JP4643222B2 - バイオセンサーおよびその製造方法 - Google Patents

バイオセンサーおよびその製造方法 Download PDF

Info

Publication number
JP4643222B2
JP4643222B2 JP2004311738A JP2004311738A JP4643222B2 JP 4643222 B2 JP4643222 B2 JP 4643222B2 JP 2004311738 A JP2004311738 A JP 2004311738A JP 2004311738 A JP2004311738 A JP 2004311738A JP 4643222 B2 JP4643222 B2 JP 4643222B2
Authority
JP
Japan
Prior art keywords
enzyme
biosensor
electrode
membrane
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004311738A
Other languages
English (en)
Other versions
JP2006125904A (ja
Inventor
光功 島田
智也 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2004311738A priority Critical patent/JP4643222B2/ja
Publication of JP2006125904A publication Critical patent/JP2006125904A/ja
Application granted granted Critical
Publication of JP4643222B2 publication Critical patent/JP4643222B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、酵素等を利用したバイオセンサー(酵素センサーとも呼ぶ)およびその製造方法に関するものであり、さらに詳しくは、生体または生体関連物質測定用に用いられる酵素反応と電極反応を利用したバイオセンサーおよびその製造方法に関するものである。
バイオセンサーは、通常生体または生体から取り出したり製造したりした物質の性質や内容物の濃度を測定するのに用いられる。例えば生体内や血液中のグルコースの測定により血糖値を測ることができる。通常、バイオセンサーの構造は、作用電極と参照電極の組み合わせからなっている。あるいは、作用電極からの電流を受け取るための対極を持つ3電極式の構造のバイオセンサーもある。バイオセンサーの特徴は電極部の表面に酸素透過膜等を介して固定化酵素膜が塗布されている。あるいはこれらの電極が電極反応用の内部液中に入っており、この内部液がガラス薄膜、イオノフォア膜、イオン感応膜、ガス透過性高分子膜などで封入されている。これらの膜の表面に固定化酵素膜が形成されているものが多い。
一般的なバイオセンサーの一例として図2に従ってグルコースセンサーで説明すると、作用電極1の白金(Pt)カソード表面を酸素透過性膜6で覆い、その上に酵素を膜状に塗布する。通常、この酵素膜7は固定化樹脂等により固定化され、固定化酵素膜となっている。さらに酵素膜7の保護のためにグルコース等の被測定物質透過性のポリウレタン膜8等を外表面に塗布しておく。さらに、アノード側の参照電極2を設けて、これとの電位差を測定することにより被測定物質の性質や濃度が電位差または電流値の変化として測定できる。通常、バイオセンサーは、生体内に挿入して使用するので小型の針状のものが使われる。その大きさは長さ15ミリメートル、直径は0.4ミリメートル程度である。そして作用電極1は針状センサーの先端に配置され、長さ2ミリメートル程度である。その後部には絶縁体4を介して参照電極2が設置されている。作用電極と参照電極の電位差等はそれぞれ導線3,5により電位差測定装置9に導かれ、ここで測定された電位差等から、あらかじめ準備しておいた検量線によりグルコース濃度などを知ることができる。
このようなバイオセンサーの製造方法は作用電極部分全面に例えば酸素透過性セルロースアセテート膜、酵素膜、グルコース等の被測定物質透過性膜たとえば熱可塑性ポリウレタン膜等を順に形成する。なお、酸素透過性膜は省略され直接酵素膜を作用電極部分に形成する場合もある。酵素膜の製造方法としてはディッピング法、すなわち電極部分を膜形成原料液に浸漬したのち引き上げて電極表面に膜形成原料の薄膜を形成させる方法や膜形成原料を電極面に直接塗布する方法が取られる。被測定物質、例えばグルコース濃度の測定は、酵素、例えばグルコースデオキシダーゼ(GOD)がグルコースの化学反応を触媒し、この化学反応を酸素等を介して作用電極が感知し電気信号に変換するものである。
このような酵素反応を利用したバイオセンサーは血糖値測定だけでなく、尿素測定、果実中の糖分測定などに利用されている。
特開平7−77511号公報 特開2004−184155号公報 「バイオセンサー」、鈴木周一編集、講談社、1984年3月10日発行、6〜P7頁 「バイオエレクトロニクス」、軽部征夫他編著、朝倉書店、1994年2月10日発行、16〜21頁 「電気化学法」、小山昇他編、講談社サイエンティフィク、1990年1月20日発行、55〜58頁
前記のような酵素等を利用したバイオセンサーにおいては、白金電極のような電極表面に親水性の有機物である酵素膜等を付着させて、水溶液中またはこれに近い湿潤性の状態で使用することになる。酵素膜等は水分により膨潤し易くそのためにこのような使用条件ではほとんど膨張しない金属製電極表面から剥離することがある。また、逆に使用後等にセンサーを乾燥させると酵素膜が乾燥して収縮し、酵素膜に亀裂が入ったりひび割れ状になったりする。このようになると同じ物質を測定しても測定値が異なってしまいセンサーとしての精度が保てなくなる。さらに、ひどい場合は酵素膜が剥離、脱落してしまい使用不可能となる。このようなバイオセンサーにおいて酵素膜の剥離や亀裂等によるセンサー機能の低下や消滅を防ぐことは使用上の大きな課題となっていた。なお、酵素膜の剥離、亀裂等は電極表面と酸素透過性膜の間、酸素透過性膜と酵素膜の間でも起こるがこれらを総称して酵素膜の剥離、亀裂等と呼んでいる。
前記のバイオセンサーは製造方法や使用方法によって酵素膜の剥離、亀裂、脱落を防ぐ方法は開発されておらず、前記課題を解決するための新しいバイオセンサーとその製造方法の開発が待たれていた。
本発明者らはバイオセンサーの電極において、酵素膜を電極表面全体に付着するのではなく小部分に分割して付着した構造としても良好なセンサー機能を発揮できることを見出した。このことを利用して、使用中の膨潤やその後の乾燥等による剥離や亀裂の発生が抑えられるバイオセンサー見出した。本発明においては、測定精度や応答性の優れたバイオセンサーとして電極表面に酵素膜を斑点状に付着させた構造とすることで前記課題を解決した。すなわち、作用電極および参照電極を有するバイオセンサーにおいて、作用電極が酵素膜を斑点状に付着させた感応部を備えたバイオセンサー、および作用電極および参照電極を有し、グルコースを測定するグルコースセンサーにおいて、作用電極が酵素膜を斑点状に付着させた感応部を備えたグルコースセンサーの発明に至った。

本発明のバイオセンサーの概念図を図1に示した。本発明のバイオセンサーは酵素膜だけでなく酵素の作用を利用する微生物膜センサーにも利用できる。すなわち、本発明において酵素膜とは広い意味での酵素膜であり、酵素固定膜は勿論、酵素を含有する微生物固定膜などをも含む意味である。本発明においては、酸素透過性膜を介して作用電極表面に付着している状態の酵素膜のように、作用電極表面と酵素膜の間に他の物質が介在していてもよい。
本発明で言う斑点状とは、完全な斑点が電極表面に形成されているもののみを指すのではない。外観上酵素膜斑点が電極表面上にまだら状におよそ広がっておればよい。酵素膜斑点の形状はどのようなものでも構わない。膨潤剥離や亀裂による剥離が起らない程度なら、酵素膜が部分的には網目状等になっていてもかまわない。勿論、酵素膜斑点の一部が互いに付着していても使用中剥離しない程度であれば構わない。
酵素膜斑点は、円形に近い斑点が製造し易いのでこの場合で説明する。酵素膜の大きさは直径で10mm以下好ましくは、1.0mm以下が望ましい。酵素膜斑点が大きすぎると剥離や亀裂が起こりやすい。小さい場合は使用上は問題ないが、一般的には直径が0.01〜0.1mm程度が製造上便利である。
斑点と斑点の間隔は、斑点の大きさの20倍以下とすることが好ましい。あまり離れすぎるとセンサーの感度が悪くなってしまう。一方、間隔をあまり小さくするとセンサーの使用時に膨潤により酵素膜の斑点同士が付着してしまい斑点状でなくなってしまうことがある。このため剥離しやすくなることがある。酵素膜斑点の大きさの1/10以上の間隔があることが望ましい。製造上の斑点の大きさや形の不均一性を考慮すれば斑点の平均的な直径の1/2以上の間隔があることが望ましい。斑点と斑点の距離は、10mm以内、好ましくは5mm以内が望ましい。距離があきすぎるということは電極表面の斑点全体の総面積が少なくなり、バイオセンサーの感度が悪くなる。なお、感応部とは、酵素反応を起こし電極に電位を生じさせるために、バイオセンサーとグルコース等の被測定物質を含む試料溶液とが接触する部分であり、理論的にはバイオセンサーの電極を酵素等で覆った部分であるが、実際的には前記部分だけでなくバイオセンサーが被測定物質を含む試料溶液と接触する部分全体を言っている。
これらのバイオセンサーの製造方法としては微粒子化した酵素膜原料を電極表面に斑点状に付着させる方法がある。すなわ、酵素膜原料を電極表面に噴霧して斑点状に付着させるバイオセンサーの製造方法、酵素膜原料をマイクロシリンジ、ディスペンサー、インクジェットプリンター等の原料塗布装置にて電極表面に斑点状に付着させるバイオセンサーの製造方法、微粒子状にした酵素膜原料を付着用台上に散布しこれに電極表面を接触させ該電極表面に該酵素膜原料を斑点状に付着させるバイオセンサーの製造方法、酵素膜原料を電極表面に均一に塗布しその一部を格子状に剥ぎ取るバイオセンサーの製造方法などがある。
本発明のバイオセンサーにおいては、酵素膜の電極表面への密着性が向上し、使用中の膨潤や乾燥による剥離や劣化がなくなる。これにより、バイオセンサーの寿命が延びるだけでなく、測定値の安定性が増し、測定精度が増し、応答性が向上する。さらに、生体での使用後の酵素膜の剥離による生体内への剥離した酵素膜等の残留という心配もなくなる。
本発明のバイオセンサーはどのような方法で製造してもよいが、付着させたい電極表面に酵素膜原料を噴霧することにより付着させる方法が簡便で優れた性能を発揮できる製造方法である。また、酵素膜原料をマイクロシリンジ等の原料塗布装置にて電極表面に直接斑点状に付着させるバイオセンサーの製造方法は、酵素膜原料の無駄がなく、斑点の大きさや配置を正確に規定することが出来、非常に精度の高い、耐久性、安定性の優れたバイオセンサーの製造方法である。さらに、微粒子状にした酵素膜原料を付着用台上に散布し、これに電極表面を接触させ該電極表面に該酵素膜原料を斑点状に付着させるバイオセンサーの製造方法は、製作が簡便で、酵素膜原料の無駄も少なく、精度の高いバイオセンサーの製造方法である。
本発明は、通常はバイオセンサーの作用電極の電極表面全体を覆って酵素反応を担っている酵素膜を、電極表面の一部分に付着さても十分にバイオセンサーの役目を果たせることを見出した事により、なされたものである。電極表面に付着した酵素膜を小さく分割し、酵素膜の膨張、収縮の自由度を増したことにより、使用中の膨潤や乾燥等による剥離や亀裂の発生を抑えられるバイオセンサーを発明した。すなわち、本発明者等は前記の効果を有効に利用し、測定精度や応答性の優れたバイオセンサーとして電極表面に酵素膜を斑点状に付着した構造とすることを見出した。
図1,2はバイオセンサーの概念図である。通常のバイオセンサーは図2に示すような構造をしており、本発明のバイオセンサーは図1に示すような構造をしている。本発明のバイオセンサーの構造を説明する。本発明のバイオセンサーは、先端に作用電極1その後部に参照電極2がある。作用電極の電位は、作用電極と接続されセンサー中心部を通る導線3によりセンサー後方へ導かれ、参照電極の電位は同様に、参照電極と接続された導線5により参照電極後方に導かれる。この2本の導線により取り出された電位差や電流値を電位電流測定装置9で測る。この信号から信号変換装置10および検量線などを利用してグルコース濃度等、被測定物の濃度として表す。なお、それぞれの電極や導線は接続させている個所以外はポリイミドやエポキシなどの絶縁体4で隔離されている。
本発明のバイオセンサーは、酵素膜を酵素反応させるべき電極表面に付着させて酵素反応と電極反応を組み合わせた構造であるが、さらに詳細には、図1に示すように電極表面に酸素透過性膜6を介して酵素膜7を設置することが望ましい。これにより酵素反応により生成した分子等の電気信号発生物質が作用電極1の表面に容易に到達する事が出来るからである。さらにその外表面はグルコース等の被測定物質透過性の保護膜8で覆い酵素膜の機械的剥離等を防いでいる。
この場合、電極表面に使用する酸素透過性膜6はセルロースアセテート膜(CA膜と言う)などが用いられる。このほかにも酢酸セルロース膜、ナフィオン膜、ポリジメチルシロキサン膜などの酸素透過性膜が使用される。酵素膜7用の酵素に限定はないが、酵素を固定化して安定化して用いる場合が多い。酵素を含む微生物を用いることもできる。酵素膜7としては、グルコース測定の場合には、グルコース酸化酵素(グルコースデオキシダーゼ(GOD))をグルタルアルデヒド(GA)等で縮合させて固定化して膜状にしたものが用いられる。酵素膜は生理食塩水等で安定化することにより、バイオセンサーの性能が一段と向上する。また、グルコース等の被測定物質透過性の保護膜8としてはグルコース等の被測定物質透過性の膜、例えば熱可塑性ポリウレタン膜などが適している。一般に、強度に優れグルコース等の被測定物質水溶液等の透過性がよく、被測定体である生体との反応性のないものであれば他の素材でもよい。これらの膜はバイオセンサーの用途、使用条件等に応じて最適なものを選べばよい。これらの膜形成には、自動化装置特に酵素付着にはロボットが有効な装置として使用できる。マイクロシリンジやディスペンサーをロボット化した原料塗布装置は、本発明の好適なバイオセンサー製造装置である。
酸素透過性膜6はバイオセンサーまたは反応させるべき電極の全面を覆っていてもよいが酵素膜は反応させるべき作用電極1の表面に酸素透過性膜6を介して斑点状に付着していなければならない。酵素膜は使用時等の湿潤時に膨潤し膨張し易く、また乾燥時には収縮し易い。このため酵素膜が、電極表面全面に付着していると湿潤や乾燥により膨張、収縮が起り電極表面から剥離してしまうことがある。酸素透過性膜が電極表面と酵素膜の間に存在する場合は、剥離は電極表面と酸素透過性膜との間でも酸素透過性膜と酵素膜の間でも起こることがある。剥離しないまでも一部剥離や亀裂が生じる事もある。このような状態になるとバイオセンサーの測定値は一定せず、再現性もなくなってしまい使用に耐えなくなってしまう。また、場合によっては剥離した酵素膜の一部が被測定物の生体内に残置されてしまうこともある。
ここで言う斑点状とは、酵素膜斑点が多数電極表面に存在している事を指しているが、形や大きさは不揃いでもよい。斑点は、円形でなくとも、製造上可能であれば三角でも四角でも他の形でもよい。また、必ずしも一つひとつの斑点が離れている必要もない。酵素膜が湿潤時に膨張し隣同士が接触し合い、膨張による応力を及ぼし合い、これによる剥離を起こさない程度に間隙を持っている状態であればよい。酵素膜の斑点は反応させるべき電極表面上に少なすぎても欠点がある。斑点の占める面積の割合が少なすぎるとセンサーの機能が十分発揮できない。好ましい斑点の大きさや間隔は前述のとおりである。
本発明が適用できるバイオセンサーとしては、作用原理が同様であればどのようなものでもよい。2電極型のバイオセンサーで説明したが、3電極型のバイオセンサーでもよい。突き出し型と呼ばれる構造のバイオセンサーでも適用できる。これは上記バイオセンサーの作用電極の導線であった部分の一部が作用電極になっている構成であるだけで作用原理は同じである。
(実施例1)
エアーブラシ法まだらセンサーの製造
本発明のバイオセンサーは、作用電極表面に酵素膜をまだら状に付着させたセンサーなのでまだらセンサーと呼ぶ。
図1に示すバイオセンサーの電極部分は通常の方法で作製した電極を用いればよい。電極素材は白金電極とする。電極の太さは0.34mm、作用電極1の長さ2.0mm、参照電極2の長さ4.0mm、作用電極1と参照電極2の間隙は0.5mmとする。参照電極2の中心部には作用電極1の電位を取り出すために作用電極1に取り付けた導線3がポリイミド4で絶縁されて貫通している。参照電極2の電位は電極後方から導線5により取り出す構造とする。これにより、両極間の電位や電流を測定することができる。この電極の作用電極1部分をセルロースアセテート(CAという)5重量%水溶液に一回浸漬しCA膜を形成させる。これを3分間25℃で乾燥させた後、グルタルアセテート(GAという)2.5重量%水溶液に浸漬しCA膜の上にGA膜を形成する。これに酵素を付着させ、酵素をグルタルアセテートと縮合反応させて固定化した酵素膜とする。
酵素の付着のさせ方を説明する。まず、25〜30メッシュのステンレス製ワイヤーメッシュ上に酵素グリコールデキシダーゼ(GODと言う)400mgに水100μlを加えたGODスラリーを乗せておく。この下に、先に作っておいたCA膜およびGA膜を付着させた電極の作用電極部分を配置し、これを回転させながらワイヤーメッシュ上のGODスラリーを歯ブラシによりこすりワイヤーメッシュの下に微粒子状にして飛び散らせる。この噴霧された微粒子が作用電極上に付着し酵素膜となる。付着した微粒子は作用電極上に15個であった。その大きさは0.03〜0.1mmで斑点の間隔はおよそ0.1〜0.3mmであった。この電極を生理食塩水に浸漬した後、再度前述のGA水溶液に浸漬した。これを25℃で15分間放置し酵素の固定化反応を確実なものとした。その後前述のCA水溶液に浸漬した後、保護膜であるポリウレタン(PUと言う)膜をディッピング法により形成させた。すなわち、5重量%のポリウレタン溶液に電極を浸漬した後に一定速度で引き上げる。本製造方法をブラシで空気中に酵素を噴霧することからエアーブラシ法まだらセンサー製造法と呼ぶ。
(実施例2)
マイクロシリンジ法まだらセンサーの製造
本製造方法は、酵素(GOD)を作用電極1上に付着させる工程以外は実施例1と同様であるので、酵素(GOD)を作用電極上に付着させる工程のみを詳述する。実施例1で作成したCA膜およびGA膜を作用電極部分に付着させた電極の作用電極部分に実施例1で用いたGODスラリーを、原料塗布装置としてのマイクロシリンジを用いて斑点状に付着させていく。1斑点に付着させる量は0.01μl、斑点の間隔は0.3〜0.5mmとした。斑点の数は12個であった。斑点の大きさはおよそ0.05mmであった。これを生理食塩水に浸漬し、GA水溶液に浸漬する工程以降は実施例1と同様である。本製造方法をマイクロシリンジ法まだらセンサー製造法と呼ぶ。マイクロシリンジに代えて自動化したディスペンサーを原料塗布方法もマイクロシリンジ法まだらセンサー製造法の変形として有効である。
(実施例3)
散布粉体付着法まだらセンサーの製造
本製造方法は実施例2と同様に酵素(GOD)を作用電極1上に付着させる工程以外は実施例1と同様であるので、酵素(GOD)を作用電極1上に付着させる工程のみを詳述する。酵素の付着用台を準備し、この上に酵素(GOD)を散布する。散布の方法は実施例1で実施したワイヤーメッシュと歯ブラシにより付着用台の上からGODスラリーを噴霧させることによった。(霧吹き等によってもよい。)酵素の付着台は平滑なポリエチレン板を用いた。このGODスラリーが散布された台上を実施例1で作成したCA膜およびGA膜を作用電極部分に付着させた電極の作用電極部分を密着させながら転がしてGODスラリーを作用電極側に付着させる。散布する量および粒子の大きさは作用電極上に付着した酵素の斑点が0.01〜0.1mmの直径で8〜15個程度となるように調整する。本実施例では0.01〜0.05mmの斑点が14個付着した。これを生理食塩水に浸漬し、GA水溶液に浸漬する工程以降は実施例1と同様である。本製造方法を散布粉体付着法まだらセンサーの製造法と呼ぶ。
バイオセンサーの評価
図2に示すような構造の、作用電極表面を斑点状ではなく、全面を酵素膜で覆った以外は実施例1と同じバイオセンサー(センサー0と言う。)、および実施例1〜実施例3で作成したバイオセンサー(センサー1ないしセンサー3と言う)を評価用に準備する。評価はウサギの血糖値の変化を測定して実施した。実験条件は、実験動物として、3kgの雄ウサギ、センサー留置方法は腹部へのカテーテル使用による、糖負荷条件は22mg/min/kg,10%glc液30分間静注した。血糖値測定は静脈血を光電比色法(GDH酵素法)であるヘモキュー社製血糖値測定計ヘモキューを使用した。静脈血血糖値と各種センサーによる腹部測定血糖値の比較結果を表1に示した。なお、血糖値の単位はmg/dlである。
Figure 0004643222
それぞれのセンサーによる血糖値はそれぞれの検量線により算出したものである。なお、センサー0は使用後酵素膜の剥離が観察された。評価結果から判るように、従来型のバイオセンサー0に比べ本発明のバイオセンサー1ないし3は、静脈血採取による血糖値測定値とほとんど同じ結果を示し十分使用可能なバイオセンサーである事がわかる。なお、バイオセンサーによる測定法は、静脈血採取による血糖値測定に比べ簡便で連続測定が可能であり、優れた血糖値測定方法である。
本発明は血糖値測定のような酵素や酵素反応を利用したバイオセンサーに関するものであり、尿素測定や果実の当分測定などその産業上の利用可能性は各種の分野におよぶ。医療分野は勿論のこと医薬の製造や農業、畜産業等生体や有機物特に水溶性の有機物を扱う産業での応用が可能である。
本発明におけるバイオセンサーの概念図である。 従来のバイオセンサーの概念図である。
符号の説明
1 作用電極
2 参照電極
3 作用電極の導線
4 絶縁体
5 参照電極の導線
6 酸素透過性膜
7 酵素膜
8 保護膜
9 電位電流測定装置
10 信号変換装置

Claims (6)

  1. 作用電極および参照電極を有するバイオセンサーにおいて、作用電極が酵素膜を斑点状に付着させた感応部を備えたバイオセンサー。
  2. 前記バイオセンサーが、グルコースを測定するグルコースセンサーである前記請求項1に記載のバイオセンサー
  3. 微粒子化した酵素膜原料を作用電極表面に斑点状に付着させる請求項1又は2に記載のバイオセンサーの製造方法。
  4. 酵素膜原料を作用電極表面に噴霧して斑点状に付着させる請求項3に記載のバイオセンサーの製造方法。
  5. 酵素膜原料を原料塗布装置にて作用電極表面に斑点状に付着させる請求項3に記載のバイオセンサーの製造方法。
  6. 微粒子状にした酵素膜原料に作用電極表面を接触させ該電極表面に該酵素原料を斑点状に付着させる請求項3に記載のバイオセンサーの製造方法。
JP2004311738A 2004-10-27 2004-10-27 バイオセンサーおよびその製造方法 Expired - Fee Related JP4643222B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311738A JP4643222B2 (ja) 2004-10-27 2004-10-27 バイオセンサーおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311738A JP4643222B2 (ja) 2004-10-27 2004-10-27 バイオセンサーおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2006125904A JP2006125904A (ja) 2006-05-18
JP4643222B2 true JP4643222B2 (ja) 2011-03-02

Family

ID=36720801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311738A Expired - Fee Related JP4643222B2 (ja) 2004-10-27 2004-10-27 バイオセンサーおよびその製造方法

Country Status (1)

Country Link
JP (1) JP4643222B2 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948651A (ja) * 1982-09-13 1984-03-19 Omron Tateisi Electronics Co 固定化酵素膜
JPH01193640A (ja) * 1988-01-28 1989-08-03 Matsushita Electric Ind Co Ltd 電界効果トランジスタセンサ
JPH0261548A (ja) * 1988-08-26 1990-03-01 Matsushita Electric Works Ltd 酵素電極の製造方法
JPH04505966A (ja) * 1989-12-11 1992-10-15 アメリカ合衆国 酵素電気化学的センサー電極およびその製法
JPH0777511A (ja) * 1993-07-16 1995-03-20 Gold Star Co Ltd ガス測定用バイオセンサー及びその製造方法
JPH09509740A (ja) * 1994-02-22 1997-09-30 ベーリンガー マンハイム コーポレーション センサー電極の製造方法
JPH09322770A (ja) * 1996-05-31 1997-12-16 Ichibiki Kk 油中に安定分散した酵素剤組成物及びその製造法と利用方法
JPH10113200A (ja) * 1996-10-11 1998-05-06 Iatron Lab Inc 酵素電極
JP2004511791A (ja) * 2000-10-19 2004-04-15 インバネス・メディカル・リミテッド バイオセンサー用の多孔質高分子膜を製造するためのスクリーン印刷可能なペースト材
JP2004184155A (ja) * 2002-12-02 2004-07-02 Matsushita Electric Ind Co Ltd 唾液糖バイオセンサ及び測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040074785A1 (en) * 2002-10-18 2004-04-22 Holker James D. Analyte sensors and methods for making them

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948651A (ja) * 1982-09-13 1984-03-19 Omron Tateisi Electronics Co 固定化酵素膜
JPH01193640A (ja) * 1988-01-28 1989-08-03 Matsushita Electric Ind Co Ltd 電界効果トランジスタセンサ
JPH0261548A (ja) * 1988-08-26 1990-03-01 Matsushita Electric Works Ltd 酵素電極の製造方法
JPH04505966A (ja) * 1989-12-11 1992-10-15 アメリカ合衆国 酵素電気化学的センサー電極およびその製法
JPH0777511A (ja) * 1993-07-16 1995-03-20 Gold Star Co Ltd ガス測定用バイオセンサー及びその製造方法
JPH09509740A (ja) * 1994-02-22 1997-09-30 ベーリンガー マンハイム コーポレーション センサー電極の製造方法
JPH09322770A (ja) * 1996-05-31 1997-12-16 Ichibiki Kk 油中に安定分散した酵素剤組成物及びその製造法と利用方法
JPH10113200A (ja) * 1996-10-11 1998-05-06 Iatron Lab Inc 酵素電極
JP2004511791A (ja) * 2000-10-19 2004-04-15 インバネス・メディカル・リミテッド バイオセンサー用の多孔質高分子膜を製造するためのスクリーン印刷可能なペースト材
JP2004184155A (ja) * 2002-12-02 2004-07-02 Matsushita Electric Ind Co Ltd 唾液糖バイオセンサ及び測定方法

Also Published As

Publication number Publication date
JP2006125904A (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
Song et al. Utilization of peroxide reduction reaction at air–liquid–solid joint interfaces for reliable sensing system construction
US9439585B2 (en) Semiconductor based analyte sensors and methods
JPS636451A (ja) 酵素センサ
Rahman Fabrication of mediator-free glutamate sensors based on glutamate oxidase using smart micro-devices
CA3056105C (en) Metal pillar device structures and methods for making and using them in electrochemical and/or electrocatalytic applications
Yang et al. Glucose sensor using a microfabricated electrode and electropolymerized bilayer films
JPS63131057A (ja) 酵素センサ
US20180223323A1 (en) Enzyme stabilization in electrochemical sensors
Ben-Amor et al. Enhanced detection of hydrogen peroxide with platinized microelectrode arrays for analyses of mitochondria activities
US4971901A (en) Process for preparing enzyme electrodes
Marinov et al. Amperometric acetylthiocholine sensor based on acetylcholinesterase immobilized on nanostructured polymer membrane containing gold nanoparticles
Baş et al. Amperometric biosensors based on deposition of gold and platinum nanoparticles on polyvinylferrocene modified electrode for xanthine detection
Wang et al. Chitosan/Prussian blue-based biosensors
EP3169234A1 (en) Multi-probe microstructured arrays
Devi et al. Amperometric determination of xanthine in tea, coffee, and fish meat with graphite rod bound xanthine oxidase
US20180338712A1 (en) Mutli-probe microstructured arrays
Herrera et al. A biosensor for the detection of acetylcholine and diazinon
EP3283874B1 (fr) Électrodes de détection électrochimique implantables
CN102590308B (zh) 一种孔状生物传感器、制作及应用方法
US20200200697A1 (en) Electrochemical biosensors
Anik et al. Usage of bismuth film electrode as biosensor transducer for alkaline phosphatase assay
JP4643222B2 (ja) バイオセンサーおよびその製造方法
Portaccio et al. Amperometric glucose determination by means of glucose oxidase immobilized on a cellulose acetate film: dependence on the immobilization procedures
JP2000131264A (ja) 酵素センサー
JP4627911B2 (ja) バイオセンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Ref document number: 4643222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees