JP4640576B2 - Resistance element mounting sheet, manufacturing method thereof, and manufacturing method of multilayer wiring board with built-in resistance using resistance element mounting sheet - Google Patents

Resistance element mounting sheet, manufacturing method thereof, and manufacturing method of multilayer wiring board with built-in resistance using resistance element mounting sheet Download PDF

Info

Publication number
JP4640576B2
JP4640576B2 JP2004301412A JP2004301412A JP4640576B2 JP 4640576 B2 JP4640576 B2 JP 4640576B2 JP 2004301412 A JP2004301412 A JP 2004301412A JP 2004301412 A JP2004301412 A JP 2004301412A JP 4640576 B2 JP4640576 B2 JP 4640576B2
Authority
JP
Japan
Prior art keywords
resistance
resistance element
sheet
element mounting
mounting sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004301412A
Other languages
Japanese (ja)
Other versions
JP2006114744A (en
Inventor
聡夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004301412A priority Critical patent/JP4640576B2/en
Publication of JP2006114744A publication Critical patent/JP2006114744A/en
Application granted granted Critical
Publication of JP4640576B2 publication Critical patent/JP4640576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、抵抗素子搭載シート及びその製造法並びに抵抗素子搭載シートを用いた抵抗内蔵多層配線板の製造法に関する。   The present invention relates to a resistance element mounting sheet, a manufacturing method thereof, and a manufacturing method of a resistance built-in multilayer wiring board using the resistance element mounting sheet.

近年、電子機器の発達にともない、電子部品の高性能化に加えて、小型化と軽量化の要求がますます厳しくなっている。特に携帯電話に代表される携帯無線電子機器においてはその利便性の追求からその要求が顕著である。このような背景から、半導体チップや受動素子を効率良く搭載するために、挿入型実装部品から表面実装部品へと転換されてきた。さらに、超小型のチップ部品やチップサイズパッケージに代表されるように、表面実装部品の小型化が進んできた。それとともに、実装されるプリント配線板の配線ライン幅の細線化やビルドアップ基板等の高密度配線化が進められてきた。一方、機器の高性能化の進展から、抵抗素子やコンデンサ素子などの受動部品の部品点数が増加している。このような背景から、配線板表面のスペースが不足してきており、受動部品をプリント配線板に内蔵する技術が求められている。またこれらの受動部品は、1点1点、プリント基板上に個別に搭載しなければならないために、一枚の配線板当たりの部品搭載時間の増加を招き、一括で受動部品を搭載できる方法が求められている。   In recent years, with the development of electronic devices, demands for miniaturization and weight reduction in addition to high performance of electronic components have become increasingly severe. In particular, in portable wireless electronic devices typified by mobile phones, the demand is remarkable from the pursuit of convenience. Against this background, in order to efficiently mount semiconductor chips and passive elements, there has been a shift from insert-type mounted components to surface-mounted components. Furthermore, as represented by ultra-small chip components and chip size packages, surface mount components have been downsized. At the same time, the wiring line width of the printed wiring board to be mounted has been reduced and the wiring density of the build-up board has been increased. On the other hand, the number of passive components such as resistance elements and capacitor elements is increasing due to the progress of high-performance devices. From such a background, the space on the surface of the wiring board has become insufficient, and a technique for incorporating passive components in the printed wiring board is required. In addition, since these passive components must be individually mounted on the printed circuit board one by one, there is an increase in the component mounting time per wiring board, and there is a method that can mount passive components all at once. It has been demanded.

プリント基板に抵抗素子を内蔵する一つの方法は、無電解めっき法によって所定の配線間にニッケル−リン薄膜を形成する方法も開発されている。また、その他の方法として配線層となる銅箔と抵抗層となるニッケルリンの薄膜層からなる2層構成の金属箔を絶縁基材にプレスで接着し、選択エッチング法によって配線と抵抗部を作製する方法(例えば、非特許文献1参照)が実用化されている。   As a method of incorporating a resistance element in a printed circuit board, a method of forming a nickel-phosphorus thin film between predetermined wirings by an electroless plating method has been developed. As another method, a metal foil having a two-layer structure consisting of a copper foil serving as a wiring layer and a nickel phosphorus thin film layer serving as a resistance layer is bonded to an insulating substrate by pressing, and a wiring and a resistance portion are produced by a selective etching method. The method (for example, refer nonpatent literature 1) to do is put into practical use.

また他の抵抗素子形成方法として、例えば非特許文献2で示されているように、印刷法によってカーボン含有樹脂などの導電ペーストを所定の配線間に印刷し、熱硬化させて形成する方法や例えば特許文献1で示されているように、クロム、珪素、酸素からなる材料の薄膜抵抗素子を含む多層配線基板の製造方法がある。   As another resistance element forming method, for example, as shown in Non-Patent Document 2, a method of forming a conductive paste such as a carbon-containing resin by printing between predetermined wirings by a printing method and thermosetting, for example, As shown in Patent Document 1, there is a method for manufacturing a multilayer wiring board including a thin film resistance element made of chromium, silicon, and oxygen.

特開平5−347357号公報JP-A-5-347357 “Thin Film Embedded Resistors in HDI Applications”,IPC's First International Conference on Embedded Passives, P.199−201。“Thin Film Embedded Resistors in HDI Applications”, IPC's First International Conference on Embedded Passives, P.M. 199-201. “A New Material System for High Precision Embedded Polymer Resistor“,IPC’s First International Conference on Embedded Passives, P.192−195。“A New Material System for High Precision Embedded Polymer Resistor”, IPC's First International Conference on Embedded Passives, P.A. 192-195. “System Consideration in Production Environment for Laser Trimming of Embedded Passive Components“,IPC’s First International Conference on Embedded Passives,P.192−195。“System Considation in Production Environment for Laser Trimming of Embedded Passive Components”, IPC's First International Conference on EmbeddedPed. 192-195.

これらの抵抗素子の抵抗値の誤差許容値は、用途によっても異なるが、通常は0.5〜10%程度が要求されている。そのため、抵抗体を配線板の内層または外層に形成した後にプローブを用いて抵抗素子の抵抗値をモニターしながら、抵抗素子の一部をレーザで切断し、抵抗値を所定のスペックに調整するトリミングを行う必要がある。従来のトリミングの方法としては、例えば非特許文献3に示されている。図1に示したような外枠に取付けられた複数のL型のプローブピンを用いたプローブカードを作製し、抵抗素子が接続している配線にプローブを接触させて、抵抗値をモニターしながらトリミングを実施し、目標の値に達するとレーザの出力を停止する方法がとられている。このような従来からの方法では、レーザでトリミングする対象の抵抗素子が設置されている面からレーザを照射しており、そのためプローブピンや治具がレーザの光路を遮断しないように設計する必要があり、抵抗素子の設置密度や絶対数を上げることが困難であった。また、外枠の大きさにも限界があるために、基板の大面積化が難しいばかりではなく、治具をステップ移動しながら大きな基板全体をトリミング加工していかなくてはならず、効率が著しく悪いという問題があった。   The allowable error value of the resistance value of these resistance elements varies depending on the application, but usually about 0.5 to 10% is required. Therefore, trimming is performed by forming a resistor on the inner or outer layer of the wiring board and monitoring the resistance value of the resistance element using a probe while cutting a part of the resistance element with a laser to adjust the resistance value to a predetermined specification. Need to do. A conventional trimming method is disclosed in Non-Patent Document 3, for example. A probe card using a plurality of L-type probe pins attached to the outer frame as shown in FIG. 1 is manufactured, and the probe is brought into contact with the wiring to which the resistance element is connected, and the resistance value is monitored. Trimming is performed, and when the target value is reached, the laser output is stopped. In such a conventional method, the laser is irradiated from the surface where the resistance element to be trimmed with the laser is installed, and therefore it is necessary to design the probe pin and jig so as not to block the optical path of the laser. It was difficult to increase the installation density and absolute number of resistance elements. In addition, because the size of the outer frame is limited, not only is it difficult to increase the area of the substrate, but it is also necessary to trim the entire large substrate while moving the jig step by step. There was a problem of being extremely bad.

本発明は、プリント配線板上及び内部に形成される抵抗値の精度がよく、多数の抵抗素子を設置可能で、大面積基板にも対応可能な、生産性の高い抵抗素子搭載シート及びその製造法、並びに抵抗素子搭載シートを用いた抵抗内蔵多層配線板の製造法を提供するものである。   The present invention provides a highly resistive resistive element mounting sheet with high accuracy in resistance value formed on and in a printed wiring board, capable of installing a large number of resistive elements, and capable of accommodating a large area substrate, and its manufacture. And a method of manufacturing a resistance built-in multilayer wiring board using a resistance element mounting sheet.

上記課題を解決するために、本発明は次のように構成される。
(1)シート状絶縁性支持基板1上の表面に隔絶された複数組の導電性パッド3と前記導電性パッド3に接続するシート状の抵抗素子2を形成する工程、前記導電性パッド3の各々に抵抗測定プローブ20を接触させて前記抵抗素子2の抵抗値を測定しながら、レーザ照射によって抵抗素子2の一部を除去し、抵抗素子2の抵抗値を目標値に調節するトリミング工程を含む抵抗素子搭載シートの製造法において、
抵抗素子2が形成されたシート状絶縁性支持基板1の表面の反対面側からシート状絶縁性支持基板1に導電性パッド3に通じる開口部7を設ける工程を含み、かつ前記トリミング工程が、前記開口部7を通じて抵抗測定プローブ20を導電性パッド3に接触させて抵抗素子2の抵抗値を測定し、抵抗素子2の抵抗値を目標値に調節することを特徴とする抵抗素子搭載シートの製造法。
(2)シート状絶縁性支持基板1の厚みが、10マイクロメータから500マイクロメータである、項(1)記載の抵抗素子搭載シートの製造法。
(3)シート状絶縁性支持基板1が、ガラスエポキシ基板、ガラスポリイミド基板、ポリイミドフィルム基板、エポキシフィルム基板のいずれかである、項(1)又は(2)記載の抵抗素子搭載シートの製造法。
(4)抵抗素子2が形成されたシート状絶縁性支持基板1の表面の反対面側から抵抗測定プローブ20によってシート状絶縁性支持基板1に導電性パッド3に通じる開口部7を設ける工程を含み、かつ前記トリミング工程が、前記開口部7を通じて抵抗測定プローブ20を導電性パッド3に接触させて抵抗素子2の抵抗値を測定し、抵抗素子2の抵抗値を目標値に調節することを特徴とする項(2)又は(3)記載の抵抗素子搭載シートの製造法。
(5)抵抗測定プローブ20が、鋭利な先端を有する抵抗測定プローブ20である項(4)記載の抵抗素子搭載シートの製造法。
(6)項(1)〜()いずれかに記載の抵抗素子搭載シートの製造法で製造された抵抗素子搭載シート。
)項()記載の抵抗素子搭載シート22と、所定回路が絶縁層上に形成された内層コア基板を積層プレスにより一体化する積層工程を含む抵抗内蔵多層配線板の製造法。
In order to solve the above problems, the present invention is configured as follows.
(1) A step of forming a plurality of sets of conductive pads 3 isolated on the surface of the sheet-like insulating support substrate 1 and a sheet-like resistance element 2 connected to the conductive pads 3, A trimming step of adjusting a resistance value of the resistance element 2 to a target value by removing a part of the resistance element 2 by laser irradiation while measuring the resistance value of the resistance element 2 by bringing the resistance measurement probe 20 into contact with each of them. In the manufacturing method of the resistive element mounting sheet including
Including a step of providing an opening 7 leading to the conductive pad 3 in the sheet-like insulating support substrate 1 from the side opposite to the surface of the sheet-like insulating support substrate 1 on which the resistance element 2 is formed, and the trimming step includes A resistance element mounting sheet, wherein the resistance value of the resistance element 2 is measured by bringing the resistance measurement probe 20 into contact with the conductive pad 3 through the opening 7 and the resistance value of the resistance element 2 is adjusted to a target value. Manufacturing method.
(2) The manufacturing method of the resistive element mounting sheet according to item (1), wherein the thickness of the sheet-like insulating support substrate 1 is from 10 micrometers to 500 micrometers.
(3) The method for producing a resistive element mounting sheet according to item (1) or (2), wherein the sheet-like insulating support substrate 1 is one of a glass epoxy substrate, a glass polyimide substrate, a polyimide film substrate, and an epoxy film substrate. .
(4) A step of providing an opening 7 that leads to the conductive pad 3 in the sheet-like insulating support substrate 1 from the opposite side of the surface of the sheet-like insulating support substrate 1 on which the resistance element 2 is formed by the resistance measurement probe 20. And the trimming step measures the resistance value of the resistance element 2 by bringing the resistance measurement probe 20 into contact with the conductive pad 3 through the opening 7 and adjusts the resistance value of the resistance element 2 to a target value. The manufacturing method of the resistive element mounting sheet | seat of the term (2) or (3) characterized.
(5) The resistance element mounting sheet manufacturing method according to item (4), wherein the resistance measuring probe 20 is a resistance measuring probe 20 having a sharp tip.
(6 ) A resistance element mounting sheet manufactured by the method for manufacturing a resistance element mounting sheet according to any one of items (1) to ( 5 ).
( 7 ) A method of manufacturing a resistance-incorporating multilayer wiring board including a laminating step in which the resistance element mounting sheet 22 according to item ( 6 ) and an inner core substrate on which a predetermined circuit is formed on an insulating layer are integrated by a laminating press.

抵抗素子搭載シートの製造法において、シート状絶縁性支持基板上の抵抗素子が形成されていない面側からプローブを用いて抵抗測定することにより、抵抗値を所定の値に調整するためのトリミング工程を効率よく行うことができ抵抗値の精度が高く、また、多数の抵抗素子が設置可能で、大面積基板にも対応可能となり、生産性が高い。さらに、このような方法で作製した抵抗素子搭載シートを用いて多層配線板を作製することによって、正確な抵抗値をもつ抵抗素子を内蔵する抵抗内蔵配線板を作製可能になり、高密度化を達成することができる。   A trimming step for adjusting a resistance value to a predetermined value by measuring resistance using a probe from a surface side on which a resistance element is not formed on the sheet-like insulating support substrate in the method of manufacturing a resistance element mounting sheet Can be efficiently performed, the accuracy of the resistance value is high, a large number of resistance elements can be installed, and it can be applied to a large-area substrate, so that productivity is high. Furthermore, by producing a multilayer wiring board using a resistance element mounting sheet produced by such a method, it becomes possible to produce a resistance built-in wiring board that incorporates a resistance element having an accurate resistance value. Can be achieved.

図1〜4を用いて、本発明の抵抗素子搭載シートの製造法の第一の形態を説明する。まず、図1に示すように、シート状絶縁性支持基板1上に、複数個の抵抗素子2と、それぞれの抵抗素子2に接続する2個以上の導電性パッド(導電性回路)3及び4が複数組形成されている。抵抗素子2に接続する各導電性パッド(導電性回路)3及び4にはそれぞれ測定端子部5及び6を備えており、またシート状絶縁性支持基板1には、測定端子部5に達するようにそれぞれ開口部7及び8が設けられていることが好ましい。このようなトリミング前の抵抗素子搭載シート22を用意する。なお複数組の導電性パッド3は互いに電気的に隔絶されており、抵抗素子2は、それぞれ1つの導電性パッド3に接続している。   The 1st form of the manufacturing method of the resistive element mounting sheet | seat of this invention is demonstrated using FIGS. First, as shown in FIG. 1, a plurality of resistance elements 2 and two or more conductive pads (conductive circuits) 3 and 4 connected to each resistance element 2 are provided on a sheet-like insulating support substrate 1. A plurality of sets are formed. Each conductive pad (conductive circuit) 3 and 4 connected to the resistance element 2 includes measurement terminal portions 5 and 6, respectively, and the sheet-like insulating support substrate 1 reaches the measurement terminal portion 5. Are preferably provided with openings 7 and 8 respectively. A resistor element mounting sheet 22 before trimming is prepared. The plurality of sets of conductive pads 3 are electrically isolated from each other, and the resistance elements 2 are connected to one conductive pad 3 respectively.

シート状絶縁性支持基板1は、搭載された抵抗素子2及び導電性パッド(導電性回路)3を保持する機能を有したものであり、厚みは10マイクロメータから500マイクロメータが好ましい。必要十分な絶縁性が確保されていることが必要であり、体積抵抗率は、1×10オーム・cm以上であることが好ましい。絶縁性支持基板1の材質は、例えば、配線板材料として通常用いられるガラスエポキシ基板、ガラスポリイミド基板、ポリイミドフィルム基板、エポキシフィルム基板などが好ましい。導電性パッド(導電性回路)3及び4は、導電体材料で構成される回路であり、導電率が10S/m以上である。好ましい材料の一例として、銅、アルミニウム、ニッケル、銀、金など及びそれらを含有する合金が用いられる。また、必要に応じてどの抵抗素子2にも接続されていない導電性回路9も配置されていてもよい。抵抗素子2は、シート抵抗値が5Ωから1MΩに設計し、膜厚は0.01〜50マイクロメータの範囲にあるものが好ましい。一例として、ニッケル・リン薄膜、セラミック、カーボンや銀などの導電性粒子入り樹脂などの材料で構成されることが好ましい。導電性粒子入り樹脂の一例としては、株式会社アサヒ化学研究所製の抵抗ペーストTU−00−8、TU−15−8、TU−50−8、またはTU−100−8を利用可能である。 The sheet-like insulating support substrate 1 has a function of holding the mounted resistance element 2 and conductive pad (conductive circuit) 3, and the thickness is preferably 10 to 500 micrometers. It is necessary that necessary and sufficient insulation is ensured, and the volume resistivity is preferably 1 × 10 6 ohm · cm or more. The material of the insulating support substrate 1 is preferably, for example, a glass epoxy substrate, a glass polyimide substrate, a polyimide film substrate, an epoxy film substrate or the like that is usually used as a wiring board material. The conductive pads (conductive circuits) 3 and 4 are circuits made of a conductive material and have a conductivity of 10 6 S / m or more. As an example of a preferable material, copper, aluminum, nickel, silver, gold and the like and alloys containing them are used. Further, a conductive circuit 9 that is not connected to any of the resistance elements 2 may be arranged as necessary. The resistive element 2 is preferably designed to have a sheet resistance value of 5Ω to 1MΩ and a film thickness in the range of 0.01 to 50 micrometers. As an example, it is preferable to be made of a material such as a nickel / phosphorus thin film, ceramic, resin containing conductive particles such as carbon or silver. As an example of the resin containing conductive particles, Resistive Paste TU-00-8, TU-15-8, TU-50-8, or TU-100-8 manufactured by Asahi Chemical Research Co., Ltd. can be used.

本発明の抵抗素子搭載シート製造法は、トリミング工程が、抵抗素子2が形成されたシート状絶縁性支持基板1の表面の反対面側から導電性パッド3に抵抗測定プローブ20を接触させて抵抗素子2の抵抗値の測定を行い、抵抗素子2の抵抗値を目標値に調節することを特徴としている。従って、導電性パッド3の一部あるいは全部が、抵抗素子2が形成されたシート状絶縁性支持基板1の表面の反対面側から露出していればよい。   In the resistance element mounting sheet manufacturing method of the present invention, the trimming process is performed by bringing the resistance measurement probe 20 into contact with the conductive pad 3 from the opposite side of the surface of the sheet-like insulating support substrate 1 on which the resistance element 2 is formed. The resistance value of the element 2 is measured, and the resistance value of the resistance element 2 is adjusted to a target value. Accordingly, it is only necessary that a part or all of the conductive pad 3 is exposed from the opposite side of the surface of the sheet-like insulating support substrate 1 on which the resistance element 2 is formed.

シート状絶縁性支持基板1には、抵抗素子2が形成されたシート状絶縁性支持基板1の表面の反対面側から、導電性パッド(導電性回路)3の測定端子部5に、達するようにそれぞれ開口部7及び8が設けられていることが好ましい。開口部7の形成方法は、絶縁性樹脂からなる絶縁性支持基板1に穴を形成できれば特に限定しないが、レーザ法、ウェットエッチング法などが挙げられる。開口部7は、シート状絶縁性支持基板1に抵抗素子2や導電性パッド(導電性回路)3を形成した後、設けてもよく、あるいはシート状絶縁性支持基板1に予め開口部7となる穴を形成しておき、その後抵抗素子2や導電性パッド(導電性回路)3を形成してもよい。この場合導電性パッド(導電性回路)3となる導電体材料として金属箔を、開口部7を設けたシート状絶縁性支持基板1に貼り付けてもよい。   The sheet-like insulating support substrate 1 reaches the measurement terminal portion 5 of the conductive pad (conductive circuit) 3 from the side opposite to the surface of the sheet-like insulating support substrate 1 on which the resistance element 2 is formed. Are preferably provided with openings 7 and 8 respectively. The method for forming the opening 7 is not particularly limited as long as a hole can be formed in the insulating support substrate 1 made of an insulating resin, and examples thereof include a laser method and a wet etching method. The opening 7 may be provided after the resistance element 2 and the conductive pad (conductive circuit) 3 are formed on the sheet-like insulating support substrate 1, or the opening 7 and the sheet-like insulating support substrate 1 may be provided in advance. A hole to be formed may be formed, and then the resistance element 2 and the conductive pad (conductive circuit) 3 may be formed. In this case, a metal foil may be affixed to the sheet-like insulating support substrate 1 provided with the openings 7 as a conductor material to be the conductive pad (conductive circuit) 3.

また、鋭利な先端を有する抵抗測定プローブ20により、絶縁性支持基板1を突き刺すことで開口部7を形成してもよい。その場合、鋭利な先端を有する抵抗測定プローブ20により開口部7を予め形成してもよく、あるいは開口部7を形成し、同時に導電性パッド(導電性回路)3の測定端子部5に抵抗測定プローブ20を接触させ、抵抗素子2の抵抗値を測定しトリミングを行なってもよい。   Alternatively, the opening 7 may be formed by piercing the insulating support substrate 1 with the resistance measurement probe 20 having a sharp tip. In that case, the opening 7 may be formed in advance by the resistance measuring probe 20 having a sharp tip, or the opening 7 is formed, and at the same time, resistance measurement is performed on the measurement terminal portion 5 of the conductive pad (conductive circuit) 3. Trimming may be performed by contacting the probe 20 and measuring the resistance value of the resistance element 2.

図2には、このようにして用意されたトリミング前の抵抗素子搭載シート22の抵抗素子2をレーザトリミングするための治具の実施の形態の一例を示している。治具は、プローブカード10、押さえ板11、押さえ板11のガイドピン12及び押さえ板11のストッパー13で構成されている。プローブカード10は、プローブボード17に抵抗を測定するための抵抗測定プローブ(プローブピン)20が垂直に取り付けてあり、抵抗測定プローブ(プローブピン)20に取り付けられたケーブル21を介してマルチチャンネル抵抗測定器に接続されている。プローブボード17はスペーサ18を介して支持板19にとりつけられており、ケーブル21はスペーサ18と支持板19の間に配置することができるようになっている。   FIG. 2 shows an example of an embodiment of a jig for laser trimming the resistance element 2 of the resistance element mounting sheet 22 before trimming prepared as described above. The jig includes a probe card 10, a pressing plate 11, guide pins 12 of the pressing plate 11, and a stopper 13 of the pressing plate 11. In the probe card 10, a resistance measurement probe (probe pin) 20 for measuring resistance is vertically attached to the probe board 17, and a multichannel resistance is connected via a cable 21 attached to the resistance measurement probe (probe pin) 20. Connected to a measuring instrument. The probe board 17 is attached to a support plate 19 via a spacer 18, and the cable 21 can be disposed between the spacer 18 and the support plate 19.

このような構造によって、高密度に抵抗測定プローブ(プローブピン)20を配置することが可能になる。押さえ板11は、トリミング対象の抵抗素子搭載シート22を固定するためのものである。好適な押さえ板11の望ましい構成の一例として、抵抗素子搭載シート22に接する側に置かれた柔らかいクッション層15と剛性のある硬い支持層14の2層構成にすると良い。クッション層の材質はゴム、シリコンゴムなどを用いることが可能で、好ましい厚みは0.05mmから3mm、支持層14の材質としては例えば金属またはプラスチックボードなどを用いることが好ましく、好ましい厚みは1mmから50mmの範囲である。このような構成をとることによって、トリミング対象の抵抗素子搭載シート22をしっかりとホールドすることができ、確実に抵抗測定プローブ(プローブピン)20に当てることができる。また、押さえ板11には後のトリミング時のレーザを通過させるための開口部16を備えている。   Such a structure makes it possible to arrange the resistance measurement probes (probe pins) 20 with high density. The pressing plate 11 is for fixing the trimming target resistance element mounting sheet 22. As an example of a desirable configuration of the suitable pressing plate 11, a two-layer configuration of a soft cushion layer 15 placed on the side in contact with the resistance element mounting sheet 22 and a rigid hard support layer 14 may be used. The cushion layer can be made of rubber, silicon rubber or the like, preferably having a thickness of 0.05 mm to 3 mm, and the support layer 14 is preferably made of metal or plastic board, and preferably has a thickness of 1 mm. The range is 50 mm. By adopting such a configuration, the resistance element mounting sheet 22 to be trimmed can be firmly held and can be reliably applied to the resistance measurement probe (probe pin) 20. Further, the pressing plate 11 is provided with an opening 16 for allowing a laser for subsequent trimming to pass therethrough.

次に、図3に示すようにトリミング対象の抵抗素子搭載シート22をプローブカード10の上に搭載する。その際、測定端子部6に当たるように抵抗測定プローブ(プローブピン)20が配置されており、抵抗測定プローブ(プローブピン)20に合わせて抵抗素子搭載シート22を配置する。   Next, as shown in FIG. 3, the resistance element mounting sheet 22 to be trimmed is mounted on the probe card 10. At that time, the resistance measurement probe (probe pin) 20 is disposed so as to contact the measurement terminal portion 6, and the resistance element mounting sheet 22 is disposed in accordance with the resistance measurement probe (probe pin) 20.

次に、図4に示すように、押さえ板11のストッパーをはずし、押さえ板11でトリミング対象の抵抗素子搭載シー22トを押さえる。この際、スペーサガイドピンにナットなどを取り付けて押さえ板11を押さえたり、別に加圧機構を備えていたりすることが望ましい。このように組み上げた治具24を、XYテーブル25の所定の位置に搭載し、固定する。次に、各々の抵抗素子2の抵抗値をモニターしながら抵抗素子2の一部を除去して、抵抗値を上昇させ、目標の抵抗値に達するとレーザ加工を止める、いわゆるトリミング工程を行う。このとき、レーザ26は対象の抵抗素子搭載シート22の導電性パッド(導電性回路)3の測定端子部5に対して、反対側からで、抵抗素子2の設置してある方向からエフシータレンズ31をとうし、照射することを特徴としている。レーザ位置は、XYテーブル25及びレーザ26光路上に設けられたガルバノミラー27によって、高速に所定の位置に照射できるようになっている。各抵抗素子2の抵抗測定は、トリミング加工に連動して高速に測定位置を切り替えられるようになっている。   Next, as shown in FIG. 4, the stopper of the pressing plate 11 is removed, and the resistance element mounting sheet 22 to be trimmed is pressed by the pressing plate 11. At this time, it is desirable to attach a nut or the like to the spacer guide pin to hold down the holding plate 11 or to have a separate pressurizing mechanism. The jig 24 assembled in this way is mounted at a predetermined position on the XY table 25 and fixed. Next, a so-called trimming process is performed in which a part of the resistance element 2 is removed while monitoring the resistance value of each resistance element 2, the resistance value is increased, and laser processing is stopped when the target resistance value is reached. At this time, the laser 26 is an F-theta lens from the direction opposite to the measurement terminal portion 5 of the conductive pad (conductive circuit) 3 of the target resistive element mounting sheet 22 from the direction in which the resistive element 2 is installed. 31 is used for irradiation. The laser position can be irradiated to a predetermined position at high speed by a galvano mirror 27 provided on the optical path of the XY table 25 and the laser 26. The resistance measurement of each resistance element 2 can be switched at high speed in conjunction with the trimming process.

このような構成を用いてトリミング加工をすることによって、それぞれ抵抗素子2の抵抗値を抵抗素子2の搭載面の反対面から測定することができる。そのため、レーザ26の光路が抵抗測定プローブ20で妨げられることなく、効率のよいトリミング加工が可能となる。   By performing trimming using such a configuration, the resistance value of the resistance element 2 can be measured from the opposite surface of the mounting surface of the resistance element 2. Therefore, efficient trimming can be performed without the optical path of the laser 26 being obstructed by the resistance measurement probe 20.

本発明の抵抗素子搭載シート22の製造法の第二の形態を説明する。図2に示す治具に、図1で示すシート状絶縁性支持基板1上に、複数個の抵抗素子2と、それぞれの抵抗素子2に接続する2個以上の導電性パッド(導電性回路)3及び4が複数組形成されており、抵抗素子2に接続する各導電性パッド(導電性回路)3及び4にはそれぞれ対応した測定端子部5及び6を備えているが、測定端子部5に達するようにそれぞれ開口部7及び8が設けられていないトリミング前の抵抗素子搭載シート22を用意し、これを、図2に示す治具に固定し、抵抗素子2が形成されたシート状絶縁性支持基板1の表面の反対面側から抵抗測定プローブ20によって押し込み、シート状絶縁性支持基板1に導電性パッド3に通じる開口部7を設け、この開口部7を通じて抵抗測定プローブ20を導電性パッド3に接触させて抵抗素子2の抵抗値の測定し、抵抗素子2の抵抗値を目標値に調節する。   A second embodiment of the method for producing the resistance element mounting sheet 22 of the present invention will be described. A plurality of resistance elements 2 and two or more conductive pads (conductive circuit) connected to each of the resistance elements 2 on the sheet-like insulating support substrate 1 shown in FIG. A plurality of sets 3 and 4 are formed, and each of the conductive pads (conductive circuit) 3 and 4 connected to the resistance element 2 includes the corresponding measurement terminal portions 5 and 6. 2 is prepared, and is provided with a pre-trimming resistive element mounting sheet 22 that is not provided with openings 7 and 8, and is fixed to a jig shown in FIG. The resistance measurement probe 20 is pushed in from the opposite side of the surface of the conductive support substrate 1 to provide an opening 7 leading to the conductive pad 3 in the sheet-like insulating support substrate 1, and the resistance measurement probe 20 is made conductive through this opening 7. Touch pad 3 Measurement of the resistance value of the resistance element 2, and adjusts the resistance value of the resistance element 2 to the target value.

図5を用いて、本発明の抵抗素子搭載シート22の製造法の第三の形態を説明する。第三の形態では、第一の形態と比較して対象の抵抗素子搭載シート22の形態が異なる。すなわち図1の形態に加えて、抵抗測定部5及び6に隣接して設けられた絶縁性支持基板1の開口部7、8の一部箇所に導電性物質による導電リード部28及び29が設けらている。導電リード部28及び29は、導電性パッド3の抵抗測定部5及び6に導通している。この導電性物質は、導電率が10S/m以上であることが好ましい。そのような材料の一例としては、銅、銀、アルミニウム、ニッケル、銀、金などから構成される金属または合金、銀などの導電性粒子入り樹脂などを硬化させたものがあり、あるいは銅めっきなどの導電性物質がある。トリミングは、第一の形態と同様な方法をとることができるが、抵抗測定プローブ20は導電リード部28及び29の表面の抵抗測定部に当てる。このような構成をとることによって、厚いシート状絶縁性支持基板1を用いた場合でも抵抗測定プローブ20を確実に接触させることが可能になる。また、導電リード部28及び29によって測定端子部5及び6の導電性パッド3及び4の強度を補い、抵抗測定時に、抵抗測定プローブ20によって引起される配線部のクラックやピンホールなどのダメージを防止する効果もある。導電リード部28をさらに抵抗素子2が形成されたシート状絶縁性支持基板1の表面の反対面まで延ばして設置してもよい。この場合、反対面側の導電リード部28表面に抵抗測定プローブ(プローブピン)20を当てるようにして抵抗値を測定してもいい。これらの形態においては、抵抗素子2がシート状絶縁性支持基板1の片面に配置してある例を示したが、片面のみならず両面に配置されていてもよい。その場合は、片面ずつ別々にトリミング加工を行う。 The 3rd form of the manufacturing method of the resistive element mounting sheet | seat 22 of this invention is demonstrated using FIG. In the third form, the form of the target resistive element mounting sheet 22 is different from that in the first form. That is, in addition to the configuration shown in FIG. 1, conductive lead portions 28 and 29 made of a conductive material are provided at a part of the openings 7 and 8 of the insulating support substrate 1 provided adjacent to the resistance measuring portions 5 and 6. I have. The conductive leads 28 and 29 are electrically connected to the resistance measuring units 5 and 6 of the conductive pad 3. This conductive material preferably has a conductivity of 10 6 S / m or more. Examples of such materials include metals or alloys composed of copper, silver, aluminum, nickel, silver, gold, and the like, and hardened resin containing conductive particles such as silver, or copper plating. There is a conductive material. Trimming can take the same method as in the first embodiment, but the resistance measurement probe 20 is applied to the resistance measurement portions on the surfaces of the conductive leads 28 and 29. By adopting such a configuration, even when the thick sheet-like insulating support substrate 1 is used, the resistance measuring probe 20 can be reliably brought into contact. Further, the strength of the conductive pads 3 and 4 of the measurement terminal portions 5 and 6 is supplemented by the conductive lead portions 28 and 29, and damage such as cracks and pinholes in the wiring portion caused by the resistance measurement probe 20 is measured during resistance measurement. There is also an effect to prevent. The conductive lead portion 28 may be further extended to the surface opposite to the surface of the sheet-like insulating support substrate 1 on which the resistance element 2 is formed. In this case, the resistance value may be measured by placing the resistance measurement probe (probe pin) 20 on the surface of the conductive lead portion 28 on the opposite surface side. In these embodiments, the example in which the resistance element 2 is arranged on one side of the sheet-like insulating support substrate 1 is shown, but it may be arranged on both sides as well. In that case, trimming is performed separately for each side.

以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。
(実施例1)
シート状絶縁性支持基板1として、ポリイミド接着剤をポリイミドフィルムの両面に塗布した、厚さ0.07mmのポリイミドボンディングシートを作製した。更に導電性パッド3に通じさせるための直径0.2mmの開口部7をレーザ加工により形成した。次に厚さ0.018mmの銅箔(日本電解株式会社製、商品名:SLPー18)を接着後、必要な配線と導電性パッド3を通常のエッチング法で形成した。次に抵抗ペーストTU−00−8(株式会社アサヒ化学研究所製商品名)を用いて、前記導電性パッド3に接続するようにシート状の抵抗素子2を所定の位置にスクリーン印刷で形成した後、コンベア型遠赤外硬化炉(アサヒ化学研究所、商品名:ASAHITRON FIR−1800)を用いて、予備加熱温度180℃、80秒及び本加熱温度250℃、10秒で熱硬化させて、トリミング前の抵抗素子搭載シート22を得た。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Example 1
As the sheet-like insulating support substrate 1, a polyimide bonding sheet having a thickness of 0.07 mm, in which a polyimide adhesive was applied to both surfaces of the polyimide film, was produced. Further, an opening 7 having a diameter of 0.2 mm for communicating with the conductive pad 3 was formed by laser processing. Next, after bonding a copper foil having a thickness of 0.018 mm (trade name: SLP-18, manufactured by Nippon Electrolytic Co., Ltd.), necessary wirings and conductive pads 3 were formed by a normal etching method. Next, using a resistance paste TU-00-8 (trade name, manufactured by Asahi Chemical Laboratory Co., Ltd.), a sheet-like resistance element 2 was formed by screen printing at a predetermined position so as to be connected to the conductive pad 3. Then, using a conveyor type far-infrared curing furnace (Asahi Chemical Laboratory, trade name: ASAHI TRON FIR-1800), pre-heating temperature 180 ° C., 80 seconds and main heating temperature 250 ° C., 10 seconds, A resistive element mounting sheet 22 before trimming was obtained.

このトリミング前の抵抗素子搭載シート22を図3の構成のレーザトリミング装置で、抵抗素子2搭載面の反対側から、前記開口部7を通じてシート状絶縁性支持基板1の導電性パッド3に抵抗測定プローブ20を当てて抵抗素子2の抵抗値を測定しながら、レーザ照射によって抵抗素子2を切断して、所定の抵抗値(目標値)に合わせた。XYテーブルを動かしながら、レーザ26光路にあるガルバノミラー27を用いることによって、高速にレーザ26を所定の位置に当てられるようになっている。この場合、抵抗素子搭載シート22の寸法は410mm×510mmであり、抵抗素子2は1200個、また所定の抵抗値(目標値)は100Ωであり、トリミング工程に要した時間は900秒であった。   The resistance element mounting sheet 22 before trimming is subjected to resistance measurement on the conductive pad 3 of the sheet-like insulating support substrate 1 through the opening 7 from the opposite side of the resistance element 2 mounting surface with the laser trimming apparatus having the configuration of FIG. While the resistance value of the resistance element 2 was measured by applying the probe 20, the resistance element 2 was cut by laser irradiation and adjusted to a predetermined resistance value (target value). By moving the XY table and using the galvanometer mirror 27 in the optical path of the laser 26, the laser 26 can be applied to a predetermined position at high speed. In this case, the dimension of the resistance element mounting sheet 22 is 410 mm × 510 mm, the resistance element 2 is 1200 pieces, the predetermined resistance value (target value) is 100Ω, and the time required for the trimming process is 900 seconds. .

次にこの抵抗体搭載シート22と所定の内層基板、プリプレグ、銅箔を重ねて、熱板プレスを用いて積層した。その次に、所定位置にスルーホール、ブラインドヴァイアホールを形成し、外層パターンをテンティング法で形成した。所定の位置にソルダーレジストをフォトリソ法で形成し、抵抗内蔵多層配線板を作製した。   Next, this resistor mounting sheet 22 and a predetermined inner layer substrate, prepreg, and copper foil were laminated and laminated using a hot plate press. Next, through holes and blind via holes were formed at predetermined positions, and an outer layer pattern was formed by a tenting method. A solder resist was formed at a predetermined position by a photolithography method, and a multilayer wiring board with a built-in resistor was produced.

参考例1
シート状絶縁性支持基板1として、ポリイミド接着剤をポリイミドフィルムの両面に塗布した、厚さ0.07mmのポリイミドボンディングシートを作製した。更に導電性パッド3に通じさせるための直径0.2mmの開口部7をレーザ加工により形成した。次に厚さ0.018mmの銅箔(日本電解株式会社製、商品名:SLPー18)を接着後、得られた開口部7に導電性ペーストMP−200V(日立化成工業株式会社製、商品名)を充填して、160℃30分で硬化し、導電性パッド3と導通させる導電リード部28を形成した。さらに前記銅箔に、必要な配線と導電性パッド3を通常のエッチング法で形成した。次に抵抗ペーストTU−00−8(株式会社アサヒ化学研究所製商品名)を用いて、前記導電性パッド3に接続するようにシート状の抵抗素子2を所定の位置にスクリーン印刷で形成した後、コンベア型遠赤外硬化炉(アサヒ化学研究所、商品名:ASAHITRON FIR−1800)を用いて、予備加熱温度180℃、80秒及び本加熱温度250℃、10秒で熱硬化させて、トリミング前の抵抗素子搭載シート22を得た。
( Reference Example 1 )
As the sheet-like insulating support substrate 1, a polyimide bonding sheet having a thickness of 0.07 mm, in which a polyimide adhesive was applied to both surfaces of the polyimide film, was produced. Further, an opening 7 having a diameter of 0.2 mm for communicating with the conductive pad 3 was formed by laser processing. Next, after bonding a 0.018 mm thick copper foil (trade name: SLP-18 manufactured by Nippon Electrolytic Co., Ltd.), conductive paste MP-200V (manufactured by Hitachi Chemical Co., Ltd., product) Name) was filled and cured at 160 ° C. for 30 minutes to form a conductive lead portion 28 that was electrically connected to the conductive pad 3. Further, necessary wiring and conductive pads 3 were formed on the copper foil by a normal etching method. Next, using a resistance paste TU-00-8 (trade name, manufactured by Asahi Chemical Laboratory Co., Ltd.), a sheet-like resistance element 2 was formed by screen printing at a predetermined position so as to be connected to the conductive pad 3. Then, using a conveyor type far-infrared curing furnace (Asahi Chemical Laboratory, trade name: ASAHI TRON FIR-1800), pre-heating temperature 180 ° C., 80 seconds and main heating temperature 250 ° C., 10 seconds, A resistive element mounting sheet 22 before trimming was obtained.

このトリミング前の抵抗素子搭載シート22を図3の構成のレーザトリミング装置で、抵抗素子2搭載面の反対側から、前記開口部7に形成した導電リード部28に抵抗測定プローブ20を当てて抵抗素子2の抵抗値を測定しながら、レーザ照射によって抵抗素子2を切断して、所定の抵抗値(目標値)に合わせた。XYテーブルを動かしながら、レーザ26光路にあるガルバノミラー27を用いることによって、高速にレーザ26を所定の位置に当てられるようになっている。この場合、抵抗素子搭載シート22の寸法は410mm×510mmであり、抵抗素子2は1200個、また所定の抵抗値(目標値)は100Ωであり、トリミング工程に要した時間は900秒であった。   A resistance trimming probe 20 is applied to the conductive lead portion 28 formed in the opening 7 from the opposite side of the resistance element 2 mounting surface by using the laser trimming apparatus configured as shown in FIG. While measuring the resistance value of the element 2, the resistance element 2 was cut by laser irradiation and adjusted to a predetermined resistance value (target value). By moving the XY table and using the galvanometer mirror 27 in the optical path of the laser 26, the laser 26 can be applied to a predetermined position at high speed. In this case, the dimension of the resistance element mounting sheet 22 is 410 mm × 510 mm, the resistance element 2 is 1200 pieces, the predetermined resistance value (target value) is 100Ω, and the time required for the trimming process is 900 seconds. .

次にこの抵抗体搭載シー22トと所定の内層基板、プリプレグ、銅箔を重ねて、熱板プレスを用いて積層した。その次に、所定位置にスルーホール、ブラインドヴァイアホールを形成し、外層パターンをテンティング法で形成した。所定の位置にソルダーレジストをフォトリソ法で形成し、抵抗内蔵多層配線板を作製した。   Next, this resistor mounting sheet 22 and a predetermined inner layer substrate, prepreg, and copper foil were laminated and laminated using a hot plate press. Next, through holes and blind via holes were formed at predetermined positions, and an outer layer pattern was formed by a tenting method. A solder resist was formed at a predetermined position by a photolithography method, and a multilayer wiring board with a built-in resistor was produced.

(比較例1)
シート状絶縁性支持基板1として、ポリイミド接着剤をポリイミドフィルムの両面に塗布した、厚さ0.07mmのポリイミドボンディングシートを作製した。次に厚さ0.018mmの銅箔(日本電解株式会社製、商品名:SLPー18)を接着後、必要な配線と導電性パッド3を通常のエッチング法で形成した。次に抵抗ペーストTU−00−8(株式会社アサヒ化学研究所製商品名)を用いて、前記導電性パッド3に接続するようにシート状の抵抗素子2を所定の位置にスクリーン印刷で形成した後、コンベア型遠赤外硬化炉(アサヒ化学研究所、商品名:ASAHITRON FIR−1800)を用いて、予備加熱温度180℃、80秒及び本加熱温度250℃、10秒で熱硬化させて、トリミング前の抵抗素子搭載シート22を得た。
(Comparative Example 1)
As the sheet-like insulating support substrate 1, a polyimide bonding sheet having a thickness of 0.07 mm, in which a polyimide adhesive was applied to both surfaces of the polyimide film, was produced. Next, after bonding a copper foil having a thickness of 0.018 mm (trade name: SLP-18, manufactured by Nippon Electrolytic Co., Ltd.), necessary wirings and conductive pads 3 were formed by a normal etching method. Next, using a resistance paste TU-00-8 (trade name, manufactured by Asahi Chemical Laboratory Co., Ltd.), a sheet-like resistance element 2 was formed by screen printing at a predetermined position so as to be connected to the conductive pad 3. Then, using a conveyor type far-infrared curing furnace (Asahi Chemical Laboratory, trade name: ASAHI TRON FIR-1800), pre-heating temperature 180 ° C., 80 seconds and main heating temperature 250 ° C., 10 seconds, A resistive element mounting sheet 22 before trimming was obtained.

本比較例1ではこのトリミング前の抵抗素子搭載シート22を従来のレーザトリミング装置を用いてトリミングを行った。図6及び図7にはそれぞれ、本比較例1で用いた従来のレーザトリミング装置の平面図及びその適当な箇所の断面図を示している。プローブカード34の中央部には開口部が設けてあり、抵抗素子搭載シート33とその開口部内に配置された抵抗素子36をトリミングする。その際、抵抗素子36と連結した一組の導電パッド33にプローブカード34に取付けられた抵抗測定プローブ35を用いて抵抗値をモニターする。図7に示すように、抵抗測定プローブ35は抵抗素子36の搭載面から接触するようになっている。抵抗測定プローブ35は、プローブカード34の開口部内に向かって平面的に延伸した構造になっているために、配置可能な抵抗測定プローブ35の数が本発明の方法に比べて少くなってしまう。また、プローブカードの大きさにも限界があり、開口部の範囲内を越える位置にある抵抗素子36´を加工する場合は、抵抗測定プローブ35を一旦基板から離してからXYテーブル41で移動させ、再度、抵抗測定プローブ35を接触させることが必要になる。また、同一のパターンから構成される部分(以下、「パーツ」と呼ぶ)が繰返した配置がされて一枚の抵抗素子搭載シートが構成されていて、そのパーツの大きさがトリミングすべき抵抗素子が一回の抵抗測定プローブ35で接触させることができる範囲を超えてしまう場合には、複数のプローブカードを用意する必要がある。本比較例1で、抵抗素子36の搭載面から、抵抗素子搭載シート33の導電性パッド33に抵抗測定プローブ35を当てて抵抗素子36の抵抗値を測定しながら、レーザ照射40によって抵抗素子2を除去して、所定の抵抗値(目標値)に合わせた。この場合、抵抗素子搭載シート22の寸法、抵抗素子36の数や配置などは実施例1及び参考例1と同一である。この場合は、3つのプローブカードを用いて加工する必要があり、トリミング工程に要した合計時間は抵抗測定プローブ35の交換及び調整時間を含めて5000秒であった。 In Comparative Example 1, the resistor element mounting sheet 22 before trimming was trimmed using a conventional laser trimming apparatus. 6 and 7 show a plan view of a conventional laser trimming apparatus used in Comparative Example 1 and a cross-sectional view of an appropriate portion thereof. An opening is provided at the center of the probe card 34, and the resistance element mounting sheet 33 and the resistance element 36 disposed in the opening are trimmed. At that time, the resistance value is monitored using a resistance measurement probe 35 attached to the probe card 34 on a set of conductive pads 33 connected to the resistance element 36. As shown in FIG. 7, the resistance measurement probe 35 comes into contact with the mounting surface of the resistance element 36. Since the resistance measurement probe 35 has a structure extending planarly toward the opening of the probe card 34, the number of the resistance measurement probes 35 that can be arranged is smaller than that of the method of the present invention. Also, there is a limit to the size of the probe card, and when processing the resistance element 36 ′ beyond the range of the opening, the resistance measurement probe 35 is once separated from the substrate and then moved by the XY table 41. Again, it is necessary to bring the resistance measurement probe 35 into contact. Also, a resistive element mounting sheet is configured by repeating arrangements of parts having the same pattern (hereinafter referred to as “parts”), and the size of the part is to be trimmed. However, it is necessary to prepare a plurality of probe cards when exceeding the range that can be contacted by one resistance measurement probe 35. In the first comparative example, the resistance element 2 is measured by laser irradiation 40 while measuring the resistance value of the resistance element 36 by applying the resistance measurement probe 35 to the conductive pad 33 of the resistance element mounting sheet 33 from the mounting surface of the resistance element 36. Was adjusted to a predetermined resistance value (target value). In this case, the dimensions of the resistance element mounting sheet 22 and the number and arrangement of the resistance elements 36 are the same as those in the first embodiment and the reference example 1 . In this case, it was necessary to process using three probe cards, and the total time required for the trimming process was 5000 seconds including the replacement and adjustment time of the resistance measurement probe 35.

次にこの抵抗体搭載シー22トと所定の内層基板、プリプレグ、銅箔を重ねて、熱板プレスを用いて積層した。その次に、所定位置にスルーホール、ブラインドヴァイアホールを形成し、外層パターンをテンティング法で形成した。所定の位置にソルダーレジストをフォトリソ法で形成し、抵抗内蔵多層配線板を作製した。   Next, this resistor mounting sheet 22 and a predetermined inner layer substrate, prepreg, and copper foil were laminated and laminated using a hot plate press. Next, through holes and blind via holes were formed at predetermined positions, and an outer layer pattern was formed by a tenting method. A solder resist was formed at a predetermined position by a photolithography method, and a multilayer wiring board with a built-in resistor was produced.

実施例1、参考例1及び比較例1では、同一の抵抗素子の個数、配置でありながら、実施例1及び参考例1ではトリミング工程に要した時間は、ともに900秒であるのに対し、比較例1はトリミング工程に要した時間は合計で5000秒であった。比較例1では、複数のプローブを用意することが必要であり、それらの取り替え及び調整に要する時間も必要となった。よって本発明により、トリミング工程を効率よく行うことができるようになったことがわかる。
In Example 1, Reference Example 1 and Comparative Example 1, while the same number and arrangement of the resistive elements, the time required for the trimming process in Example 1 and Reference Example 1 is both 900 seconds, In Comparative Example 1, the time required for the trimming process was 5000 seconds in total. In Comparative Example 1, it was necessary to prepare a plurality of probes, and time required for their replacement and adjustment was also required. Therefore, it can be seen that the trimming process can be efficiently performed by the present invention.

本発明の抵抗素子搭載シートの断面図。Sectional drawing of the resistive element mounting sheet | seat of this invention. 抵抗素子搭載シートの抵抗素子をレーザトリミングするための治具の断面図。Sectional drawing of the jig | tool for carrying out laser trimming of the resistance element of a resistance element mounting sheet | seat. 抵抗素子搭載シートとレーザトリミングするための治具の断面図。Sectional drawing of the jig | tool for laser trimming with a resistive element mounting sheet | seat. 本発明の抵抗素子搭載シートの製造法の工程を示す断面図。Sectional drawing which shows the process of the manufacturing method of the resistive element mounting sheet | seat of this invention. 本発明の抵抗素子搭載シートの断面図。Sectional drawing of the resistive element mounting sheet | seat of this invention. 従来の抵抗素子のトリミング方法を説明する平面図。The top view explaining the trimming method of the conventional resistance element. 従来の抵抗素子のトリミング方法を説明する断面図。Sectional drawing explaining the trimming method of the conventional resistance element.

符号の説明Explanation of symbols

1 シート状絶縁性支持基板
2 抵抗素子
3 導電性パッド
4 導電性パッド
5 測定端子部
6 測定端子部
7 開口部
8 開口部
9 導電性回路
10 プローブカード
11 押さえ板
12 ガイドピン
13 ストッパー
14 支持層
15 クッション層
16 開口部
17 プローブボード
18 スペーサ
19 支持板
20 抵抗測定プローブ
21 ケーブル
22 抵抗素子搭載シート
24 治具
25 XYテーブル
26 レーザ
27 ガルバノミラー
28 導電リード部
29 導電リード部
31 エフシータレンズ
33 導電パッド
34 抵抗素子搭載シート
35 抵抗測定プローブ
36 抵抗素子
37 プローブ用パッド
38 配線
39 抵抗測定器へ連結させるコネクタ接続用端子
41 XYテーブル


DESCRIPTION OF SYMBOLS 1 Sheet-like insulating support substrate 2 Resistance element 3 Conductive pad 4 Conductive pad 5 Measurement terminal part 6 Measurement terminal part 7 Opening part 8 Opening part 9 Conductive circuit 10 Probe card 11 Holding plate 12 Guide pin 13 Stopper 14 Support layer DESCRIPTION OF SYMBOLS 15 Cushion layer 16 Opening part 17 Probe board 18 Spacer 19 Support plate 20 Resistance measurement probe 21 Cable 22 Resistance element mounting sheet 24 Jig 25 XY table 26 Laser 27 Galvano mirror 28 Conductive lead part 29 Conductive lead part 31 Ftheta lens 33 Conductive Pad 34 Resistance element mounting sheet 35 Resistance measurement probe 36 Resistance element 37 Probe pad 38 Wiring 39 Connector connection terminal 41 connected to resistance measuring instrument XY table


Claims (7)

シート状絶縁性支持基板(1)上の表面に隔絶された複数組の導電性パッド(3)と前記導電性パッド(3)に接続するシート状の抵抗素子(2)を形成する工程、前記導電性パッド(3)の各々に抵抗測定プローブ(20)を接触させて前記抵抗素子(2)の抵抗値を測定しながら、レーザ照射によって抵抗素子(2)の一部を除去し、抵抗素子(2)の抵抗値を目標値に調節するトリミング工程を含む抵抗素子搭載シートの製造法において、
抵抗素子(2)が形成されたシート状絶縁性支持基板(1)の表面の反対面側からシート状絶縁性支持基板(1)に導電性パッド(3)に通じる開口部(7)を設ける工程を含み、かつ前記トリミング工程が、前記開口部(7)を通じて抵抗測定プローブ(20)を導電性パッド(3)に接触させて抵抗素子(2)の抵抗値を測定し、抵抗素子(2)の抵抗値を目標値に調節することを特徴とする抵抗素子搭載シートの製造法。
Forming a plurality of conductive pads (3) isolated on the surface of the sheet-like insulating support substrate (1) and a sheet-like resistance element (2) connected to the conductive pads (3); A part of the resistance element (2) is removed by laser irradiation while a resistance measurement probe (20) is brought into contact with each of the conductive pads (3) to measure the resistance value of the resistance element (2). In the method of manufacturing a resistive element mounting sheet including a trimming step of adjusting the resistance value of (2) to a target value,
An opening (7) leading to the conductive pad (3) is provided in the sheet-like insulating support substrate (1) from the opposite side of the surface of the sheet-like insulating support substrate (1) on which the resistance element (2) is formed. And the trimming step measures the resistance value of the resistance element (2) by bringing the resistance measurement probe (20) into contact with the conductive pad (3) through the opening (7) to measure the resistance element (2). ) Is adjusted to a target value, and a resistance element mounting sheet manufacturing method is provided.
シート状絶縁性支持基板(1)の厚みが、10マイクロメータから500マイクロメータである、請求項1記載の抵抗素子搭載シートの製造法。   The method for producing a resistance element mounting sheet according to claim 1, wherein the thickness of the sheet-like insulating support substrate (1) is from 10 micrometers to 500 micrometers. シート状絶縁性支持基板(1)が、ガラスエポキシ基板、ガラスポリイミド基板、ポリイミドフィルム基板、エポキシフィルム基板のいずれかである、請求項1又は2記載の抵抗素子搭載シートの製造法。   The manufacturing method of the resistive element mounting sheet according to claim 1 or 2, wherein the sheet-like insulating support substrate (1) is any one of a glass epoxy substrate, a glass polyimide substrate, a polyimide film substrate, and an epoxy film substrate. 抵抗素子(2)が形成されたシート状絶縁性支持基板(1)の表面の反対面側から抵抗測定プローブ(20)によってシート状絶縁性支持基板(1)に導電性パッド(3)に通じる開口部(7)を設ける工程を含み、かつ前記トリミング工程が、前記開口部(7)を通じて抵抗測定プローブ(20)を導電性パッド(3)に接触させて抵抗素子(2)の抵抗値を測定し、抵抗素子(2)の抵抗値を目標値に調節することを特徴とする請求項2又は3記載の抵抗素子搭載シートの製造法。   From the opposite side of the surface of the sheet-like insulating support substrate (1) on which the resistance element (2) is formed, the resistance measuring probe (20) leads the conductive pad (3) to the sheet-like insulating support substrate (1). Including a step of providing an opening (7), and the trimming step brings the resistance measurement probe (20) into contact with the conductive pad (3) through the opening (7) to thereby determine the resistance value of the resistance element (2). The resistance element mounting sheet manufacturing method according to claim 2 or 3, wherein the resistance value of the resistance element (2) is adjusted to a target value by measurement. 抵抗測定プローブ(20)が、鋭利な先端を有する抵抗測定プローブ(20)である請求項4記載の抵抗素子搭載シートの製造法。   The method of manufacturing a resistance element mounting sheet according to claim 4, wherein the resistance measurement probe (20) is a resistance measurement probe (20) having a sharp tip. 請求項1〜いずれかに記載の抵抗素子搭載シートの製造法で製造された抵抗素子搭載シート。 Claim 1-5 or resistive element mounting sheet produced by the production method of the resistive element mounting sheet according to. 請求項記載の抵抗素子搭載シート(22)と、所定回路が絶縁層上に形成された内層コア基板を積層プレスにより一体化する積層工程を含む抵抗内蔵多層配線板の製造法。 A resistance element mounting sheet (22) according to claim 6 and a manufacturing method of a resistance built-in multilayer wiring board including a lamination step of integrating the inner layer core substrate having a predetermined circuit formed on an insulating layer by a lamination press.
JP2004301412A 2004-10-15 2004-10-15 Resistance element mounting sheet, manufacturing method thereof, and manufacturing method of multilayer wiring board with built-in resistance using resistance element mounting sheet Expired - Fee Related JP4640576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301412A JP4640576B2 (en) 2004-10-15 2004-10-15 Resistance element mounting sheet, manufacturing method thereof, and manufacturing method of multilayer wiring board with built-in resistance using resistance element mounting sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301412A JP4640576B2 (en) 2004-10-15 2004-10-15 Resistance element mounting sheet, manufacturing method thereof, and manufacturing method of multilayer wiring board with built-in resistance using resistance element mounting sheet

Publications (2)

Publication Number Publication Date
JP2006114744A JP2006114744A (en) 2006-04-27
JP4640576B2 true JP4640576B2 (en) 2011-03-02

Family

ID=36383004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301412A Expired - Fee Related JP4640576B2 (en) 2004-10-15 2004-10-15 Resistance element mounting sheet, manufacturing method thereof, and manufacturing method of multilayer wiring board with built-in resistance using resistance element mounting sheet

Country Status (1)

Country Link
JP (1) JP4640576B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918480B (en) * 2020-08-17 2021-07-06 景旺电子科技(珠海)有限公司 Manufacturing method of resistor in printed circuit board and printed circuit board
CN116916525A (en) * 2023-09-14 2023-10-20 惠州市金百泽电路科技有限公司 PCB with inner layer transmission line test structure and PCB manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888461A (en) * 1972-02-28 1973-11-20
JPS62147305U (en) * 1986-03-11 1987-09-17
JPH02260607A (en) * 1989-03-31 1990-10-23 Tdk Corp Substrate mounting stage
JPH05260607A (en) * 1992-03-06 1993-10-08 Nippon Akademitsuku Center:Kk Electric road vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888461A (en) * 1972-02-28 1973-11-20
JPS62147305U (en) * 1986-03-11 1987-09-17
JPH02260607A (en) * 1989-03-31 1990-10-23 Tdk Corp Substrate mounting stage
JPH05260607A (en) * 1992-03-06 1993-10-08 Nippon Akademitsuku Center:Kk Electric road vehicle

Also Published As

Publication number Publication date
JP2006114744A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
KR101116712B1 (en) Laminated wiring board and method for manufacturing the same
US7375421B2 (en) High density multilayer circuit module
JPH08111583A (en) Manufacture of mounting printed wiring board
JP2016152301A (en) Chip resistor and manufacturing method thereof
US20090178271A1 (en) Method of making circuitized substrates having film resistors as part thereof
TWI658754B (en) Multilayer wiring board for electronic parts inspection
KR20040023776A (en) Contact sheet for inspecting an electric device and manufacturing method of the same
JP4640576B2 (en) Resistance element mounting sheet, manufacturing method thereof, and manufacturing method of multilayer wiring board with built-in resistance using resistance element mounting sheet
KR100741030B1 (en) Electronic member and method for making the same
US20200203266A1 (en) Substrate, method of manufacturing substrate, and electronic device
JP4683960B2 (en) Wiring board
JP6324669B2 (en) Multilayer wiring board and manufacturing method thereof
JPH09105761A (en) Manufacture of probe structure and, circuit board used therefor
JP7048877B2 (en) Manufacturing method of multilayer board and manufacturing method of component mounting board
JP6322066B2 (en) Wiring board manufacturing method
JP6301595B2 (en) Wiring board and method for manufacturing multilayer wiring board
KR102016947B1 (en) method of manufacturing printed circuit board for dial switch
KR102016946B1 (en) method of manufacturing printed circuit board for dial switch
KR102016943B1 (en) method of manufacturing printed circuit board for dial switch
KR102008380B1 (en) method of manufacturing printed circuit board for dial switch
JP6024476B2 (en) Method for producing thermoplastic resin multilayer substrate
JP2005191215A (en) Manufacturing method and apparatus of wiring board mounted with resistance element
JP2014143343A (en) Method of manufacturing thermoplastic resin multilayer substrate
JPS59134803A (en) Method of producing chip resistor
JP2004023094A (en) Printed circuit board with resistor built built therein, its manufacturing method, and its optimization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees