JP2011140060A - Tool for friction stirring treatment and contact material for vacuum valve - Google Patents

Tool for friction stirring treatment and contact material for vacuum valve Download PDF

Info

Publication number
JP2011140060A
JP2011140060A JP2010003287A JP2010003287A JP2011140060A JP 2011140060 A JP2011140060 A JP 2011140060A JP 2010003287 A JP2010003287 A JP 2010003287A JP 2010003287 A JP2010003287 A JP 2010003287A JP 2011140060 A JP2011140060 A JP 2011140060A
Authority
JP
Japan
Prior art keywords
particles
friction stir
alloy
vacuum valve
stir processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010003287A
Other languages
Japanese (ja)
Inventor
Atsushi Yamamoto
敦史 山本
Takashi Kusano
貴史 草野
Haruka Sasaki
遥 佐々木
Kosuke Sasage
浩資 捧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010003287A priority Critical patent/JP2011140060A/en
Publication of JP2011140060A publication Critical patent/JP2011140060A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To micronize Cr particles by applying friction stirring treatment to a surface of a Cu-Cr-based alloy. <P>SOLUTION: A tool for friction stirring treatment is provided with a shaft 1 fixed to a rotating device, a base 2 fixed to an end of the shaft 1, and a tip part 3 which is fixed to the base 2 and has a stirring groove 4 on the circumference thereof diagonally crossed to the axial direction. The tip part 3, which employs one of W, Mo, W-Re, and Mo-Re as a base material, and contains hard ceramic particles that is harder than the base material dispersed therein, frictionally stirs the Cu-Cr-based alloy chiefly used for a vacuum valve to micronize the Cr particles. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、摩擦攪拌処理によりCu−Cr系合金中のCr粒子を微細化する摩擦攪拌処理用工具、およびこの摩擦攪拌処理により製造された真空バルブ用接点材料に関する。   The present invention relates to a friction stir processing tool for refining Cr particles in a Cu-Cr alloy by friction stir processing, and a contact material for a vacuum valve manufactured by the friction stir processing.

従来、突き合わせた接合部に回転する摩擦攪拌工具を挿入し、摩擦熱によって軟化させつつ攪拌することにより、一対の金属板を接合する方法が知られている。摩擦攪拌工具には、被接合金属材料よりも硬質のものが採用され、アルミニウム材のようなものでは工具鋼、鋼材のようなものでは多結晶CBN(PCBN)が用いられている(例えば、特許文献1参照。)。   2. Description of the Related Art Conventionally, a method of joining a pair of metal plates by inserting a rotating friction stir tool into a butted joint and stirring while softening with frictional heat is known. The friction stir tool is harder than the metal material to be joined, such as tool steel for an aluminum material, and polycrystalline CBN (PCBN) for a steel material (for example, a patent). Reference 1).

一方、真空バルブ用接点材料においては、Cu−Cr系合金が多用されており、Cr粒子を微細化するほど、耐電圧特性を向上させることが知られている。Cr粒子の微細化においては、接点表面に高エネルギーの電子ビームを照射する方法がある(例えば、特許文献2参照。)。   On the other hand, Cu—Cr alloys are frequently used in contact materials for vacuum valves, and it is known that the withstand voltage characteristics are improved as the Cr particles are refined. In miniaturization of Cr particles, there is a method of irradiating a contact surface with a high energy electron beam (see, for example, Patent Document 2).

しかしながら、電子ビームでの処理では、設備、処理時間などの面から高コストとなり、工業的には困難さを伴っていた。そこで、Cr粒子の微細化に、低コストが期待できる摩擦攪拌処理を検討する必要性が出た。   However, the processing with an electron beam is costly in terms of equipment, processing time, and the like, and is difficult industrially. Therefore, it has become necessary to study a friction stir treatment that can be expected to be low in cost for the refinement of Cr particles.

特開2006−297418号公報 (第5ページ、図1)JP 2006-297418 A (Page 5, FIG. 1) 特開平6−349387号公報 (第3ページ、図1)JP-A-6-349387 (3rd page, FIG. 1)

上記の従来の摩擦攪拌工具を用いて真空バルブ用接点材料を処理する場合においては、次のような問題がある。Cu−Cr系合金では、Crが硬質金属粒子のため、工具鋼を用いると、消耗量が大きくなる。また、PCBNでは、消耗量を抑えることができるものの、硬質金属粒子同士の衝突により、亀裂が生じたり破損することがある。   In the case of processing the contact material for a vacuum valve using the above conventional friction stir tool, there are the following problems. In a Cu—Cr alloy, since Cr is a hard metal particle, the amount of wear increases when tool steel is used. In PCBN, although the consumption amount can be suppressed, a crack may occur or break due to collision of hard metal particles.

このため、Cu−Cr系合金を摩擦攪拌処理しても、これに耐え得る消耗量の少ない摩擦攪拌処理用工具、およびCr粒子の微細化ができ、耐電圧特性の向上を図ることのできる真空バルブ用接点材料を得ることが望まれていた。なお、Cr−Cr系合金中に摩擦攪拌処理用工具が磨耗した成分が含有されることは許容する。   For this reason, even if the Cu-Cr alloy is subjected to friction stir processing, a friction stir processing tool that can withstand this, and a friction stir processing tool that can withstand a small amount, and Cr particles that can be refined, can improve the withstand voltage characteristics. It has been desired to obtain a contact material for a valve. It should be noted that the Cr—Cr-based alloy is allowed to contain a component worn by the friction stir processing tool.

本発明は上記問題を解決するためになされたもので、Cu−Cr系合金の表面に摩擦攪拌処理を施し、Cr粒子の微細化を図ることのできる摩擦攪拌処理用工具、およびその摩擦攪拌処理により製造される真空バルブ用接点材料を提供することを目的とする。   The present invention has been made to solve the above-mentioned problem. A friction stir processing tool capable of subjecting the surface of a Cu-Cr alloy to friction stir processing to reduce the size of Cr particles, and the friction stir processing. An object of the present invention is to provide a contact material for a vacuum valve manufactured by the above method.

上記目的を達成するために、本発明の摩擦拡散処理用工具は、回転装置に固定される軸部と、前記軸部の端部に固定された基部と、前記基部に固定されるとともに、外周に軸方向に対して斜めに横切る攪拌溝を設けた先端部とを備えた摩擦攪拌処理用工具であって、前記先端部は、基材にW、Mo、W−Re、Mo−Reのいずれか1つの材料を用い、前記基材よりも硬い硬質セラミックス粒子を分散させていることを特徴とする。
また、本発明の真空バルブ用接点材料は、接離自在の一対の接点を有する真空バルブ用接点材料であって、前記接点は、Cu−Cr系合金であり、前記Cu−Cr系合金は、基材にW、Mo、W−Re、Mo−Reのいずれか1つの材料を用い、前記基材よりも硬い硬質セラミックス粒子を分散した摩擦攪拌処理用工具により摩擦攪拌処理され、その表面の前記Crが微細化されていることを特徴とする。
In order to achieve the above object, a friction diffusion processing tool of the present invention includes a shaft portion fixed to a rotating device, a base portion fixed to an end portion of the shaft portion, a base portion fixed to the base portion, and an outer periphery. A friction stir processing tool provided with a tip portion provided with a stirring groove obliquely crossing with respect to the axial direction, and the tip portion is any of W, Mo, W-Re, and Mo-Re on the base material. One material is used, and hard ceramic particles harder than the base material are dispersed.
Further, the contact material for a vacuum valve of the present invention is a contact material for a vacuum valve having a pair of contactable and separable contacts, wherein the contact is a Cu-Cr alloy, and the Cu-Cr alloy is Using any one material of W, Mo, W-Re, and Mo-Re for the base material, the base material is subjected to friction stir processing with a tool for friction stir processing in which hard ceramic particles harder than the base material are dispersed. Cr is miniaturized.

本発明によれば、硬質の分散粒子を含有した摩擦攪拌処理用工具を用い、Cu−Cr系合金の表面を摩擦攪拌処理するので、摩擦攪拌処理用工具の消耗量が少なく、Cr粒子を微細化することができる。   According to the present invention, the friction stir processing is performed on the surface of the Cu-Cr alloy using the friction stir processing tool containing hard dispersed particles, so that the consumption amount of the friction stir processing tool is small and the Cr particles are finely divided. Can be

本発明の実施例に係る摩擦攪拌処理用工具の構成を示す図。The figure which shows the structure of the tool for friction stirring processing which concerns on the Example of this invention. 本発明の実施例に係る摩擦攪拌処理用工具の組織を説明する図。The figure explaining the structure | tissue of the tool for friction stirring processing which concerns on the Example of this invention. 本発明の実施例に係る真空バルブ用接点材料の組織を説明する図。The figure explaining the structure | tissue of the contact material for vacuum valves which concerns on the Example of this invention.

摩擦攪拌処理用工具は、W、Re、Moを主成分とする合金または純金属に、PCBN、ダイヤモンド、WCの粒子などの硬質セラミックス粒子からなる分散粒子を含有したものである。また、真空バルブ用接点材料は、Cu−Cr系合金であり、接離する表面が摩擦攪拌処理され、Cr粒子の微細化が図られている。以下、図面を参照して本発明の実施例を説明する。   The friction stir processing tool contains dispersed particles made of hard ceramic particles such as PCBN, diamond, and WC particles in an alloy or pure metal mainly composed of W, Re, and Mo. Further, the contact material for the vacuum valve is a Cu—Cr alloy, and the contacting / separating surfaces are subjected to a frictional stirring process so that the Cr particles are miniaturized. Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例に係る摩擦攪拌処理用工具および真空バルブ用接点材料を図1〜図3を参照して説明する。図1は、本発明の実施例に係る摩擦攪拌処理用工具の構成を示す図、図2は、本発明の実施例に係る摩擦攪拌処理用工具の組織を説明する図、図3は、本発明の実施例に係る真空バルブ用接点材料の組織を説明する図である。   A friction stir processing tool and a vacuum valve contact material according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating the configuration of a friction stir processing tool according to an embodiment of the present invention, FIG. 2 is a diagram illustrating the structure of the friction stir processing tool according to an embodiment of the present invention, and FIG. It is a figure explaining the structure | tissue of the contact material for vacuum valves which concerns on the Example of invention.

(摩擦攪拌処理用工具)
図1に示すように、摩擦攪拌処理用工具は、図示しない回転装置に固定される軸部1と、軸部1の端部(軸面)に固定された軸部1よりも直径の大きい円柱状の基部2と、基部2の反軸部1側の中央部に固定された基部2よりも底部の直径が小さい円錐状の先端部3とで構成されている。先端部3の外周には、軸方向に対して斜めに横切るねじ状の攪拌溝4が設けられている。攪拌溝4の幅および深さは、それぞれ1mmである。先端部3の高さは6mm、底部の直径は12mmである。なお、軸部1と基部2と先端部3とは、軸線上に配置される。
(Friction stir processing tool)
As shown in FIG. 1, the friction stir processing tool includes a shaft portion 1 fixed to a rotating device (not shown), and a circle having a diameter larger than that of the shaft portion 1 fixed to an end portion (shaft surface) of the shaft portion 1. The base portion 2 includes a columnar base portion 2 and a conical tip portion 3 having a bottom diameter smaller than that of the base portion 2 fixed to the central portion of the base portion 2 on the side opposite to the shaft 1. On the outer periphery of the tip portion 3, there is provided a screw-like stirring groove 4 that crosses obliquely with respect to the axial direction. The width and depth of the stirring groove 4 are each 1 mm. The tip 3 has a height of 6 mm, and the bottom has a diameter of 12 mm. In addition, the axial part 1, the base 2, and the front-end | tip part 3 are arrange | positioned on an axis line.

また、図2に示すように、先端部3の基材5は、W、Moの純金属、またはこれらとReとの合金からなっている。また、ほぼ均一に分散させる分散粒子6としては、一辺数10μmのPCBN粒子、ダイヤモンド粒子、WC粒子などの硬質セラミックス粒子を含有させた。分散粒子6は、鋭角になり易いので、大きさを辺の長さで表した。分散粒子6は、基材5よりも硬質であり、また、基材5は、Cu−Cr系合金よりも硬質である。   As shown in FIG. 2, the base material 5 of the tip 3 is made of a pure metal of W or Mo, or an alloy of these and Re. Further, as dispersed particles 6 to be dispersed almost uniformly, hard ceramic particles such as PCBN particles, diamond particles, and WC particles having a side number of 10 μm were contained. Since the dispersed particles 6 are likely to have an acute angle, the size is represented by the length of the side. The dispersed particles 6 are harder than the base material 5, and the base material 5 is harder than the Cu—Cr alloy.

(摩擦攪拌処理用工具の評価方法)
軸部1の回転速度600rpm、移動速度1mm/sとし、基部2の面が被摩擦攪拌面に接する程度まで押圧しながら一方向に100mm移動させたときの消耗量を測定した。先端部3は全周に亙って消耗するが、先端部3の高さの消耗が5%以下(0.3mm以下)のときを良好とした。
(Evaluation method of friction stir processing tool)
The amount of consumption was measured when the shaft 1 was moved 100 mm in one direction while pressing until the rotation speed of the shaft 1 was 600 rpm and the movement speed was 1 mm / s and the surface of the base 2 was in contact with the friction stir surface. The tip 3 is consumed over the entire circumference, but it is considered good when the height of the tip 3 is 5% or less (0.3 mm or less).

(Cu−Cr系合金の微細性)
図3に示すように、Cuマトリックス7中に粒径数100μmの第1のCr粒子8を分散させたCu−Cr系合金の表面を摩擦攪拌処理し、微細化された第2のCr粒子9の大きさを計測した。断面を走査電子顕微鏡で観察し、所定の線上に形成されたCu/Cr界面の数をカウントした。そして、摩擦攪拌処理前と比較して10倍以上の界面が形成されているものを良好とした。
(Fineness of Cu-Cr alloy)
As shown in FIG. 3, the surface of the Cu—Cr alloy in which the first Cr particles 8 having a particle size of several hundred μm are dispersed in the Cu matrix 7 is subjected to a frictional stirring treatment, and the refined second Cr particles 9 are obtained. The size of was measured. The cross section was observed with a scanning electron microscope, and the number of Cu / Cr interfaces formed on a predetermined line was counted. And the thing in which the interface of 10 times or more was formed compared with the friction stirring process before was made favorable.

以下、表1を参照して、基材5の材質、および分散粒子6の材質を種々変えたときの結果を説明する。   Hereinafter, the results when the material of the base material 5 and the material of the dispersed particles 6 are variously changed will be described with reference to Table 1.

(比較例1、実施例1)
比較例1では、先端部3の基材5にPCBNの純金属を用い、Cu−25wt%Cr合金を摩擦攪拌処理した。第2のCr粒子9は、Cu/Crの界面数が15倍と微細化されているが、消耗率が30%と大きかった。
(Comparative Example 1, Example 1)
In Comparative Example 1, a pure metal such as PCBN was used for the base material 5 of the tip portion 3 and a Cu-25 wt% Cr alloy was subjected to a frictional stirring treatment. The second Cr particles 9 were refined with the number of Cu / Cr interfaces being 15 times, but the consumption rate was as large as 30%.

実施例1では、先端部3の基材5にW−Re合金を用い、分散粒子6としてPCBNを10wt%含有させ、Cu−25wt%Cr合金を摩擦攪拌処理した。その結果、消耗率は2%であり、第2のCr粒子9は11倍に微細化されていた。これは、基材5が回転し、Cr粒子8、9に衝突しても、PCBN粒子の方が硬く、更にW−Re合金でその衝撃を吸収するので、破損による消耗が軽減されたものと推察できる。また、先端部3が円錐状であり、軸方向に対して斜めに横切る攪拌溝4を設けているので、消耗を抑えながら、攪拌溝4により攪拌が促進されたものと推察できる。   In Example 1, a W—Re alloy was used for the base material 5 of the tip 3, 10 wt% of PCBN was contained as the dispersed particles 6, and a Cu-25 wt% Cr alloy was subjected to friction stirring. As a result, the consumption rate was 2%, and the second Cr particles 9 were refined 11 times. This is because even if the base material 5 rotates and collides with the Cr particles 8 and 9, the PCBN particles are harder and the impact is absorbed by the W-Re alloy, so that consumption due to breakage is reduced. I can guess. Moreover, since the tip part 3 is conical and the stirring groove 4 that is obliquely crossed with respect to the axial direction is provided, it can be inferred that stirring was promoted by the stirring groove 4 while suppressing wear.

(実施例2〜4)
基材5に、実施例2ではMo−Re合金、実施例3ではW、実施例4ではMoを用い、分散粒子6にPCBNを10wt%含有させ、Cu−25wt%Cr合金を摩擦攪拌処理した。その結果、消耗率はいずれも2%であり、第2のCr粒子9は10倍以上に微細化され、良好であった。
(Examples 2 to 4)
The base material 5 was Mo-Re alloy in Example 2, W was used in Example 3, Mo was used in Example 4, 10 wt% of PCBN was contained in the dispersed particles 6, and a Cu-25 wt% Cr alloy was friction-stirred. . As a result, the consumption rate was 2% in all cases, and the second Cr particles 9 were refined 10 times or more and were good.

(実施例5、6)
実施例5では、W−Re合金の基材5に、分散粒子6としてダイヤモンドを10wt%含有させ、Cu−25wt%Cr合金を摩擦攪拌処理した。また、実施例6では、W−Re合金の基材5に、分散粒子6としてWCを10wt%含有させ、Cu−25wt%Cr合金を摩擦攪拌処理した。その結果、消耗率はいずれも2%であり、第2のCr粒子9は13倍以上に微細化され、良好であった。
(Examples 5 and 6)
In Example 5, 10 wt% of diamond as dispersed particles 6 was contained in the base material 5 of W-Re alloy, and a Cu-25 wt% Cr alloy was subjected to friction stirring. In Example 6, the W-Re alloy base material 5 was made to contain 10 wt% of WC as the dispersed particles 6, and the Cu-25 wt% Cr alloy was subjected to friction stirring. As a result, the consumption rate was 2% in all cases, and the second Cr particles 9 were refined 13 times or more and were good.

(比較例2、3、実施例7〜9)
比較例2、3、実施例7〜9では、W−Re合金の基材5に、分散粒子6としてPCBNを2〜50wt%含有させ、Cu−25wt%Cr合金を摩擦攪拌処理した。その結果、PCBNを5〜40wt%含有させた実施例7〜9において、消耗率が5%以下であり、第2のCr粒子9が10倍以上に微細化され、良好であった。
(Comparative Examples 2 and 3, Examples 7 to 9)
In Comparative Examples 2 and 3 and Examples 7 to 9, the substrate 5 of W-Re alloy was made to contain 2 to 50 wt% of PCBN as the dispersed particles 6, and the Cu-25 wt% Cr alloy was subjected to friction stir processing. As a result, in Examples 7 to 9 containing 5 to 40 wt% of PCBN, the consumption rate was 5% or less, and the second Cr particles 9 were refined 10 times or more, which was good.

比較例2では、PCBNが2wt%であり、第2のCr粒子9を微細化することができるものの、消耗率が15%と大きかった。比較例3では、PCBNが50wt%であり、工具の欠損が抑制できず、消耗率が10%と大きかった。   In Comparative Example 2, PCBN was 2 wt%, and the second Cr particles 9 could be refined, but the consumption rate was as large as 15%. In Comparative Example 3, PCBN was 50 wt%, and tool failure could not be suppressed, and the wear rate was as large as 10%.

なお、表1には記していないが、実施例1と同様なW−Re合金に、PCBNを10wt%含有させた工具を用い、Cu−10wt%Cr合金、およびCu−50wt%Cr合金の摩擦研磨処理を行った。いずれの合金も、工具の消耗率が2%以下であり、第2のCr粒子9の微細化を図ることができた。   Although not shown in Table 1, using a tool containing 10 wt% PCBN in the same W-Re alloy as in Example 1, friction of Cu-10 wt% Cr alloy and Cu-50 wt% Cr alloy Polishing treatment was performed. In any alloy, the wear rate of the tool was 2% or less, and the second Cr particles 9 could be refined.

このようにCu−Cr系合金中の第1のCr粒子8を摩擦攪拌処理によって、第2のCr粒子9のように微細化することができるので、この接点を用いた真空バルブは耐電圧特性を向上させることができる。Cu−Cr系合金中には、補助成分としてBi、Te、Sbなどを添加し、諸特性を向上させることもできる。   Thus, since the first Cr particles 8 in the Cu-Cr alloy can be made finer as the second Cr particles 9 by the friction stir processing, the vacuum valve using this contact has a withstand voltage characteristic. Can be improved. In the Cu—Cr alloy, Bi, Te, Sb and the like can be added as auxiliary components to improve various properties.

なお、微細化された第2のCr粒子9側は、真空バルブ用接点材料の接離面となり、微量の基材5材料と分散粒子6が含有されることになる。今回の場合、その含有率は、消耗量と同様のほぼ5wt%以下となる。基材5としては、W、Mo、W−Re合金、Mo−Re合金があり、また、分散粒子6としては、PCBN、ダイヤモンド、WCがあるが、先端部3の成分量から基材5に用いた材料の方の量が多いものとなる。しかしながら、この種の材料の混入で耐電圧特性を低下させるものではない。   The refined second Cr particle 9 side becomes a contact / separation surface of the contact material for the vacuum valve, and contains a small amount of the base material 5 and the dispersed particles 6. In this case, the content is about 5 wt% or less, which is the same as the consumption amount. As the base material 5, there are W, Mo, W—Re alloy, and Mo—Re alloy, and as the dispersed particles 6, there are PCBN, diamond, and WC. The amount of material used is larger. However, the withstand voltage characteristics are not lowered by mixing this kind of material.

上記実施例の摩擦攪拌処理用工具によれば、PCBN、ダイヤモンド、WCなどの分散粒子6(硬質セラミックス粒子)を基材5中に分散させ、摩擦攪拌処理によりCu−Cr系合金のCr粒子8、9を微細化するので、工具の消耗量が少なく、また、低コストで真空バルブ用接点材料を製造することができる。

Figure 2011140060
According to the friction stir processing tool of the above embodiment, dispersed particles 6 (hard ceramic particles) such as PCBN, diamond and WC are dispersed in the base material 5 and Cr particles 8 of a Cu—Cr alloy are obtained by the friction stir processing. 9 is miniaturized, the amount of tool consumption is small, and a contact material for a vacuum valve can be manufactured at low cost.
Figure 2011140060

1 軸部
2 基部
3 先端部
4 攪拌溝
5 基材
6 分散粒子
7 Cuマトリックス
8 第1のCr粒子
9 第2のCr粒子
DESCRIPTION OF SYMBOLS 1 Shaft part 2 Base part 3 Tip part 4 Stirring groove 5 Base material 6 Dispersion particle 7 Cu matrix 8 1st Cr particle 9 2nd Cr particle

Claims (6)

回転装置に固定される軸部と、
前記軸部の端部に固定された基部と、
前記基部に固定されるとともに、外周に軸方向に対して斜めに横切る攪拌溝を設けた先端部とを備えた摩擦攪拌処理用工具であって、
前記先端部は、基材にW、Mo、W−Re、Mo−Reのいずれか1つの材料を用い、前記基材よりも硬い硬質セラミックス粒子を分散させていることを特徴とする摩擦攪拌処理用工具。
A shaft portion fixed to the rotating device;
A base fixed to an end of the shaft;
A friction stir processing tool provided with a tip portion provided with a stirring groove that is fixed to the base portion and obliquely crosses the axial direction on the outer periphery,
Friction stir processing characterized in that the tip portion uses any one material of W, Mo, W-Re, and Mo-Re as a base material, and hard ceramic particles harder than the base material are dispersed. Tools.
前記硬質セラミックス粒子は、PCBN、ダイヤモンド、WCのいずれか1つであることを特徴とする請求項1に記載の摩擦攪拌処理用工具。   The friction stir processing tool according to claim 1, wherein the hard ceramic particles are any one of PCBN, diamond, and WC. 前記硬質セラミックス粒子を5〜40wt%としたことを特徴とする請求項1または請求項2に記載の摩擦攪拌処理用工具。   The friction stir processing tool according to claim 1 or 2, wherein the hard ceramic particles are 5 to 40 wt%. 接離自在の一対の接点を有する真空バルブ用接点材料であって、
前記接点は、Cu−Cr系合金であり、
前記Cu−Cr系合金は、基材にW、Mo、W−Re、Mo−Reのいずれか1つの材料を用い、前記基材よりも硬い硬質セラミックス粒子を分散した摩擦攪拌処理用工具により摩擦攪拌処理され、その表面の前記Crが微細化されていることを特徴とする真空バルブ用接点材料。
A contact material for a vacuum valve having a pair of contactable and separable contacts,
The contact is a Cu-Cr alloy,
The Cu—Cr alloy is rubbed by a friction stir processing tool in which hard ceramic particles harder than the base material are dispersed using any one of W, Mo, W—Re, and Mo—Re as a base material. A contact material for a vacuum valve, characterized in that the Cr on the surface is agitated and refined.
前記Cu−Cr系合金中に、前記W、前記Mo、前記W−Re、前記Mo−Reのいずれか1つの金属が含有されていることを特徴とする請求項4に記載の真空バルブ用接点材料。   5. The contact for a vacuum valve according to claim 4, wherein the Cu-Cr alloy contains one of the metals W, Mo, W-Re, and Mo-Re. material. 前記Crは、10〜50wt%含有されていることを特徴とする請求項4または請求項5に記載の真空バルブ用接点材料。   The contact material for a vacuum valve according to claim 4 or 5, wherein the Cr is contained in an amount of 10 to 50 wt%.
JP2010003287A 2010-01-08 2010-01-08 Tool for friction stirring treatment and contact material for vacuum valve Pending JP2011140060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003287A JP2011140060A (en) 2010-01-08 2010-01-08 Tool for friction stirring treatment and contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003287A JP2011140060A (en) 2010-01-08 2010-01-08 Tool for friction stirring treatment and contact material for vacuum valve

Publications (1)

Publication Number Publication Date
JP2011140060A true JP2011140060A (en) 2011-07-21

Family

ID=44456293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003287A Pending JP2011140060A (en) 2010-01-08 2010-01-08 Tool for friction stirring treatment and contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JP2011140060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031863A (en) * 2011-08-01 2013-02-14 Sumitomo Electric Ind Ltd Tool for friction stir welding
CN103920984A (en) * 2014-04-03 2014-07-16 长春三友汽车部件制造有限公司 Combined type stirring, rubbing and welding head manufactured by using double materials and manufacturing process thereof
WO2019213474A1 (en) * 2018-05-04 2019-11-07 Mazak Corporation Low-cost friction stir processing tool
CN113245688A (en) * 2021-06-22 2021-08-13 宁波齐云新材料技术有限公司 Friction stirring head special for low-carbon alloy steel
US11458564B2 (en) 2017-08-31 2022-10-04 Mazak Corporation Devices, systems, and methods for increased wear resistance during low temperature friction stir processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182609A (en) * 1999-12-27 2001-07-06 Mazda Motor Corp Method of manufacturing cylinder head
JP2006255711A (en) * 2005-03-15 2006-09-28 Toshiba Corp Composite material, and method and apparatus for producing composite material
JP2008218346A (en) * 2007-03-07 2008-09-18 Toshiba Corp Contact point material for vacuum valve and its manufacturing method
JP2008246553A (en) * 2007-03-30 2008-10-16 Tohoku Univ Stirring tool for friction stir welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182609A (en) * 1999-12-27 2001-07-06 Mazda Motor Corp Method of manufacturing cylinder head
JP2006255711A (en) * 2005-03-15 2006-09-28 Toshiba Corp Composite material, and method and apparatus for producing composite material
JP2008218346A (en) * 2007-03-07 2008-09-18 Toshiba Corp Contact point material for vacuum valve and its manufacturing method
JP2008246553A (en) * 2007-03-30 2008-10-16 Tohoku Univ Stirring tool for friction stir welding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031863A (en) * 2011-08-01 2013-02-14 Sumitomo Electric Ind Ltd Tool for friction stir welding
CN103920984A (en) * 2014-04-03 2014-07-16 长春三友汽车部件制造有限公司 Combined type stirring, rubbing and welding head manufactured by using double materials and manufacturing process thereof
US11458564B2 (en) 2017-08-31 2022-10-04 Mazak Corporation Devices, systems, and methods for increased wear resistance during low temperature friction stir processing
WO2019213474A1 (en) * 2018-05-04 2019-11-07 Mazak Corporation Low-cost friction stir processing tool
US11440133B2 (en) 2018-05-04 2022-09-13 Mazak Corporation Low-cost friction stir processing tool
CN113245688A (en) * 2021-06-22 2021-08-13 宁波齐云新材料技术有限公司 Friction stirring head special for low-carbon alloy steel
CN113245688B (en) * 2021-06-22 2021-11-02 宁波齐云新材料技术有限公司 Friction stirring head special for low-carbon steel

Similar Documents

Publication Publication Date Title
JP2011140060A (en) Tool for friction stirring treatment and contact material for vacuum valve
KR101297479B1 (en) Tool for friction stir welding, method of welding with the same, and processed object obtained by the same
JP6087363B2 (en) Green sheet cutting blade
JPWO2009040986A1 (en) Probe needle material, probe needle and probe card using the same, and inspection method
WO2014050884A1 (en) Flat blade-shaped cutting blade and green sheet cutting blade
WO2018056275A1 (en) Ceramic composition, cutting tool, and tool for friction stir welding use
CN107234235A (en) Sintering powder and sintered body
Lungu et al. AgSnO~ 2 sintered electrical contacts with ultrafine and uniformly dispersed microstructure
JP4422574B2 (en) Sputtering target material comprising ceramic-metal composite material and method for producing the same
JP6740862B2 (en) Tools for hard materials and friction stir welding
Thiraviam et al. A novel approach for the production and characterisation of aluminium–alumina hybrid metal matrix composites
JP5818411B2 (en) High corrosion resistance surface treatment method
JP6044737B2 (en) Cylinder for molding machine and manufacturing method thereof
JP4835973B2 (en) Method for producing refractory metal powder and method for producing target material
JP6085708B1 (en) Polishing composition for alloy material and method for polishing alloy material
JP7359522B2 (en) Sintered bodies and cutting tools
JP2011115867A (en) Thin-edged blade
JP2007162070A (en) Method for manufacturing titanium alloy
JP2015107525A (en) Rotary tool
JP2007126702A (en) Cu-W-BASED ALLOY, AND ELECTRODE USING THE ALLOY FOR ELECTRIC SPARK MACHINING
JP3698656B2 (en) Cutting tools
JP6036795B2 (en) Rotation tool
JP2004249384A (en) Grinding wheel for double-disc surface grinding
JP6743334B2 (en) Cemented carbide scissors and manufacturing method thereof
JP2002349574A (en) Sleeve and thrust plate for dynamic pressure bearing made of copper alloy having excellent abrasion- resistant property

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140627