JP4892685B2 - Diffusion bonding method - Google Patents

Diffusion bonding method Download PDF

Info

Publication number
JP4892685B2
JP4892685B2 JP2007019853A JP2007019853A JP4892685B2 JP 4892685 B2 JP4892685 B2 JP 4892685B2 JP 2007019853 A JP2007019853 A JP 2007019853A JP 2007019853 A JP2007019853 A JP 2007019853A JP 4892685 B2 JP4892685 B2 JP 4892685B2
Authority
JP
Japan
Prior art keywords
bonding
aluminum
joining
nitrogen
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007019853A
Other languages
Japanese (ja)
Other versions
JP2008183592A (en
Inventor
修 大橋
Original Assignee
国立大学法人 新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 新潟大学 filed Critical 国立大学法人 新潟大学
Priority to JP2007019853A priority Critical patent/JP4892685B2/en
Publication of JP2008183592A publication Critical patent/JP2008183592A/en
Application granted granted Critical
Publication of JP4892685B2 publication Critical patent/JP4892685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、アルミニウムナイトライド界面析出法を利用して加圧側との剥離を可能とした拡散接合方法に関する。   The present invention relates to a diffusion bonding method that enables separation from a pressure side using an aluminum nitride interface precipitation method.

拡散接合は、広く工業製品の組み立て接合に使用され、例えば、複数の接合材を積層して、加圧治具と接合しないように、加圧治具と接合材との間に剥離材を介して接合作業が行われ、このような拡散接合方法を利用して、特にガスや液体の微細な通路を内部に持つマイクロリアクタ,マイクロ熱交換機,燃料電池のセパレータ等の製作を行うことができる。   Diffusion bonding is widely used for assembly and bonding of industrial products. For example, a plurality of bonding materials are stacked and a release material is interposed between the pressure jig and the bonding material so as not to be bonded to the pressure jig. Using such a diffusion bonding method, it is possible to manufacture a microreactor, a micro heat exchanger, a fuel cell separator, and the like having a fine gas or liquid passage inside.

上記のように接合材を加圧する際には、接合しようとする部材同士は接合し、その接合材と加圧治具とは接合しないことが必要であり、このような加圧治具との接合を防止するため、上記剥離材が使用される。   When pressurizing the bonding material as described above, the members to be bonded must be bonded to each other, and the bonding material and the pressure jig must not be bonded. In order to prevent joining, the release material is used.

そして、従来、剥離材として、セラミックス(アルミナ、AlN、BN)の板を用いたり、セラミックス粒子(アルミナ、AlN、BN)などの粉末を塗布したりすることが一般的である。   Conventionally, a ceramic (alumina, AlN, BN) plate or a powder of ceramic particles (alumina, AlN, BN) or the like is generally used as a release material.

また、高融点金属は、融点が高いために、接合材と相互拡散が困難なことから、拡散接合し難い。そこで、金属の剥離材として、高融点金属(タングステン、モリブデン)が使用されることもある。   In addition, since the high melting point metal has a high melting point, it is difficult to diffuse and bond with the bonding material, so that diffusion bonding is difficult. Therefore, a refractory metal (tungsten or molybdenum) may be used as a metal release material.

このようなことから、拡散接合法で接合材同士を接合する際には、剥離材の選定が非常に重要となっている。   For this reason, when joining materials are joined by the diffusion joining method, selection of a release material is very important.

現在、剥離材に要求される事項として、セラミックスや高融点金属を用いたものは、価格が高いため、価格が安い材料が望まれている。また、接合材とセラミックスでは、両者に熱伝導などの熱的物性に大きな差があり、その結果、接合材を加熱した際、接合対の温度分布が大きく、接合材を均熱することが困難である。これに対して接合対全体を均一に加熱できるように、接合材と熱的物性の差が少ない剥離材が求められている。さらにまた、剥離材による汚染が少ないものが望ましい。   At present, as a matter required for the release material, materials using ceramics or a refractory metal are expensive, and therefore, a material with a low price is desired. In addition, there is a large difference in thermal properties such as heat conduction between the bonding material and ceramics. As a result, when the bonding material is heated, the temperature distribution of the bonding pair is large and it is difficult to soak the bonding material. It is. On the other hand, there is a demand for a release material that has a small difference in thermal properties from the bonding material so that the entire bonded pair can be heated uniformly. Furthermore, the thing with little contamination by a peeling material is desirable.

ところで、拡散接合と類似するロー材を用いた接合において、金属製触媒担体の製造方法および金属製触媒担体(例えば特許文献1)には、ハニカム構造体と外周とのクリアランス形成のため、その界面に窒化アルミニウムの皮膜を形成することを特徴とし、そのため、窒化アルミニウム形成温度領域(600℃)で30分以上維持して加熱することが記載されている。   By the way, in joining using a brazing material similar to diffusion joining, a method for producing a metal catalyst carrier and a metal catalyst carrier (for example, Patent Document 1) include an interface for forming a clearance between the honeycomb structure and the outer periphery. It is characterized by forming a film of aluminum nitride, and for this reason, it is described that heating is carried out for 30 minutes or more in the aluminum nitride formation temperature region (600 ° C.).

しかし、上記特許文献1にはハニカム構造体の組成についての記載がなく、外套材として、SUS430フェライト系ステンレス鋼材との記載のみであり、これを本発明のような拡散接合にそのまま適用することは困難である。   However, the above-mentioned Patent Document 1 does not describe the composition of the honeycomb structure, and only describes the SUS430 ferritic stainless steel material as a mantle material, and this can be applied as it is to diffusion bonding as in the present invention. Have difficulty.

ところで、金属材料を大気中で加熱した際の表面に形成される酸化皮膜については、耐酸化性材料の開発の必要性から、広く検討されている。そして、鉄鋼材料の酸化については、ステンレス鋼便覧(日刊工業新聞社,2004年,頁375〜378)に詳細に記載されている。   By the way, about the oxide film formed on the surface at the time of heating a metal material in air | atmosphere, since the necessity of development of an oxidation resistant material is examined widely. The oxidation of steel materials is described in detail in the Stainless Steel Handbook (Nikkan Kogyo Shimbun, 2004, pages 375 to 378).

例えば、Fe-Cr合金の酸化について、そのCr濃度が表面に形成される酸化物とその構造を決定する。また、Fe-Al合金の酸化についても、そのアルミニウム濃度が表面に形成される酸化物とその構造を決定することが記載されているが、合金を窒素中で加熱した際の合金の窒化についての記載はない。
特開2005−81305号公報
For example, regarding the oxidation of an Fe—Cr alloy, the Cr concentration determines the oxide formed on the surface and its structure. In addition, regarding the oxidation of Fe-Al alloy, it is described that the aluminum concentration determines the oxide formed on the surface and its structure, but the nitriding of the alloy when the alloy is heated in nitrogen is described. There is no description.
JP 2005-81305 A

従来の剥離材の使用を不要とすれば、簡便にして、剥離材による汚染を少なくして接合作業が行える。その結果、大量生産向きで、拡散接合作業のコストダウンを行うことができる。   If it is not necessary to use a conventional release material, the joining operation can be performed simply and with less contamination by the release material. As a result, the cost of diffusion bonding work can be reduced for mass production.

そこで、本発明は、従来の剥離材の使用を不要とし、大量生産向きで、拡散接合作業のコストダウンを図ることができる拡散接合方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a diffusion bonding method that eliminates the use of a conventional release material and is suitable for mass production and can reduce the cost of diffusion bonding work.

請求項1の発明は、複数の接合材間の接合面を突合せて複数の接合材を重ね合わせ、この重ね合わせた複数の接合材の両側から加圧した加圧状態で真空加熱する拡散接合方法において、前記接合材は窒素を含有し、前記重ね合わせた複数の接合材の両側に、アルミニウム含有合金からなる剥離材を突合せ、この突合せ状態で、真空度が3×10 -3 Pa以下で800℃以上加熱すると共に前記剥離材を介して前記接合面を加圧し、前記接合材から発生した窒素ガスと前記剥離材中のアルミニウムとにより、前記剥離材の前記接合材を突合わせた面側に、アルミニウム窒化物を形成する方法である。 The invention according to claim 1 is a diffusion bonding method in which bonding surfaces between a plurality of bonding materials are butted together to overlap a plurality of bonding materials, and vacuum heating is performed in a pressurized state in which pressure is applied from both sides of the stacked bonding materials. The joining material contains nitrogen, and a release material made of an aluminum-containing alloy is butted on both sides of the superposed joining materials, and in this butting state, the degree of vacuum is 3 × 10 −3 Pa or less. The surface side where the joining material of the release material is abutted with nitrogen gas generated from the joining material and aluminum in the release material while being heated to a temperature of ℃ or higher and pressurizing the joining surface through the release material The method of forming aluminum nitride.

また、請求項2の発明は、アルミニウム含有ニッケル合金又はアルミニウム含有鉄合金である方法である。   Moreover, invention of Claim 2 is a method which is an aluminum containing nickel alloy or an aluminum containing iron alloy.

また、請求項3の発明は、前記剥離材がアルミニウムを2質量%以上含有する方法である。   Moreover, invention of Claim 3 is a method in which the said peeling material contains 2 mass% or more of aluminum.

請求項1の構成によれば、加熱により接合材から窒素ガスが発生し、この窒素ガスと剥離材中のアルミニウムとにより、接合材には、剥離材に突き合わせた面側に、アルミニウム窒化物が形成され、このアルミニウム窒化物は脆いため、この箇所で接合材と剥離材とを分離することができる。   According to the configuration of claim 1, nitrogen gas is generated from the bonding material by heating, and due to the nitrogen gas and aluminum in the peeling material, the bonding material has aluminum nitride on the side of the surface that faces the peeling material. Since the aluminum nitride formed is brittle, the bonding material and the release material can be separated at this point.

また、請求項2の構成によれば、加熱により、接合材から発生した窒素ガスと、アルミニウム含有ニッケル合金又はアルミニウム含有鉄合金のアルミニウムとにより、アルミニウム窒化物が形成され、接合材と剥離材とを簡単に分離することができる。また、接合材が鉄鋼材料などの場合、この剥離材は接合材との熱的物性の差が少ない。   Moreover, according to the structure of Claim 2, aluminum nitride is formed with the nitrogen gas generated from the joining material by heating and aluminum of the aluminum-containing nickel alloy or the aluminum-containing iron alloy, and the joining material and the release material Can be easily separated. Further, when the bonding material is a steel material or the like, the release material has little difference in thermal physical properties from the bonding material.

また、請求項3の構成によれば、剥離材のアルミニウムが2質量%未満では、アルミニウム窒化物が形成されないか、ほとんど形成されないため、接合強さが低下せず、これに対して、アルミニウムを2質量%以上含むことにより、接合材と剥離材とを分離することができる。   Further, according to the configuration of claim 3, when the aluminum of the release material is less than 2% by mass, the aluminum nitride is not formed or hardly formed, so that the bonding strength is not lowered. By containing 2% by mass or more, the bonding material and the release material can be separated.

本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。各実施例では、従来とは異なる拡散接合方法を採用することにより、従来にない拡散接合方法が得られ、その拡散接合方法を夫々記述する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention. In each embodiment, by adopting a diffusion bonding method different from the conventional one, an unprecedented diffusion bonding method is obtained, and each diffusion bonding method is described.

表面に形成する表面皮膜の種類は、金属材料の組成によって異なる。例えば、鉄鋼材料にアルミニウムを添加した合金では、アルミニウムの添加量の増加に伴って変化する。アルミニウム量が少ないときには、鉄鋼材料中にアルミニウムは固溶し、材料内に均一にアルミニウムは分布している。材料中のアルミニウム量が2質量%以上になると、窒素雰囲気中での加熱でアルミニウムは窒素と反応し易いことから、アルミニウム窒化物が合金表面に形成されることを見出した。このアルミニウム窒化物材料は、拡散接合時、剥離材としてよく使用される。   The type of surface film formed on the surface varies depending on the composition of the metal material. For example, in an alloy in which aluminum is added to a steel material, it changes as the amount of aluminum added increases. When the amount of aluminum is small, aluminum is dissolved in the steel material, and the aluminum is uniformly distributed in the material. When the amount of aluminum in the material is 2% by mass or more, it has been found that aluminum nitride is formed on the alloy surface because aluminum easily reacts with nitrogen by heating in a nitrogen atmosphere. This aluminum nitride material is often used as a release material during diffusion bonding.

一般的に、鉄鋼材料を拡散接合する際は、真空中で加熱することが多く、鉄鋼材料を、真空中で加熱すると、加熱した材料から、窒素ガスが放出される。   Generally, when steel materials are diffusion-bonded, they are often heated in a vacuum, and when steel materials are heated in a vacuum, nitrogen gas is released from the heated materials.

鉄鋼材料は主に大気中で溶解され、鉄鋼中に窒素が固溶出来る。従って、鉄鋼材料中の窒素の溶解量は作製時の窒素分圧に依存する。この材料を、溶解時よりも低い窒素分圧中での加熱時に、材料に固溶した窒素が放出される。鉄鋼材料を拡散接合する際には、真空中または不活性ガス中で800℃〜1300℃に加熱する。この温度領域で、材料から窒素が放出される。   Steel materials are mainly dissolved in the atmosphere, and nitrogen can be dissolved in steel. Therefore, the amount of nitrogen dissolved in the steel material depends on the nitrogen partial pressure at the time of production. When this material is heated at a lower nitrogen partial pressure than when it is dissolved, nitrogen dissolved in the material is released. When the steel material is diffusion bonded, it is heated to 800 ° C. to 1300 ° C. in vacuum or in an inert gas. In this temperature region, nitrogen is released from the material.

鉄鋼材料とアルミニウム含有鉄鋼材料とを接触させて、加熱した際、鉄鋼材料から放出された窒素ガスが原因で、鉄鋼材料とアルミニウム含有鉄鋼材料との界面に、アルミニウム窒化物が形成される。アルミニウム窒化物が界面に形成されると、セラミックスで脆いこともあり、その界面の接合強さは極端に低くなる。   When the steel material and the aluminum-containing steel material are brought into contact with each other and heated, aluminum nitride is formed at the interface between the steel material and the aluminum-containing steel material due to the nitrogen gas released from the steel material. When aluminum nitride is formed at the interface, it may be brittle with ceramics, and the bonding strength at the interface becomes extremely low.

一方、鉄鋼材料と鉄鋼材料の接合界面に未接合部の空隙が形成されることがある。この空隙には窒素ガスが満たされる。しかし、この窒素ガスは、材料に固溶でき、また、空隙の収縮等の接合過程を阻害しない。   On the other hand, a void in an unjoined part may be formed at the joining interface between the steel material and the steel material. This gap is filled with nitrogen gas. However, this nitrogen gas can be dissolved in the material and does not hinder the joining process such as the shrinkage of the voids.

真空中で鉄鋼材料を加熱した際、窒素を放出する材料について、鉄鋼材料は窒素を固溶する。その結果、引張試験の際、降伏点を発現する理由として、転位の回りに固溶した窒素原子が集まり、転位の移動を阻害するコットレル雰囲気を形成することが、原因としてよく知られている。   When a steel material is heated in a vacuum, the steel material dissolves nitrogen in a material that releases nitrogen. As a result, it is well known as a cause that a yield point is exhibited in the tensile test because a solid solution of nitrogen atoms gathers around the dislocation to form a Cottrell atmosphere that inhibits the movement of the dislocation.

降伏現象の発現を阻止するには、鉄鋼材料中に、微量のAl、Tiを添加する。この微量の添加によって、鉄鋼材料中の窒素はAlN、TiN等の化合物として、鉄鋼材料中に存在し、固溶した窒素はなくなる。鉄鋼材料中に、Ti、Alを添加した材料では、真空中加熱した際、その材料から窒素放出はない。   In order to prevent the occurrence of the yield phenomenon, trace amounts of Al and Ti are added to the steel material. By this small amount of addition, nitrogen in the steel material exists in the steel material as a compound such as AlN, TiN, etc., and no solid solution nitrogen exists. In a steel material with Ti and Al added, there is no nitrogen release from the material when heated in vacuum.

発明者は鋭意研究の結果、上記の知見を得て、本発明に至った。   As a result of intensive studies, the inventor obtained the above knowledge and reached the present invention.

本発明の実験例及び実施例に使用した材料の組成を表1に示す。   Table 1 shows the compositions of the materials used in the experimental examples and examples of the present invention.

「実験例1」
上記表1に示したSUS304ステンレス鋼を加熱した場合の放出ガスについて確認を行った。図1に示すように、SUS304ステンレス鋼からなる接合材1は、直径12mmの円柱状のものを用いた。尚、加熱前の接合材1の窒素量は、0.05質量%であった。
"Experiment 1"
The release gas when the SUS304 stainless steel shown in Table 1 was heated was confirmed. As shown in FIG. 1, a joining material 1 made of SUS304 stainless steel was a cylindrical member having a diameter of 12 mm. In addition, the nitrogen content of the bonding material 1 before heating was 0.05% by mass.

そして、拡散接合時と同じ真空度(3×10-3Pa)で加熱し、加熱雰囲気中のガスを質量ガス分析器でガス分析することで、残留ガスの組成を知ることができる。放出ガスを測定した結果、接合材1では、放出されるガスの大半は、水蒸気と水素であり、800℃未満までは窒素の量は極微量であったが、800℃を超えてから、窒素ガスが放出され、高温になるほど窒素の放出が多くなることが確認された。また、加熱を停止し、冷却すると同時に、窒素量は減少する。
尚、拡散接合装置を分子ターボポンプで排気することにより、上記真空度(3×10-3Pa)とした。
Then, heating is performed at the same degree of vacuum (3 × 10 −3 Pa) as in diffusion bonding, and the gas in the heated atmosphere is analyzed with a mass gas analyzer, whereby the composition of the residual gas can be known. As a result of measuring the released gas, in the bonding material 1, most of the released gas was water vapor and hydrogen, and the amount of nitrogen was very small until less than 800 ° C. It was confirmed that the release of nitrogen increased as the temperature increased. In addition, the amount of nitrogen decreases at the same time as the heating is stopped and cooled.
The degree of vacuum (3 × 10 −3 Pa) was obtained by evacuating the diffusion bonding apparatus with a molecular turbo pump.

「比較例1」
同様にして、上記表1に示したSUS321ステンレス鋼を加熱した場合の放出ガスについて確認を行った。図1に示すように、SUS321ステンレス鋼からなる比較材2は、直径12mmの円柱状のものを用いた。比較材2を真空加熱し、放出ガスを測定した結果、比較材2では、窒素ガスの放出はなかった。このように、比較材2のような微量のチタン添加鉄鋼材料では、窒素がTiNとして材料中に存在し、材料に固溶した窒素はなく、その結果、真空加熱しても、窒素が放出されない。
“Comparative Example 1”
Similarly, the release gas when the SUS321 stainless steel shown in Table 1 was heated was confirmed. As shown in FIG. 1, a comparative material 2 made of SUS321 stainless steel was a cylindrical member having a diameter of 12 mm. As a result of measuring the released gas by vacuum heating the comparative material 2, the comparative material 2 did not release nitrogen gas. As described above, in a small amount of titanium-added steel material such as the comparative material 2, nitrogen exists in the material as TiN and there is no nitrogen dissolved in the material. As a result, nitrogen is not released even when heated in vacuum. .

「実験例2」
[SUS304ステンレス鋼とアルミニウム含有鉄合金(Fe-XAl)との接合]
図2に示すように、前記接合材1,1同士及びこれらの間にアルミニウム含有鉄合金(Fe-XAl)3を挟んで拡散接合する実験を行った。すなわち、この実験例2は、真空中で加熱した際、窒素ガスを放出する上記接合材1を使用した接合実験である。
"Experimental example 2"
[Bonding of SUS304 stainless steel and aluminum-containing iron alloy (Fe-XAl)]
As shown in FIG. 2, an experiment was conducted in which the bonding materials 1 and 1 and diffusion bonding were performed with an aluminum-containing iron alloy (Fe—XAl) 3 interposed therebetween. That is, Experimental Example 2 is a bonding experiment using the bonding material 1 that releases nitrogen gas when heated in vacuum.

接合材1は上記と同様に直径12mmの円柱状のものを用い、接合面となる側は研磨処理を行った。この研磨処理により、接合面の表面粗さは、最大表面粗さを、2〜4μmとした。尚、後述するアルミニウム含有鉄合金(Fe-XAl)3の接合面も同様に研磨処理した。   The joining material 1 used was a cylindrical member having a diameter of 12 mm as described above, and the side to be the joining surface was polished. By this polishing treatment, the maximum surface roughness of the bonding surface was 2 to 4 μm. In addition, the joining surface of the aluminum containing iron alloy (Fe-XAl) 3 mentioned later was similarly ground.

上記の表2において、接合例1は、前記接合材1,1同士の拡散接合を示し、接合例2〜接合例4は、接合材1,1の間に、上記表1に記載のアルミニウム含有鉄合金(Fe-XAl)3を挟んで拡散接合を行ったものを示す。表2では、接合材1とアルミニウム含有鉄合金(Fe-XAl)3と接合材1といった組み合わせを「接合対」という。また、アルミニウム含有鉄合金3は、接合材1と直径の等しい円板型のもの(表には「円盤」と記載)を用いた。   In Table 2 above, Bonding Example 1 shows diffusion bonding between the bonding materials 1 and 1, and Bonding Examples 2 to 4 include the aluminum content described in Table 1 above between the bonding materials 1 and 1. The result of diffusion bonding with an iron alloy (Fe-XAl) 3 interposed therebetween is shown. In Table 2, a combination of the bonding material 1, the aluminum-containing iron alloy (Fe-XAl) 3, and the bonding material 1 is referred to as a “bonding pair”. The aluminum-containing iron alloy 3 used was a disc type having the same diameter as the bonding material 1 (described as “disk” in the table).

また、表2に記載したように、接合条件は、真空容器内に接合対を収納し、該真空容器内を真空(3×10-3Pa)に排気した後、高周波誘導加熱法で、1100℃に加熱し、この加熱状態で、接合面に接合圧力10MPaを加え、20分間保持して拡散接合した。 In addition, as described in Table 2, the bonding conditions are as follows. The bonding pair is housed in a vacuum vessel, and after the vacuum vessel is evacuated to a vacuum (3 × 10 −3 Pa), the high frequency induction heating method is used. In this heated state, a bonding pressure of 10 MPa was applied to the bonding surface, and the diffusion bonding was performed by holding for 20 minutes.

上記表2に記載のように、SUS304ステンレス鋼同士の接合である接合例1では、接合強さが600MPaとなり、母材並みの接合強さが得られた。   As shown in Table 2 above, in Joining Example 1 in which SUS304 stainless steels are joined together, the joining strength was 600 MPa, and a joining strength equivalent to that of the base material was obtained.

また、アルミニウム含有鉄合金3がFe-1Alである接合例2では、接合例1と同様な接合強さが得られたが、他の接合例3及び接合例4では、接合対を約1mの高さから床に落とすだけで、破断した。この接合破面を電子顕微鏡で観察した結果、接合破面にアルミニウムの窒化物が検出された。尚、アルミニウム含有鉄合金3は、接合例3ではFe-3Al、接合例4ではFe-5Alである。   Moreover, in the joining example 2 whose aluminum-containing iron alloy 3 is Fe-1Al, the joining strength similar to the joining example 1 was obtained, but in the other joining examples 3 and 4, the joining pair is about 1 m. It broke just by dropping it from the height onto the floor. As a result of observing the joint fracture surface with an electron microscope, aluminum nitride was detected on the joint fracture surface. The aluminum-containing iron alloy 3 is Fe-3Al in the bonding example 3 and Fe-5Al in the bonding example 4.

このように接合例3及び接合例4の接合が弱いのは、接合中に、SUS304ステンレス鋼から窒素ガスが放出され、アルミニウム窒化物を形成し、このアルミニウム窒化物が脆いため、その形成個所で破断されるためである。   As described above, the joining of the joining examples 3 and 4 is weak because nitrogen gas is released from the SUS304 stainless steel during the joining to form aluminum nitride, and this aluminum nitride is brittle. This is because it is broken.

図3及び図4を用いて、前記接合例4における接合破面の状態を説明する。図3は、SUS304ステンレス鋼側の破面を、エネルギー分散型X線分光器付き走査型電子顕微鏡で観察した顕微鏡写真である。この接合破面(SUS304ステンレス鋼側)の走査型電子顕微鏡写真では、右上部の未接合部領域と、左下部の接合部の破断箇所の領域が観察される。未接合部では、ステンレス鋼の結晶粒界が明確に観察された。一方、左下部の破断領域では、複雑な破断形態を示す。これらの領域の2箇所で、エネルギー分散型X線分光器を用いて元素分析を行った結果を図4に示す。   The state of the joint fracture surface in the joint example 4 will be described with reference to FIGS. 3 and 4. FIG. 3 is a photomicrograph of the fracture surface on the SUS304 stainless steel side observed with a scanning electron microscope with an energy dispersive X-ray spectrometer. In the scanning electron micrograph of the joint fracture surface (SUS304 stainless steel side), the unjoined region in the upper right part and the region of the fractured part in the joint part in the lower left part are observed. In the unjoined part, the grain boundary of stainless steel was clearly observed. On the other hand, the fracture region at the lower left shows a complicated fracture mode. The results of elemental analysis using an energy dispersive X-ray spectrometer at two locations in these regions are shown in FIG.

図4の未接合部のスペクトル1の結果では、鉄、クロム、ニッケルのピークが観察される。一方、破断箇所での分析結果を示すスペクトル2では、鉄、クロム、ニッケルのピークの他、大きなアルミニウムのピークと窒素のピークが観察される。   In the result of spectrum 1 of the unjoined portion in FIG. 4, peaks of iron, chromium, and nickel are observed. On the other hand, in the spectrum 2 showing the analysis result at the fractured portion, a large aluminum peak and a nitrogen peak are observed in addition to the iron, chromium and nickel peaks.

以上の結果、SUS304ステンレス鋼とFe-5Alの接合部の破断箇所では、多量のアルミニウムと窒素が検出されたことから、AlN化合物が形成されたことが分かる。このAlN化合物は、熱膨張係数が接合材1よりも小さく、また、脆いこともあって、この化合物の形成層で破壊し易く、その破面は、脆弱な様相を示したと考えられる。   As a result, a large amount of aluminum and nitrogen were detected at the fractured portion of the joint between SUS304 stainless steel and Fe-5Al, indicating that an AlN compound was formed. This AlN compound has a thermal expansion coefficient smaller than that of the bonding material 1 and may be brittle, so that it is easily broken at the formation layer of this compound, and the fracture surface is considered to show a fragile aspect.

この実験例2から、拡散接合に用いるアルミニウム含有鉄合金材料がアルミニウムをほぼ2質量%以上含む場合、真空加熱により窒素ガスを放出する材料との接合により、接合界面にアルミニウムの窒化物が生じ、接合箇所が脆くなることが分かった。したがって、本発明では、アルミニウムを2質量%以上含む鉄合金を剥離材11とした。   From this Experimental Example 2, when the aluminum-containing iron alloy material used for diffusion bonding contains approximately 2% by mass or more of aluminum, a nitride of aluminum is generated at the bonding interface by bonding with a material that releases nitrogen gas by vacuum heating, It was found that the joint was fragile. Therefore, in the present invention, the release material 11 is an iron alloy containing 2% by mass or more of aluminum.

尚、図1に示すように、この例の加圧受面1Mは、アルミニウム含有鉄合金(Fe-XAl)3を挟む接合材1の面であり、この接合材1の加圧受面1Mが、アルミニウム含有鉄合金(Fe-XAl)3に突き合わされる。   As shown in FIG. 1, the pressure receiving surface 1M in this example is a surface of the bonding material 1 sandwiching the aluminum-containing iron alloy (Fe-XAl) 3, and the pressure receiving surface 1M of the bonding material 1 is aluminum. It is abutted against the contained iron alloy (Fe—XAl) 3.

「比較例2」
(SUS321ステンレス鋼とアルミニウム含有鉄合金(Fe-XAl)との接合)
上記実験例2に対して、前記比較材2を用いた実験を行った。この比較例2は、真空中で加熱した際、窒素ガスを放出しないSUS321ステンレス鋼を使用した際の接合実験である。
"Comparative Example 2"
(Bonding of SUS321 stainless steel and aluminum-containing iron alloy (Fe-XAl))
An experiment using the comparative material 2 was performed on the experimental example 2. This comparative example 2 is a joining experiment when SUS321 stainless steel that does not release nitrogen gas when heated in vacuum is used.

図5に示すように、比較材2は上記と同様に直径12mmの円柱状のものを用い、接合面となる側は研磨処理を行った。この研磨処理により、接合面の表面粗さは、最大表面粗さを、2〜4μmとした。また、アルミニウム含有鉄合金(Fe-XAl)3の接合面も同様に研磨処理し、上記実験例2と同じものを用いた。   As shown in FIG. 5, the comparative material 2 was a cylindrical member having a diameter of 12 mm as described above, and the side to be the joint surface was polished. By this polishing treatment, the maximum surface roughness of the bonding surface was 2 to 4 μm. Further, the joining surface of the aluminum-containing iron alloy (Fe—XAl) 3 was similarly polished, and the same one as in Experimental Example 2 was used.

上記の表3において、接合例5は、前記比較材2,2同士の拡散接合を示し、接合例6〜接合例8は、比較材2,2の間に、表3に記載のアルミニウム含有鉄合金(Fe-XAl)3を挟んで拡散接合を行った。   In Table 3 above, Bonding Example 5 shows diffusion bonding between the comparative materials 2 and 2, and the bonding examples 6 to 8 include the aluminum-containing iron described in Table 3 between the comparative materials 2 and 2. Diffusion bonding was performed with the alloy (Fe-XAl) 3 interposed therebetween.

また、表3の「接合条件」に記載したように、上記実験例2と同一の接合条件により拡散接合を行った。   Further, as described in “Joint conditions” in Table 3, diffusion bonding was performed under the same bonding conditions as in Experimental Example 2.

上記表3に記載のように、SUS321ステンレス鋼とSUS321ステンレス鋼の接合である接合例5では、接合強度が600MPaとなり、母材並みの接合強さが得られた。   As shown in Table 3 above, in Joining Example 5, which is a joining of SUS321 stainless steel and SUS321 stainless steel, the joining strength was 600 MPa, and a joining strength comparable to that of the base material was obtained.

また、アルミニウム含有鉄合金3が、接合例6ではFe-1Al、接合例7ではFe-3Al、接合例8ではFe-5Alであり、これらの接合例6〜接合例8も接合強さに変化はなかった。これは、SUS321ステンレス鋼の材料から接合中での窒素の放出がなく、接合界面でアルミニウム窒化物が形成されないためである。   Further, the aluminum-containing iron alloy 3 is Fe-1Al in the joining example 6, Fe-3Al in the joining example 7, and Fe-5Al in the joining example 8, and these joining examples 6 to 8 are also changed in joining strength. There was no. This is because there is no release of nitrogen during joining from the material of SUS321 stainless steel, and aluminum nitride is not formed at the joining interface.

「実験例3」
(SUS304ステンレス鋼とアルミニウム含有ニッケル合金(Ni-XAl)との接合)
図2に示すように、上記接合材1とアルミニウム含有ニッケル合金(Ni-XAl)4とを用いた実験を行った。この実験例3は、真空中で加熱した際、窒素ガスを放出する接合材1を使用した接合実験である。
"Experiment 3"
(Bonding of SUS304 stainless steel and aluminum-containing nickel alloy (Ni-XAl))
As shown in FIG. 2, an experiment using the bonding material 1 and an aluminum-containing nickel alloy (Ni—XAl) 4 was performed. This Experimental Example 3 is a bonding experiment using the bonding material 1 that releases nitrogen gas when heated in vacuum.

上記実験例2と同一構成の接合材1を用い、また、アルミニウム含有ニッケル合金(Ni-XAl)4は、接合材1と直径の等しい円板型のもの(表には「円盤」と記載)を用い、この円板型のアルミニウム含有ニッケル合金(Ni-XAl)4の接合面も接合材1と同様に研磨処理した。   The joining material 1 having the same configuration as the experimental example 2 is used, and the aluminum-containing nickel alloy (Ni-XAl) 4 has a disk shape having the same diameter as the joining material 1 (described as “disk” in the table). The joining surface of this disk-shaped aluminum-containing nickel alloy (Ni-XAl) 4 was also polished in the same manner as the joining material 1.

上記の表4において、接合例9〜接合例12は、接合材1,1の間に、表4に記載のアルミニウム含有ニッケル合金(Ni-XAl)4を挟んで拡散接合を行ったものを示す。   In Table 4 above, Joining Example 9 to Joining Example 12 show those obtained by performing diffusion bonding with the aluminum-containing nickel alloy (Ni-XAl) 4 described in Table 4 between the bonding materials 1 and 1. .

また、表4の「接合条件」に記載したように、上記実験例2と同一の接合条件により拡散接合を行った。   Further, as described in “Joint conditions” in Table 4, diffusion bonding was performed under the same bonding conditions as in Experimental Example 2 above.

上記表4に記載のように、アルミニウム含有ニッケル合金4が、接合例9ではNi-0Al、接合例10ではNi-0.7Al、接合例11ではNi-2.4Al、接合例12ではNi-9.7Alである。これらのうち接合例9と接合例10では、接合例1と同一の接合強さが得られ、一方、接合例11と接合例12では、接合対を約1mの高さから床に落とすだけで、破断した。この接合破面を電子顕微鏡で観察した結果、接合破面にアルミニウム窒化物が検出された。   As shown in Table 4 above, the aluminum-containing nickel alloy 4 is Ni-0Al in the joining example 9, Ni-0.7Al in the joining example 10, Ni-2.4Al in the joining example 11, and Ni-9.7Al in the joining example 12. It is. Of these, the joint example 9 and the joint example 10 have the same joint strength as the joint example 1, while the joint example 11 and the joint example 12 simply drop the joint pair from the height of about 1 m onto the floor. Ruptured. As a result of observing the joint fracture surface with an electron microscope, aluminum nitride was detected on the joint fracture surface.

この実験例3から、拡散接合に用いるアルミニウム含有ニッケル合金材料がアルミニウムをほぼ2質量%以上含む場合、真空加熱により窒素ガスを放出する材料との接合により、接合界面にアルミニウムの窒化物が生じ、接合箇所が脆くなることが分かった。したがって、本発明では、アルミニウムを2質量%以上含むニッケル合金を剥離材11とした。   From this Experimental Example 3, when the aluminum-containing nickel alloy material used for diffusion bonding contains approximately 2% by mass or more of aluminum, aluminum nitride is produced at the bonding interface by bonding with a material that releases nitrogen gas by vacuum heating, It was found that the joint was fragile. Therefore, in the present invention, the release material 11 is a nickel alloy containing 2 mass% or more of aluminum.

尚、図1に示すように、この例の加圧受面1Mは、アルミニウム含有ニッケル合金(Ni-XAl)4を挟む接合材1の面であり、この接合材1の加圧受面1Mが、アルミニウム含有ニッケル合金(Ni-XAl)4に突き合わされる。   As shown in FIG. 1, the pressure receiving surface 1M of this example is a surface of the bonding material 1 sandwiching the aluminum-containing nickel alloy (Ni-XAl) 4, and the pressure receiving surface 1M of the bonding material 1 is made of aluminum. It is abutted against the nickel alloy (Ni-XAl) 4 contained.

「比較例3」
(SUS321ステンレス鋼とアルミニウム含有ニッケル合金(Ni-XAl)との接合)
図5に示すように、上記比較材2と上記アルミニウム含有ニッケル合金(Ni-XAl)4とを用いた実験を行った。この比較例3は、真空中で加熱した際、窒素ガスを放出しないSUS321ステンレス鋼を使用した際の接合実験である。また、上記比較例2と同一構成の比較材2を用い、また、実験例3と同一構成のアルミニウム含有ニッケル合金(Ni-XAl)4を用いた。
“Comparative Example 3”
(Bonding of SUS321 stainless steel and aluminum-containing nickel alloy (Ni-XAl))
As shown in FIG. 5, an experiment using the comparative material 2 and the aluminum-containing nickel alloy (Ni-XAl) 4 was performed. Comparative Example 3 is a joining experiment when SUS321 stainless steel that does not release nitrogen gas when heated in vacuum is used. Moreover, the comparative material 2 having the same configuration as that of the comparative example 2 was used, and the aluminum-containing nickel alloy (Ni-XAl) 4 having the same configuration as that of the experimental example 3 was used.

上記の表5において、接合例13〜接合例16は、比較材2,2の間に、上記表5に記載のアルミニウム含有ニッケル合金(Ni-XAl)4を挟んで拡散接合を行ったものを示す。   In Table 5 above, Joining Example 13 to Joining Example 16 are obtained by performing diffusion bonding with the aluminum-containing nickel alloy (Ni—XAl) 4 described in Table 5 interposed between the comparative materials 2 and 2. Show.

また、表5の「接合条件」に記載したように、上記実験例2と同一の接合条件により拡散接合を行った。   Further, as described in “Joint conditions” in Table 5, diffusion bonding was performed under the same bonding conditions as in Experimental Example 2.

上記表5に記載のように、アルミニウム含有ニッケル合金4が、接合例13ではNi-0Al、接合例14ではNi-0.7Al、接合例15ではNi-2.4Al、接合例16ではNi-9.7Alであり、これら接合例13〜接合例16では、接合例5と同様に、母材並みの接合強さが得られた。   As shown in Table 5 above, the aluminum-containing nickel alloy 4 is Ni-0Al in Joining Example 13, Ni-0.7Al in Joining Example 14, Ni-2.4Al in Joining Example 15, Ni-9.7Al in Joining Example 16 In these joining examples 13 to 16, similar to the joining example 5, the same joining strength as that of the base material was obtained.

このように窒素ガスを放出しないSUS321ステンレス鋼を使用した際の接合、アルミニウムの含有量に係らず、アルミニウム窒化物が発生せず、母材並の接合強さを得ることができた。   Thus, regardless of the joining when using SUS321 stainless steel that does not release nitrogen gas and the aluminum content, aluminum nitride was not generated and a joining strength comparable to that of the base metal could be obtained.

「実験例4」
(実用材料の接合)
実用材料として、上記表1に示したFe-20Cr-3AlとS25Cを用いた。
"Experimental example 4"
(Joining of practical materials)
Fe-20Cr-3Al and S25C shown in Table 1 above were used as practical materials.

この実験例4において、アルミニウム含有鉄合金3としてFe-20Cr-3Alを用い、前記実験例2と同様に接合実験(接合例17)を行った。すなわち、接合対はSUS304/Fe-20Cr-3Al/SUS304であり、Fe-20Cr-3Alがアルミニウム含有鉄合金3である。   In Experimental Example 4, Fe-20Cr-3Al was used as the aluminum-containing iron alloy 3, and a joining experiment (Joint Example 17) was performed in the same manner as in Experimental Example 2. That is, the bonding pair is SUS304 / Fe-20Cr-3Al / SUS304, and Fe-20Cr-3Al is the aluminum-containing iron alloy 3.

結果は、上記の表6に示すように、アルミニウム含有合金が、アルミニウムの含有量のみに依存し、他の元素(この例ではCr)の影響はないことが分かった。アルミニウムは、材料構成元素の中で最も窒化物を形成し易い元素であり、アルミニウムの成分量のみに依存することになる。   As shown in Table 6 above, the results show that the aluminum-containing alloy depends only on the aluminum content and is not affected by other elements (Cr in this example). Aluminum is the element in which nitride is most easily formed among the constituent elements of the material, and depends only on the amount of the aluminum component.

次に、下記の表7に示すように、接合対をS25C/Fe-20Cr-3Al/S25Cにして同一の接合実験(接合例18)を行った。このように接合材1たる機械構造用鋼S25C間に、アルミニウム含有鉄合金3である円板型のFe-20Cr-3Alを挟んで接合した。機械構造用鋼S25Cから窒素が放出されるため、接合界面にAlN化合物を形成し、その接合強さは大幅に低下する。尚、アルミニウム含有合金を挿入しない機械構造用鋼S25C同士の拡散接合部の引張強さは、570MPaであった。
Next, as shown in Table 7 below, the same bonding experiment (Joining Example 18) was performed with the bonding pair S25C / Fe-20Cr-3Al / S25C. Thus, the disk-shaped Fe-20Cr-3Al, which is the aluminum-containing iron alloy 3, was sandwiched between the machine structural steel S25C as the bonding material 1 and bonded. Since nitrogen is released from the machine structural steel S25C, an AlN compound is formed at the bonding interface, and the bonding strength is greatly reduced. The tensile strength of the diffusion bonded portion between the machine structural steels S25C into which the aluminum-containing alloy was not inserted was 570 MPa.

「実施例1」
次に、窒素含有合金からなり拡散接合時に窒素を放出する前記接合材1と、アルミニウムを2質量%以上含むアルミニウム含有合金からなる剥離材11とを用いた拡散接合の例を示す。
"Example 1"
Next, an example of diffusion bonding using the bonding material 1 made of a nitrogen-containing alloy and releasing nitrogen during diffusion bonding and the release material 11 made of an aluminum-containing alloy containing 2% by mass or more of aluminum will be shown.

図6に示すように、前記接合材1と前記剥離材11とは、ほぼ薄板で平板状をなし、接合材1を複数枚(4枚)重ね合わせたものを複数組(3組)形成し、これらの間と両側とに剥離材11を配置した積層体を形成し、この状態で両側の剥離材11を介して加圧し、実験例2と同一条件で拡散接合を行った。この場合、剥離材11と突合せた接合材1の面が加圧受面1Mである。尚、接合材1より剥離材11は面積が大きい。   As shown in FIG. 6, the bonding material 1 and the release material 11 are substantially thin plates and have a flat plate shape, and a plurality of (four) bonding materials 1 are stacked to form a plurality of sets (three sets). Then, a laminate having the release material 11 disposed between and on both sides was formed, and in this state, pressure was applied through the release material 11 on both sides, and diffusion bonding was performed under the same conditions as in Experimental Example 2. In this case, the surface of the bonding material 1 butt against the release material 11 is the pressure receiving surface 1M. The release material 11 has a larger area than the bonding material 1.

こうすると、加熱により、接合材1から窒素ガスが発生し、この窒素ガスと剥離材11中のアルミニウムとにより、剥離材11の加圧受面1Mに突き合わせた面側に、アルミニウム窒化物が形成され、アルミニウム窒化物は脆いため、この箇所で接合材1と剥離材11とを分離することができ、図6(C)に示すように、4枚の接合材1,1,1,1が拡散接合されたものが3組形成された。   In this way, nitrogen gas is generated from the bonding material 1 by heating, and aluminum nitride is formed on the surface of the release material 11 that is in contact with the pressure receiving surface 1M due to the nitrogen gas and the aluminum in the release material 11. Since the aluminum nitride is brittle, the bonding material 1 and the release material 11 can be separated at this location, and the four bonding materials 1, 1, 1, 1 are diffused as shown in FIG. Three sets of joined ones were formed.

次に、本発明に好適な接合材1について考察するに、ステンレス鋼では、高温に加熱するとステンレス鋼中のクロムと炭素が炭化物を形成し、粒界に析出する。その結果、粒界近傍のクロム濃度が低下して、耐食性が低下する。その耐食性の防止策として、クロムと炭素の化合物の形成を阻止するため、クロムより、炭化物形成傾向が強いMo、Nb、Ti、Zr等が添加される。これらの元素は、炭化物形成と同時に窒化物を形成する。   Next, when considering the bonding material 1 suitable for the present invention, when stainless steel is heated to a high temperature, chromium and carbon in the stainless steel form carbides and precipitate at grain boundaries. As a result, the chromium concentration in the vicinity of the grain boundary decreases, and the corrosion resistance decreases. As a measure for preventing the corrosion resistance, Mo, Nb, Ti, Zr, etc., which have a higher tendency to form carbides than chromium, are added in order to prevent the formation of chromium and carbon compounds. These elements form nitrides simultaneously with carbide formation.

そして、各種の鉄鋼材料は、一般的に大気中で溶解、製造される。その結果、鉄鋼材料中には、大気中の窒素分圧に平衡する窒素が固溶している。従って、これらの鉄鋼材料を減圧した雰囲気中で加熱すると、鉄鋼材料から窒素が放出され、ジーベルトの法則に従い、加熱雰囲気の窒素分圧と平衡する固溶度までに減少し、鉄鋼材料中の窒素量は減少する。一方、炭素による降伏現象発現による塑性加工性の低下、腐食性能の低下を抑制するため、Mo、Nb、Ti、Zr等を添加した材料は、本材料を減圧した雰囲気中で加熱しても、これら元素を含む鉄鋼材料は窒素の放出がないか、極端に少なくなる。   And various steel materials are generally melt | dissolved and manufactured in air | atmosphere. As a result, nitrogen in equilibrium with the nitrogen partial pressure in the atmosphere is dissolved in the steel material. Therefore, when these steel materials are heated in a reduced-pressure atmosphere, nitrogen is released from the steel materials and, according to Giebert's law, decreases to a solid solubility that balances with the nitrogen partial pressure of the heated atmosphere, and the nitrogen in the steel materials The amount decreases. On the other hand, in order to suppress the deterioration of plastic workability due to the yield phenomenon due to carbon and the deterioration of corrosion performance, even if the material added with Mo, Nb, Ti, Zr, etc. is heated in a reduced pressure atmosphere, Steel materials containing these elements have no or very little nitrogen release.

したがって、クロムより、炭化物形成傾向が強いMo、Nb、Ti、Zr等を添加することにより、窒化物が形成され、真空加熱をしても、窒素を放出しない材料は、本発明の接合材1に用いるには不向きであり、それ以外は本発明に適用することができる。   Therefore, by adding Mo, Nb, Ti, Zr or the like, which has a stronger tendency to form carbides than chromium, a material that forms nitrides and does not release nitrogen even when heated under vacuum is the bonding material 1 of the present invention. It is unsuitable for use in the present invention, and the rest can be applied to the present invention.

拡散接合は、真空の他、アルゴン等の不活性ガス中でも行われる。大気圧のアルゴン中で鉄鋼材料を加熱した際、アルゴン中の窒素分圧がゼロであることから、アルゴン中加熱においても、鉄鋼材料から窒素ガスが放出される。   Diffusion bonding is performed in an inert gas such as argon in addition to vacuum. When the steel material is heated in argon at atmospheric pressure, the nitrogen partial pressure in argon is zero, so that nitrogen gas is released from the steel material even in heating in argon.

鉄鋼材料の接合では、窒素ガスは不活性なことから、当然、窒素ガス中での拡散接合も問題ない。   In joining steel materials, since nitrogen gas is inactive, there is no problem with diffusion bonding in nitrogen gas.

本発明での接合雰囲気は、真空に限定するものではなく、アルゴン等の不活性ガス中や、窒素ガス中においても有効である。このような不活性ガスや窒素ガスを用いた雰囲気とすることにより、真空雰囲気と同様にアルミニウム窒化物を形成することができる。   The bonding atmosphere in the present invention is not limited to a vacuum, but is effective even in an inert gas such as argon or in a nitrogen gas. By setting the atmosphere using such an inert gas or nitrogen gas, aluminum nitride can be formed as in the vacuum atmosphere.

従来のアルミナ等のセラミックスを剥離材として使用した時には、接合対に通電できず、接合対への直接通電による加熱は不可能であった。   When conventional ceramics such as alumina are used as a release material, the joint pair cannot be energized, and heating by direct energization of the joint pair is impossible.

本方法では、剥離材11であるアルミニウム含有鉄合金3やアルミニウム含有ニッケル合金4などが導電性を有する金属であるから、直接通電して拡散接合体を直接加熱でき、拡散接合体をヒータ加熱法よりも効率的に加熱することができる。   In this method, since the release material 11 such as the aluminum-containing iron alloy 3 or the aluminum-containing nickel alloy 4 is a conductive metal, the diffusion bonded body can be directly heated by direct energization. Can be heated more efficiently.

このように本実施例では、請求項1に対応して、複数の接合材1間の接合面を突合せて複数の接合材1を重ね合わせ、この重ね合わせた複数の接合材1の両側から真空加圧した加圧状態で加熱する拡散接合方法において、接合材1は窒素を含有し、重ね合わせた複数の接合材1の両側に、アルミニウム含有合金からなる剥離材11を突合せ、この突合せ状態で、真空度が3×10 -3 Pa以下で800℃以上加熱すると共に剥離材11を介して接合面を加圧し、接合材1から発生した窒素ガスと剥離材11中のアルミニウムとにより、剥離材11の接合材1を突合わせた面側に、アルミニウム窒化物を形成するから、加熱により接合材1から窒素ガスが発生し、この窒素ガスと剥離材11のアルミニウムとにより、接合材1には、剥離材11に突き合わせた面側に、アルミニウム窒化物が形成され、アルミニウム窒化物は脆いため、この箇所で接合材1と剥離材11とを分離することができる。 Thus, in this embodiment, corresponding to claim 1, the bonding surfaces between the plurality of bonding materials 1 are abutted to overlap each other, and a plurality of bonding materials 1 are superposed, and vacuum is applied from both sides of the plurality of overlapping bonding materials 1. In a diffusion bonding method in which heating is performed in a pressurized state, the bonding material 1 contains nitrogen, and a release material 11 made of an aluminum-containing alloy is butt-matched on both sides of a plurality of overlapping bonding materials 1 in this butt state. In addition, the degree of vacuum is 3 × 10 −3 Pa or lower and heated to 800 ° C. or higher and the bonding surface is pressurized through the release material 11, and the nitrogen gas generated from the connection material 1 and the aluminum in the release material 11 peel off. Since aluminum nitride is formed on the surface of the material 11 where the bonding material 1 is abutted, nitrogen gas is generated from the bonding material 1 by heating, and the nitrogen gas and the aluminum of the release material 11 cause the bonding material 1 to On the side of the surface that is in contact with the release material 11. Since the minium nitride is formed and the aluminum nitride is brittle, the bonding material 1 and the release material 11 can be separated at this point.

また、このように本実施例では、請求項2に対応して、剥離材11がアルミニウム含有ニッケル合金4又はアルミニウム含有鉄合金3であるから、加熱により、接合材1から発生した窒素ガスと、アルミニウム含有ニッケル合金又はアルミニウム含有鉄合金のアルミニウムとにより、アルミニウム窒化物が形成され、接合材1と剥離材11とを簡単に分離することができる。また、接合材1が鉄鋼材料などの場合、この剥離材11は接合材1との熱的物性の差が少ないという利点を有する。   In this way, in this embodiment, in correspondence with claim 2, the release material 11 is the aluminum-containing nickel alloy 4 or the aluminum-containing iron alloy 3, so that the nitrogen gas generated from the bonding material 1 by heating, Aluminum nitride is formed by the aluminum of the aluminum-containing nickel alloy or the aluminum-containing iron alloy, and the bonding material 1 and the release material 11 can be easily separated. Further, when the bonding material 1 is a steel material or the like, the release material 11 has an advantage that a difference in thermal physical properties from the bonding material 1 is small.

また、このように本実施例では、請求項3に対応して、剥離材11のアルミニウムが2質量%未満では、アルミニウム窒化物が形成されないか、ほとんど形成されないため、接合強さが低下せず、剥離材11がアルミニウムを2質量%以上含むことにより、接合材1と剥離材11とを分離することができる。   In this way, in this example, in correspondence with claim 3, when the release material 11 has less than 2% by mass of aluminum, aluminum nitride is not formed or hardly formed, so that the bonding strength does not decrease. When the release material 11 contains 2% by mass or more of aluminum, the bonding material 1 and the release material 11 can be separated.

なお、本発明は、前記実施例に限定されるものではなく、種々の変形実施が可能である。例えば、拡散接合における加熱は、拡散接合装置中で、高周波誘導加熱装置を用いて行ったが、これ以外でも、拡散接合では、モリブデン、タングステンヒータを用いたヒータ加熱、それに接合材料に直接電流を通電して、接合部を加熱する方法を用いることもできる。   In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible. For example, heating in diffusion bonding was performed using a high-frequency induction heating device in a diffusion bonding apparatus. However, in diffusion bonding, heater heating using a molybdenum or tungsten heater and direct current to the bonding material are also used in diffusion bonding. It is also possible to use a method of energizing and heating the joint.

本発明の実験例を示す接合材と円板型のアルミニウム含有鉄合金又はアルミニウム含有ニッケル合金の斜視図である。It is a perspective view of the joining material which shows the experiment example of this invention, and a disk-type aluminum containing iron alloy or aluminum containing nickel alloy. 同上、接合対の斜視図である。It is a perspective view of a joint pair same as the above. 同上、接合破面(SUS304ステンレス鋼側)の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the joint fracture surface (SUS304 stainless steel side). 同上、未接合部と破断箇所の分析結果を示すスペクトル分析図である。It is a spectrum analysis figure which shows the analysis result of a non-joining part and a fracture location same as the above. 同上、他の接合対の斜視図である。It is a perspective view of other joining pairs same as the above. 本発明の実施例を示し、接合材を積層した接合対の側面図であり、図6(A)は接合材を重ね合わせる前、図6(B)は拡散接合中、図6(C)は拡散接合後の状態を示す。FIG. 6A is a side view of a bonding pair in which bonding materials are stacked according to an embodiment of the present invention. FIG. 6A is a diagram illustrating a state before diffusion bonding, FIG. The state after diffusion bonding is shown.

1 接合材
1M 加圧受面
2 比較材
3 アルミニウム含有鉄合金(Fe-XAl)
4 アルミニウム含有ニッケル合金(Ni-XAl)
11 剥離材
1 Bonding material 1M Pressure receiving surface 2 Comparison material 3 Aluminum-containing iron alloy (Fe-XAl)
4 Aluminum-containing nickel alloy (Ni-XAl)
11 Release material

Claims (3)

複数の接合材間の接合面を突合せて複数の接合材を重ね合わせ、この重ね合わせた複数の接合材の両側から加圧した加圧状態で真空加熱する拡散接合方法において、前記接合材は窒素を含有し、前記重ね合わせた複数の接合材の両側に、アルミニウム含有合金からなる剥離材を突合せ、この突合せ状態で、真空度が3×10 -3 Pa以下で800℃以上加熱すると共に前記剥離材を介して前記接合面を加圧し、前記接合材から発生した窒素ガスと前記剥離材中のアルミニウムとにより、前記剥離材の前記接合材を突合わせた面側に、アルミニウム窒化物を形成することを特徴とする拡散接合方法。 In the diffusion bonding method in which the bonding surfaces between a plurality of bonding materials are butted together, a plurality of bonding materials are overlapped, and vacuum heating is performed in a pressurized state pressurized from both sides of the stacked bonding materials, the bonding material is nitrogen A release material made of an aluminum-containing alloy is butted on both sides of the plurality of bonded bonding materials, and in this butt condition, the degree of vacuum is 3 × 10 −3 Pa or lower and heated to 800 ° C. or higher and Pressurizing the joint surface through a release material, and forming an aluminum nitride on the surface side of the release material that abuts the joint material with nitrogen gas generated from the joint material and aluminum in the release material A diffusion bonding method characterized by: 前記剥離材がアルミニウム含有ニッケル合金又はアルミニウム含有鉄合金であることを特徴とする請求項1記載の拡散接合方法。 The diffusion bonding method according to claim 1, wherein the release material is an aluminum-containing nickel alloy or an aluminum-containing iron alloy. 前記剥離材がアルミニウムを2質量%以上含有することを特徴とする請求項1又は2記載の拡散接合方法。 The diffusion bonding method according to claim 1, wherein the release material contains 2% by mass or more of aluminum.
JP2007019853A 2007-01-30 2007-01-30 Diffusion bonding method Active JP4892685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019853A JP4892685B2 (en) 2007-01-30 2007-01-30 Diffusion bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019853A JP4892685B2 (en) 2007-01-30 2007-01-30 Diffusion bonding method

Publications (2)

Publication Number Publication Date
JP2008183592A JP2008183592A (en) 2008-08-14
JP4892685B2 true JP4892685B2 (en) 2012-03-07

Family

ID=39726964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019853A Active JP4892685B2 (en) 2007-01-30 2007-01-30 Diffusion bonding method

Country Status (1)

Country Link
JP (1) JP4892685B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675186B2 (en) * 2010-06-23 2015-02-25 三菱重工業株式会社 Method of manufacturing joined product and method of manufacturing combustor
WO2018011934A1 (en) * 2016-07-14 2018-01-18 新日鐵住金株式会社 Method for manufacturing cladded molded body and method for manufacturing heat-resistant gasket

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167266A (en) * 1986-01-17 1987-07-23 新明和工業株式会社 Diffusion joint structure
JPH02192882A (en) * 1989-01-20 1990-07-30 Nippon Kinzoku Kogyo Kk Manufacture of clad material of ferritic stainless steel containing high aluminum and austenitic stainless steel
JPH0313283A (en) * 1989-06-09 1991-01-22 Nippon Metal Ind Co Ltd Manufacture of diffusion junction clad plate utilizing atmospheric pressure
JPH07110426B2 (en) * 1991-12-17 1995-11-29 日本金属工業株式会社 Method for manufacturing tantalum / copper / stainless steel (carbon steel) clad
JP3111718B2 (en) * 1992-12-12 2000-11-27 住友電気工業株式会社 Composite material, method for producing composite material, and method for producing composite material molded product
JP4222769B2 (en) * 2002-03-28 2009-02-12 大日本印刷株式会社 Thermocompression bonding method and thermocompression bonding apparatus
JP2005081305A (en) * 2003-09-10 2005-03-31 Calsonic Kansei Corp Catalyst carrier made of metal and manufacturing method therefor
JP2006346746A (en) * 2005-05-17 2006-12-28 Calsonic Kansei Corp Diffusion bonding method for metal carrier between outer cylinder and honeycomb

Also Published As

Publication number Publication date
JP2008183592A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
Basuki et al. Investigation of tungsten/EUROFER97 diffusion bonding using Nb interlayer
Basuki et al. Diffusion bonding between W and EUROFER97 using V interlayer
Shirzadi et al. Joining ceramics to metals using metallic foam
JP5007951B2 (en) Diffusion bonding method
Cai et al. Diffusion brazing of tungsten and steel using Ti–Ni liquid phase forming interlayer
JP5552543B2 (en) Zygote
JP2006272420A (en) Diffusion welding method for metallic foil
JPWO2012132822A1 (en) Tungsten carbide-based cemented carbide joined body and manufacturing method thereof
Basuki et al. Thermomechanical analysis of diffusion-bonded tungsten/EUROFER97 with a vanadium interlayer
Liu et al. Fabrication of W/steel joint using hot isostatic pressing with Ti/Cu/Ti liquid forming interlayer
JP4892685B2 (en) Diffusion bonding method
Leinenbach et al. Al2O3–Al2O3 and Al2O3–Ti solder joints—influence of ceramic metallization and thermal pretreatment on joint properties
Cheniti et al. Effect of WC-Co cermet positioning and NiCr interlayer on the microstructure and mechanical response of the dissimilar WC-Co/AISI 304 L rotary friction joint
Soltani et al. Microstructural and mechanical investigation of brazing 304L Stainless Steel with corner joint using a Ni-based shim and wire
JP5485117B2 (en) Zygote
Tiwari et al. Comparison of nickel nanoparticle-assisted diffusion brazing of stainless steel to conventional diffusion brazing and bonding processes
JP4643319B2 (en) COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MATERIAL MANUFACTURING DEVICE
CN115335187A (en) Composite material
CN116174883A (en) Method for obtaining transient liquid phase diffusion connection of IN718 nickel-based alloy and 316LN steel reliable joint
JP6528257B1 (en) Brazing bonding method of alumina dispersion strengthened copper
Kobashi et al. Effect of alloying elements in the brazing sheet on the bonding strength between Al {sub 2} O {sub 3} and aluminum
JP4754372B2 (en) Manufacturing method of dissimilar material joined body
JPH11342479A (en) High melting point metallic joined body, ion gun parts for ion jinection device, and manufacturing method therefor
JP6421758B2 (en) Cemented carbide composite roll and manufacturing method thereof
Hochanadel et al. Structure/property relationships in multipass GMA welding of beryllium.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4892685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250