JP4883705B2 - Mobile offshore wind power generation facility - Google Patents

Mobile offshore wind power generation facility Download PDF

Info

Publication number
JP4883705B2
JP4883705B2 JP2007208337A JP2007208337A JP4883705B2 JP 4883705 B2 JP4883705 B2 JP 4883705B2 JP 2007208337 A JP2007208337 A JP 2007208337A JP 2007208337 A JP2007208337 A JP 2007208337A JP 4883705 B2 JP4883705 B2 JP 4883705B2
Authority
JP
Japan
Prior art keywords
floating body
wind power
power generation
wind
mobile offshore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007208337A
Other languages
Japanese (ja)
Other versions
JP2009041477A (en
Inventor
勝 辻本
佳成 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2007208337A priority Critical patent/JP4883705B2/en
Publication of JP2009041477A publication Critical patent/JP2009041477A/en
Application granted granted Critical
Publication of JP4883705B2 publication Critical patent/JP4883705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

本発明は、洋上において、移動可能の浮体に設けた風車により、気象,海象に対応して効率よく発電を行えるようにした、移動式洋上風力発電設備に関する。   The present invention relates to a mobile offshore wind power generation facility that can efficiently generate power in response to weather and sea conditions by a windmill provided on a movable floating body on the ocean.

一般に、海底に立設された支柱などに浮体を拘束して、同浮体上に装備される風力発電設備により発電を行えるようにしたものが開発されている。
また、船舶を係留手段により海底に係留して、同船舶上に装備された風力発電設備により発電を行えるようにしたものも従来から知られている。
特開2004−036517号公報 特開2002−303454号公報
In general, a structure has been developed in which a floating body is restrained by a pillar or the like standing on the seabed, and power generation can be performed by a wind power generation facility installed on the floating body.
Further, it is also known in the past that a ship is moored on the sea floor by mooring means so that power can be generated by a wind power generation facility equipped on the ship.
JP 2004-036517 A JP 2002-303454 A

ところで、海上では気象,海象によって風力や風向が絶えず変化しており、定位置での風力発電では必ずしも十分な発電効果が得られるものではない。また、水深の深い海域では、浮体の拘束を行えない場合もある。
そこで、本発明は、発電機付き風車を備えた洋上の浮体を係留せずに自由に動き回ることができるようにして、気象海象予測情報に基づき十分に風力を利用できる海域へ移動しながら、効率よく風力発電を行えるようにするとともに、上記浮体の針路についても発電機付き風車による取得エネルギーが最大となるように選択して、十分な風力発電効果が得られるようにした移動式洋上風力発電設備を提供することを課題とする。
By the way, wind power and wind direction are constantly changing due to weather and sea conditions at sea, and wind power generation at a fixed position does not always provide a sufficient power generation effect. Also, there are cases where floating bodies cannot be restrained in deep waters.
Therefore, the present invention allows an oceanic floating body equipped with a windmill with a generator to move freely without mooring, and while moving to a sea area where wind power can be sufficiently utilized based on meteorological sea state prediction information, A mobile offshore wind power generation facility that is capable of providing sufficient wind power generation by making it possible to obtain sufficient wind power generation by selecting wind energy with a generator to maximize the wind power of the above floating body as well as enabling wind power generation well It is an issue to provide.

前述の課題を解決するため、本発明の移動式洋上風力発電設備は、洋上に沿い細長く浮かべられた浮体において、同浮体の長手方向に沿い列をなすように立設され同浮体の横方向に向けられた多数の発電機付き風車と、同風車により得られた電気エネルギーを蓄えるためのエネルギー貯留設備とを備えるとともに、上記浮体の自航のための推進手段および操舵手段を備え、上記浮体を風力の得られる海域へ導いて上記風車が風力に対向できるように上記浮体を操縦すべく、上記の推進手段および操舵手段を気象海象予測情報に基づいて制御するための制御系が設けられており、同制御系が、上記浮体の針路について風向に対し90度または−90度となる針路を選択し、上記浮体の経路については、気象海象予測情報に基づき、予め計画した複数の変針判断時間帯について風向に対し90度または−90度となる浮体針路の全ての組合わせを計算し、その組合わせの中から上記発電機付き風車を備えた上記浮体の取得エネルギーが最大となる算出経路を選択して、次の気象海象予測情報の入手まで上記算出経路に沿う針路をとるように制御を行うものであることを特徴としている。   In order to solve the above-mentioned problems, the mobile offshore wind power generation facility of the present invention is a floating body floated along the ocean in a slender shape, and is erected so as to form a line along the longitudinal direction of the floating body. A large number of wind turbines with generators and an energy storage facility for storing electrical energy obtained by the wind turbines, and propulsion means and steering means for self-navigation of the floating body, A control system is provided for controlling the propulsion means and the steering means on the basis of meteorological sea state prediction information in order to steer the floating body so that the wind turbine can face the wind power by guiding to the sea area where wind power is obtained. The control system selects a course that is 90 degrees or -90 degrees with respect to the wind direction with respect to the course of the floating body, and the path of the floating body is planned in advance based on weather sea state prediction information. Calculate all combinations of floating courses that are 90 degrees or -90 degrees with respect to the wind direction for a number of transition judgment time zones, and the obtained energy of the floating body equipped with the wind turbine with the generator is the largest among the combinations. The calculation route is selected, and control is performed so that the course along the calculation route is taken until the next weather and sea state prediction information is obtained.

また、本発明の移動式洋上風力発電設備は、上記浮体が、上記の推進手段および操舵手段として、同浮体の両端部の水面下にそれぞれプロペラ付き推進システムを鉛直軸線のまわりに回動制御可能に備えていることを特徴としている。   Further, in the mobile offshore wind power generation facility of the present invention, the floating body can control the rotation of the propulsion system with a propeller around the vertical axis below the water surface at both ends of the floating body as the propulsion means and the steering means. It is characterized by being prepared for.

さらに、本発明の移動式洋上風力発電設備は、上記浮体が、上記推進手段として、同浮体の両端部に同浮体の長手方向へ水流を噴出しうるスラスターを備えるとともに、上記操舵手段として、同浮体の両端部に同浮体の幅方向へ水流を噴出しうるサイドスラスターを備えていることを特徴としている。   Furthermore, in the mobile offshore wind power generation facility according to the present invention, the floating body includes thrusters capable of ejecting a water flow in the longitudinal direction of the floating body at both ends of the floating body as the propulsion unit. The present invention is characterized in that side thrusters capable of ejecting a water flow in the width direction of the floating body are provided at both ends of the floating body.

また、本発明の移動式洋上風力発電設備は、上記浮体が、上記の推進手段および操舵手段として、同浮体の両端部上にそれぞれ帆を鉛直軸線のまわりに回動制御可能に立設されていることを特徴としている。   In the mobile offshore wind power generation facility according to the present invention, the floating body is erected on the both ends of the floating body as the propulsion means and the steering means so that the sail can be controlled to rotate around the vertical axis. It is characterized by being.

上述の本発明の移動式洋上風力発電設備では、その制御系が気象海象予測情報に基づき、多数の発電機付き風車をそれぞれ横方向に向けて列設された浮体の針路について、風向に対し90度または−90度となるように選択するので、上記風車はその軸方向に沿う風向により絶えず効率よく発電作用を行うことが可能となり、また、上記浮体の経路に関しては、上記制御系が、気象海象予測情報に基づき、予め計画した複数の変針判断時間帯について風向に対し90度または−90度となる浮体針路の全ての組合わせを計算し、その組合わせの中から上記発電機付き風車による取得エネルギーが最大となる算出経路を選択して、次の気象海象予測情報の入手まで上記算出経路に沿う針路をとるように制御を行うので、全体として著しく効率のよい発電作用が行われるようになり、その電気エネルギーの貯留が、そのまま蓄電設備としてのエネルギー貯留設備に貯留されたり、海水の電気分解による有機ハイドライトとして水素の貯留という形態でエネルギー貯留設備に貯留されたりするようになる。   In the above-described mobile offshore wind power generation facility according to the present invention, the control system is based on the meteorological sea state prediction information, and the floating courses in which a large number of wind turbines with generators are arranged in the horizontal direction are each 90 Therefore, the windmill can continuously generate power efficiently by the wind direction along its axial direction. Based on the sea state prediction information, all combinations of floating courses that are 90 degrees or -90 degrees with respect to the wind direction are calculated for a plurality of planned transition time zones, and the wind turbine with the generator is selected from the combinations. Since the calculation route that maximizes the acquired energy is selected and control is performed so that the course along the above calculation route is taken until the next meteorological and sea state prediction information is obtained, the overall efficiency is significantly improved. Electricity is stored in the energy storage facility in the form of hydrogen storage as an organic hydrite by electrolysis of seawater. To come to be.

また、上記浮体が、上記の推進手段および操舵手段として、同浮体の両端部の水面下にそれぞれポッドプロペラのごときプロペラ付き推進手段を備え、同推進手段が鉛直軸線のまわりに回動制御可能に装備されていると、細長い上記浮体について、その直進性能を確保したり、同浮体両端部のプロペラ付き推進手段の相互の逆向き舵角による舵取り性能の向上を図ったりすることが可能になる。   Further, the floating body includes propelling means with propellers such as pod propellers below the water surface at both ends of the floating body as the propelling means and steering means, respectively, and the propulsion means can be controlled to rotate around the vertical axis. When equipped, it is possible to ensure straight running performance of the elongated floating body and to improve the steering performance by the mutually opposite steering angles of the propeller-equipped propulsion means at both ends of the floating body.

そして、上記プロペラ付き推進手段の動力源としては、ディーゼルエンジン駆動の発電機からの電力が用いられるが、上記発電機付き風車からの電力を利用することも可能である。   And as a power source of the propelling means with propeller, power from a generator driven by a diesel engine is used, but it is also possible to use power from a windmill with a generator.

さらに、上記浮体が、上記推進手段として、同浮体の両端部に、それぞれ同浮体の長手方向へ向けて水流を噴出しうるスラスターを備えるとともに、上記操舵手段として、同浮体の両端部に、同浮体の幅方向へ、すなわち同浮体の一側方または他側方へ水流を噴出しうるサイドスラスターを備えている場合も、上記発電機付き風車で得られた電力などを利用して、上記浮体の推進や舵取りが効率よく行われるようになる。   Further, the floating body is provided with thrusters capable of ejecting a water flow toward the longitudinal direction of the floating body at both ends of the floating body as the propulsion means, and at both ends of the floating body as the steering means. Even when a side thruster capable of ejecting a water flow in the width direction of the floating body, that is, to one side or the other side of the floating body is used, the electric power obtained by the wind turbine with the generator is used to Can be promoted and steered efficiently.

また、上記浮体が、同浮体の推進手段および操舵手段として、同浮体の両端部の上にそれぞれ帆を立設されていると、各帆を風向に応じ操作することで、推進力を得たり、細長い上記浮体についての舵取りの効果を得たりすることが可能になる。   In addition, when the above floating body is provided with sails on both ends of the floating body as propulsion means and steering means for the floating body, a propulsive force can be obtained by operating each sail according to the wind direction. In addition, it is possible to obtain a steering effect for the elongated floating body.

図1は本発明の一実施例としての移動式洋上風力発電設備を示す側面図、図2は図1の移動式洋上風力発電設備の平面図であり、図3(a)は上記移動式洋上風力発電設備の両端部についての変形例を示す側面図、図3(b)は上記移動式洋上風力発電設備の両端部についての他の変形例を示す側面図であり、図4は上記移動式洋上風力発電設備の移動経路の組合わせのイメージを示す平面図である。   FIG. 1 is a side view showing a mobile offshore wind power generation facility as an embodiment of the present invention, FIG. 2 is a plan view of the mobile offshore wind power generation facility of FIG. 1, and FIG. FIG. 3B is a side view showing another modification example of both end portions of the mobile offshore wind power generation facility, and FIG. It is a top view which shows the image of the combination of the movement path | route of an offshore wind power generation equipment.

図1および図2に示すように、洋上に沿い細長く浮かべられた浮体1において、同浮体1の長手方向に沿い列をなすように多数の発電機2a付き風車2が支柱3を介して立設され、各風車2は、すべて同じ向きで、浮体1の長手方向に対し直角をなす横方向に向けられている。   As shown in FIG. 1 and FIG. 2, in the floating body 1 floated along the ocean, a large number of wind turbines 2 with generators 2 a are erected via support columns 3 so as to form a line along the longitudinal direction of the floating body 1. The wind turbines 2 are all directed in the same direction and in the lateral direction perpendicular to the longitudinal direction of the floating body 1.

そして、各発電機2a付き風車2により得れれた電気エネルギーを蓄えるためのエネルギー貯蔵設備4が浮体1内に設けられており、同設備4としては、蓄電池のほか、海水の電気分解による有機ハイドライトとしての水素の貯蔵設備などが採用可能である。   And the energy storage equipment 4 for storing the electrical energy obtained by the windmill 2 with each generator 2a is provided in the floating body 1, As this equipment 4, in addition to a storage battery, the organic hydride by electrolysis of seawater A hydrogen storage facility as a light can be used.

浮体1としては、長さが2000m,幅が70m程度の細長い形状で且つ前後対称のものが好ましく、同浮体1上において、同浮体1の長手方向に1列に装備された多数の発電機2a付き風車2が、浮体1の横方向からの風力を一斉に受けることにより、効率よく発電作用を行うようになる。   The floating body 1 is preferably an elongated shape having a length of about 2000 m and a width of about 70 m and symmetrical with respect to the front and back, and a large number of generators 2 a mounted on the floating body 1 in a row in the longitudinal direction of the floating body 1. When the attached windmill 2 receives the wind force from the lateral direction of the floating body 1 all at once, the power generation operation is efficiently performed.

本実施例では、浮体1の移動(推進)および移動方向の転換(舵取り)のための操縦は、浮体1の両端部および中間部において水面下に設けられた推進手段および操舵手段を兼ねるポッドプロペラ5について行われるが、図1,2に示すように、浮体1の両端部に推進手段および操舵手段として鉛直軸線のまわりに回動制御可能に立設された帆6も用いることができる。   In this embodiment, the pod propeller that serves as the propulsion means and the steering means provided below the surface of the water at the both ends and the middle of the floating body 1 is used for the movement (propulsion) of the floating body 1 and the change of the moving direction (steering). 1 and 2, sails 6 erected on both ends of the floating body 1 so as to be rotatable around a vertical axis as propulsion means and steering means can also be used.

そして、上記の操舵は搭乗者により行われるか、または陸上基地からの無線操縦として行われる。
なお、ポッドプロペラ5は、そのポッド5a内の図示しないモーターで同ポッド5aの端部のプロペラ5bを回転駆動する構成と、ポッド5aを鉛直軸線のまわりに他のモーターで回動制御しうる構成とを具えており、上記の各モーターのための電力としては発電機2aで得られる電力の利用が可能とされるが、各モーター専用の発電装置を浮体1に設けるようにしてもよい。
Then, the above steering is performed by a passenger or as a wireless control from a land base.
The pod propeller 5 has a configuration in which a propeller 5b at the end of the pod 5a is rotationally driven by a motor (not shown) in the pod 5a, and a configuration in which the pod 5a can be rotationally controlled by another motor around a vertical axis. As the electric power for each of the motors, the electric power obtained by the generator 2a can be used. However, a power generator dedicated to each motor may be provided in the floating body 1.

また、図3(a)に示すように、浮体1の推進手段として、同浮体1の両端部に、前述のポッドプロペラ5の代わりに、同浮体1の長手方向へ、すなわち浮体1の前方または後方へ選択的に水流を噴出しうるスラスター7,7を設けるようにしてもよく、この場合、浮体1の長手方向(前後方向)に沿う両端開口のダクト7a内のインペラ7bが、浮体1の内部のモーターまたはエンジンとしての駆動装置7Mにより正逆転可能に回転駆動される構成とされる。   Further, as shown in FIG. 3 (a), as propulsion means of the floating body 1, instead of the pod propeller 5 described above, in the both ends of the floating body 1, in the longitudinal direction of the floating body 1, that is, in front of the floating body 1 Thrusters 7 and 7 that can selectively eject water flow to the rear may be provided. In this case, the impeller 7b in the duct 7a at both ends along the longitudinal direction (front-rear direction) of the floating body 1 It is configured to be rotationally driven so as to be able to rotate forward and backward by an internal motor or a driving device 7M as an engine.

そして、浮体1の操舵手段としては、同浮体1の両端部で同浮体1の横方向へ、すなわち、浮体1の左方または右方へ選択的に水流を噴出しうるサイドスラスター8が設けられる。この場合、水面下で浮体1の横方向へ水流を噴出しうるように、浮体1に設けられた両端開口のダクト8a内で、インペラ8bが、図示しない駆動装置により正逆転可能に回転駆動される構成とされる。   As a steering means for the floating body 1, side thrusters 8 that can selectively eject a water flow in the lateral direction of the floating body 1 at both ends of the floating body 1, that is, to the left or right of the floating body 1 are provided. . In this case, the impeller 8b is rotationally driven by a driving device (not shown) so as to be able to rotate forward and backward in a duct 8a having openings at both ends provided in the floating body 1 so that a water flow can be ejected in the lateral direction of the floating body 1 below the water surface. It is set as the structure.

なお、スラスター7としては、図3(b)に示すように、浮体1の底部に開口7cを有するダクト7を通じ外水を吸い上げて、同浮体1の端部における開口7dから同浮体1の長手方向へジェット水を噴出するものであってもよい。そして、ダクト7内のインペラ7bの正逆転により推進方向を効率よく変えられるように、底部の開口7cには、斜めに突出させたり引込めたりしうるガイド板7eが設けられる。   As shown in FIG. 3 (b), the thruster 7 sucks up outside water through a duct 7 having an opening 7 c at the bottom of the floating body 1, and the longitudinal direction of the floating body 1 from the opening 7 d at the end of the floating body 1. Jet water may be ejected in the direction. A guide plate 7e that can be protruded and retracted obliquely is provided in the opening 7c at the bottom so that the propulsion direction can be efficiently changed by forward and reverse rotation of the impeller 7b in the duct 7.

さらに、図4に示すように、浮体1を風力の得られる海域へ導いて、風車2が風力に対向できるように、浮体1を気象海象予測情報に基づいて操縦するための制御系が次のように設けられて運用される。
(A)気象海象予測情報受信設備:浮体上もしくは陸上、またはその両方に気象海象予測 情報を受信する設備を有する。
(B)計算機:取得エネルギーが最大となる最適な経路を探索する計算機を浮体1上もし くは陸上の基地に有する。そして、この計算機を浮体1上に有する場合は、気象海象予 測情報を浮体1上で受信し、計算機に取り込む設備を有する。また、この計算機を陸上 の基地に有する場合は、最適な経路を受信する設備を浮体1上に有する。
(C)制御系の運用手順
(1)針路について:風車は浮体の長さ方向に対して真横からの風(風車に対して正面 )の時に風力エネルギー取得量が最大になることから、風向に対して90度または−9 0度となる針路を選ぶ。なお、浮体形状は前後対称のため、90度,−90度でも風力 エネルギー取得量は同じになる。
(2)経路について:浮体上もしくは陸上で受信した気象海象予測情報を利用し、予め 計画したmp個の変針判断時間帯に対して、風向に対し90度または−90度となる浮 体針路の「全ての組み合わせ」2mpを計算し、その中から取得エネルギー最大となる経 路を選択し、次の気象海象予測情報の入手までその経路に沿って進む。各区間での浮体 の位置,変針時間,取得エネルギー等は気象海象状況に応じて推定を行う。
なお、取得エネルギーは、風車により取得した風力エネルギーから電気推進システム で使用したエネルギーを差し引いたものである。
また、前記の「全ての組み合わせ」は、気象海象のN時間先の予測値が離散的に(例 えばp=6時間間隔)得られたとき、N時間を任意の時間帯としての時間間隔(例えば 24時間先予測値までは6時間間隔、以降は12時間間隔)に分割し、その時間間隔で 合計mp回針路判断(風向に対し90度とするか−90度とするか)を行う。この時、 針路判断の全ての組み合わせは2mpになる。これにより、現在位置付近に留まる場合や 荒天避航を表現できる。なお、図4においてtは時間を示している。
(3)アルゴリズムを工夫することにより、計算量は約半分に低減することが可能であ る。すなわち。航路探索は2mp通りを全て計算するため、実際の計算では少しでも計算 負荷を低減したアルゴリズムとする必要があるが、まず、アルゴリズムの見通しを簡単 にするため2進数で航路表現を行う。
・針路判断(直進または反転)をmp回行う場合、組み合わせは2mp通りとなる。
・針路の組み合わせ番号をn、向き判定子ia(n,m)(0:直進,1:反転)とす ると、mp桁の2進数により航路の表現が可能となる。すなわち、m回目の変針は、 この2進数のm桁目の向き判定子ia(n,m)の値で表され、2進数表現を10進 数表現に変換した値がn′=n−1となる。
次に、以下のように工夫することのより、計算量は約半分になる。
・組み合わせ番号nを昇順に1づつ増やすと、前回の針路判断と共通箇所があり、L( n)回目の針路判断から計算するだけでよい。
・計算開始位置L(n)は以下の(J1)から(J5)に示す手順で求められる。これ は条件判断を伴わないので計算効率がよく、また、L(n)は事前に求めることがで きる。
(J1)m=m+1とする。ただし、mは整数で、1からmpまでの範囲とする。
(J2)k=k+1とする。ただし、kは整数で、1から2mp-mまでの範囲とする。
(J3)2進数の桁位置mに対する計算開始位置L(n)の規則性から、kをパラメー タとしてn′を(1)式により求める。ただし、n′=n−1である。
n′=2m-1(2k−1) ・・・(1)
(J4)このときのn,mを用いて計算開始位置L(n)が(2)式から求められ、こ れを保存する。ただし、L(n=1)=mpとする。
L(n)=m ・・・(2)
(J5)m<mpかつk<2mp-mであれば(J2)に戻る。
m<mpかつk=2mp-mであれば(J1)に戻る。
m=mpであれば終了する。
なお、浮体と風車の特性を利用し、全ての組み合わせ数を2mpとし、さらに組み合わ せの規則性を利用して計算量を約半分に減らすことにより、有限な時間で最大値の探索 が可能になる。
(4)繰返し:気象海象予測情報を入手したら、再び全ての組み合わせの中から取得エ ネルギー最大となる経路を選択し、次の気象海象予測情報の入手までその経路に沿って 進むことになるが、このような操作は、繰返して行われる。
(5)以上の手順により取得エネルギー最大となる浮体の運用経路が求められるように なり、設備利用率が最大となる運用が可能となる。
各回の手順で得られるのはN時間での取得エネルギー最大の経路であり、p時間での 取得エネルギー最大の経路とは異なる。すなわち、現在吹いている風に対して取得エネ ルギー最大となる経路を選ぶとは限らないからであり、現在、浮体が風向に対して90 度に進んでいる場合、変針判断時に、変針せずそのまま90度に進むほうが、直近の取 得エネルギーは多いが、変針をして−90度に進んだほうが総取得エネルギーは多い場 合もある。なお、本設備の利用効率は、次のように表される。
設備利用率=取得電力量/(運転時間×取得電力)×100(%)
Furthermore, as shown in FIG. 4, a control system for maneuvering the floating body 1 based on weather sea condition prediction information is as follows so that the floating body 1 is guided to the sea area where wind power can be obtained and the windmill 2 can face the wind power. Is provided and operated.
(A) Meteorological and sea state prediction information receiving equipment: It has equipment for receiving meteorological and sea state prediction information on a floating body and / or on land.
(B) Computer: A computer that searches for an optimum route that maximizes the acquired energy is provided on the floating body 1 or on a land base. And when this computer is provided on the floating body 1, it has the equipment which receives meteorological sea state forecast information on the floating body 1 and takes it into the computer. In addition, when this computer is provided at a land base, the floating body 1 has equipment for receiving an optimum route.
(C) Control system operation procedure (1) About the course: The wind turbine has the maximum amount of wind energy acquired when it is wind from the side of the floating body (front to the wind turbine). Select a course that will be 90 degrees or -90 degrees. The floating body shape is symmetrical in the longitudinal direction, so the amount of wind energy acquired is the same at 90 ° and -90 °.
(2) Route: Using the meteorological and sea state prediction information received on the floating body or on the land, the floating course that is 90 degrees or -90 degrees with respect to the wind direction with respect to the mp change judgment time zone planned in advance. Calculate “all combinations” 2 mp , select the route that maximizes the acquired energy, and proceed along that route until the next meteorological and oceanographic forecast information is obtained. The position of the floating body, changeover time, acquired energy, etc. in each section are estimated according to the weather conditions.
The acquired energy is the wind energy acquired by the windmill minus the energy used in the electric propulsion system.
Further, the above-mentioned “all combinations” means that when predicted values of N hours ahead of the meteorological sea state are obtained discretely (for example, p = 6 hour intervals), the time interval (where N hours are arbitrary time zones) For example, it is divided into 6-hour intervals until the predicted value 24 hours ahead, and thereafter 12-hour intervals), and the total mp course determination (whether 90 degrees or -90 degrees with respect to the wind direction) is performed at the time intervals. At this time, all combinations of course judgment become 2 mp . As a result, it is possible to express the case of staying near the current position or stormy weather avoidance. In FIG. 4, t represents time.
(3) By devising the algorithm, the amount of calculation can be reduced to about half. That is. Since the route search calculates all 2 mp ways, it is necessary to use an algorithm that reduces the calculation load as much as possible in the actual calculation. First, the route is expressed in binary to simplify the prospect of the algorithm.
・ If the course judgment (straight or reverse) is performed mp times, there are 2 mp combinations.
・ If the combination number of the course is n and the direction identifier ia (n, m) (0: straight ahead, 1: inversion), the navigation route can be expressed by a binary number of mp digits. That is, the m-th change is represented by the value of the binary m-th direction identifier ia (n, m), and the value obtained by converting the binary representation into the decimal representation is n ′ = n−1. It becomes.
Next, the amount of calculation is halved by devising as follows.
-When the combination number n is increased by 1 in ascending order, there is a common part with the previous course judgment, and it is only necessary to calculate from the L (n) course judgment.
The calculation start position L (n) is obtained by the following procedure (J1) to (J5). Since this does not involve conditional judgment, calculation efficiency is high, and L (n) can be obtained in advance.
(J1) m = m + 1. However, m is an integer and is in a range from 1 to mp.
(J2) k = k + 1. However, k is an integer and ranges from 1 to 2 mp-m .
(J3) From the regularity of the calculation start position L (n) with respect to the binary digit position m, n ′ is obtained from equation (1) using k as a parameter. However, n ′ = n−1.
n ′ = 2 m−1 (2k−1) (1)
(J4) The calculation start position L (n) is obtained from equation (2) using n and m at this time, and is stored. However, L (n = 1) = mp.
L (n) = m (2)
(J5) If m <mp and k <2 mp-m , return to (J2).
If m <mp and k = 2 mp-m , return to (J1).
If m = mp, the process ends.
By using the characteristics of floating bodies and wind turbines, the number of all combinations is 2 mp, and the amount of calculation is reduced to about half by using the regularity of the combination, so the maximum value can be searched in a finite time. become.
(4) Repetition: Once the meteorological and oceanographic forecast information is obtained, the route that maximizes the acquired energy is selected again from all the combinations, and it will proceed along that route until the next meteorological and oceanographic forecast information is obtained. Such an operation is repeated.
(5) The operational procedure of the floating body that maximizes the acquired energy is required by the above procedure, and the operation that maximizes the facility utilization rate is possible.
In each procedure, a path with the maximum acquired energy in N hours is obtained, which is different from the path with the maximum acquired energy in p hours. In other words, it is not always the case that the route with the maximum acquired energy is selected with respect to the wind that is currently blowing. If you proceed to 90 degrees as it is, the most recently acquired energy is more, but if you change the course and proceed to -90 degrees, the total acquired energy may be more. The utilization efficiency of this equipment is expressed as follows.
Facility usage rate = Acquired electric energy / (Operating time x Acquired electric power) x 100 (%)

なお、本設備の運用の制約条件としては、移動海域が制約されることや、他国の排他的経済水域(EEZ)では風車を運転しない(羽根をフェザリングする)等の制約がある。また、陸上との境界では取得エネルギーにペナルティー値(大きな負値)を与え、そこへは移動しないようにすることが可能である。
一般に、陸上の風力発電による年間の設備利用率は約20〜25%とされるが、本設備による洋上風力発電では、年間の設備利用率は40%と推定される。
In addition, as a constraint condition of operation of this equipment, there are restrictions such as restrictions on the moving sea area and not operating a windmill (feathering feathers) in the exclusive economic zone (EEZ) of other countries. In addition, it is possible to give a penalty value (large negative value) to the acquired energy at the boundary with the land, so that it does not move there.
Generally, the annual facility utilization rate by onshore wind power generation is about 20-25%, but the offshore wind power generation by this facility is estimated to be 40% annually.

上述の本実施例の移動式洋上風力発電設備では、その制御系が気象海象予測情報に基づき、多数の発電機2a付き風車2をそれぞれ横方向に向けて列設された浮体1の針路について、風向に対し90度または−90度となるように選択するので、風車2はその軸方向に沿う風向により絶えず効率よく発電作用を行うことが可能となり、また、浮体1の経路に関しては、上記制御系が、気象海象予測情報に基づき、予め計画した複数の変針判断時間帯について風向に対し90度または−90度となる浮体針路の全ての組合わせを計算し、その組合わせの中から上記発電機2a付き風車2による取得エネルギーが最大となる算出経路を選択して、次の気象海象予測情報の入手まで上記算出経路に沿う針路をとるように制御を行うので、全体として著しく効率のよい発電作用が行われるようになり、その電気エネルギーの貯留が、そのまま蓄電設備としてのエネルギー貯留設備に貯留されたり、海水の電気分解による有機ハイドライトとして水素の貯留という形態でエネルギー貯留設備に貯留されたりするようになる。   In the mobile offshore wind power generation facility of the above-described embodiment, the control system is based on meteorological sea state prediction information about the course of the floating body 1 in which the wind turbines 2 with a large number of generators 2a are arranged in the horizontal direction. Since the wind direction is selected to be 90 degrees or −90 degrees with respect to the wind direction, the wind turbine 2 can continuously generate power efficiently by the wind direction along the axial direction, and the path of the floating body 1 is controlled as described above. The system calculates all combinations of floating courses that are 90 degrees or -90 degrees with respect to the wind direction for a plurality of planned transition time zones based on meteorological and sea state prediction information, and generates the power generation from the combinations. Since the calculation route that maximizes the energy acquired by the windmill 2 with the machine 2a is selected and control is performed so as to take the course along the calculation route until the next meteorological sea state prediction information is obtained. As a result, the storage of electrical energy is stored in the energy storage facility as a power storage facility, or the storage of hydrogen as an organic hydride by seawater electrolysis. It will be stored in the equipment.

また、浮体1が、上記の推進手段および操舵手段として、同浮体1の両端部の水面下にそれぞれポッドプロペラのごときプロペラ付き推進手段5を備え、同推進手段5が鉛直軸線のまわりに回動制御可能に装備されているので、細長い浮体1について、その直進性能を確保したり、同浮体両端部のプロペラ付き推進手段5の相互の逆向き舵角による舵取り性能の向上を図ったりすることが可能になる。   Further, the floating body 1 is provided with propulsion means 5 with a propeller such as a pod propeller below the water surface at both ends of the floating body 1 as the above-described propulsion means and steering means, and the propulsion means 5 rotates around a vertical axis. Since it is equipped so as to be controllable, the straight floating performance of the elongated floating body 1 can be secured, or the steering performance can be improved by the mutually opposite steering angles of the propelling means 5 with propellers at both ends of the floating body. It becomes possible.

そして、プロペラ付き推進手段5の動力源としては、ディーゼルエンジン駆動の発電機からの電力が用いられるが、発電機2a付き風車2からの電力を利用することも可能である。   And as a motive power source of the propulsion means 5 with a propeller, the electric power from the generator driven by the diesel engine is used, but the electric power from the windmill 2 with the generator 2a can also be used.

さらに、浮体1が、上記推進手段として、同浮体1の両端部に、それぞれ同浮体1の長手方向へ向けて水流を噴出しうるスラスター7を備えるとともに、上記操舵手段として、同浮体1の両端部に、同浮体1の幅方向へ、すなわち同浮体1の一側方または他側方へ水流を噴出しうるサイドスラスター8を備えている場合も、発電機2a付き風車2で得られた電力などを利用して、浮体1の推進や舵取りが効率よく行われるようになる。   Furthermore, the floating body 1 is provided with thrusters 7 that can eject water flows toward the longitudinal direction of the floating body 1 at both ends of the floating body 1 as the propulsion means, and both ends of the floating body 1 as the steering means. The power obtained by the windmill 2 with the generator 2a is also provided when the side thruster 8 capable of ejecting a water flow in the width direction of the floating body 1, that is, one side or the other side of the floating body 1 is provided in the part. The floating body 1 can be promoted and steered efficiently using the above.

また、浮体1が、同浮体1の推進手段および操舵手段として、同浮体1の両端部の上にそれぞれ帆6を立設されているので、各帆6を風向に応じ操作することで、推進力を得たり、細長い浮体1についての舵取りの効果を得たりすることが可能になる。   In addition, since the floating body 1 has the sails 6 standing on both ends of the floating body 1 as propulsion means and steering means for the floating body 1, propulsion can be performed by operating each sail 6 according to the wind direction. It becomes possible to obtain a force or to obtain a steering effect for the elongated floating body 1.

本発明の一実施例としての移動式洋上風力発電設備を示す側面図である。1 is a side view showing a mobile offshore wind power generation facility as one embodiment of the present invention. 図1の移動式洋上風力発電設備の平面図である。It is a top view of the mobile offshore wind power generation facility of FIG. (a)図は図1に対応させて他の例としての移動式洋上風力発電設備の両端部を示す側面図、(b)図は図1に対応させて更に他の例としての移動式洋上風力発電設備の両端部を示す側面図である。(A) A figure is a side view which shows the both ends of the mobile offshore wind power generation equipment as another example corresponding to FIG. 1, (b) A figure is a mobile offshore as another example corresponding to FIG. It is a side view which shows the both ends of a wind power generation facility. 上記設備の洋上における移動経路を示す説明図である。It is explanatory drawing which shows the movement path | route on the sea of the said equipment.

符号の説明Explanation of symbols

1 浮体
2 風車
2a 発電機
3 支柱
4 エネルギー貯蔵設備
5 ポッドプロペラ
5a ポッド
5b プロペラ
6 帆
7 スラスター
7a ダクト
7b インペラ
7c,7d 開口
7e ガイド板
7M 駆動装置
8 サイドスラスター
8a ダクト
8b インペラ
DESCRIPTION OF SYMBOLS 1 Floating body 2 Windmill 2a Generator 3 Prop 4 Energy storage equipment 5 Pod propeller 5a Pod 5b Propeller 6 Sail 7 Thruster 7a Duct 7b Impeller 7c, 7d Opening 7e Guide plate 7M Driving device 8 Side thruster 8a Duct 8b Impeller

Claims (4)

洋上に沿い細長く浮かべられた浮体において、同浮体の長手方向に沿い列をなすように立設され同浮体の横方向に向けられた多数の発電機付き風車と、同風車により得られた電気エネルギーを蓄えるためのエネルギー貯留設備とを備えるとともに、上記浮体の自航のための推進手段および操舵手段を備え、上記浮体を風力の得られる海域へ導いて上記風車が風力に対向できるように上記浮体を操縦すべく、上記の推進手段および操舵手段を気象海象予測情報に基づいて制御するための制御系が設けられており、同制御系が、上記浮体の針路について風向に対し90度または−90度となる針路を選択し、上記浮体の経路については、気象海象予測情報に基づき、予め計画した複数の変針判断時間帯について風向に対し90度または−90度となる浮体針路の全ての組合わせを計算し、その組合わせの中から上記発電機付き風車を備えた上記浮体の取得エネルギーが最大となる算出経路を選択して、次の気象海象予測情報の入手まで上記算出経路に沿う針路をとるように制御を行うものであることを特徴とする、移動式洋上風力発電設備。   A large number of wind turbines with generators standing in a row along the longitudinal direction of the floating bodies along the ocean, and the electric energy obtained by the wind turbines. And an energy storage facility for storing the floating body, and further comprising propulsion means and steering means for self-navigation of the floating body, and the floating body is guided to the sea area where wind power can be obtained so that the windmill can face the wind power. Is provided with a control system for controlling the propulsion means and the steering means on the basis of weather sea state prediction information, and the control system is 90 degrees or −90 with respect to the wind direction with respect to the course of the floating body. The course of the floating body is selected to be 90 degrees or -90 degrees with respect to the wind direction for a plurality of transition judgment time zones planned in advance based on the weather and sea state prediction information. All the combinations of floating body courses are calculated, and the calculation route that maximizes the acquisition energy of the floating body with the wind turbine with the generator is selected from the combinations, and the next meteorological and sea state prediction information is obtained. The mobile offshore wind power generation facility is characterized in that control is performed so as to follow the course along the calculation route. 上記浮体が、上記の推進手段および操舵手段として、同浮体の両端部の水面下にそれぞれプロペラ付き推進システムを鉛直軸線のまわりに回動制御可能に備えていることを特徴とする、請求項1に記載の移動式洋上風力発電設備。   The said floating body is equipped with the propulsion system with a propeller under the water surface of the both ends of the said floating body respectively as said propulsion means and steering means so that rotation control is possible around a vertical axis line, It is characterized by the above-mentioned. Mobile offshore wind power generation equipment described in 1. 上記浮体が、上記推進手段として、同浮体の両端部に同浮体の長手方向へ水流を噴出しうるスラスターを備えるとともに、上記操舵手段として、同浮体の両端部に同浮体の幅方向へ水流を噴出しうるサイドスラスターを備えていることを特徴とする、請求項1に記載の移動式洋上風力発電設備。   The floating body includes thrusters capable of ejecting a water flow in the longitudinal direction of the floating body at both ends of the floating body as the propulsion means, and the water flow in the width direction of the floating body as the steering means. The mobile offshore wind power generation facility according to claim 1, further comprising a side thruster that can be ejected. 上記浮体が、上記の推進手段および操舵手段として、同浮体の両端部上にそれぞれ帆を鉛直軸線のまわりに回動制御可能に立設されていることを特徴とする、請求項1〜3のいずれか1つに記載の移動式洋上風力発電設備。   The floating body is erected on both ends of the floating body as the propulsion means and the steering means so that the sail can be controlled to rotate around a vertical axis, respectively. The mobile offshore wind power generation facility according to any one of the above.
JP2007208337A 2007-08-09 2007-08-09 Mobile offshore wind power generation facility Expired - Fee Related JP4883705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007208337A JP4883705B2 (en) 2007-08-09 2007-08-09 Mobile offshore wind power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007208337A JP4883705B2 (en) 2007-08-09 2007-08-09 Mobile offshore wind power generation facility

Publications (2)

Publication Number Publication Date
JP2009041477A JP2009041477A (en) 2009-02-26
JP4883705B2 true JP4883705B2 (en) 2012-02-22

Family

ID=40442467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208337A Expired - Fee Related JP4883705B2 (en) 2007-08-09 2007-08-09 Mobile offshore wind power generation facility

Country Status (1)

Country Link
JP (1) JP4883705B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390866B1 (en) 2013-01-21 2014-05-08 삼성중공업 주식회사 Floating wind power generator
KR101748610B1 (en) * 2015-05-29 2017-07-03 두산중공업 주식회사 Offshore Floating wind turbine comprising a plurality of generator units.
KR102038024B1 (en) * 2018-02-20 2019-10-29 두산중공업 주식회사 Floating type wind turbine and control method of the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396381B2 (en) * 1996-08-07 2003-04-14 独立行政法人海上技術安全研究所 Predicted position display device with joystick control
NL1006496C2 (en) * 1997-07-07 1999-01-08 Lagerwey Windturbine B V Windmill island.
JP2001059472A (en) * 1999-08-20 2001-03-06 Nth Sekkei & Kaisei Keisan:Kk Energy producing device
JP2002303454A (en) * 2001-03-30 2002-10-18 Mitsubishi Heavy Ind Ltd Floater type hydrogen and oxygen production system
JP2004036517A (en) * 2002-07-04 2004-02-05 Kinden Corp Water-surface wind power generation device
JP4638163B2 (en) * 2004-03-19 2011-02-23 三菱重工業株式会社 Windmill equipment
JP4572380B2 (en) * 2004-04-30 2010-11-04 独立行政法人海上技術安全研究所 Sailing ship navigation planning support system
JP2006070775A (en) * 2004-09-01 2006-03-16 Akimori Taniguchi Method for using wind power generation in barge type platform plant system, electrolyzing seawater and producing hydrogen

Also Published As

Publication number Publication date
JP2009041477A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US20150027125A1 (en) Process for harvesting, storing, and using renewable energy to propel and power boats and ships, and maximize their average speed
JP5311304B2 (en) Offshore power generation system
EP2177750B1 (en) Hydroelectric turbine-based power-generating system for vessels and submarines
US4371346A (en) System for propulsion of boats by means of winds and streams and for recovery of energy
JP2015003641A (en) Ship
CN105197189A (en) Self-propelled wave force power generation platform and moving and berthing method thereof
JP3172459U (en) Hydrofoil and motorboat type ship
JP4883705B2 (en) Mobile offshore wind power generation facility
US20220389904A1 (en) Kite driven watercraft power generating system
JP2006177264A (en) Hydrogen supply system
KR200443636Y1 (en) Omiitted
JPH05236698A (en) Water surface sailing power generating device
JP2014184935A (en) Power generating ship
CN111486050B (en) Deformable power generation sail and unmanned exploration ship carrying same
CN204124315U (en) A kind of not heavy environment protection ship operated steadily
CN104760679A (en) Technology for converting water flow energy into electric power through electrically-driven adjustable propeller system during sailing voyage and storing electric power
JP2013067269A (en) Floating island water-wheel power generation system which is movable and capable of keeping constant position
JP2005247077A (en) Water-jet-fin propelling system
JP3942625B1 (en) Battery powered ship
RU2013128913A (en) WATER BOAT WITH IMPROVED CHARACTERISTICS FOR MOVEMENT IN ICE
CN201907648U (en) Ship capable of travelling at high speed
US20200239118A1 (en) Process for maximizing speed of marine vessels propelled by natural renewable energy by managing the harvesting, storage and re-use of natural energy
CN102530218B (en) The ship that can run at high speed
KR101702052B1 (en) wave power generation mounted in barge
RU2213882C2 (en) Method of operation of power-generating semi- submersible platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees