JP4638163B2 - Windmill equipment - Google Patents

Windmill equipment Download PDF

Info

Publication number
JP4638163B2
JP4638163B2 JP2004080612A JP2004080612A JP4638163B2 JP 4638163 B2 JP4638163 B2 JP 4638163B2 JP 2004080612 A JP2004080612 A JP 2004080612A JP 2004080612 A JP2004080612 A JP 2004080612A JP 4638163 B2 JP4638163 B2 JP 4638163B2
Authority
JP
Japan
Prior art keywords
wind
floating
steering
wind turbine
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004080612A
Other languages
Japanese (ja)
Other versions
JP2005264865A (en
Inventor
明弘 本田
信吉 谷垣
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2004080612A priority Critical patent/JP4638163B2/en
Publication of JP2005264865A publication Critical patent/JP2005264865A/en
Application granted granted Critical
Publication of JP4638163B2 publication Critical patent/JP4638163B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

本発明は、風車発電装置等の風車装置全般に適用され、洋上に浮設された浮体の基礎面上あるいは地上の基礎面上に支柱を立設し、複数の翼に作用する風力により回転力を発生させる風車及び該風車により回転駆動される発電機等の回転装置を収納したナセルを前記支柱の上部に支持するように構成された風車装置に関する。   The present invention is applied to wind turbine apparatuses in general, such as a wind turbine power generator, and a prop is erected on a foundation surface of a floating body suspended on the ocean or a foundation surface on the ground, and rotational force is generated by wind force acting on a plurality of wings. The present invention relates to a windmill device configured to support a nacelle housing a rotating device such as a generator driven by the windmill and a generator driven by the windmill on an upper portion of the column.
風車発電装置等に適用される風車装置においては、近年、急激に大出力化が進行しているが、陸上(地上)での設置には設置面積や高風速を得るための設置場所に制限があるため、洋上へと展開しつつある。ヨーロッパでは着定式の洋上風車が設置されているが、日本のように水深が急激に深くなる沿岸域での着底使用上風車の設置可能エリアは十分ではないため、浮体式の洋上風車が検討されている。
前記洋上風車装置は、陸上(地上)設置の風車装置に比べて高風速が得られるので風車発電の発電量が多くなること、時間的な帯によっての風速変動が少ないため同一風速では陸上風車装置に比べて設備の利用率が高く、疲労強度に与える影響も小さいこと、騒音や景観等において住環4境面での問題がきわめて少ないこと、等の多くの利点がある。
In recent years, the output of wind turbine devices applied to wind turbine generators has been increasing rapidly, but there are restrictions on the installation area and the installation location for obtaining high wind speed on land (ground). Because of this, it is expanding to the ocean. In Europe, stationary offshore wind turbines are installed, but there is not enough area for installation of bottomed top wind turbines in coastal areas where the water depth increases drastically as in Japan, so floating offshore wind turbines are considered. Has been.
Since the offshore wind turbine device can obtain a higher wind speed than a wind turbine device installed on land (ground), the power generation amount of the wind turbine power generation is increased, and the wind speed fluctuation depending on the time zone is small. There are many advantages such as higher utilization factor of equipment and less influence on fatigue strength, and extremely few problems on the boundary of the living environment in noise and landscape.
かかる洋上風車装置の一例として、特許文献1(特開2003−252288号公報)の技術が提供されている。
特許文献1の技術においては、風車発電装置を洋上で立支持する浮体式の基礎構造物を備え、該基礎構造物は前記風車発電装置は、鉛直方向に長い主浮体と該主浮体を囲んでトラス状に該主浮体と一体的に設けられた複数の従浮体とを備えるとともに、前記主浮体の喫水線以下の喫水部分に主浮体の横断面よりも大径の平板を水平に設置して、水深の影響を受けず、洋上風速が増加する沖合いでも波浪外力や風外力等の影響に起因する装置全体の同様を抑制可能としている。
As an example of such an offshore wind turbine apparatus, a technique disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2003-252288) is provided.
In the technology of Patent Document 1, a floating body-type foundation structure for standingly supporting a windmill power generator on the ocean is provided, and the foundation structure surrounds the main float and a main float that is long in the vertical direction. A plurality of sub-floating bodies provided integrally with the main floating body in a truss shape, and a horizontal plate having a diameter larger than the cross section of the main floating body is installed horizontally at the draft portion below the draft line of the main floating body, Even in the offshore where the offshore wind speed increases without being affected by the water depth, it is possible to suppress the same of the entire device due to the influence of wave external force or wind external force.
特開2003−252288号公報JP 2003-252288 A
大出力化を目的として設けられた洋上風車装置にあっては、翼の外径を大きく構成するため、風車及び該風車により回転駆動される発電機等の回転装置を収納したナセルも大型で大重量となる。このため、かかる大型で大重量の翼及びナセルを風向きに追従制御するヨー制御の駆動力は必然的に大きな駆動力を必要とし、ヨー制御の駆動システムが大型、高コストとなる。
また、前記ヨー制御にあたっては、長尺の支柱の上端と大重量のナセルとの連結部を相対回動させるので、該連結部に掛かる操作力が大きくなって、連結部において過大荷重による破損発生の恐れがある。
In the offshore wind turbine device provided for the purpose of increasing the output, the outer diameter of the wing is configured to be large, so that the nacelle that houses the wind turbine and a rotating device such as a generator driven to rotate by the wind turbine is also large and large. It becomes weight. For this reason, the driving force of the yaw control for following and controlling the large and heavy blades and nacelles in the wind direction inevitably requires a large driving force, and the yaw control driving system becomes large and expensive.
Further, in the yaw control, the connecting portion between the upper end of the long column and the heavy nacelle is relatively rotated, so that the operating force applied to the connecting portion is increased and the connecting portion is damaged due to an excessive load. There is a fear.
また、かかる従来の洋上風車装置にあっては、浮体上に垂直に支柱を立設し該支柱の上部にヨー制御システムが設けられた連結部を介してナセルを連結する構成となっているため、浮体に作用する垂直方向の振動が、前記支柱を介して直接前記ナセル側に作用し、かかる振動によっても前記連結部の破損が発生し易い。
さらには、かかる従来の洋上風車装置にあっては、大出力を得るため翼の外径を大きく構成することとなるが、浮体上に垂直に支柱を立設しているため、大径、大重量に形成された翼の撓みによって先端部が支柱に干渉し易くなり、かかる干渉を防止する目的で前記翼のナセルからのオーバーハング量を大きくすると、風車上部(ナセル装着部)の全長が長くなって風車が大型化するとともに、翼のナセルからのオーバーハング量が大きくなることにより、前記連結部の曲げ荷重が過大となって該連結部の破損を誘発し易くなる。
等の問題点を有している。
In addition, in such a conventional offshore wind turbine device, since a support column is erected vertically on the floating body, and the nacelle is connected via a connecting portion provided with a yaw control system on the support column. The vertical vibration acting on the floating body acts directly on the nacelle side through the support column, and the connection portion is likely to be damaged by the vibration.
Furthermore, in such a conventional offshore wind turbine device, the outer diameter of the wing is configured to be large in order to obtain a large output. However, since the support pillar is erected vertically on the floating body, the large diameter, large The tip part easily interferes with the support post due to the deflection of the wing formed in the weight, and if the overhang amount from the nacelle of the wing is increased for the purpose of preventing such interference, the total length of the wind turbine upper part (nacelle mounting part) becomes longer. As the wind turbine becomes larger and the amount of overhang from the nacelle of the blades becomes larger, the bending load of the connecting portion becomes excessive and it becomes easy to induce breakage of the connecting portion.
And so on.
本発明はかかる従来技術の課題に鑑み、洋上風車装置において風車装置全体のヨー制御を可能として支柱とナセルとの連結部におけるヨー制御を不要とするとともに、浮体振動による支柱及び該支柱とナセルとの連結部の荷重を低減して風車装置の耐久性を向上し、さらには、支柱と翼との干渉を回避しつつ翼の大径高出力化を可能とした風車装置を提供することを目的とする。   In view of the problems of the prior art, the present invention enables yaw control of the entire wind turbine device in an offshore wind turbine device, and does not require yaw control at the connecting portion between the support column and the nacelle. An object of the present invention is to provide a wind turbine device that improves the durability of the wind turbine device by reducing the load on the connecting portion of the wind turbine, and further enables the blade to have a large diameter and high output while avoiding interference between the prop and the blade. And
本発明はかかる目的を達成するもので、洋上に浮設された浮体上に支柱を立設し、複数の翼に作用する風力により回転力を発生させる風車及び該風車により回転駆動される発電機等の回転装置を収納したナセルを前記支柱の上部に支持するように構成された風車装置において、前記浮体の底部に取り付けられて該浮体を推進させる推進器と、該推進器を操向して前記浮体の向きを変化せしめる操向装置と、前記翼に作用する空気流の風向きにより前記操向装置を制御する制御装置とを備え、前記制御装置は前記風向きにより操向装置を制御して前記浮体の向きを前記風向きに追従して変化せしめるように構成されてなるとともに、前記支柱は前記ナセルを上部に支持する上部側より下部側が前記空気流の下流に位置するように傾斜して設けられ、さらに前記空気流による前記支柱の曲げ荷重を含む横方向荷重を抑制する方向の揚力を発生せしめる補助翼を前記支柱の空気流下流側に取り付け、前記支柱および補助翼の断面形状は前記空気流によって揚力を発生せしめるように翼状のプロフィールに形成されるとともに、該補助翼は前記支柱の空気流下流側に支柱の長手方向に沿って1個または複数個取り付けられ、該補助翼を取り付けた補助翼駆動軸を軸回りに可逆的に回動してその向きを変化せしめる補助翼駆動装置を設けたことを特徴とする。 The present invention achieves such an object, and a wind turbine in which a prop is erected on a floating body floated on the ocean and a rotational force is generated by wind force acting on a plurality of wings, and a generator driven to rotate by the wind turbine. In a wind turbine device configured to support a nacelle containing a rotating device such as a top of the support, a propulsion unit attached to the bottom of the floating body and propelling the floating body, and steering the propulsion device A steering device that changes a direction of the floating body; and a control device that controls the steering device according to a wind direction of an air flow acting on the blades, and the control device controls the steering device according to the wind direction to control the steering device. together formed by constituting the floating direction as allowed to changes following the wind direction, the struts et provided inclined to the lower side than the upper side for supporting the nacelle on the top is located downstream of the air flow Further attaching an auxiliary wing allowed to generate a lift direction of suppressing the lateral loads including bending load of the strut by the air flow in the air flow downstream of the strut, the strut and the cross-sectional shape of the ailerons the air flow is formed in a wing-like profile so allowed to generate lift, said ailerons one or are several attached along the longitudinal direction of the struts on the air flow downstream of the struts, fitted with the aileron assisted An auxiliary wing drive device is provided that reversibly rotates the wing drive shaft around its axis to change its direction.
かかる発明によれば、浮体上に支柱を立設し回転装置を収納したナセルを支柱の上部に支持するように構成された風車装置において、前記浮体の底部に複数個の推進器を取り付けて、該推進器によって浮体及び風車装置を一体的に推進可能に構成し、前記推進器を操向装置によって操向して前記浮体の向きを変化せしめるようにし、さらに制御装置により翼に作用する空気流(風)の風向きに追従して浮体の向きを変化せしめるようにしたことにより、浮体及び浮体上に載置された風車装置全体を、風向きに追従したヨー制御を行うことができる。   According to such an invention, in the wind turbine device configured to support the nacelle in which the prop is erected on the floating body and the rotating device is accommodated on the upper portion of the prop, a plurality of propulsion devices are attached to the bottom of the floating body, The propulsion unit is configured to be able to integrally propel the floating body and the windmill device, the propulsion unit is steered by the steering device to change the orientation of the floating body, and the air flow acting on the blades by the control unit By changing the direction of the floating body in accordance with the wind direction of (wind), yaw control that follows the wind direction can be performed on the floating body and the entire windmill device mounted on the floating body.
従ってかかる発明によれば、操向装置によって複数の推進器を操向して洋上に浮上している浮体の向きを風向きに追従させてヨー制御を行うことが出来るので、翼の外径が大きくなって風車装置を大出力化しても、格別に大きな駆動力を必要とせずに容易にヨー制御を行うことができ、従来技術のように風車装置にヨー制御の駆動システムを設けることが不要となって風車装置の大型、高コスト化を抑制できるとともに、従来技術のように長尺の支柱の上端と大重量のナセルとの連結部にヨー制御機構を設ける必要がないので過大荷重による該連結部の破損を回避できて、風車装置の耐久性、信頼性が向上する。   Therefore, according to this invention, the steering device can be used to steer a plurality of propulsion devices, and the direction of the floating body floating on the ocean can be made to follow the wind direction so that the yaw control can be performed. Even if the wind turbine device has a large output, yaw control can be easily performed without requiring a particularly large driving force, and it is unnecessary to provide a drive system for yaw control in the wind turbine device as in the prior art. As a result, it is possible to suppress the increase in size and cost of the wind turbine device, and it is not necessary to provide a yaw control mechanism at the connection portion between the upper end of the long pillar and the heavy nacelle as in the prior art, so the connection due to excessive load The damage of the windmill device can be improved and the durability and reliability of the windmill device can be improved.
かかる発明において好ましくは、前記翼に作用する空気流(風)の風向きを計測して前記制御装置に入力する風向計を備え、前記制御装置は、予め設定された風向きに対する前記操向装置の操向方向の目標値と前記風向計からの風向きの計測値とを比較してこの比較結果に基づき前記操向装置を制御して、前記風車装置を前記浮体を介して前記風向き計測値に対応する方向に調整するように構成される。
このように構成すれば、風向計による風向きの計測値を用いて操向装置を制御するので、浮体及び風車装置を風向きに正確に追従して操向させることができ、浮体及び風車装置のヨー制御の制御精度を高めることができる。
Preferably, in this invention, an anemometer that measures the wind direction of the airflow (wind) acting on the blade and inputs the wind direction to the control device is provided, and the control device operates the steering device with respect to a preset wind direction. A target value in a direction and a measured value of the wind direction from the anemometer are compared, and the steering device is controlled based on the comparison result, so that the wind turbine device corresponds to the measured value of the wind direction through the floating body. Configured to adjust in direction.
According to this configuration, the steering device is controlled using the measurement value of the wind direction by the anemometer, so that the floating body and the windmill device can be steered accurately following the wind direction, and the yaw of the floating body and the windmill device can be controlled. The control accuracy of the control can be increased.
また、かかる発明において好ましくは、前記推進器は推進速度を制御する可変速の駆動装置を備え、前記制御装置は駆動装置の速度制御と前記風向きによる操向装置の操向制御とを併せ行うように構成される。
このように構成すれば、制御装置により、風向きの計測値を用いての操向制御と同時に複数の推進器の速度制御を行うことができて、複数の推進器の速度を自在に変化させることによって操向制御性をさらに向上できる。
In the invention, preferably, the propulsion device includes a variable speed drive device that controls a propulsion speed, and the control device performs both speed control of the drive device and steering control of the steering device based on the wind direction. Configured.
If comprised in this way, the speed control of several propulsion units can be performed simultaneously with the steering control using the measured value of a wind direction by a control apparatus, and the speed of several propulsion units can be changed freely The steering controllability can be further improved.
また本発明は、前記空気流による前記支柱の曲げ荷重を含む横方向荷重を抑制する方向の揚力を発生せしめる補助翼を前記支柱の空気流下流側に取り付け、前記支柱および補助翼の断面形状は前記空気流によって揚力を発生せしめるように翼状のプロフィールに形成されるとともに、該補助翼は前記支柱の空気流下流側に支柱の長手方向に沿って1個または複数個取り付けられ、該補助翼を取り付けた補助翼駆動軸を軸回りに可逆的に回動してその向きを変化せしめる補助翼駆動装置を設けたことを特徴とする。
また、かかる発明において、前記支柱に作用する空気流(風)の風向きを計測する風向計と、該風向計から前記風向きの計測値が入力され、前記風向きの計測値に従い前記補助翼駆動装置を介して前記補助翼の向きを制御する補助翼コントローラとを備える。
Further, according to the present invention , an auxiliary wing that generates lift in a direction that suppresses a lateral load including a bending load of the column due to the air flow is attached to the downstream side of the air flow of the column, and the cross-sectional shapes of the column and the auxiliary wing are The airflow is formed in a wing-like profile so as to generate lift, and one or a plurality of the auxiliary wings are attached to the downstream side of the airflow of the support along the longitudinal direction of the support. An auxiliary wing drive device is provided that reversibly rotates the attached auxiliary wing drive shaft around its axis and changes its orientation.
Further, in this invention, an anemometer for measuring a wind direction of an air flow (wind) acting on the column, and a measurement value of the wind direction is input from the anemometer, and the auxiliary blade driving device is controlled according to the measurement value of the wind direction. And an auxiliary wing controller for controlling the direction of the auxiliary wing.
かかる発明によれば、前記空気流による前記支柱の曲げ荷重を含む横方向荷重を抑制する方向の揚力を発生せしめる補助翼を前記支柱の空気流下流側に取り付け、前記支柱および補助翼の断面形状は前記空気流によって揚力を発生せしめるように翼状のプロフィールに形成され、支柱の空気流(風)下流側に補助翼を補助翼駆動軸を介して、1個または該支柱の長手方向に複数個取り付けて、風向計から空気流(風)の風向きの計測値を用いての補助翼コントローラの制御によって、該補助翼の向きを、前記空気流(風)によって支柱に作用する曲げ荷重を抑制する方向の揚力を発生せしめるように調整することにより、空気流(風)による支柱の曲げ荷重を含む横方向からの荷重を低減できる。さらに風車に作用する荷重は、係留力により支持しているため、想定外の横方向からの荷重に対してその荷重を小さくすることは、係留装置に作用する荷重、もしくは推進機に必要とされる出力も低減できる。
これにより、支柱の断面係数を小さくして支柱の重量を低減できるとともに、浮体全体を支持する係留装置の仕様を抑えることが可能となる。空気流(風)による支柱の抵抗を低減できて操向性能が向上する。
According to this invention, the auxiliary wing for generating lift in a direction to suppress the lateral load including the bending load of the column due to the airflow is attached to the downstream side of the column in the airflow, and the cross-sectional shapes of the column and the auxiliary wing Is formed in a wing-like profile so that lift is generated by the air flow, and one or a plurality of auxiliary wings are provided on the downstream side of the air flow (wind) of the support via the auxiliary wing drive shaft in the longitudinal direction of the support. Attaching and controlling the direction of the auxiliary wing by controlling the auxiliary wing controller using the measured value of the air flow (wind) from the anemometer, and suppressing the bending load acting on the column by the air flow (wind). By adjusting so as to generate lift in the direction, it is possible to reduce the load from the lateral direction including the bending load of the column due to the air flow (wind). Furthermore, since the load acting on the wind turbine is supported by the mooring force, it is necessary for the load acting on the mooring device or the propulsion unit to reduce the load with respect to the unexpected lateral load. Output can also be reduced.
Accordingly, the section modulus of the support can be reduced to reduce the weight of the support, and the specification of the mooring device that supports the entire floating body can be suppressed. Steering performance is improved by reducing the resistance of the strut due to airflow (wind).
かかる発明において、前記支柱の長手方向に複数個設けられた前記補助翼を、同一形状のプロフィールに形成することができる。
このように構成すれば、複数個の補助翼を同一形状のプロフィールに形成することにより、補助翼の製作コストを低減できる。
In this invention, a plurality of the auxiliary blades provided in the longitudinal direction of the support column can be formed in a profile having the same shape.
If comprised in this way, the manufacturing cost of an auxiliary wing can be reduced by forming several auxiliary wings in the profile of the same shape.
また、かかる発明において、前記支柱の長手方向に複数個設けられた前記補助翼を、各補助翼が異なる形状のプロフィールに形成することもできる。
このように構成すれば、補助翼の大きさを支柱の長手方向において変化させることにより、空気流(風)により補助翼に発生する揚力を調整して、支柱に作用する曲げ荷重、さらには係留力、もしくは推進機の出力を最小値に抑制可能となる。
Moreover, in this invention, the said auxiliary wing provided with two or more in the longitudinal direction of the said support | pillar can also form each auxiliary wing in the profile of a different shape.
With this configuration, by changing the size of the auxiliary wing in the longitudinal direction of the column, the lift generated on the auxiliary wing by the air flow (wind) is adjusted, and the bending load acting on the column, and further the mooring The force or the output of the propulsion device can be suppressed to the minimum value.
また本発明は、前記支柱は前記ナセルを上部に支持する上部側より下部側が前記空気流の下流に位置するように傾斜して設けられることを特徴とする。
かかる発明において、前記支柱を、鉛直線に対して直状に傾斜させるとともにその傾斜角を5°〜20°に形成するのが好ましい。
Further, the present invention is characterized in that the support column is provided so as to be inclined so that the lower side is located downstream of the air flow from the upper side supporting the nacelle at the upper side.
In this invention, it is preferable that the support column is inclined in a straight line with respect to the vertical line, and the inclination angle is 5 ° to 20 °.
かかる発明によれば、支柱を、上部側よりも下部側が空気流(風)の下流に位置するように鉛直線に対して傾斜させることにより、翼の撓みを傾斜による支柱との接触を柔軟性で回避できるとともに、浮体等からの鉛直振動を傾斜した支柱のばね作用による弾性支持によって減衰させ、該鉛直振動を低減することが可能となり、かかる鉛直振動によるナセル側の破損を回避できる。
また、翼に対して支柱が空気流(風)の下流側に傾斜して該翼から離れるようになっているので、翼の外径を大きくしても、翼の撓みによって翼先端部が支柱に接触することがなく、翼の外径を大きく構成することによる風車の大出力化が容易に可能となる。
According to such an invention, the support is tilted with respect to the vertical line so that the lower side is positioned downstream of the air flow (wind) rather than the upper side, thereby flexibly making the blade contact with the support due to the inclination. In addition, the vertical vibration from the floating body or the like can be attenuated by the elastic support by the spring action of the inclined column and the vertical vibration can be reduced, and damage on the nacelle side due to the vertical vibration can be avoided.
In addition, since the prop is inclined to the downstream side of the air flow (wind) with respect to the wing and is separated from the wing, even if the outer diameter of the wing is increased, the tip of the wing is supported by the deflection of the wing. Therefore, it is possible to easily increase the output of the wind turbine by making the outer diameter of the blade large.
また、かかる発明において、前記支柱を、高さ方向中間部が下流方向に湾曲した凹曲状支柱に構成することができる。
このように構成すれば、鉛直振動に対する曲げの柔軟性が大きくなって支柱の固有振動数が低くなり、支柱のばね作用による減衰効果が大きくなり、該鉛直振動のナセル側への伝達がさらに抑制される。
Moreover, in this invention, the said support | pillar can be comprised in the concave-curved support | pillar with the height direction intermediate part curved in the downstream direction.
With this configuration, the flexibility of bending with respect to vertical vibration is increased, the natural frequency of the column is lowered, the damping effect due to the spring action of the column is increased, and transmission of the vertical vibration to the nacelle side is further suppressed. Is done.
また、かかる発明において、前記支柱を、高さ方向中間部が上流方向に湾曲した凸曲状支柱に構成することもできる。
このように構成すれば、凹曲状支柱にくらべて鉛直振動に対する剛性が大きくなり、ナセル側が大重量であっても凸曲状支柱により強固に支持できるとともに、必要な固有振動数に応じた設定が可能となる。
Moreover, in this invention, the said support | pillar can also be comprised in the convex-curved support | pillar with the height direction intermediate part curved in the upstream direction.
If configured in this way, the rigidity against vertical vibration is increased compared to the concavely curved support column, and even if the nacelle side is heavy, it can be firmly supported by the convexly curved support column and set according to the required natural frequency. Is possible.
本発明によれば、操向装置によって複数の推進器を操向して洋上に浮上している浮体の向きを風向きに追従させてヨー制御を行うことが出来るので、翼の外径が大きくなって風車装置を大出力化しても、格別に大きな駆動力を必要とせずに容易にヨー制御を行うことができ、従来技術のように風車装置にヨー制御の駆動システムを設けることが不要となって風車装置の大型、高コスト化を抑制できるとともに、従来技術のように長尺の支柱の上端と大重量のナセルとの連結部にヨー制御機構を設ける必要がないので過大荷重による該連結部の破損を回避できて、風車装置の耐久性、信頼性が向上する。   According to the present invention, it is possible to perform yaw control by steering a plurality of propulsion devices with a steering device and causing the direction of the floating body floating on the ocean to follow the wind direction, so that the outer diameter of the wing increases. Therefore, even if the output of the windmill device is increased, yaw control can be easily performed without requiring a particularly large driving force, and it becomes unnecessary to provide a drive system for yaw control in the windmill device as in the prior art. Therefore, it is possible to suppress the increase in the size and cost of the windmill device, and it is not necessary to provide a yaw control mechanism at the connection portion between the upper end of the long pillar and the heavy nacelle as in the prior art. The damage and reliability of the windmill device can be improved.
また本発明によれば、支柱の空気流(風)下流側に補助翼を補助翼駆動軸を介して、1個または該支柱の長手方向に複数個取り付けて、補助翼駆動装置によって該補助翼の向きを、
風向計から空気流(風)の風向きの計測値を用いての補助翼コントローラの制御によって、前記空気流(風)によって支柱に作用する曲げ荷重を抑制する方向の揚力を発生せしめるように調整することにより、空気流(風)による支柱の曲げ荷重、および浮体の係留力、もしくは推進機の出力を低減できる。
これにより、支柱の断面係数を小さくして支柱の重量を低減できるとともに、空気流(風)による支柱の抵抗を低減できて操向性能が向上する。
Further, according to the present invention, one auxiliary blade or a plurality of auxiliary blades are attached in the longitudinal direction of the column via the auxiliary blade driving shaft on the downstream side of the air flow (wind) of the column, and the auxiliary blade is driven by the auxiliary blade driving device. The direction of
By adjusting the auxiliary wing controller using the measured value of the air flow (wind) from the anemometer, the lift is adjusted so as to generate a lift force in a direction to suppress the bending load acting on the support column by the air flow (wind). Thereby, the bending load of the support | pillar by an air flow (wind), the mooring force of a floating body, or the output of a propulsion device can be reduced.
Thereby, the section modulus of the support can be reduced to reduce the weight of the support, and the resistance of the support due to the air flow (wind) can be reduced to improve the steering performance.
また本発明によれば、支柱を、鉛直線に対して傾斜させることにより、翼の撓みを傾斜した支柱の柔軟性で吸収できるとともに、浮体等からの鉛直振動を傾斜した支柱のばね作用による弾性支持によって減衰させ、ナセル側に伝達されるのを抑制可能となり、かかる鉛直振動によるナセル側の破損を回避できる。
また、翼に対して支柱が空気流(風)の下流側に傾斜して該翼から離れるようになっているので、翼の外径を大きくしても、翼の撓みによって翼先端部が支柱に接触することがなく、翼の外径を大きく構成することによる風車の大出力化が容易に可能となる。
Further, according to the present invention, by tilting the support column with respect to the vertical line, the deflection of the wing can be absorbed by the flexibility of the inclined support column, and the vertical vibration from the floating body etc. can be absorbed by the spring action of the inclined support column. Attenuation by the support and transmission to the nacelle side can be suppressed, and damage on the nacelle side due to such vertical vibration can be avoided.
In addition, since the prop is inclined to the downstream side of the air flow (wind) with respect to the wing and is separated from the wing, even if the outer diameter of the wing is increased, the tip of the wing is supported by the deflection of the wing. Therefore, it is possible to easily increase the output of the wind turbine by making the outer diameter of the blade large.
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.
図1は本発明の第1実施例に係る洋上風車装置の全体構造を示す概略側面図である。図2は前記第1実施例における制御ブロック図である。図3は第2実施例を示す図1対応図である。図4は図3のZ部拡大図、図5は図3のA−A線断面図である。図6は第3実施例を示す風車装置の概略側面図、図7は第4実施例を示す風車装置の概略側面図である。   FIG. 1 is a schematic side view showing the overall structure of an offshore wind turbine apparatus according to a first embodiment of the present invention. FIG. 2 is a control block diagram in the first embodiment. FIG. 3 is a view corresponding to FIG. 1 showing the second embodiment. 4 is an enlarged view of a portion Z in FIG. 3, and FIG. 5 is a cross-sectional view taken along line AA in FIG. FIG. 6 is a schematic side view of a windmill device showing a third embodiment, and FIG. 7 is a schematic side view of the windmill device showing a fourth embodiment.
本発明の第1実施例を示す図1において、103は洋上(104は海面)に浮設された浮体で、該浮体103の基礎面には支柱1が立設されている。100は複数の翼101に作用する風力により回転力を発生させる風車、102は該風車100により回転駆動される発電機等の回転装置を収納したナセルである。該風車100の構造は公知であるので、詳細な構造説明は省略する。
前記支柱1の上部には前記風車100のナセル102が固定されている。この場合、前記支柱1の上部とナセル102との間には、従来の風車装置のようにヨー制御装置は介装されてなく、両者は直接固定されている。
In FIG. 1 showing the first embodiment of the present invention, reference numeral 103 denotes a floating body floated on the ocean (104 is the sea surface), and a column 1 is erected on the base surface of the floating body 103. Reference numeral 100 denotes a windmill that generates a rotational force by wind force acting on a plurality of blades 101, and reference numeral 102 denotes a nacelle that houses a rotating device such as a generator that is rotationally driven by the windmill 100. Since the structure of the windmill 100 is known, a detailed description of the structure is omitted.
A nacelle 102 of the windmill 100 is fixed to the upper portion of the support 1. In this case, the yaw control device is not interposed between the upper portion of the support column 1 and the nacelle 102 as in the conventional wind turbine device, and both are directly fixed.
前記支柱1は、前記ナセル102に連結される上部側よりも前記浮体103に取り付けられる下部側が空気流(風)の下流に位置するように鉛直線に対して一定の傾斜角αで直状に傾斜させて前記浮体103の基礎面上に立設されている。前記傾斜角αは後述する根拠から、5°〜20°が好適である。尚、この実施例では、前記支柱1は従来のものと同様に浮体103の基礎面に垂直に立設してもよい。   The support column 1 is linear with a constant inclination angle α with respect to the vertical line so that the lower side attached to the floating body 103 is located downstream of the air flow (wind) rather than the upper side connected to the nacelle 102. It is inclined and is erected on the base surface of the floating body 103. The inclination angle α is preferably 5 ° to 20 ° from the grounds described later. In this embodiment, the support column 1 may be erected perpendicularly to the base surface of the floating body 103 as in the prior art.
2は前記浮体103を推進する複数の推進器で、該浮体103の底部の外周寄りの4箇所(複数箇所であればよい)に取り付けられている。該推進器2は、推進器駆動モータ3に直結駆動されるプロペラ4の回転によって前記浮体103を推進させるようになっている。
5は推進器操向装置で、前記推進器2毎に設けられており、下部に前記推進器2が取り付けられている。そして、該推進器操向装置5を回転させることにより、前記推進器2の向きを変化させ、さらには浮体103の向きを変化させるようになっている。
7は前記翼101に作用する空気流(風)の風向きを計測する風向計である。6は推進器コントローラで、該風向計7から入力される風向き計測値により後述する演算を行って、前記推進器操向装置5及び推進器駆動モータ3を制御して、前記浮体103及び風車100の向きを前記風向きに追従して変化せしめるものである。
Reference numeral 2 denotes a plurality of propulsion devices for propelling the floating body 103, which are attached to four locations (a plurality of locations may be sufficient) near the outer periphery of the bottom of the floating body 103. The propulsion unit 2 propels the floating body 103 by the rotation of the propeller 4 that is directly connected to the propulsion unit drive motor 3.
Reference numeral 5 denotes a propulsion device steering device, which is provided for each of the propulsion devices 2, and the propulsion device 2 is attached to the lower portion. And the direction of the said propelling device 2 is changed by rotating this propelling device steering apparatus 5, Furthermore, the direction of the floating body 103 is changed.
Reference numeral 7 denotes an anemometer that measures the wind direction of an air flow (wind) acting on the blade 101. Reference numeral 6 denotes a propulsion unit controller, which performs an operation to be described later based on a wind direction measurement value input from the anemometer 7 to control the propulsion unit steering device 5 and the propulsion unit drive motor 3, thereby the floating body 103 and the windmill 100. Is changed to follow the wind direction.
次に、図2に基づきかかる第1実施例の動作を説明する。
前記風向計7からの、翼101への空気流(風)の風向きの計測値は推進器コントローラ6の風向算出部61に入力される。62は操向方向設定部で、翼101への空気流(風)の風向きと複数(この例では4個)の推進器2の操向方向との関係、即ち風向きに対する目標操向方向及び前記複数の推進器2における推進器駆動モータ3の回転数が設定されている。
前記風向算出部61においては、前記風向計7からの風向きの計測値と前記目標操向方向及びモータ回転数とを突き合わせて、風向きの計測値に対応する各推進器2の操向方向及び各推進器2におけるモータ回転数とを算出し、操向装置制御部64及びモータ回転制御部63に入力する。
Next, the operation of the first embodiment will be described with reference to FIG.
The measured value of the wind direction of the air flow (wind) to the blades 101 from the anemometer 7 is input to the wind direction calculation unit 61 of the propulsion device controller 6. A steering direction setting unit 62 is a relationship between the wind direction of the air flow (wind) to the blades 101 and the steering directions of a plurality of (four in this example) propellers 2, that is, the target steering direction with respect to the wind direction The rotation speed of the propulsion device drive motor 3 in the plurality of propulsion devices 2 is set.
In the wind direction calculation unit 61, the measured value of the wind direction from the anemometer 7 is matched with the target steering direction and the motor rotation number, and the steering direction and each of the propulsion devices 2 corresponding to the measured value of the wind direction are matched. The motor rotation number in the propulsion device 2 is calculated and input to the steering device control unit 64 and the motor rotation control unit 63.
操向装置制御部64においては、前記風向算出部61からの操向方向算出値つまり操向角度算出値に基づき各推進器2の現状操向方向からの修正操作量を求め、前記推進器操向装置5に出力する。またモータ回転制御部63においては、前記風向算出部61からのモータ回転数算出値に基づき各推進器2のモータ回転数の現状値からの修正量を求め、前記推進器駆動モータ3に出力する。
これにより、前記推進器操向装置5は各推進器2の操向方向を前記修正操作量だけ修正し、また各推進器駆動モータ3の回転数は前記回転数修正量だけ修正される。従って、各推進器2は前記風向きの計測値に対応する操向方向及びモータ回転数で運転されることとなり、前記浮体103は各推進器2の前記操作によって前記風向きに追従した方向に向きを制御され、風車100の向きは前記風向きに適応した向きに調整される。
The steering device control unit 64 obtains a correction operation amount from the current steering direction of each propulsion unit 2 based on the steering direction calculation value from the wind direction calculation unit 61, that is, the steering angle calculation value, and the propulsion unit control unit 64 Output to the direction device 5. Further, the motor rotation control unit 63 obtains a correction amount from the current value of the motor rotation number of each propulsion unit 2 based on the motor rotation number calculation value from the wind direction calculation unit 61 and outputs it to the propulsion unit drive motor 3. .
Thereby, the propulsion device steering device 5 corrects the steering direction of each propeller 2 by the correction operation amount, and the rotation speed of each propulsion device drive motor 3 is corrected by the rotation speed correction amount. Therefore, each propulsion unit 2 is operated with the steering direction and the motor rotation speed corresponding to the measurement value of the wind direction, and the floating body 103 is directed in the direction following the wind direction by the operation of each propulsion unit 2. Controlled, the direction of the windmill 100 is adjusted to a direction adapted to the wind direction.
かかる第1実施例によれば、前記浮体103の底部に複数個の推進器2を取り付けて、該推進器2によって浮体103及び風車100を一体的に推進可能に構成し、前記推進器2を推進器操向装置5によって操向して前記浮体103の向きを変化せしめるようにし、さらに推進器コントローラ6により翼101に作用する空気流(風)の風向きに追従して浮体103の向きを変化せしめるように制御することにより、浮体103及び該浮体103上に載置された風車装置全体を、風向きに追従したヨー制御を行うことができる。   According to the first embodiment, a plurality of propulsion devices 2 are attached to the bottom of the floating body 103 so that the floating body 103 and the windmill 100 can be integrally propelled by the propulsion device 2. The direction of the floating body 103 is changed by steering by the propelling device steering device 5, and the direction of the floating body 103 is changed by following the wind direction of the air flow (wind) acting on the blade 101 by the propelling device controller 6. By controlling so that the floating body 103 can be damped, yaw control can be performed in which the floating body 103 and the entire windmill device placed on the floating body 103 follow the wind direction.
従ってかかる第1実施例によれば、推進器操向装置5によって複数の推進器2を操向して洋上に浮上している浮体103の向きを風向きに追従させてヨー制御を行うことが出来るので、翼101の外径が大きくなって風車100を大出力化しても、格別に大きな駆動力を必要とせずに容易にヨー制御を行うことができ、従来技術のように風車100にヨー制御の駆動システムを設けることが不要となる。
これにより、風車100の大型、高コスト化を抑制できるとともに、従来技術のように長尺の支柱の上端と大重量のナセルとの連結部にヨー制御機構を設ける必要がないので、過大荷重による該連結部の破損を回避できる。
Therefore, according to the first embodiment, yaw control can be performed by manipulating the plurality of propulsion devices 2 by the propulsion device steering device 5 so that the direction of the floating body 103 floating on the ocean follows the wind direction. Therefore, even if the outer diameter of the blade 101 is increased and the wind turbine 100 is increased in output, yaw control can be easily performed without requiring a particularly large driving force, and the wind turbine 100 can be controlled by yaw as in the prior art. It becomes unnecessary to provide the drive system.
As a result, the wind turbine 100 can be prevented from becoming large and expensive, and it is not necessary to provide a yaw control mechanism at the connecting portion between the upper end of the long strut and the heavy nacelle as in the prior art. Breakage of the connecting portion can be avoided.
また、風向計7による風向きの計測値を用いて推進器操向装置5を制御するので、浮体103及び風車100を風向きに正確に追従して操向させることができ、該浮体103及び風車100のヨー制御の制御精度を高めることができる。
さらには、前記推進器コントローラ6により、風向きの計測値を用いての操向制御と同時に複数の推進器2のモータ回転数制御を行うことができるので、複数の推進器2の速度を自在に変化させることによって操向制御性のさらなる向上が実現できる。
Further, since the propulsion device steering device 5 is controlled using the measurement value of the wind direction by the anemometer 7, the floating body 103 and the windmill 100 can be steered accurately following the wind direction, and the floating body 103 and the windmill 100 can be steered. The control accuracy of yaw control can be improved.
Furthermore, since the propulsion unit controller 6 can perform the motor rotation speed control of the plurality of propulsion units 2 simultaneously with the steering control using the measurement value of the wind direction, the speed of the plurality of propulsion units 2 can be freely set. Further improvement of steering controllability can be realized by changing the distance.
図3ないし図6に示される第2実施例において、前記支柱1は、前記ナセル102に連結される上部側よりも前記浮体103に取り付けられる下部側が空気流(風)の下流に位置するように,上流面1aが鉛直線に対して一定の傾斜角αになるように、該上流面1a及び下流面1bを直状に傾斜させて前記浮体103の基礎面上に立設されている。前記傾斜角αは後述する根拠から、5°〜20°が好適である。
前記傾斜角αが5°未満では、翼101の撓みが大きくなった際に翼101と支柱1とが干渉する恐れがあり、また前記傾斜角αが20°を超えると支柱1に傾斜による曲げが発生して該支柱1の支持剛性が低下する。
前記のように、支柱1を、上部側よりも下部側が空気流(風)の下流に位置するように鉛直線に対して傾斜角αで直状に傾斜させることにより、翼101の撓みを支柱1の傾斜による該支柱1との接触を柔軟性で回避できるとともに、浮体103からの鉛直振動を傾斜した支柱1のばね作用による弾性支持によって減衰させ、該鉛直振動による動揺を吸収することが可能となり、かかる鉛直振動によるナセル102側の破損を回避できる。
また、翼101に対して支柱1が空気流(風)の下流側に傾斜して該翼101から離れるようになっているので、翼101の外径を大きくしても、該翼101の撓みによって翼先端部が支柱1に接触することがなく、翼101を大きく構成することによる風車100の高出力化が容易に可能となる。
In the second embodiment shown in FIG. 3 to FIG. 6, the support column 1 is arranged such that the lower side attached to the floating body 103 is located downstream of the air flow (wind) rather than the upper side connected to the nacelle 102. The upstream surface 1a and the downstream surface 1b are inclined in a straight line so that the upstream surface 1a has a constant inclination angle α with respect to the vertical line, and is erected on the base surface of the floating body 103. The inclination angle α is preferably 5 ° to 20 ° from the grounds described later.
If the inclination angle α is less than 5 °, the blade 101 and the support 1 may interfere with each other when the deflection of the blade 101 is increased. If the inclination angle α exceeds 20 °, the support 1 may be bent due to the inclination. Occurs and the support rigidity of the support column 1 is lowered.
As described above, the strut 1 is inclined straight at an inclination angle α with respect to the vertical line so that the lower side is positioned downstream of the air flow (wind) rather than the upper side, so that the deflection of the blade 101 is reduced. It is possible to flexibly avoid contact with the support column 1 due to the inclination of 1 and to attenuate the vertical vibration from the floating body 103 by the elastic support by the spring action of the inclined support column 1 to absorb the vibration caused by the vertical vibration. Thus, damage on the nacelle 102 side due to such vertical vibration can be avoided.
Further, since the support column 1 is inclined to the downstream side of the airflow (wind) with respect to the blade 101 so as to be separated from the blade 101, even if the outer diameter of the blade 101 is increased, the deflection of the blade 101 is increased. As a result, the tip of the blade does not come into contact with the support 1, and it is possible to easily increase the output of the wind turbine 100 by making the blade 101 large.
11は補助翼で、前記支柱1に該支柱1の長手方向に沿って3個(1個または複数個でよい)設けられている。該補助翼11は、前記支柱1の空気流(風)下流側に該支柱1と平行に延設された補助翼駆動軸11に固定されている。該支柱1及び補助翼11の断面形状は、図5に示されるように、空気流によって揚力Fを発生せしめるような翼状のプロフィール、つまり空気流(風)による前記支柱1の曲げ荷重を含む横方向荷重を抑制する方向の揚力Fを発生せしめるようなプロフィールに形成されている。
また、前記補助翼11は、前記補助翼駆動軸12の回転によって該補助翼駆動軸12廻りに回動角θにて可逆的に回動されてその向きを変化可能に構成されている。12aは前記補助翼駆動軸12の上部軸受で、該上部軸受12aにより該補助翼駆動軸12の上部を支柱1に回転自在に支持している。
Reference numeral 11 denotes an auxiliary wing, which is provided on the support column 1 along the longitudinal direction of the support column 1 (one or more may be provided). The auxiliary wing 11 is fixed to an auxiliary wing drive shaft 11 extending in parallel with the support column 1 on the downstream side of the air flow (wind) of the support column 1. As shown in FIG. 5, the cross-sectional shapes of the support column 1 and the auxiliary wings 11 include a wing-like profile that generates lift F by an air flow, that is, a lateral load including bending load of the support column 1 due to an air flow (wind). It is formed in a profile that generates a lift F in a direction to suppress the directional load.
Further, the auxiliary wing 11 is configured to be reversibly rotated around the auxiliary wing drive shaft 12 by a rotation angle θ by the rotation of the auxiliary wing drive shaft 12 so that the direction thereof can be changed. Reference numeral 12a denotes an upper bearing of the auxiliary blade drive shaft 12, and the upper bearing 12a rotatably supports the upper portion of the auxiliary blade drive shaft 12 on the support column 1.
図4は前記補助翼駆動軸12の駆動部及び下部支持構造を示し、23は前記補助翼駆動軸12の下部を前記支柱1に回転自在に支持する下部軸受である。21は前記補助翼駆動軸12を回転駆動する補助翼駆動モータで可逆式のステッピングモータにて構成される。22は歯車減速区装置であり、前記駆動モータ21の可逆回動を該歯車減速区装置22により減速して前記補助翼駆動軸12に伝達するようになっている。   FIG. 4 shows a drive unit and a lower support structure of the auxiliary blade drive shaft 12, and reference numeral 23 denotes a lower bearing that rotatably supports the lower portion of the auxiliary blade drive shaft 12 on the column 1. Reference numeral 21 denotes an auxiliary blade drive motor that rotationally drives the auxiliary blade drive shaft 12 and is configured by a reversible stepping motor. Reference numeral 22 denotes a gear reduction section device, and the reversible rotation of the drive motor 21 is decelerated by the gear reduction section device 22 and transmitted to the auxiliary blade drive shaft 12.
7は前記翼101に作用する空気流(風)の風向きを計測する風向計である。10は補助翼コントローラで、前記風向計7から前記風向きの計測値が入力され、風向きの計測値に従い補助翼駆動装置を構成する前記補助翼駆動モータ21によって前記補助翼11の向きを制御するものである。
即ち、前記風向計7により空気流(風)の風向きの計測値が補助翼コントローラ10に入力されると、該補助翼コントローラ10においては、前記風向きに対応する補助翼駆動軸12及び補助翼11の回動角θを算出して、前記補助翼駆動モータ21を前記補助翼駆動軸12及び補助翼11が該回動角θになるように、図5の鎖線位置まで駆動せしめる。
これにより、例えば図5のように、空気流が支柱1の斜め下方から入る場合には前記補助翼11の鎖線位置までの該回動角θの駆動によって、前記補助翼11の図5上部側の空気流速の低下による揚力Fが発生し、前記支柱1の空気流による曲げ荷重を含む横方向荷重を一定量キャンセルする。
Reference numeral 7 denotes an anemometer that measures the wind direction of an air flow (wind) acting on the blade 101. Reference numeral 10 denotes an auxiliary wing controller that receives the measurement value of the wind direction from the anemometer 7 and controls the direction of the auxiliary wing 11 by the auxiliary wing drive motor 21 constituting the auxiliary wing drive device according to the measurement value of the wind direction. It is.
That is, when the wind direction measurement value of the airflow (wind) is input to the auxiliary blade controller 10 by the anemometer 7, the auxiliary blade controller 10 uses the auxiliary blade drive shaft 12 and the auxiliary blade 11 corresponding to the wind direction. And the auxiliary wing drive motor 21 is driven to the position of the chain line in FIG. 5 so that the auxiliary wing drive shaft 12 and the auxiliary wing 11 are at the rotation angle θ.
Accordingly, for example, as shown in FIG. 5, when the air flow enters obliquely below the support column 1, the upper side of the auxiliary wing 11 in FIG. 5 is driven by the rotation angle θ up to the chain line position of the auxiliary wing 11. Lifting force F is generated due to a decrease in the air flow velocity, and the lateral load including the bending load due to the air flow of the column 1 is canceled by a certain amount.
従って、かかる第2実施例によれば、支柱1の空気流(風)下流側に補助翼11を補助翼駆動軸12を介して、1個または該支柱1の長手方向に複数個取り付けて、風向計7から空気流(風)の風向きの計測値を用いての補助翼コントローラ10の制御によって、該補助翼11の向きを、前記空気流(風)によって支柱1に作用する曲げ荷重を含む横方向荷重を抑制する方向の揚力Fを発生せしめるように調整することにより、空気流(風)による支柱1の曲げ荷重を含む横方向荷重を低減できることとなる。
これにより、空気流(風)による支柱1の抵抗を低減できて操向性能が向上するとともに、支柱1の曲げ応力を低減、係留力の低減、推進出力の低減が可能となる。
Therefore, according to the second embodiment, one or a plurality of auxiliary blades 11 are attached to the downstream side of the airflow (wind) of the support column 1 via the auxiliary blade drive shaft 12 in the longitudinal direction of the support column 1, The direction of the auxiliary wing 11 includes a bending load acting on the support column 1 by the air flow (wind) by the control of the auxiliary wing controller 10 using the measured value of the air direction (wind) from the anemometer 7. By adjusting so as to generate the lift F in the direction to suppress the lateral load, the lateral load including the bending load of the column 1 due to the air flow (wind) can be reduced.
Thereby, the resistance of the support column 1 due to the air flow (wind) can be reduced and the steering performance is improved, and the bending stress of the support column 1 can be reduced, the mooring force can be reduced, and the propulsion output can be reduced.
前記第2実施例において、前記支柱1の長手方向に複数個設けられた前記補助翼11を、同一形状のプロフィールに形成すれば、複数個の補助翼11を同一部材で構成でき、該補助翼11の製作コストを低減できる。
また、複数個の前記補助翼11を、各補助翼11が異なる形状のプロフィールに形成すれば、該補助翼11の大きさを支柱1の長手方向において変化させることにより、空気流(風)により補助翼11に発生する揚力Fを調整して、支柱1に作用する曲げ荷重を含む横方向荷重を最小値に抑制可能となる。
In the second embodiment, if a plurality of the auxiliary wings 11 provided in the longitudinal direction of the support column 1 are formed in the same profile, the plurality of auxiliary wings 11 can be constituted by the same member. 11 production costs can be reduced.
Further, when the plurality of auxiliary blades 11 are formed in profiles having different shapes, the size of the auxiliary blades 11 is changed in the longitudinal direction of the support column 1, thereby causing an air flow (wind). By adjusting the lift F generated in the auxiliary wing 11, the lateral load including the bending load acting on the support 1 can be suppressed to the minimum value.
尚、第2実施例においては、2は前記浮体103を推進する複数の推進器で、該浮体103の底部の外周寄りの4箇所(複数箇所であればよい)に取り付けられている。該推進器2は、推進器駆動モータ3に直結駆動されるプロペラ4の回転によって前記浮体103を推進させるようになっている。
5は推進器操向装置で、前記推進器2毎に設けられており、下部に前記推進器2が取り付けられている。そして、該推進器操向装置5を回転させることにより、前記推進器2の向きを変化させ、さらには浮体103の向きを変化させるようになっている。
以上に示す推進器2及び推進器操向装置5の構成は、前記第1実施例と同様である。
In the second embodiment, reference numeral 2 denotes a plurality of propulsion devices for propelling the floating body 103, which are attached to four locations (may be a plurality of locations) near the outer periphery of the bottom of the floating body 103. The propulsion unit 2 propels the floating body 103 by the rotation of the propeller 4 that is directly connected to the propulsion unit drive motor 3.
Reference numeral 5 denotes a propulsion device steering device, which is provided for each of the propulsion devices 2, and the propulsion device 2 is attached to the lower portion. And the direction of the said propelling device 2 is changed by rotating this propelling device steering apparatus 5, Furthermore, the direction of the floating body 103 is changed.
The configurations of the propulsion device 2 and the propelling device steering device 5 described above are the same as those in the first embodiment.
図6に示される第3実施例においては、前記支柱1を、高さ方向中間部の上流面1a及び下流面1bが空気流の下流方向に湾曲した(上流面1aの上部と下部との間がAだけずれた)上流側に凹曲状の支柱に構成している。
このように構成すれば、鉛直振動に対する曲げの柔軟性が大きくなって鉛直方向の動揺を吸収でき、前記第2実施例よりも該鉛直振動のナセル102側への伝達がさらに抑制される。
In the third embodiment shown in FIG. 6, the support column 1 has the upstream surface 1a and the downstream surface 1b at the intermediate portion in the height direction curved in the downstream direction of the air flow (between the upper and lower portions of the upstream surface 1a). It is configured as a concavely curved support column on the upstream side.
If comprised in this way, the bending | flexion flexibility with respect to a vertical vibration becomes large, can absorb the fluctuation of a perpendicular direction, and the transmission to the nacelle 102 side of this vertical vibration is further suppressed rather than the said 2nd Example.
図7に示される第4実施例においては、前記支柱1を、高さ方向中間部の上流面1a及び下流面1bが空気流の上流方向に湾曲した(上流面1aの上部と下部との間がAだけずれた)上流側に凸曲状の支柱に構成している。
このように構成すれば、鉛直振動に対する剛性が大きくなり、ナセル102側が大重量であっても凸曲状支柱により強固に支持できる。
図6〜7において、前記第1〜2実施例と同様の部材は同一の符号で示す。
尚、前記第2〜第4実施例は陸上設置の風車装置にも適用できる。
In the fourth embodiment shown in FIG. 7, the support column 1 has an upstream surface 1a and a downstream surface 1b in the middle in the height direction curved in the upstream direction of the air flow (between the upper and lower portions of the upstream surface 1a). Is shifted by A) and is formed as a convex support column on the upstream side.
If comprised in this way, the rigidity with respect to a vertical vibration will become large, and even if the nacelle 102 side is heavy weight, it can be supported firmly by a convex-curved support | pillar.
6 to 7, the same members as those in the first and second embodiments are denoted by the same reference numerals.
The second to fourth embodiments can be applied to wind turbine apparatuses installed on land.
本発明の第1実施例に係る洋上風車装置の全体構造を示す概略側面図である。1 is a schematic side view showing an overall structure of an offshore wind turbine apparatus according to a first embodiment of the present invention. 前記第1実施例における制御ブロック図であるFIG. 3 is a control block diagram in the first embodiment. 第2実施例を示す図1対応図である。It is a figure corresponding to FIG. 1 which shows 2nd Example. 図3のZ部拡大図である。It is the Z section enlarged view of FIG. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. 第3実施例を示す風車装置の概略側面図である。It is a schematic side view of the windmill apparatus which shows 3rd Example. 第4実施例を示す風車装置の概略側面図である。It is a schematic side view of the windmill apparatus which shows 4th Example.
1 支柱
2 推進器
3 推進器駆動モータ
5 推進器操向装置
6 推進器コントローラ
7 風向計
10 補助翼コントローラ
11 補助翼
12 補助翼駆動軸
21 補助翼駆動モータ
100 風車
101 翼
102 ナセル
103 浮体
DESCRIPTION OF SYMBOLS 1 support | pillar 2 propulsion device 3 propulsion device drive motor 5 propulsion device steering apparatus 6 propulsion device controller 7 anemometer 10 auxiliary wing controller 11 auxiliary wing 12 auxiliary wing drive shaft 21 auxiliary wing drive motor 100 wind turbine 101 wing 102 nacelle 103 floating body

Claims (9)

  1. 洋上に浮設された浮体上に支柱を立設し、複数の翼に作用する風力により回転力を発生させる風車及び該風車により回転駆動される発電機等の回転装置を収納したナセルを前記支柱の上部に支持するように構成された風車装置において、
    前記浮体の底部に取り付けられて該浮体を推進させる推進器と、該推進器を操向して前記浮体の向きを変化せしめる操向装置と、前記翼に作用する空気流の風向きにより前記操向装置を制御する制御装置とを備え、前記制御装置は前記風向きにより操向装置を制御して前記浮体の向きを前記風向きに追従して変化せしめるように構成されてなるとともに、
    前記支柱は前記ナセルを上部に支持する上部側より下部側が前記空気流の下流に位置するように傾斜して設けられ、さらに前記空気流による前記支柱の曲げ荷重を含む横方向荷重を抑制する方向の揚力を発生せしめる補助翼を前記支柱の空気流下流側に取り付け、前記支柱および補助翼の断面形状は前記空気流によって揚力を発生せしめるように翼状のプロフィールに形成されるとともに、該補助翼は前記支柱の空気流下流側に支柱の長手方向に沿って1個または複数個取り付けられ、該補助翼を取り付けた補助翼駆動軸を軸回りに可逆的に回動してその向きを変化せしめる補助翼駆動装置を設けたことを特徴とする風車装置。
    A prop is installed on a floating body that is floated on the ocean, and a nacelle that houses a wind turbine that generates rotational force by wind power acting on a plurality of blades and a rotating device such as a generator that is driven to rotate by the wind turbine. In the wind turbine device configured to support the upper part of the
    The propulsion device attached to the bottom of the floating body to propel the floating body, the steering device that steers the propulsion device to change the direction of the floating body, and the steering by the wind direction of the airflow acting on the blades A control device for controlling the device, the control device is configured to control the steering device according to the wind direction to change the direction of the floating body following the wind direction, and
    The support column is provided so as to be inclined so that the lower side is positioned downstream of the air flow from the upper side supporting the nacelle on the upper side, and further , a direction in which a lateral load including a bending load of the support column due to the air flow is suppressed. An auxiliary wing that generates a lift is attached to the downstream side of the airflow of the column, and the cross-sectional shape of the column and the auxiliary wing is formed into a wing-like profile so as to generate a lift by the airflow. One or more attached along the longitudinal direction of the support column on the downstream side of the air flow of the support column, and the auxiliary blade drive shaft to which the auxiliary blade is attached rotates reversibly around the axis to change its direction. A windmill device provided with a blade driving device.
  2. 前記翼に作用する空気流の風向きを計測して前記制御装置に入力する風向計を備え、前記制御装置は、予め設定された風向きに対する前記操向装置の操向方向の目標値と前記風向計からの風向きの計測値とを比較してこの比較結果に基づき前記操向装置を制御して、前記風車を前記浮体を介して前記風向き計測値に対応する方向に調整するように構成されてなることを特徴とする請求項1記載の風車装置。   An anemometer that measures a wind direction of an air flow acting on the blade and inputs the measured wind direction to the control device, the control device includes a target value of the steering direction of the steering device with respect to a preset wind direction and the anemometer It is configured to adjust the wind turbine in a direction corresponding to the wind direction measurement value via the floating body by comparing the measurement value of the wind direction from the wind and controlling the steering device based on the comparison result. The wind turbine apparatus according to claim 1.
  3. 前記推進器は推進速度を制御する可変速の駆動装置を備え、前記制御装置は駆動装置の速度制御と前記風向きによる操向装置の操向制御とを併せ行うように構成されてなることを特徴とする請求項1記載の風車装置。   The propulsion device includes a variable speed driving device that controls a propulsion speed, and the control device is configured to perform both speed control of the driving device and steering control of the steering device based on the wind direction. The windmill device according to claim 1.
  4. 前記支柱の長手方向に複数個設けられた前記補助翼は、同一形状のプロフィールに形成されたことを特徴とする請求項3記載の風車装置。 The wind turbine apparatus according to claim 3, wherein a plurality of the auxiliary blades provided in the longitudinal direction of the support are formed in a profile having the same shape .
  5. 前記支柱の長手方向に複数個設けられた前記補助翼は、各補助翼が異なる形状のプロフィールに形成されたことを特徴とする請求項3記載の風車装置。 The wind turbine apparatus according to claim 3, wherein a plurality of the auxiliary blades provided in the longitudinal direction of the support column are formed in profiles having different shapes .
  6. 前記支柱に作用する空気流の風向きを計測する風向計と、該風向計から前記風向きの計測値が入力され、前記風向きの計測値に従い前記補助翼駆動装置を介して前記補助翼の向きを制御する補助翼コントローラとを備えたことを特徴とする請求項1記載の風車装置。 An anemometer that measures the wind direction of the airflow acting on the support, and the wind direction measurement value is input from the anemometer, and the direction of the auxiliary blade is controlled via the auxiliary blade driving device according to the wind direction measurement value The wind turbine apparatus according to claim 1, further comprising an auxiliary wing controller .
  7. 前記支柱を、鉛直線に対して直状に傾斜させるとともにその傾斜角を5°〜20°に形成したことを特徴とする請求項1記載の風車装置。 The wind turbine apparatus according to claim 1, wherein the support column is inclined in a straight line with respect to a vertical line, and an inclination angle is set to 5 ° to 20 ° .
  8. 前記支柱を、高さ方向中間部が下流方向に湾曲した凹曲状支柱に構成したことを特徴とする請求項1記載の風車装置。 The wind turbine apparatus according to claim 1, wherein the strut is configured as a concavely-curved strut whose middle portion in the height direction is curved in the downstream direction .
  9. 前記支柱を、高さ方向中間部が上流方向に湾曲した凸曲状支柱に構成したことを特徴とする請求項1記載の風車装置。 The wind turbine apparatus according to claim 1, wherein the strut is configured as a convexly-curved strut whose middle portion in the height direction is curved in the upstream direction .
JP2004080612A 2004-03-19 2004-03-19 Windmill equipment Expired - Fee Related JP4638163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004080612A JP4638163B2 (en) 2004-03-19 2004-03-19 Windmill equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004080612A JP4638163B2 (en) 2004-03-19 2004-03-19 Windmill equipment

Publications (2)

Publication Number Publication Date
JP2005264865A JP2005264865A (en) 2005-09-29
JP4638163B2 true JP4638163B2 (en) 2011-02-23

Family

ID=35089678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080612A Expired - Fee Related JP4638163B2 (en) 2004-03-19 2004-03-19 Windmill equipment

Country Status (1)

Country Link
JP (1) JP4638163B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101591866B1 (en) * 2014-11-28 2016-02-05 한국해양과학기술원 Floating offshore power generation plant
KR101591861B1 (en) * 2015-04-30 2016-02-05 한국해양과학기술원 Floating offshore power generation plant

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2442719A (en) * 2006-10-10 2008-04-16 Iti Scotland Ltd Wave and wind power generation system
JP4883705B2 (en) * 2007-08-09 2012-02-22 独立行政法人海上技術安全研究所 Mobile offshore wind power generation facility
JP4949970B2 (en) * 2007-08-20 2012-06-13 俊昭 太田 Wind power generator
NO327871B1 (en) * 2007-11-19 2009-10-12 Windsea As Floating wind power device
JP4100520B1 (en) * 2007-12-28 2008-06-11 川崎重工業株式会社 Upwind type windmill and its evacuation operation method
EP2221474A1 (en) * 2009-02-20 2010-08-25 XEMC Darwind B.V. Offshore wind park
WO2010109529A1 (en) * 2009-03-26 2010-09-30 川崎重工業株式会社 Upwind type wind wheel
DE102010040887A1 (en) * 2010-09-16 2012-03-22 Jürgen Clement Floating device for supporting tower, particularly tower of wind turbine, in water, has planar structure for stabilizing device on water surface, where tower is supported through planner structure
KR101278362B1 (en) * 2011-11-10 2013-06-25 현대중공업 주식회사 Drill ship having wind turbine
JP6463028B2 (en) * 2013-08-01 2019-01-30 国立研究開発法人 海上・港湾・航空技術研究所 Load / stress monitoring method for floating facilities and load / stress monitoring system for floating facilities
CN104816797B (en) * 2015-05-29 2019-03-26 刘莹 A kind of offshore wind turbine and its installation method
DE102016110290A1 (en) 2016-06-03 2017-12-07 Aerodyn Engineering Gmbh Floating wind turbine with a plurality of energy conversion units

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226395A (en) * 1997-02-17 1998-08-25 Nissan Motor Co Ltd Position control device for ship
DE19711869A1 (en) * 1997-03-21 1998-09-24 Silke Richert Wind power plant with rotors
JP2001509565A (en) * 1997-07-07 2001-07-24 ラゲルウェイ・ウィンドタービン・ベー・フェー Artificial island with wind turbine
JP2001260989A (en) * 2000-03-14 2001-09-26 Ishikawajima Harima Heavy Ind Co Ltd Offshore position holding device for ship and its method
JP2001526357A (en) * 1997-12-08 2001-12-18 シーメンス アクチエンゲゼルシヤフト Wind power generation facility and method for cooling generator of wind power generation facility
JP2002068086A (en) * 2000-08-31 2002-03-08 Kawasaki Heavy Ind Ltd Steering gear of pod-type propeller
JP2002213344A (en) * 2001-01-15 2002-07-31 Guressen Japan:Kk Agricultural and marine product cultivating method by agricultural and marine product cultivating device loaded with wind power generator
JP2003049761A (en) * 2001-08-02 2003-02-21 Kanki Kenzo Support shaft and wind power generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226395A (en) * 1997-02-17 1998-08-25 Nissan Motor Co Ltd Position control device for ship
DE19711869A1 (en) * 1997-03-21 1998-09-24 Silke Richert Wind power plant with rotors
JP2001509565A (en) * 1997-07-07 2001-07-24 ラゲルウェイ・ウィンドタービン・ベー・フェー Artificial island with wind turbine
JP2001526357A (en) * 1997-12-08 2001-12-18 シーメンス アクチエンゲゼルシヤフト Wind power generation facility and method for cooling generator of wind power generation facility
JP2001260989A (en) * 2000-03-14 2001-09-26 Ishikawajima Harima Heavy Ind Co Ltd Offshore position holding device for ship and its method
JP2002068086A (en) * 2000-08-31 2002-03-08 Kawasaki Heavy Ind Ltd Steering gear of pod-type propeller
JP2002213344A (en) * 2001-01-15 2002-07-31 Guressen Japan:Kk Agricultural and marine product cultivating method by agricultural and marine product cultivating device loaded with wind power generator
JP2003049761A (en) * 2001-08-02 2003-02-21 Kanki Kenzo Support shaft and wind power generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101591866B1 (en) * 2014-11-28 2016-02-05 한국해양과학기술원 Floating offshore power generation plant
KR101591861B1 (en) * 2015-04-30 2016-02-05 한국해양과학기술원 Floating offshore power generation plant

Also Published As

Publication number Publication date
JP2005264865A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4638163B2 (en) Windmill equipment
JP5760133B2 (en) Column-stabilized offshore platform with water entrapment plate and asymmetric mooring system for offshore wind turbine support
KR20110118096A (en) Tilt adjustment system
ES2574653T3 (en) Turbine and compressor using a rotor design with leading edge with tubers
EP1618301B1 (en) Wind power station
US7686583B2 (en) Cyclical wave energy converter
EP2472105A2 (en) Wind turbine - floating platform assembly and method for orienting said assembly
PT2655877E (en) Floating offshore wind turbine with a system of active stabilisation of the inclination of the nacelle
JP6810794B2 (en) Floating wind turbine with multiple energy conversion units
JP3766845B2 (en) Wind power generator
KR101428412B1 (en) Wind power system
KR101549308B1 (en) Partial pitch wind turbine with floating foundation
JP5185295B2 (en) Wind power plant and operation method thereof
KR101267853B1 (en) Vertical axis turbine
JP2012521515A (en) Rotor for power generators, especially wind turbines
NL1029060C2 (en) Wind turbine, has rotor support construction connected to mast via ball bearing with convex and concave parts
KR20190071779A (en) Duct type wind turbine and support platform
US20200355161A1 (en) Floating offshore wind power plant having a vertical rotor and modular wind farm comprising a plurality of such wind power plants
JPWO2017009943A1 (en) Downwind type wind turbine generator and control method for downwind wind turbine generator
JPH11270456A (en) Lightweight wind power generator
US20210062788A1 (en) Ducted wind turbine and support platform
JP6643615B2 (en) Wind turbine generator teeter angle controller
EP3712428A1 (en) Stabilized horizontal-axis wind turbine
JP2006194198A (en) Power generation device
DE102012000135A1 (en) Wind turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees