the oxygen partial pressure of the atmosphere on the surface of the laminated material heated by the frictional heat is adjusted to 10 4 Pa or less. 被接合材としての基材および活性金属であるZrまたはそのZr合金から成る合せ材を重ね合わせた積層体を移動する移動機構と、
合せ材表面から積層体を加圧しかつモータによって回転する加圧棒と、
上記加圧棒を積層体表面に沿って走行させる走行機構と、
上記加圧棒による積層体の加圧部の雰囲気を遮断する遮断機構と、
上記加圧部の雰囲気中の酸素分圧を低減する酸素低減機構と、
上記各機構の動作を制御するための制御機構とを備え
上記加圧棒による積層体の加圧部の雰囲気を遮断する遮断機構が、加圧部周辺の雰囲気を局所的に遮蔽するガスカーテンであることを特徴とする複合材料の製造装置。
A moving mechanism for moving a laminate in which a base material as a material to be joined and a laminated material made of Zr which is an active metal or a Zr alloy thereof are stacked;
A pressure bar that pressurizes the laminate from the surface of the laminated material and rotates by a motor;
A traveling mechanism for traveling the pressure rod along the surface of the laminate;
A shut-off mechanism that shuts off the atmosphere of the pressurizing portion of the laminate by the pressurizing rod;
An oxygen reduction mechanism for reducing the oxygen partial pressure in the atmosphere of the pressurizing unit;
A control mechanism for controlling the operation of each mechanism ,
Blocking mechanism for blocking the atmosphere of the pressure of the stack by the pushing rods are, apparatus for producing a composite material characterized in the gas curtain der Rukoto locally shielding atmosphere around pressing.
前記合せ材表面から積層体を加圧するための加圧棒の主成分が、硬質高融点金属であるW、Mo、Nb,Taと、硬質高融点炭化物系セラミックスであるSiC、BC、ダイヤモンドと、硬質高融点窒化物系セラミックスであるSi、c−BN(立方晶窒化ほう素)と、硬質高融点酸化物系セラミックスであるAl、SiOとから成る群より選択された少なくとも1種であることを特徴とする請求項9記載の複合材料の製造装置。
The main components of the pressure rod for pressing the laminate from the surface of the laminated material are W, Mo, Nb, Ta, which are hard refractory metals, and SiC, B 4 C, diamond, which are hard refractory carbide ceramics. Selected from the group consisting of Si 3 N 4 and c-BN (cubic boron nitride) which are hard high melting point nitride ceramics, and Al 2 O 3 and SiO 2 which are hard high melting point oxide ceramics The composite material manufacturing apparatus according to claim 9, wherein the composite material manufacturing apparatus is at least one selected from the group described above.
前記加圧棒が丸棒形状であることを特徴とする請求項9記載の複合材料の製造装置。 10. The composite material manufacturing apparatus according to claim 9, wherein the pressure bar has a round bar shape. 前記丸棒形状である加圧棒の先端が曲面状に形成されているか、または丸棒直径よりも細径の突起物を備えるように形成されていることを特徴とする請求項11記載の複合材料の製造装置。 12. The composite according to claim 11, wherein a tip of the pressure bar in the shape of a round bar is formed in a curved surface or is provided with a protrusion having a diameter smaller than the diameter of the round bar. Material production equipment. 前記複合材料が放射性廃棄物を収容する放射性廃棄物容器であることを特徴とする請求項1記載の複合材料。 The composite material according to claim 1, wherein the composite material is a radioactive waste container for containing radioactive waste.
JP2005072287A 2005-03-15 2005-03-15 COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MATERIAL MANUFACTURING DEVICE Expired - Fee Related JP4643319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072287A JP4643319B2 (en) 2005-03-15 2005-03-15 COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MATERIAL MANUFACTURING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072287A JP4643319B2 (en) 2005-03-15 2005-03-15 COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MATERIAL MANUFACTURING DEVICE

Publications (2)

Publication Number Publication Date
JP2006255711A JP2006255711A (en) 2006-09-28
JP4643319B2 true JP4643319B2 (en) 2011-03-02

Family

ID=37095484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072287A Expired - Fee Related JP4643319B2 (en) 2005-03-15 2005-03-15 COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MATERIAL MANUFACTURING DEVICE

Country Status (1)

Country Link
JP (1) JP4643319B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140060A (en) * 2010-01-08 2011-07-21 Toshiba Corp Tool for friction stirring treatment and contact material for vacuum valve
JP5320439B2 (en) 2011-06-14 2013-10-23 株式会社日立製作所 High corrosion resistance plant equipment
GB2526121B (en) * 2014-05-14 2017-02-01 Acergy France SAS Fabrication of pipe strings using friction stir welding

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170280A (en) * 1998-12-08 2000-06-20 Sanko Purekon System:Kk Soundproof heat isolating member with vacuum layer and soundproof heat insulating construction material
JP2000301363A (en) * 1999-04-22 2000-10-31 Showa Alum Corp Friction agitation joining method of active metal material
JP2001219281A (en) * 2000-02-07 2001-08-14 Shin Sangyo Souzou Kenkyu Kiko Method ad apparatus for manufacturing vacuum forming body
JP2001259863A (en) * 2000-03-17 2001-09-25 Sumitomo Light Metal Ind Ltd Method of spot joining for aluminum alloy
JP2002512130A (en) * 1998-04-22 2002-04-23 ザ ウェルディング インスティテュート Corrosion resistant case and method of manufacturing the same
JP2002273579A (en) * 2001-03-15 2002-09-25 Hitachi Ltd Method of joining iron-base material and structure for the same
JP2003001440A (en) * 2001-06-25 2003-01-08 Hitachi Ltd Membrane for corner friction stir welding member welding method for the same
JP2003053586A (en) * 2001-08-14 2003-02-26 Hitachi Constr Mach Co Ltd Welding bead shaping method for welded joint and welded joint
JP2003094177A (en) * 2001-09-25 2003-04-02 Sumitomo Light Metal Ind Ltd Method for friction stir welding
JP2003170280A (en) * 2001-12-04 2003-06-17 Nippon Steel Corp Method for connecting different kinds of metallic materials
JP2003275876A (en) * 2002-03-18 2003-09-30 Sumitomo Light Metal Ind Ltd Member for joining different kinds of metals, and method for joining different metal members
JP2003305586A (en) * 2002-04-10 2003-10-28 Nippon Steel Corp Bonded joint consisting of different kind of metallic material and its manufacturing method
JP2004136365A (en) * 2002-09-27 2004-05-13 Kawasaki Heavy Ind Ltd Friction stir welding equipment and friction stir welding method
JP2004195525A (en) * 2002-12-20 2004-07-15 Hitachi Ltd Friction stir welding method
WO2004110692A1 (en) * 2003-06-12 2004-12-23 Hitachi, Ltd. Friction stirring-welding method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512130A (en) * 1998-04-22 2002-04-23 ザ ウェルディング インスティテュート Corrosion resistant case and method of manufacturing the same
JP2000170280A (en) * 1998-12-08 2000-06-20 Sanko Purekon System:Kk Soundproof heat isolating member with vacuum layer and soundproof heat insulating construction material
JP2000301363A (en) * 1999-04-22 2000-10-31 Showa Alum Corp Friction agitation joining method of active metal material
JP2001219281A (en) * 2000-02-07 2001-08-14 Shin Sangyo Souzou Kenkyu Kiko Method ad apparatus for manufacturing vacuum forming body
JP2001259863A (en) * 2000-03-17 2001-09-25 Sumitomo Light Metal Ind Ltd Method of spot joining for aluminum alloy
JP2002273579A (en) * 2001-03-15 2002-09-25 Hitachi Ltd Method of joining iron-base material and structure for the same
JP2003001440A (en) * 2001-06-25 2003-01-08 Hitachi Ltd Membrane for corner friction stir welding member welding method for the same
JP2003053586A (en) * 2001-08-14 2003-02-26 Hitachi Constr Mach Co Ltd Welding bead shaping method for welded joint and welded joint
JP2003094177A (en) * 2001-09-25 2003-04-02 Sumitomo Light Metal Ind Ltd Method for friction stir welding
JP2003170280A (en) * 2001-12-04 2003-06-17 Nippon Steel Corp Method for connecting different kinds of metallic materials
JP2003275876A (en) * 2002-03-18 2003-09-30 Sumitomo Light Metal Ind Ltd Member for joining different kinds of metals, and method for joining different metal members
JP2003305586A (en) * 2002-04-10 2003-10-28 Nippon Steel Corp Bonded joint consisting of different kind of metallic material and its manufacturing method
JP2004136365A (en) * 2002-09-27 2004-05-13 Kawasaki Heavy Ind Ltd Friction stir welding equipment and friction stir welding method
JP2004195525A (en) * 2002-12-20 2004-07-15 Hitachi Ltd Friction stir welding method
WO2004110692A1 (en) * 2003-06-12 2004-12-23 Hitachi, Ltd. Friction stirring-welding method

Also Published As

Publication number Publication date
JP2006255711A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
US7608296B2 (en) Anvil for friction stir welding high temperature materials
JP5371139B2 (en) Friction stir processing tool
JPH04297536A (en) Wear resistant copper-base alloy excellent in self-lubricity
JP2013173181A (en) Stainless steel diffusion bonded product and method of manufacturing the same
WO1997046347A1 (en) Iron-base alloy foils for liquid-phase diffusion bonding of iron-base material bondable in oxidizing atmosphere
CA2449972C (en) Anvil for friction stir welding high temperature materials
JP4643319B2 (en) COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MATERIAL MANUFACTURING DEVICE
EP4011540B1 (en) Dissimilar material solid phase bonding method
JP2012130948A (en) Rotating tool
WO2012086489A1 (en) Rotating tool
JP4607133B2 (en) Friction stir processing tool and method of manufacturing friction stir processed product
JP5007951B2 (en) Diffusion bonding method
JP2005000940A (en) Brazing filler of multi-layer lamination type, and method for brazing-repair
JP2010105043A (en) Low temperature joining method for metal
JP4327029B2 (en) Method for producing tungsten carbide base cemented carbide joined body
JP6333268B2 (en) Layer composite
JP2022095363A (en) Cladding material and production method
JP4892685B2 (en) Diffusion bonding method
Kobashi et al. Effect of alloying elements in the brazing sheet on the bonding strength between Al {sub 2} O {sub 3} and aluminum
JP2004167503A (en) Composite rolling roll made of cemented carbide
KR102631788B1 (en) Bonding material for diffusion bonding of dissimilar metal with hierarchical structure and diffusion bonding methode using the same
Degnah et al. Solid-state diffusion bonding for INCONEl 617 superalloy using field-assisted sintering technology (FAST) guided by CALPHAD approach
Butts Transient liquid phase bonding of a third generation gamma-titanium aluminum alloy: Gamma Met PX
Edelmann Characterization of the behavior of Palnicro brazing alloy for stainless steel joints
Zhuang et al. Large gap joining of Ti–6Al–4V alloy with mixed powder interlayers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R151 Written notification of patent or utility model registration

Ref document number: 4643319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees