WO2016147245A1 - Floating wind power generation system and floating combined power generation system - Google Patents

Floating wind power generation system and floating combined power generation system Download PDF

Info

Publication number
WO2016147245A1
WO2016147245A1 PCT/JP2015/057431 JP2015057431W WO2016147245A1 WO 2016147245 A1 WO2016147245 A1 WO 2016147245A1 JP 2015057431 W JP2015057431 W JP 2015057431W WO 2016147245 A1 WO2016147245 A1 WO 2016147245A1
Authority
WO
WIPO (PCT)
Prior art keywords
windmill
floating body
power generation
generation system
water
Prior art date
Application number
PCT/JP2015/057431
Other languages
French (fr)
Japanese (ja)
Inventor
向井 寛
茂久 舩橋
守 木村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/057431 priority Critical patent/WO2016147245A1/en
Publication of WO2016147245A1 publication Critical patent/WO2016147245A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/048Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull with hull extending principally vertically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B2001/044Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull with a small waterline area compared to total displacement, e.g. of semi-submersible type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to a wind power generation facility, and more particularly to suppression of vibration and inclination of a wind power generation facility installed on a floating body moored offshore or in a river.
  • Patent Document 1 discloses a “wind power generator equipped with a pitch angle control mechanism for controlling the pitch angle of a wind turbine blade based on a blade pitch angle command”.
  • vibration can be suppressed by capturing vibration from the nacelle acceleration information and performing feedback control on the blade pitch angle.
  • Patent Document 2 discloses “a method for reducing vibration of an offshore wind turbine including one or more underwater propulsion devices”.
  • the vibration of the windmill is measured, and based on the result, the propulsion device provided in the floating body can be driven to suppress the vibration.
  • Patent Document 1 the initial vibration generated in the windmill can be suppressed, but the energy used for vibration suppression is minute, and it is difficult to suppress large vibrations that have developed to some extent and the inclination of the floating body.
  • Patent Document 2 the problem of vibration and inclination can be solved by increasing the propulsive force, but energy for obtaining the propulsive force is required.
  • an object of the present invention is to provide a floating wind power generation system with high power generation efficiency by effectively suppressing vibration and inclination of the floating body and the windmill in a wind power generation facility installed on a floating body moored offshore or in a river. There is.
  • Another object of the present invention is to provide a combined power generation system with high power generation efficiency by effectively suppressing vibration and inclination of a floating body and a windmill in a wind power generation facility installed on a floating body moored offshore or in a river. It is to provide.
  • the present invention provides a floating body moored offshore or in a river by a mooring body, a windmill installed on the floating body and generating power by receiving wind, and the state of the floating body or the windmill.
  • a floating wind power generation system with high power generation efficiency can be realized by effectively suppressing the vibration and inclination of the floating body and the windmill.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure (diagonal projection) which shows the whole outline
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure (diagonal projection) which shows the whole outline
  • FIG. 1 shows an overall outline of the surface wind power generation system according to the present embodiment as viewed from an oblique direction.
  • FIG. 2 shows an overall overview of the surface wind power generation system of this embodiment as viewed from the front.
  • 3 and 4 show a part of the underwater portion of the surface wind power generation system of this embodiment.
  • the direction of water flow is defined as the y direction
  • the upward direction is defined as the z direction
  • the direction perpendicular to the water flow is defined as the x direction.
  • reference numeral 1 denotes a wind turbine blade.
  • a plurality of blades 1 are connected to a hub to constitute a rotor.
  • a rotor composed of a plurality of blades 1 and a hub rotates by receiving wind.
  • a pitch angle control mechanism (not shown) is provided at the connecting portion between each blade 1 and the hub. With this pitch angle control mechanism, the mounting angle of each blade (blade) 1 to the hub is controlled, and the pitch angle is controlled so that each blade (blade) can receive wind efficiently.
  • the nacelle 2 is a nacelle, and the nacelle 2 rotatably supports a hub to which blades (blades) 1 are connected, and includes a speed increaser, a generator, and the like.
  • the rotational energy of the hub is converted into electric power by a generator.
  • yaw control mechanism (not shown).
  • the position of the nacelle 2 on the tower 3, that is, the direction of the rotor is controlled, and the yaw control is performed so that the rotor can receive the wind to the maximum extent.
  • Reference numeral 4 denotes a calculation control means, which includes an acceleration detection means for detecting acceleration acting on a floating wind power generation system, that is, a floating body 8 or a windmill installed on the floating body 8, and includes a drive mechanism 6 (6 a, 6 b, 6 c, 6 d). The operation amount (drive amount) is calculated and output.
  • the acceleration detecting means detects acceleration directly like an acceleration sensor, or wind speed information and wind direction information acting on the wing (blade) 1 and the nacelle 2, the attitude of the rotor, the rotational speed of the rotor, and the wind turbine
  • the acceleration is predicted from the power generation amount.
  • a displacement sensor that detects the amount of change in the position of the floating body 8 or the wind turbine installed on the floating body 8 may be used.
  • acceleration sensor and the displacement sensor are not limited to the acceleration sensor and the displacement sensor, but may be provided with other state detection means for monitoring the state of vibration or inclination of the floating body 8 or the windmill installed on the floating body 8.
  • the state detection means such as an acceleration sensor or a displacement sensor may be provided in a place other than the calculation control means 4 and the detected information may be transmitted to the calculation control means 4.
  • Reference numerals 6a to 6d denote drive mechanisms, which are fixed to the floating body 8, and control the postures (positions) of the underwater resistors 7a to 7d independently by the arithmetic control means 4.
  • the underwater resistors 7a to 7d have, for example, a plate-like structure as shown in FIGS. 1 and 2, and the angle changes depending on the operation of the drive mechanisms 6a to 6d.
  • Reference numeral 8 denotes a floating body, which floats on the water such as the ocean or river, and supports the entire structure.
  • 9 is a mooring mechanism to which a mooring wire 10 is connected.
  • the mooring wire 10 is for mooring the floating body 8 to the ocean or a river, and the tip of the mooring wire 10 is fixed to the seabed or the riverbed.
  • the mooring mechanism 9 is provided so as to be rotatable with respect to the floating body 8.
  • the floating body 8 can be moored without the mooring wire 10 being wound around the floating body 8 or the like even when a vortex or turbulent flow is generated in the ocean current or river flow.
  • the offshore wind power generation system of this embodiment is premised on being installed in a location with a water current such as a sea current or a river flow, and in this embodiment, it is installed on the ocean with a sea current.
  • the direction of is the y direction.
  • FIG. 3 is a view of the underwater resistor 7c and the drive mechanism 6c as seen from the x direction.
  • the ocean current flows from left to right (y direction), and the hydrodynamic force Fy acts on the underwater resistor 7c in the y direction.
  • the fluid force Fz in the z direction hardly acts.
  • the underwater resistor 7c is inclined at an angle ⁇ by the drive mechanism 6c, and as a result, the fluid force Fy is decreased and the fluid force Fz is increased.
  • each underwater resistor 7a to 7d are disposed at positions where the mooring mechanism 9, that is, the connecting portion between the mooring wire 10 and the floating body 8 is sandwiched.
  • the mooring mechanism 9 that is, the connecting portion between the mooring wire 10 and the floating body 8 is sandwiched.
  • the state of the float 8 or the wind turbine installed on the float 8 is detected by the state detection means such as the displacement sensor or the acceleration sensor described above, and the underwater resistor 7 against the water flow according to the detected state.
  • the state detection means such as the displacement sensor or the acceleration sensor described above
  • the suppression of vibration and inclination of the floating body or windmill by the underwater resistor described in the present embodiment is limited to an upwind type windmill in which a rotor is installed on the windward side of the nacelle as shown in FIGS. Even if it is a downwind type windmill which installs a rotor in the leeward side of a nacelle, the same effect can be acquired.
  • the effect of generating the fluid force Fz is reduced as compared with FIGS.
  • the vibration and inclination of the floating body and windmill can be suppressed.
  • the fluid force Fz can be increased by increasing the area of one underwater resistor.
  • the surface wind power generation system of the present embodiment it is possible to effectively suppress the vibration and inclination of the floating body and the windmill, and to realize a surface wind power generation system with high power generation efficiency.
  • the energy of the water flow is overwhelmingly larger than the energy of the air current, it can cope with large vibrations and inclinations, and the effect is remarkable with a small amount of energy (driving force) that only changes the posture of the underwater resistor. Can get.
  • FIG. 7 shows an overall outline of the combined water power generation system of this embodiment as viewed from the front.
  • a hydro turbine 12 is used instead of the underwater resistor 7 provided in the underwater portion of the floating body 8. (12a, 12b, 12c, 12d) is different from the surface wind power generation system of Example 1 in that it is provided.
  • hydroelectric power generation by the water turbine 12 (12a, 12b, 12c, 12d) is performed under the surface of the water.
  • the water wheel 12 (12a, 12b, 12c, 12d) is connected to the floating body 8 by a support member 13.
  • This turbine 12 (12a, 12b, 12c, 12d) can control the pitch angle of the blades (blades) and the direction of the turbine relative to the water flow, that is, the yaw control of the turbine, similarly to the wind turbine installed on the floating body 8. It is provided in the floating body 8 so that
  • the water turbine 12 (12a, 12b, 12c, 12d) performs pitch angle control or yaw control in accordance with fluctuations in the flow velocity or direction of the water flow, and the operation control is performed so that the rotation speed and torque of the water turbine are within a predetermined range. Done.
  • the y-direction force acting on the water wheel is called a thrust force, and the force acting on the water wheel can be adjusted by the pitch angle.
  • each water turbine is arranged around the mooring mechanism 9, that is, the connecting portion between the floating body 8 and the mooring wire 10.
  • the pitch angle of each water wheel independently, the torque around the x axis and the z axis at the position of the mooring mechanism 9 can be controlled.
  • the pitch angle control, yaw control of each water wheel 12 (12a, 12b, 12c, 12d), and the amount of power generated by the water wheel 12 are adjusted, so that the mooring mechanism 9 is the center and the x axis, the y axis, and the z axis. Can be freely generated, and the inclination and vibration of the windmill provided on the floating body 8 can be canceled.
  • the state of vibration or inclination of the floating body 8 or the windmill installed on the floating body 8 is detected by a state detection unit such as a displacement sensor or an acceleration sensor, and the water turbine is changed according to the detected state.
  • a state detection unit such as a displacement sensor or an acceleration sensor
  • the water turbine is changed according to the detected state.
  • the combined power generation system with high power generation efficiency is achieved by effectively suppressing the vibration and inclination of the floating body and the windmill and simultaneously generating power in the water. Can be realized.
  • the same effect can be obtained in either the floating body moored by one mooring wire or the floating body moored by two or more mooring wires.
  • the water wheel installed in the water is not limited to four water wheels as shown in FIG. 7, but a connecting part of the floating body and the mooring wire like the underwater resistor 7 (7a, 7c) in FIG. Even when two units are installed so as to sandwich them, vibration and inclination of the floating body and the windmill can be suppressed.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Wind Motors (AREA)

Abstract

Provided is a floating wind power generation system such that vibration and tilting of a floating body and a wind turbine are effectively suppressed and high power generation efficiency is achieved. The system is characterized by comprising: a floating body that is moored offshore or in a river by means of a mooring body; a wind turbine that is disposed on the floating body and generates electric power by receiving wind; a state detection means for detecting a state of the floating body or the wind turbine; and resistance bodies that are disposed on an underwater section of the floating body and are subjected to drag from water flow. The system is further characterized in that the resistance bodies are disposed such that the positions of the resistance bodies on the floating body can be changed, and the positions of the resistance bodies are controlled in accordance with a detection value of the state detection means.

Description

水上風力発電システムおよび水上複合発電システムWater wind power generation system and water combined power generation system
 本発明は、風力発電設備に関し、特に、洋上もしくは河川に係留した浮体上に設置される風力発電設備の振動や傾斜の抑制に関する。 The present invention relates to a wind power generation facility, and more particularly to suppression of vibration and inclination of a wind power generation facility installed on a floating body moored offshore or in a river.
 従来、風力発電設備は主に地上に建設されていたが、大型化に伴う用地確保等の理由から近年では海岸や洋上への建設が開始されている。洋上において、特に、洋上に係留した浮体上に風力発電設備を設置する場合、地上と比較して設置基盤の剛性が低いことから、風力発電設備の揺動や傾斜に起因する問題が顕在化し、発電効率の低下といった課題が生ずる。 Conventionally, wind power generation facilities have been built mainly on the ground, but recently, construction on the coast and offshore has been started for reasons such as securing land accompanying the increase in size. On the ocean, especially when installing wind power generation facilities on a floating body moored on the ocean, since the rigidity of the installation base is low compared to the ground, problems due to the swinging and tilting of the wind power generation facilities have become obvious, Problems such as a reduction in power generation efficiency arise.
 例えば、揺動量が増大した場合、タワーやブレードに対して巨大な変動応力が作用することとなり、設備の寿命を低下させる原因となる。また、傾斜に伴い、風の主流に対する風車の投影面積が減少し、発電量が低下する問題が生じる。これらの問題に対し、従来から様々な対策が検討されている。 For example, when the amount of oscillation increases, a huge fluctuating stress acts on the tower and the blade, which causes a reduction in the life of the equipment. Further, with the inclination, there is a problem that the projected area of the windmill with respect to the main wind flow is reduced and the power generation amount is reduced. Various countermeasures have been studied for these problems.
 本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には、「翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するピッチ角制御機構を備えた風力発電装置」が開示されている。 As a background art in this technical field, for example, there is a technique such as Patent Document 1. Patent Document 1 discloses a “wind power generator equipped with a pitch angle control mechanism for controlling the pitch angle of a wind turbine blade based on a blade pitch angle command”.
 特許文献1の風力発電装置によれば、ナセルの加速度情報から振動を捉え、ブレードのピッチ角に対してフィードバック制御を行うことで、振動を抑制することができるとしている。 According to the wind power generator disclosed in Patent Document 1, vibration can be suppressed by capturing vibration from the nacelle acceleration information and performing feedback control on the blade pitch angle.
 また、特許文献2には、「1つ以上の水中推進機を備える洋上風力タービンの振動を低減する方法」が開示されている。 Patent Document 2 discloses “a method for reducing vibration of an offshore wind turbine including one or more underwater propulsion devices”.
 特許文献2の洋上風力タービンの振動を低減する方法によれば、風車の振動を計測し、その結果に基づいて、浮体に備えた推進機を駆動して振動を抑制することができるとしている。 According to the method of reducing the vibration of the offshore wind turbine of Patent Document 2, the vibration of the windmill is measured, and based on the result, the propulsion device provided in the floating body can be driven to suppress the vibration.
特許第4599350号公報Japanese Patent No. 4599350 特表2014-500929号公報JP-T-2014-500909
 上述したように、洋上もしくは河川に係留した浮体上に設置される風力発電設備においては、浮体や風車の振動・傾斜を効果的に抑制する必要がある。 As described above, in a wind power generation facility installed on a floating body moored offshore or in a river, it is necessary to effectively suppress vibration and inclination of the floating body and the windmill.
 しかしながら、上記特許文献1では、風車に発生する初動震動は抑制可能であるが、振動抑制に用いられるエネルギーは微小であり、ある程度発達した大振動や浮体の傾斜を抑制することは困難である。 However, in Patent Document 1 described above, the initial vibration generated in the windmill can be suppressed, but the energy used for vibration suppression is minute, and it is difficult to suppress large vibrations that have developed to some extent and the inclination of the floating body.
 また、特許文献2では、推進力を増やすことで振動や傾斜の問題を解決できるが、推進力を得るためのエネルギーが必要となる。 In Patent Document 2, the problem of vibration and inclination can be solved by increasing the propulsive force, but energy for obtaining the propulsive force is required.
 そこで、本発明の目的は、洋上もしくは河川に係留した浮体上に設置される風力発電設備において、浮体や風車の振動・傾斜を効果的に抑制し、発電効率の高い水上風力発電システムを提供することにある。 Accordingly, an object of the present invention is to provide a floating wind power generation system with high power generation efficiency by effectively suppressing vibration and inclination of the floating body and the windmill in a wind power generation facility installed on a floating body moored offshore or in a river. There is.
 また、本発明の別の目的は、洋上もしくは河川に係留した浮体上に設置される風力発電設備において、浮体や風車の振動・傾斜を効果的に抑制し、発電効率の高い水上複合発電システムを提供することにある。 Another object of the present invention is to provide a combined power generation system with high power generation efficiency by effectively suppressing vibration and inclination of a floating body and a windmill in a wind power generation facility installed on a floating body moored offshore or in a river. It is to provide.
 上記課題を解決するために、本発明は、係留体により洋上もしくは河川に係留される浮体と、前記浮体上に設置され、風を受けて発電する風車と、前記浮体、或いは、前記風車の状態を検出する状態検出手段と、前記浮体の水中部分に設けられ、水流の抵抗を受ける抵抗体と、を備え、前記抵抗体は前記浮体における位置を変更可能に設けられ、前記状態検出手段の検出値に応じて、前記抵抗体の位置を制御することを特徴とする。 In order to solve the above-described problems, the present invention provides a floating body moored offshore or in a river by a mooring body, a windmill installed on the floating body and generating power by receiving wind, and the state of the floating body or the windmill. A state detecting means for detecting a water flow, and a resistor provided in an underwater portion of the floating body for receiving resistance to water flow, the resistor being provided so that a position in the floating body can be changed, and the detection of the state detecting means The position of the resistor is controlled according to the value.
 係留体により洋上もしくは河川に係留される浮体と、前記浮体の水中部分に設けられ、水流を受けて発電する水車と、前記浮体上に設置され、風を受けて発電する風車と、前記浮体、或いは、前記風車の状態を検出する状態検出手段と、を備え、前記状態検出手段の検出値に応じて、前記水車の位置を制御することを特徴とする。 A floating body moored offshore or in a river by a mooring body, a water turbine provided in an underwater portion of the floating body and generating power by receiving a water flow, a windmill installed on the floating body and receiving wind to generate power, and the floating body, Alternatively, a state detection unit that detects a state of the windmill is provided, and the position of the water turbine is controlled according to a detection value of the state detection unit.
 本発明によれば、洋上もしくは河川に係留した浮体上に設置される風力発電設備において、浮体や風車の振動・傾斜を効果的に抑制し、発電効率の高い水上風力発電システムを実現できる。 According to the present invention, in a wind power generation facility installed on a floating body moored offshore or in a river, a floating wind power generation system with high power generation efficiency can be realized by effectively suppressing the vibration and inclination of the floating body and the windmill.
 また、本発明によれば、洋上もしくは河川に係留した浮体上に設置される風力発電設備において、浮体や風車の振動・傾斜を効果的に抑制し、発電効率の高い水上複合発電システムを実現できる。 In addition, according to the present invention, in a wind power generation facility installed on a floating body moored offshore or in a river, it is possible to effectively suppress the vibration and inclination of the floating body and the windmill, and realize a combined power generation system with high power generation efficiency. .
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の一実施形態に係る水上風力発電システムの全体概要を示す図(斜投影図)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure (diagonal projection) which shows the whole outline | summary of the surface wind power generation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水上風力発電システムの全体概要を示す図(正面図)である。It is a figure (front view) which shows the whole outline | summary of the surface wind power generation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水上風力発電システムの水中抵抗体に作用する流体力を示す図である。It is a figure which shows the fluid force which acts on the underwater resistor of the surface wind power generation system which concerns on one Embodiment of this invention. 角度θ傾斜した水中抵抗体に作用する流体力を示す図である。It is a figure which shows the fluid force which acts on the underwater resistor inclined by angle (theta). 本発明の一実施形態に係る水上風力発電システムの全体概要を示す図(斜投影図)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure (diagonal projection) which shows the whole outline | summary of the surface wind power generation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水上風力発電システムの全体概要を示す図(斜投影図)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure (diagonal projection) which shows the whole outline | summary of the surface wind power generation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水上複合発電システムの全体概要を示す図(正面図)である。It is a figure (front view) which shows the whole outline | summary of the combined water power generation system which concerns on one Embodiment of this invention.
 以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and detailed description of overlapping portions is omitted.
 図1乃至図4を用いて、本実施例における水上風力発電システムについて説明する。図1は、本実施例の水上風力発電システムを斜め方向から見た全体概要を示している。図2は、本実施例の水上風力発電システムを正面から見た全体概要を示している。また、図3および図4は、本実施例の水上風力発電システムの水中部分の一部を示している。 The water-based wind power generation system in the present embodiment will be described with reference to FIGS. FIG. 1 shows an overall outline of the surface wind power generation system according to the present embodiment as viewed from an oblique direction. FIG. 2 shows an overall overview of the surface wind power generation system of this embodiment as viewed from the front. 3 and 4 show a part of the underwater portion of the surface wind power generation system of this embodiment.
 なお、各図面において、便宜上、水流の方向をy方向、上方向をz方向、水流に垂直な方向をx方向と定義する。 In each drawing, for the sake of convenience, the direction of water flow is defined as the y direction, the upward direction is defined as the z direction, and the direction perpendicular to the water flow is defined as the x direction.
 図1および図2において、1は風車の翼(ブレード)である。複数枚の翼(ブレード)1はハブに連結され、ロータを構成している。複数枚の翼(ブレード)1およびハブからなるロータは風を受けて回転する。 1 and 2, reference numeral 1 denotes a wind turbine blade. A plurality of blades 1 are connected to a hub to constitute a rotor. A rotor composed of a plurality of blades 1 and a hub rotates by receiving wind.
 それぞれの翼(ブレード)1とハブの連結部には図示しないピッチ角制御機構が設けられている。このピッチ角制御機構により、ハブに対する各翼(ブレード)1の取付角度を制御し、各翼(ブレード)が効率良く風を受けることができるようピッチ角制御を行う。 A pitch angle control mechanism (not shown) is provided at the connecting portion between each blade 1 and the hub. With this pitch angle control mechanism, the mounting angle of each blade (blade) 1 to the hub is controlled, and the pitch angle is controlled so that each blade (blade) can receive wind efficiently.
 2はナセルであり、ナセル2は翼(ブレード)1が連結されたハブを回転可能に支承するとともに、内部に増速器や発電機等を備えている。ハブの回転エネルギーは発電機により電力に変換される。 2 is a nacelle, and the nacelle 2 rotatably supports a hub to which blades (blades) 1 are connected, and includes a speed increaser, a generator, and the like. The rotational energy of the hub is converted into electric power by a generator.
 3はタワーであり、ナセル2を回転可能に支持している。タワー3とナセル2の連結部には図示しないヨー制御機構が設けられている。このヨー制御機構により、タワー3上におけるナセル2の位置、すなわち、ロータの向きを制御し、ロータが風を最大限に受けることができるようヨー制御を行う。 3 is a tower that supports the nacelle 2 in a rotatable manner. A connecting portion between the tower 3 and the nacelle 2 is provided with a yaw control mechanism (not shown). By this yaw control mechanism, the position of the nacelle 2 on the tower 3, that is, the direction of the rotor is controlled, and the yaw control is performed so that the rotor can receive the wind to the maximum extent.
 4は演算制御手段であり、水上風力発電システムすなわち浮体8或いは浮体8上に設置される風車に作用する加速度を検出する加速度検出手段を備え、駆動機構6(6a,6b,6c,6d)の操作量(駆動量)を演算出力する。 Reference numeral 4 denotes a calculation control means, which includes an acceleration detection means for detecting acceleration acting on a floating wind power generation system, that is, a floating body 8 or a windmill installed on the floating body 8, and includes a drive mechanism 6 (6 a, 6 b, 6 c, 6 d). The operation amount (drive amount) is calculated and output.
 なお、加速度検出手段は、例えば、加速度センサのように直接加速度を検出するか、もしくは翼(ブレード)1やナセル2に作用する風速情報や風向情報、ロータの姿勢、ロータの回転数、風車の発電量から加速度を予測するものである。 For example, the acceleration detecting means detects acceleration directly like an acceleration sensor, or wind speed information and wind direction information acting on the wing (blade) 1 and the nacelle 2, the attitude of the rotor, the rotational speed of the rotor, and the wind turbine The acceleration is predicted from the power generation amount.
 また、加速度検出手段に替えて、浮体8や浮体8上に設置される風車の位置の変化量を検出する変位センサを用いてもよい。 Further, instead of the acceleration detection means, a displacement sensor that detects the amount of change in the position of the floating body 8 or the wind turbine installed on the floating body 8 may be used.
 これらは、加速度センサや変位センサに限定されるものではなく、浮体8や浮体8上に設置される風車の振動や傾斜といった状態をモニターする他の状態検出手段を設けてもよい。 These are not limited to the acceleration sensor and the displacement sensor, but may be provided with other state detection means for monitoring the state of vibration or inclination of the floating body 8 or the windmill installed on the floating body 8.
 また、加速度センサや変位センサなどの状態検出手段は、演算制御手段4以外の場所に設け、検知した情報を演算制御手段4に送信する構成としてもよい。 Further, the state detection means such as an acceleration sensor or a displacement sensor may be provided in a place other than the calculation control means 4 and the detected information may be transmitted to the calculation control means 4.
 5は喫水線であり、喫水線5以下の構造物は水中に位置する。6aから6dは駆動機構であり、浮体8に固定されており、演算制御手段4によりそれぞれ独立に水中抵抗体7aから7dの姿勢(位置)を制御する。 5 is a water line, and structures below the water line 5 are located in the water. Reference numerals 6a to 6d denote drive mechanisms, which are fixed to the floating body 8, and control the postures (positions) of the underwater resistors 7a to 7d independently by the arithmetic control means 4.
 水中抵抗体7aから7dは、例えば、図1および図2に示すように板状構造であり、駆動機構6aから6dの動作により角度が変化する。 The underwater resistors 7a to 7d have, for example, a plate-like structure as shown in FIGS. 1 and 2, and the angle changes depending on the operation of the drive mechanisms 6a to 6d.
 8は浮体であり、洋上や河川などの水上に浮いており、構造物全体を支持する。9は係留機構であり、係留ワイヤー10が接続される。係留ワイヤー10は浮体8を洋上や河川に係留するためのものであり、係留ワイヤー10の先端は海底や川底に固定される。係留機構9は、浮体8に対して回転可能に設けられており、
例えば、海流や河川の流れに渦流や乱流が発生した場合であっても、係留ワイヤー10が浮体8などに巻き付くことなく、浮体8を係留することができる。
Reference numeral 8 denotes a floating body, which floats on the water such as the ocean or river, and supports the entire structure. 9 is a mooring mechanism to which a mooring wire 10 is connected. The mooring wire 10 is for mooring the floating body 8 to the ocean or a river, and the tip of the mooring wire 10 is fixed to the seabed or the riverbed. The mooring mechanism 9 is provided so as to be rotatable with respect to the floating body 8.
For example, the floating body 8 can be moored without the mooring wire 10 being wound around the floating body 8 or the like even when a vortex or turbulent flow is generated in the ocean current or river flow.
 なお、本実施例の水上風力発電システムは、海流や河川の流れなど、水流のある場所に設置されることを前提としており、本実施例においては、海流のある洋上に設置されており、海流の方向はy方向である。 It should be noted that the offshore wind power generation system of this embodiment is premised on being installed in a location with a water current such as a sea current or a river flow, and in this embodiment, it is installed on the ocean with a sea current. The direction of is the y direction.
 図3および図4を用いて、水流の抵抗を受ける水中抵抗体7(7a,7b,7c,7d)に作用する流体力について説明する。図3は、水中抵抗体7cおよび駆動機構6cをx方向から見た図である。図3では、海流は左から右(y方向)に流れており、水中抵抗体7cにはy方向に流体力Fyが作用する。z方向の流体力Fzは殆ど作用しない。 3 and 4, the fluid force acting on the underwater resistor 7 (7a, 7b, 7c, 7d) that receives the resistance of the water flow will be described. FIG. 3 is a view of the underwater resistor 7c and the drive mechanism 6c as seen from the x direction. In FIG. 3, the ocean current flows from left to right (y direction), and the hydrodynamic force Fy acts on the underwater resistor 7c in the y direction. The fluid force Fz in the z direction hardly acts.
 一方、図4では駆動機構6cにより水中抵抗体7cが角度θ傾斜しており、その結果流体力Fyが減少し、流体力Fzが増加している。 On the other hand, in FIG. 4, the underwater resistor 7c is inclined at an angle θ by the drive mechanism 6c, and as a result, the fluid force Fy is decreased and the fluid force Fz is increased.
 本実施例では、図2に示すように係留機構9すなわち係留ワイヤー10と浮体8の連結部を挟む位置に4台の水中抵抗体7aから7dが配置されている。それぞれ独立に傾斜角θを調整することで、海流の流体力により係留機構9を中心に、x軸、y軸、z軸周りのトルクをそれぞれ自在に作り出すことができ、風力による浮体8やその上に設置される風車の傾斜や振動を海流の流体力で打ち消すことが可能となる。 In this embodiment, as shown in FIG. 2, four underwater resistors 7a to 7d are disposed at positions where the mooring mechanism 9, that is, the connecting portion between the mooring wire 10 and the floating body 8 is sandwiched. By independently adjusting the inclination angle θ, it is possible to freely create torque around the mooring mechanism 9 by the hydrodynamic force of the ocean current around the x-axis, y-axis, and z-axis. It becomes possible to cancel the inclination and vibration of the windmill installed on the top with the hydrodynamic force of the ocean current.
 つまり、浮体8や浮体8上に設置される風車の振動や傾斜などの状態を上述した変位センサや加速度センサなどの状態検知手段により検知し、検知した状態に応じて、水流に対する水中抵抗体7(7a,7b,7c,7d)の投影面積を増やすことで、浮体や風車の振動、傾斜を効果的に抑制することができる。 That is, the state of the float 8 or the wind turbine installed on the float 8 is detected by the state detection means such as the displacement sensor or the acceleration sensor described above, and the underwater resistor 7 against the water flow according to the detected state. By increasing the projected area of (7a, 7b, 7c, 7d), it is possible to effectively suppress the vibration and inclination of the floating body and the windmill.
 なお、本実施例においては、1本の係留ワイヤー10により浮体8を係留する1本係留の水上風力発電システムの例を用いて説明したが、2本以上の係留ワイヤーを用いた水上風力発電システムにおいても同様の効果を得ることができる。1本係留の場合はy方向の移動を制限するのに対し、2本以上の係留ワイヤーを用いることで、x方向の移動も制限可能となる。 In addition, in the present Example, although demonstrated using the example of the one mooring surface wind power generation system which moored the floating body 8 with the one mooring wire 10, the surface wind power generation system using two or more mooring wires The same effect can be obtained in. In the case of a single mooring, the movement in the y direction is restricted, whereas the movement in the x direction can be restricted by using two or more mooring wires.
 また、本実施例で説明した水中抵抗体による浮体或いは風車の振動、傾斜の抑制は、図1および図2に示すようなナセルの風上側にロータを設置するアップウィンド型の風車に限定されるものではなく、ナセルの風下側にロータを設置するダウンウィンド型の風車であっても同様の効果を得ることができる。 Further, the suppression of vibration and inclination of the floating body or windmill by the underwater resistor described in the present embodiment is limited to an upwind type windmill in which a rotor is installed on the windward side of the nacelle as shown in FIGS. Even if it is a downwind type windmill which installs a rotor in the leeward side of a nacelle, the same effect can be acquired.
 さらに、図5に示すように、浮体に設ける水中抵抗体を浮体の上部側に2台設けた場合であっても、図1および図2に比べて流体力Fzを生じさせる効果は少なくなるが、浮体や風車の振動、傾斜を抑制することができる。この場合、例えば、図6のように、1台の水中抵抗体の面積を増やすことで、流体力Fzを増やすことも可能である。 Furthermore, as shown in FIG. 5, even when two underwater resistors provided on the floating body are provided on the upper side of the floating body, the effect of generating the fluid force Fz is reduced as compared with FIGS. The vibration and inclination of the floating body and windmill can be suppressed. In this case, for example, as shown in FIG. 6, the fluid force Fz can be increased by increasing the area of one underwater resistor.
 以上説明したように、本実施例の水上風力発電システムによれば、浮体や風車の振動・傾斜を効果的に抑制し、発電効率の高い水上風力発電システムを実現することができる。 As described above, according to the surface wind power generation system of the present embodiment, it is possible to effectively suppress the vibration and inclination of the floating body and the windmill, and to realize a surface wind power generation system with high power generation efficiency.
 また、気流のエネルギーに比べて水流のエネルギーは圧倒的に大きいため、大きな振動や傾斜にも対応可能であり、さらに水中抵抗体の姿勢を変えるのみの僅かなエネルギー(駆動力)で顕著な効果が得ることができる。 In addition, since the energy of the water flow is overwhelmingly larger than the energy of the air current, it can cope with large vibrations and inclinations, and the effect is remarkable with a small amount of energy (driving force) that only changes the posture of the underwater resistor. Can get.
 図7を用いて、本実施例における水上複合発電システムについて説明する。図7は、本実施例の水上複合発電システムを正面から見た全体概要を示している。 The water-based combined power generation system in the present embodiment will be described with reference to FIG. FIG. 7 shows an overall outline of the combined water power generation system of this embodiment as viewed from the front.
 本実施例の水上複合発電システムは、基本構成は実施例1の水上風力発電システムに類似しているが、浮体8の水中部分に設けられる水中抵抗体7に替えて、水力発電用の水車12(12a,12b,12c,12d)が設けられている点において、実施例1の水上風力発電システムと異なっている。 Although the basic structure of the combined water power generation system of the present embodiment is similar to that of the floating wind power generation system of the first embodiment, a hydro turbine 12 is used instead of the underwater resistor 7 provided in the underwater portion of the floating body 8. (12a, 12b, 12c, 12d) is different from the surface wind power generation system of Example 1 in that it is provided.
 浮体8上に設置された風車による風力発電と並行して、水面下でも水車12(12a,12b,12c,12d)による水力発電が行われる。 In parallel with the wind power generation by the windmill installed on the floating body 8, hydroelectric power generation by the water turbine 12 (12a, 12b, 12c, 12d) is performed under the surface of the water.
 水車12(12a,12b,12c,12d)は、支持部材13により浮体8に連結されている。この水車12(12a,12b,12c,12d)は、浮体8上に設置される風車と同様に、翼(ブレード)のピッチ角制御、および水流に対する水車の向き、すなわち、水車のヨー制御が可能となるように浮体8に設けられている。 The water wheel 12 (12a, 12b, 12c, 12d) is connected to the floating body 8 by a support member 13. This turbine 12 (12a, 12b, 12c, 12d) can control the pitch angle of the blades (blades) and the direction of the turbine relative to the water flow, that is, the yaw control of the turbine, similarly to the wind turbine installed on the floating body 8. It is provided in the floating body 8 so that
 水車12(12a,12b,12c,12d)は、水流の流速や向きの変動等に応じてピッチ角制御或いはヨー制御を行い、水車の回転数やトルクが所定の範囲に入るように運転制御が行われる。例えば、水車に作用するy方向の力はスラスト力と呼ばれ、ピッチ角により水車に作用する力の調整が可能である。 The water turbine 12 (12a, 12b, 12c, 12d) performs pitch angle control or yaw control in accordance with fluctuations in the flow velocity or direction of the water flow, and the operation control is performed so that the rotation speed and torque of the water turbine are within a predetermined range. Done. For example, the y-direction force acting on the water wheel is called a thrust force, and the force acting on the water wheel can be adjusted by the pitch angle.
 本実施例においては、係留機構9、すなわち浮体8と係留ワイヤー10の連結部を中心に4台の水車を配置している。各水車のピッチ角を独立に調整することで、係留機構9の位置におけるx軸周り、z軸周りのトルクを制御することができる。 In this embodiment, four water turbines are arranged around the mooring mechanism 9, that is, the connecting portion between the floating body 8 and the mooring wire 10. By adjusting the pitch angle of each water wheel independently, the torque around the x axis and the z axis at the position of the mooring mechanism 9 can be controlled.
 また、水車12(12a,12b,12c,12d)が回転すると、発電量に応じてy軸周りのトルクが発生する。係留機構9に作用するy軸周りのトルクは、4台の水車の合力となり、各水車12(12a,12b,12c,12d)のピッチ角制御、ヨー制御により、発電量を調整することが可能である。 Further, when the water wheel 12 (12a, 12b, 12c, 12d) rotates, torque around the y-axis is generated according to the amount of power generation. The torque around the y-axis acting on the mooring mechanism 9 is the resultant force of the four turbines, and the power generation amount can be adjusted by the pitch angle control and yaw control of each turbine 12 (12a, 12b, 12c, 12d). It is.
 以上により、各水車12(12a,12b,12c,12d)のピッチ角制御、ヨー制御、および水車12による発電量を調整することで係留機構9を中心に、x軸、y軸、z軸周りのトルクをそれぞれ自在に作り出すことができ、浮体8上に設けられる風車の傾斜や振動を打ち消すことが可能となる。 As described above, the pitch angle control, yaw control of each water wheel 12 (12a, 12b, 12c, 12d), and the amount of power generated by the water wheel 12 are adjusted, so that the mooring mechanism 9 is the center and the x axis, the y axis, and the z axis. Can be freely generated, and the inclination and vibration of the windmill provided on the floating body 8 can be canceled.
 なお、実施例1と同様に、浮体8や浮体8上に設置される風車の振動や傾斜などの状態を変位センサや加速度センサなどの状態検知手段により検知し、検知した状態に応じて、水車12(12a,12b,12c,12d)のピッチ角制御、ヨー制御、および水車12による発電量を調整することで、浮体や風車の振動、傾斜を効果的に抑制することができる。 Similarly to the first embodiment, the state of vibration or inclination of the floating body 8 or the windmill installed on the floating body 8 is detected by a state detection unit such as a displacement sensor or an acceleration sensor, and the water turbine is changed according to the detected state. By adjusting the pitch angle control of 12 (12a, 12b, 12c, 12d), the yaw control, and the amount of power generated by the water turbine 12, the vibration and inclination of the floating body and the windmill can be effectively suppressed.
 以上説明したように、本実施例の水上複合発電システムによれば、浮体や風車の振動・傾斜を効果的に抑制し、水中においても同時に発電を行うことにより、発電効率の高い水上複合発電システムを実現することができる。 As described above, according to the combined power generation system of the present embodiment, the combined power generation system with high power generation efficiency is achieved by effectively suppressing the vibration and inclination of the floating body and the windmill and simultaneously generating power in the water. Can be realized.
 なお、実施例1と同様に、本実施例においても1本の係留ワイヤーにより係留された浮体或いは2本以上の係留ワイヤーにより係留された浮体のいずれにおいても、同様の効果を得ることができる。 As in the first embodiment, the same effect can be obtained in either the floating body moored by one mooring wire or the floating body moored by two or more mooring wires.
 また、浮体上に設置される風車は、アップウィンド型或いはダウンウィンド型のいずれの風車であっても同様の効果を得ることができる。 Further, the same effect can be obtained regardless of whether the windmill installed on the floating body is an upwind type or a downwind type windmill.
 さらに、水中に設置される水車は、図7のように4台の水車に限定されるものではなく、図5における水中抵抗体7(7a,7c)のように、浮体と係留ワイヤーの連結部を挟むように2台設置した場合であっても、浮体や風車の振動、傾斜を抑制することができる。 Further, the water wheel installed in the water is not limited to four water wheels as shown in FIG. 7, but a connecting part of the floating body and the mooring wire like the underwater resistor 7 (7a, 7c) in FIG. Even when two units are installed so as to sandwich them, vibration and inclination of the floating body and the windmill can be suppressed.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1…翼(ブレード)、2…ナセル、3…タワー、4…演算制御手段、5…喫水線、6,6a,6b,6c,6d…駆動機構、7,7a,7b,7c,7d…水中抵抗体、8…浮体、9…係留機構、10…係留ワイヤー、11…水面、12,12a,12b,12c,12d…水車、13…支持部材。 DESCRIPTION OF SYMBOLS 1 ... Wing | blade (blade), 2 ... Nacelle, 3 ... Tower, 4 ... Calculation control means, 5 ... Waterline, 6, 6a, 6b, 6c, 6d ... Drive mechanism, 7, 7a, 7b, 7c, 7d ... Underwater resistance Body, 8 ... Floating body, 9 ... Mooring mechanism, 10 ... Mooring wire, 11 ... Water surface, 12, 12a, 12b, 12c, 12d ... Water wheel, 13 ... Supporting member.

Claims (14)

  1.  係留体により洋上もしくは河川に係留される浮体と、
     前記浮体上に設置され、風を受けて発電する風車と、
     前記浮体、或いは、前記風車の状態を検出する状態検出手段と、
     前記浮体の水中部分に設けられ、水流の抵抗を受ける抵抗体と、を備え、
     前記抵抗体は前記浮体における位置を変更可能に設けられ、前記状態検出手段の検出値に応じて、前記抵抗体の位置を制御することを特徴とする水上風力発電システム。
    Floating bodies moored offshore or in rivers by mooring bodies;
    A windmill installed on the floating body and generating electricity by receiving wind;
    State detection means for detecting the state of the floating body or the windmill;
    A resistor that is provided in an underwater portion of the floating body and receives resistance of water flow,
    The above-mentioned resistor is provided so that the position in the floating body can be changed, and the position of the resistor is controlled according to the detection value of the state detection means.
  2.  前記状態検出手段は、前記浮体、或いは、前記風車の位置の変化量を検出する変位センサであることを特徴とする請求項1に記載の水上風力発電システム。 The surface wind power generation system according to claim 1, wherein the state detection means is a displacement sensor that detects a change amount of the position of the floating body or the windmill.
  3.  前記状態検出手段は、前記浮体、或いは、前記風車に生じる加速度を検出する加速度センサであることを特徴とする請求項1に記載の水上風力発電システム。 The surface wind power generation system according to claim 1, wherein the state detection means is an acceleration sensor that detects an acceleration generated in the floating body or the windmill.
  4.  前記抵抗体は、前記係留体と前記浮体の連結部を挟むように、少なくとも2つ以上設けられていることを特徴とする請求項1から3のいずれかに記載の水上風力発電システム。 The water wind power generation system according to any one of claims 1 to 3, wherein at least two resistors are provided so as to sandwich a connecting portion between the mooring body and the floating body.
  5.  前記抵抗体は、前記状態検出手段の検出値に応じて、水流に対する前記抵抗体の投影面積を変化させるよう制御することを特徴とする請求項1から3のいずれかに記載の水上風力発電システム。 The surface wind power generation system according to any one of claims 1 to 3, wherein the resistor is controlled to change a projected area of the resistor with respect to a water flow in accordance with a detection value of the state detection unit. .
  6.  前記状態検出手段は、前記風車に作用する風速、前記風車に作用する風向、前記風車の姿勢、前記風車の回転数、前記風車の発電量のうち、少なくとも1つ以上のパラメータから前記浮体、或いは、前記風車に生じる加速度を予測し、
     当該予測した加速度に応じて、前記抵抗体の位置を制御することを特徴とする請求項1に記載の水上風力発電システム。
    The state detection means includes the floating body from at least one parameter among the wind speed acting on the windmill, the wind direction acting on the windmill, the attitude of the windmill, the rotational speed of the windmill, and the power generation amount of the windmill, or Predict the acceleration that occurs in the windmill,
    The surface wind power generation system according to claim 1, wherein the position of the resistor is controlled according to the predicted acceleration.
  7.  前記風車は、風を受けて回転するロータと、
     前記ロータを回転可能に支承するナセルと、
     前記ナセルを回転可能に支持するタワーと、を備え、
     前記状態検出手段の検出値に応じて、前記タワーに対する前記ナセルの位置、および前記浮体に対する前記抵抗体の位置を制御することを特徴とする請求項1に記載の水上風力発電システム。
    The windmill includes a rotor that rotates by receiving wind;
    A nacelle for rotatably supporting the rotor;
    A tower that rotatably supports the nacelle,
    The surface wind power generation system according to claim 1, wherein the position of the nacelle with respect to the tower and the position of the resistor with respect to the floating body are controlled in accordance with a detection value of the state detection means.
  8.  係留体により洋上もしくは河川に係留される浮体と、
     前記浮体の水中部分に設けられ、水流を受けて発電する水車と、
     前記浮体上に設置され、風を受けて発電する風車と、
     前記浮体、或いは、前記風車の状態を検出する状態検出手段と、を備え、
     前記状態検出手段の検出値に応じて、前記水車の位置を制御することを特徴とする水上複合発電システム。
    Floating bodies moored offshore or in rivers by mooring bodies;
    A water wheel provided in an underwater portion of the floating body and generating electricity by receiving a water flow;
    A windmill installed on the floating body and generating electricity by receiving wind;
    A state detecting means for detecting the state of the floating body or the windmill,
    A combined hydroelectric power generation system that controls the position of the water wheel according to a detection value of the state detection means.
  9.  前記状態検出手段は、前記浮体、或いは、前記風車の位置の変化量を検出する変位センサであることを特徴とする請求項8に記載の水上複合発電システム。 The combined power generation system on water according to claim 8, wherein the state detection means is a displacement sensor that detects a change amount of a position of the floating body or the windmill.
  10.  前記状態検出手段は、前記浮体、或いは、前記風車に生じる加速度を検出する加速度センサであることを特徴とする請求項8に記載の水上複合発電システム。 The combined power generation system on water according to claim 8, wherein the state detection means is an acceleration sensor that detects acceleration generated in the floating body or the windmill.
  11.  前記水車は、前記係留体と前記浮体の連結部を挟むように、少なくとも2つ以上設けられていることを特徴とする請求項8から10のいずれかに記載の水上複合発電システム。 The water turbine combined power generation system according to any one of claims 8 to 10, wherein at least two water turbines are provided so as to sandwich a connecting portion between the mooring body and the floating body.
  12.  前記水車は、前記状態検出手段の検出値に応じて、水流に対する前記水車の抵抗を変化させるよう制御することを特徴とする請求項8から10のいずれかに記載の水上複合発電システム。 11. The combined hydroelectric power generation system according to claim 8, wherein the water wheel is controlled so as to change a resistance of the water wheel with respect to a water flow in accordance with a detection value of the state detection unit.
  13.  前記状態検出手段は、前記風車に作用する風速、前記風車に作用する風向、前記風車の姿勢、前記風車の回転数、前記風車の発電量のうち、少なくとも1つ以上のパラメータから前記浮体、或いは、前記風車に生じる加速度を予測し、
     当該予測した加速度に応じて、前記水車の位置を制御することを特徴とする請求項8に記載の水上複合発電システム。
    The state detection means includes the floating body from at least one parameter among the wind speed acting on the windmill, the wind direction acting on the windmill, the attitude of the windmill, the rotational speed of the windmill, and the power generation amount of the windmill, or Predict the acceleration that occurs in the windmill,
    The combined hydroelectric power generation system according to claim 8, wherein the position of the water wheel is controlled according to the predicted acceleration.
  14.  前記風車は、風を受けて回転するロータと、
     前記ロータを回転可能に支承するナセルと、
     前記ナセルを回転可能に支持するタワーと、を備え、
     前記状態検出手段の検出値に応じて、前記タワーに対する前記ナセルの位置、および前記浮体に対する前記水車の位置を制御することを特徴とする請求項8に記載の水上複合発電システム。
    The windmill includes a rotor that rotates by receiving wind,
    A nacelle for rotatably supporting the rotor;
    A tower that rotatably supports the nacelle,
    9. The combined hydroelectric power generation system according to claim 8, wherein the position of the nacelle with respect to the tower and the position of the water turbine with respect to the floating body are controlled in accordance with a detection value of the state detection means.
PCT/JP2015/057431 2015-03-13 2015-03-13 Floating wind power generation system and floating combined power generation system WO2016147245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057431 WO2016147245A1 (en) 2015-03-13 2015-03-13 Floating wind power generation system and floating combined power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057431 WO2016147245A1 (en) 2015-03-13 2015-03-13 Floating wind power generation system and floating combined power generation system

Publications (1)

Publication Number Publication Date
WO2016147245A1 true WO2016147245A1 (en) 2016-09-22

Family

ID=56918707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057431 WO2016147245A1 (en) 2015-03-13 2015-03-13 Floating wind power generation system and floating combined power generation system

Country Status (1)

Country Link
WO (1) WO2016147245A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108301954A (en) * 2018-03-21 2018-07-20 山东科技大学 Ocean wind-powered electricity generation stake ocean current vibration absorber
CN112228280A (en) * 2020-09-02 2021-01-15 陆秀权 Wind power generation equipment suitable for coastal region
CN113250229A (en) * 2020-07-28 2021-08-13 裴广华 Pile-free self-stabilizing base of offshore wind power tower

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331414A (en) * 2006-06-12 2007-12-27 Shimizu Corp Float structure and its position control method
JP2014500929A (en) * 2010-11-25 2014-01-16 アルストム レノバブレス エスパーニャ, エセ.エレ. Method for reducing vibration of offshore wind turbines
WO2014015882A1 (en) * 2012-07-26 2014-01-30 Vestas Wind Systems A/S Tilting wind turbine
JP2014069775A (en) * 2012-10-01 2014-04-21 Ogasawara Sekkei:Kk Marine resource collection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331414A (en) * 2006-06-12 2007-12-27 Shimizu Corp Float structure and its position control method
JP2014500929A (en) * 2010-11-25 2014-01-16 アルストム レノバブレス エスパーニャ, エセ.エレ. Method for reducing vibration of offshore wind turbines
WO2014015882A1 (en) * 2012-07-26 2014-01-30 Vestas Wind Systems A/S Tilting wind turbine
JP2014069775A (en) * 2012-10-01 2014-04-21 Ogasawara Sekkei:Kk Marine resource collection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108301954A (en) * 2018-03-21 2018-07-20 山东科技大学 Ocean wind-powered electricity generation stake ocean current vibration absorber
CN113250229A (en) * 2020-07-28 2021-08-13 裴广华 Pile-free self-stabilizing base of offshore wind power tower
CN112228280A (en) * 2020-09-02 2021-01-15 陆秀权 Wind power generation equipment suitable for coastal region

Similar Documents

Publication Publication Date Title
JP5189647B2 (en) Multipoint mooring and stabilization system and control method for submersible turbines using flow
JP6510227B2 (en) Wind power system
CN104428531B (en) It operates the method for wind turbine and is suitable for the system of the method
CN104956073A (en) Control device, method, and program, and floating body wind-powered electricity generation device equipped with same
JP2008202588A (en) Wind/hydraulic power impeller using lift-drag force by double-acting rotations
US20220282706A1 (en) Control system for positioning at least two floating wind turbines in a wind farm
JP4638163B2 (en) Windmill equipment
JP2014218958A (en) Floating structure for ocean wind power generation
WO2016147245A1 (en) Floating wind power generation system and floating combined power generation system
JP2014070516A (en) Wind power generation system
JP5185295B2 (en) Wind power plant and operation method thereof
JP7202551B1 (en) Floating offshore wind power generator
JP6388759B2 (en) Floating wind power generator
WO2016135800A1 (en) Power generation system
KR101656478B1 (en) Wind turbine generator
US20080019832A1 (en) Turbine/rotorcraft/oar blade
WO2017009943A1 (en) Downwind-type wind power generation system and method for controlling downwind-type wind power generation system
JP5543385B2 (en) Floating wind power generator
TWI708892B (en) Wind power plant
JP2011012588A (en) Straight blade multiple orbit arrangement vertical shaft type turbine and power generating apparatus
WO2018173967A1 (en) Floating vertical axis wind turbine system
WO2011131792A2 (en) Wind turbine direction control
JP2005214142A (en) Power generating device
JP2024500903A (en) Offshore power generation system
JP6810311B1 (en) Floating wind turbine equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP