JP4628523B2 - 光ファイバ伝送路の特性を評価するための方法、装置及びシステム - Google Patents

光ファイバ伝送路の特性を評価するための方法、装置及びシステム Download PDF

Info

Publication number
JP4628523B2
JP4628523B2 JP2000176629A JP2000176629A JP4628523B2 JP 4628523 B2 JP4628523 B2 JP 4628523B2 JP 2000176629 A JP2000176629 A JP 2000176629A JP 2000176629 A JP2000176629 A JP 2000176629A JP 4628523 B2 JP4628523 B2 JP 4628523B2
Authority
JP
Japan
Prior art keywords
optical
control circuit
pump
transmission line
fiber transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000176629A
Other languages
English (en)
Other versions
JP2001356074A (ja
Inventor
博之 出口
伸一朗 原沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000176629A priority Critical patent/JP4628523B2/ja
Priority to US09/769,522 priority patent/US6452721B2/en
Publication of JP2001356074A publication Critical patent/JP2001356074A/ja
Application granted granted Critical
Publication of JP4628523B2 publication Critical patent/JP4628523B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ接続点の損失等の光ファイバ伝送路の特性を評価するための方法、装置及びシステムに関する。
【0002】
【従来の技術】
低損失(例えば0.2dB/km)な光ファイバ(例えばシリカファイバ)の製造技術及び使用技術が確立され、光ファイバを伝送路とする光ファイバ伝送システムが実用化されている。また、光ファイバ伝送路の損失を補償するために、光信号を増幅する1つ又はそれよりも多くの光増幅器が光ファイバ伝送路の途中に設けられる。
【0003】
従来知られている光増幅器は、光信号を伝搬させる光増幅媒体と、光増幅媒体が光信号に利得を与えるように光増幅媒体をポンピングするポンプ源とを備えている。例えば、エルビウムドープファイバ増幅器(EDFA)は、光増幅媒体としてエルビウムドープファイバ(EDF)を有しており、EDFは0.98μm帯或いは1.48μm帯のポンプ光によってポンピングされる。
【0004】
近年においては、光ファイバ伝送路の途中に光増幅器を有するシステムでの付加的な利得を得るために、ラマン増幅が利用されることがある。一般的に、光ファイバにパワーが大きな光を供給すると、その光の波長よりも長波長側にラマン増幅作用によって比較的広い利得帯域が生じる。例えば、シリカファイバに+0dBmよりも大きなパワーを有する1.45乃至1.48μm帯の光を入力すると、入力光の波長(1.55μm帯)よりも0.09乃至0.10μm長波長側に0.1乃至8dB程度の利得を提供する利得帯域が生じる。
【0005】
【発明が解決しようとする課題】
ラマン増幅の発生効率を高めるためには、光ファイバに入力する光のパワーを高めるか或いはモードフィールド径が小さい光ファイバを用いることが有効である。逆にいえば、入力光のパワー及び光ファイバのモードフィールド径のいずれかが変化すればラマン増幅における利得が変化することになる。
【0006】
光ファイバ伝送路として使用される光ファイバのモードフィールド径を正確に把握することは製造技術上困難である。また、ラマン増幅を生じさせるために、光ファイバ伝送路に入力する光のパワー及び波長はシステム毎に異なることがある。従って、光ファイバ伝送路の特性、例えば光ファイバ伝送路におけるスプライス接続点の損失を評価しようとする場合に、ラマン増幅の利得のばらつきにより大きな誤差が生じる可能性がある。
【0007】
スプライス接続による損失が高い場合は光ファイバの接続が不完全な場合があり、経時劣化やケーブルに対する衝撃により伝送路が切断される可能性がある。
【0008】
そして、海底通信システム等のケーブルに長期信頼が必要なシステムではそのような不完全な接続は致命的な欠陥になる。
【0009】
よって、本発明の目的は、光ファイバ伝送路の特性を正確に評価するための方法、装置及びシステムを提供することである
【0010】
【課題を解決するための手段】
本発明によると、光信号を伝搬する光ファイバ伝送路に接続され該光信号を第1及び第2の分岐光に分岐する光カプラと、上記第2の分岐光の光パワーを検出するフォトディテクタと、上記光カプラの上記第1の分岐光が出力される下流側に設けられ、希土類元素がドープされたドープファイバと、上記ドープファイバの上流側の第1端に接続されフォワードポンピングするための第1のポンプ光を上記ドープファイバに供給する第1のポンプ源と、上記ドープファイバの下流側の第2端に接続されバックワードポンピングするための第2のポンプ光を上記ドープファイバに供給するともとに該第2のポンプ光により上記光ファイバ伝送路において上記光信号がラマン増幅される第2のポンプ源と、上記第1及び第2のポンプ源を制御する制御回路とを各々が有し、直列に接続された第1及び第2の装置を提供するステップと、上流側の上記第1の装置の上記制御回路により、上記第1の装置の上記第1及び第2のポンプ源をオフ及びオンし、下流側の上記第2の装置の上記制御回路により、上記第2の装置の上記第1及び第2のポンプ源をオン及びオフした第1の状態で、上記第2の装置の上記フォトディテクタが検出した第1の光パワーを取得するステップと、上記第2の装置の上記制御回路により、上記第1の光パワーに基づいて、上記第2の装置の入力ポートと上記光ファイバ伝送路との接続点における損失を算出するステップと、上記第1の装置の上記制御回路により、上記第1の装置の上記第1及び第2のポンプ源をオン及びオンし、上記第2の装置の上記制御回路により、上記第2の装置の上記第1及び第2のポンプ源をオン及びオンした第2の状態で、上記第2の装置の上記フォトディテクタが検出した第2の光パワーを取得するステップとを備えた方法が提供される
【0011】
本発明によると、光信号を伝搬する光ファイバ伝送路に接続され該光信号を第1及び第2の分岐光に分岐する光カプラと、上記第2の分岐光の光パワーを検出するフォトディテクタと、上記光カプラの上記第1の分岐光が出力される下流側に設けられ、希土類元素がドープされたドープファイバと、上記ドープファイバの上流側の第1端に接続されフォワードポンピングするための第1のポンプ光を上記ドープファイバに供給する第1のポンプ源と、上記ドープファイバの下流側の第2端に接続されバックワードポンピングするための第2のポンプ光を上記ドープファイバに供給するともとに該ポンプ光により上記光ファイバ伝送路において上記光信号がラマン増幅される第2のポンプ源と、上記第1及び第2のポンプ源を制御する制御回路とを各々が有し、直列に接続された第1及び第2の装置を備え、上流側の上記第1の装置の制御回路は上記第1の装置の上記第1及び第2のポンプ源をオフ及びオンし、下流側の上記第2の装置の制御回路は上記第2の装置の上記第1及び第2のポンプ源をオン及びオフした第1状態で、上記第2の装置の制御回路は上記第2の装置の上記フォトディテクタが検出した第1の光パワーを取得し、記第2の装置の制御回路は、上記第1の光パワーに基づいて、上記第2の装置の入力ポートと上記光ファイバ伝送路との接続点における損失を算出し、上記第1の装置の制御回路は上記第1の装置の上記第1及び第2のポンプ源をオン及びオンし、上記第2の装置の制御回路は上記第2の装置の上記第1及び第2のポンプ源をオン及びオンした第2状態で、上記第2の装置の制御回路は、上記第2の装置の上記フォトディテクタが検出した第2の光パワーを取得する装置が提供される。
【0018】
【発明の実施の形態】
以下、添付図面を参照して本発明の望ましい実施形態を詳細に説明する。全図を通して実質的に同一の部分には同一の符号が付される。
【0019】
図1を参照すると、光中継器として使用することができる従来の光増幅器の構成が示されている。入力ポート2と出力ポート4との間に、光カプラ6、光増幅媒体としてのエルビウムドープファイバ(EDF)8及び光カプラ10が接続されている。EDF8は第1端8A及び第2端8Bを有している。
【0020】
ポンプ源としてのレーザダイオード(LD)12は光カプラ10に接続されており、レーザダイオード12から出力されたポンプ光は光カプラ10を通って第2端8BからEDF8に供給される。増幅されるべき光信号は、入力ポート2から光カプラ6を通って第1端8AからEDF8に供給される。ポンプ光によりポンピングされているEDF8に光信号が供給されると、誘導放出の原理に従って光信号は増幅され、増幅された光信号は、光カプラ10を通って出力ポート4から出力される。
【0021】
入力パワーをモニタリングするために、光カプラ6にはフォトディテクタ(PD)14が接続されている。フォトディテクタ14は入力した光信号のパワーが反映される電気信号を出力し、この電気信号は制御回路16に供給される。制御回路16は、光信号の入力パワーに応じた適切な利得がこの光増幅器において得られるように、レーザダイオード12から出力されるポンプ光のパワーを制御する。
【0022】
EDF8内において光増幅に寄与しなかった残留ポンプ光は、第1端8A及び光カプラ6を通って入力ポート2から光信号と逆向きに出力される。そして、この出力された残留ポンプ光によって、入力ポート2に接続される光ファイバ伝送路においてラマン増幅が生じる。
【0023】
光信号の波長は1.55μm帯(1.50乃至1.60μm)に含まれており、ポンプ光の波長は1.48μm帯(1.46乃至1.50μm)に含まれている。このような波長設定により、EDF8において光信号に対する有効な利得が生じるとともに、前述したラマン増幅を生じさせることができる。
【0024】
図2を参照すると、一般的な光ファイバ伝送システムの構成と、そのシステムにおけるパワーダイヤグラムが示されている。光ファイバ伝送路20の途中には複数の(図では2つの)光中継器18(#1及び#2)が設けられており、これにより光ファイバ伝送路20の損失が補償されるようになっている。光パワー(dBm)と伝送距離(km)との関係を表すパワーダイヤグラムにおいて、ラマン増幅を考慮しないと、光ファイバ伝送路20を伝搬する光信号の光パワーは伝送距離に従ってリニアーに減衰する。光中継器18(#2)から残留ポンプ光が光中継器18(#1)に向けて光ファイバ伝送路20に供給されると、パワーダイヤグラムに符号22で示されるように、光中継器18(#2)の入力側近傍においてラマン増幅による利得が得られる。
【0025】
このようなラマン増幅の利得は、光中継器18(#2)から漏れ出す残留ポンプ光のパワーや光ファイバ伝送路20に用いられている光ファイバのモードフィールド径に従ってばらつくので、例えば光中継器18(#2)の入力側のスプライス接続点SCにおける損失を正確に測定することができない場合がある。この場合、スプライス作業の正確な良否判定が困難になり、品質管理上重大な障害となる可能性がある。これに対処するために、光中継器18(#2)から漏れ出す残留ポンプ光を抑圧することが提案され得るが、この場合、ラマン増幅により得られる利得を放棄することになり、システム全体の運用から考えて無駄が多くなる。
【0026】
尚、スプライス接続点SCにおける損失をLsp、光中継器18(#1)から光ファイバ伝送路20に出力される光信号のパワーをPincabl、光中継器18(#1及び#2)間における光ファイバ伝送路20の損失をLcabl、ラマン増幅による利得をGram、光中継器18(#2)への入力パワーをPinrepとすると、次の式が成り立つ。
【0027】
Pincabl−Lcabl+Gram−Lsp=Pinrep
上式において、Pincabl,Lcabl及びPinrepは測定により予め容易に把握しておくことができるものであり、Lspはスプライス作業に際して測定すべきものであり、Gramがばらつきにより正確に把握し得ないことに基づきLspの測定精度が低下するものである。
【0028】
図3は本発明による装置の第1実施形態を示すブロック図である。本発明による装置は光ファイバ伝送システムにおける光中継器として用いることができる(以下の実施形態においても同様)。この装置は、図1に示される光中継器と対比して、光カプラ6とEDFA8の第1端8Aとの間に光フィルタユニット24が接続されている点で特徴付けられる。光フィルタユニット24は、光カプラ6に接続される光スイッチ26と、EDF8の第1端8Aに接続される光スイッチ28と、光スイッチ26及び28間に並列に接続される第1及び第2の光パス30及び32と、第1の光パス30の途中に設けられる光フィルタ34とを含む。光フィルタ34は、入力ポート2からEDF8に供給される増幅されるべき光信号を通過させるが、EDF8から入力ポート2に供給される残留ポンプ光は通過させない。従って、光フィルタユニット24は、光スイッチ26及び28を連動して動作させることによって、光信号及びポンプ光を通過させる第1の状態と、光信号を通過させ、且つポンプ光を通過させない第2の状態とを選択可能に切り換えることができる。光フィルタ34としては、光帯域通過フィルタ或いは光帯域阻止フィルタを用いることができる。
【0029】
光フィルタユニット24に関連して、制御回路16は、前述した機能に加えて付加的な機能を有する。後述するように、増幅されるべき光信号の主信号には監視信号が重畳されており、制御回路16はフォトディテクタ14から供給される電気信号に基づき監視信号を再生することができる。再生された監視信号に基づき光スイッチ26及び28を動作させることによって、光フィルタユニット24の遠隔制御が可能である。また、フォトディテクタ14による入力光パワーのモニタリング結果に基づき、監視信号を更新し、更新された監視信号を下流側の装置(他の光中継器や受信端局装置等)ヘ送ることができる。この更新された監視信号の伝送には例えば、更新された監視信号に基づき、レーザダイオード12から出力されるポンプ光を強度変調し、これによりEDF8で生じる利得を変調して更新された監視信号を主信号に重畳する手法がある。
【0030】
例えば、この装置において、入力ポート2の近傍のスプライス損失を遠隔操作によりモニタリングする場合、まず、監視信号により光スイッチ26及び28が第1の光パス30を選択する。これにより、入力ポート2に供給された増幅されるべき光信号は光フィルタ34を通ってEDF8に供給され、レーザダイオード12からのポンプ光は通常通りEDF8に供給されているので、この装置の光中継器としての動作が維持されるとともに、EDF8からの残留ポンプ光は光フィルタ34により阻止され入力ポート2には到達しない。従って、この装置の入力側におけるラマン増幅の発生を阻止した上で、スプライス損失をモニタリングすることができる。この装置の入力光パワーはフォトディテクタ14により測定することができ、前述の式におけるGramは0であるので、前述した式に基づいて、スプライス損失を容易に且つ正確に得ることができる。そして、モニタリングの後に、監視信号に基づき光スイッチ26及び28が第2の光パス32を選択し、これにより入力ポート2とEDF8は直通状態となるので、残留ポンプ光によるラマン増幅が生じた状態での伝送が可能になる。
【0031】
次に、図4及び図5を用いて第1実施形態における監視制御をより特定的に説明する。図4は第1実施形態における制御回路16の具体的構成例を示すブロック図、図5は第1実施形態における監視制御のフローチャートである。
【0032】
図4に示されるように、制御回路16は、フォトディテクタ14の出力が供給されるレベルモニタ回路161及びSV信号抽出回路162を含む。レベルモニタ回路161は、フォトディテクタ14の出力に基づき入力光パワーのレベルを検出し、その結果を制御部163へ送る。SV信号抽出回路162は、フォトディテクタ14の出力に基づき監視信号(SV信号)を抽出し、その結果を制御部163へ送る。SV信号は、例えば、中継器を識別するためのアドレスを表示する10ビットのデジタル信号と中継器の制御命令を決定する4ビットのデジタル信号とからなる。制御部163の出力はLD駆動回路164並びにスイッチ駆動回路165及び166に供給される。そして、LD駆動回路164によってポンプ光用のレーザダイオード12が駆動され、スイッチ駆動回路165及び166によってそれぞれ光スイッチ26及び28が駆動される。
【0033】
図5を参照すると、まずステップ111では、中継器を含む伝送システムの電源が立ち上げられる。次いで、ステップ112では、モニタを行う中継器に対して送信装置より光スイッチ26及び28を光フィルタ34側へ切り換えるべき命令が送出される。
【0034】
次いで、ステップ113では、その中継器に対して、入力レベルモニタ命令が送信装置から送出される。次いでステップ114では、その中継器からの入力レベルモニタ応答(1)を確認したのち、光スイッチ26及び28を反対側(光パス32の側)に切り替える命令が送信装置より送出される。この段階で、ラマン増幅に影響されない入力レベルを得ることができる。
【0035】
次いでステップ115では、その中継器に対して再度入力レベルモニタ命令が送信装置より送出される。次いでステップ116では、その中継器からの入力レベルモニタ応答(2)が確認される。この段階でラマン増幅が加わった状態の入力レベルを得ることができる。次いで、ステップ117では、上述の入力レベルモニタ応答(1)及び(2)の差からラマン増幅率が算出される。そしてステップ118では他のモニタ作業に移行する。
【0036】
尚、初期状態として光スイッチ26及び28はシステムの電源立ち上げによりパワーオンリセットされて、光パス32の側へ自動的に切り換えられている。
【0037】
図6は本発明による装置の第2実施形態を示すブロック図である。この実施形態では、図3に示される光フィルタユニット24に換えて音響光学チューナブルフィルタ(AOTF)36が用いられている。AOTF36は光導波路及びこの光導波路に関連して伝搬する表面弾性波(SAW)の導波構造を基板上に形成することによって得ることができる。例えば、光の複屈折性を有するLiNbO3基板上にTiを熱拡散することによって、AOTF36に適した光導波路を得ることができる。また、その光導波路に関連して表面弾性波を伝搬させるために、インタディジタルトランスデューサ(IDT)が基板上に形成される。表面弾性波が光導波路に関連して伝搬することによって、表面弾性波のパワー及び周波数並びに光導波路の複屈折に応じて決定される特定波長の光に関して、TEモードからTMモードへのモード変換或いはこれと逆のモード変換が行われる。従って、このモード変換された光を変更ビームスプリッタ等の特定の手段によって取り出すことによって、光の異なる波長成分を分けることができる。この選択作用は表面弾性波の周波数に依存するので、表面弾性波の周波数に従ってAOTF36を通過する或いは通過しない光の波長はチューナブルとなる。
【0038】
このようなAOTF36を用いることによっても、光信号及びポンプ光を通過させる第1の状態と、光信号を通過させ、且つポンプ光を通過させない第2の状態とを選択可能に切り換えることができるので、例えば、監視信号に基づき、制御回路16がAOTF36を制御することによって、図3により説明した実施形態と同様に本発明を実施することができる。
【0039】
図7は第2実施形態における制御回路の具体的構成例を示すブロック図、図8は第2実施形態における監視制御のフローチャートである。
【0040】
この実施形態では、図7に示されるように、制御回路16は、図4に示される実施形態と対比して制御部163の出力がAOTF駆動回路167に供給されるように変更されている点で特徴付けられる。駆動回路167は制御部163からの信号に基づいてAOTF36の駆動のオン/オフを行う。
【0041】
図8を参照すると、この実施形態における監視制御のフローは、図5に示されるステップ112及び114がそれぞれステップ112A及び114Aに変更されている点で特徴付けられる。ステップ112Aでは、モニタを行う中継器に対して送信装置よりAOTF駆動命令が送出され、ステップ114Aでは、中継器からの入力レベルモニタ応答(1)が確認されたのち、AOTF駆動停止命令が送信装置より送出される。他のステップについては図5のフローチャートと同様であるので、その説明を省略する。
【0042】
図9は本発明による装置の第3実施形態を示すブロック図である。この実施形態は、図3に示される実施形態と対比して、光フィルタユニット24が省略されている点と、もう1つのポンプ源としてのレーザダイオード38が設けられている点とで特徴付けられる。レーザダイオード38から出力されたポンプ光は、光カプラ6とEDF8の第1端8Aとの間に接続されている光カプラ40を介してEDF8にその第1端8Aから供給される。従って、EDF8は、レーザダイオード38によってフォワードポンピング(ポンプ光と光信号とが同じ向きに伝搬)されるとともに、レーザダイオード12からのポンプ光によってバックワードポンピング(ポンプ光と光信号が逆向きに伝搬)され得ることになる。レーザダイオード12及び38の動作は受けた監視信号に基づいて制御回路16によって制御される。
【0043】
図9に示される装置を図2に示される光中継器18(#1及び#2)の各々として用いて光ファイバ伝送路20の特性を評価する方法について説明する。光中継器18(#2)の入力側のスプライス損失を遠隔操作によりモニタリングする場合、まず、光中継器18(#1)におけるレーザダイオード38を監視信号によりオフにし、続いて、光中継器18(#2)におけるレーザダイオード12を同じく監視信号によりオフにする。この場合、光中継器18(#1)においてはレーザダイオード12によりEDF8がポンピングされており、光中継器18(#2)においてはレーザダイオード38によりEDF8がポンピングされているので、光信号の伝送は可能である。また、光中継器18(#1及び#2)間の光ファイバ伝送路20には残留ポンプ光が何れの光中継器18(#1及び#2)からも漏れ出さないため、ラマン増幅は生じない。従って、前述した式に基づいてスプライス接続点SCにおける損失を容易に且つ正確に測定することができ、そのモニタリングに関する監視制御及び監視結果の伝送をオンラインで実施することができる。
【0044】
スプライス損失をモニタリングした後、光中継器18(#1)においてはレーザダイオード38が監視信号によりオンにされ、光中継器18(#2)においてはレーザダイオード12が監視信号によりオンにされる。これにより、予め設定されていたEDF8における利得が得られる。
【0045】
尚、光中継器18(#1)の出力側のスプライス損失を評価する場合には、光中継器18(#1)のレーザダイオード38をオフにして、同様にしてラマン増幅が寄与しない状態での測定を実施することができる。
【0046】
EDF8をフォワードポンピングするためのレーザダイオード38から出力されるポンプ光はバックワードポンピングするためのポンプ光の波長と同様1.48μm帯に含まれることができる。レーザダイオード38から出力されるポンプ光の波長は0.98μm帯(0.96乃至1.0μm)に含まれていても良い。この場合、そのポンプ光による1.55μm帯の光信号に対するラマン増幅は生じないので、光ファイバ伝送路の特性評価にあたってレーザダイオード38をオフにする必要はない。
【0047】
図10は第3実施形態における制御回路16の具体的構成例を示すブロック図、図11は第3実施形態における監視制御のフローチャートである。
【0048】
図10を参照すると、この実施形態における制御回路16は、図4に示される制御部163がスイッチ駆動回路165及び166を制御することに換えて制御部163がLD駆動回路168を制御するように変更されている点で特徴付けられられる。LD駆動回路168はバックワードポンピング用のLD38を駆動する。
【0049】
図11を参照すると、この実施形態における監視制御のフローは、図5に示されるステップ112及び114がそれぞれステップ112B及び114Bに変更されている点で特徴付けられる。ステップ112Bでは、モニタを行う中継器に対して送信装置よりLD12駆動停止命令が送出され、ステップ114Bでは、その中継器からの入力レベルモニタ応答(1)が確認された後、LD12駆動命令が送信装置より送出される。他のステップについては図5に示されるフローにおけるのと同様であるのでその説明を省略する。
【0050】
図12は本発明による装置の第4実施形態を示すブロック図である。この実施形態は、図9に示される実施形態と対比して、ラマン増幅を積極的に生じさせるためのポンプ源としてレーザダイオード42を付加的に有している点で特徴付けられる。レーザダイオード42から出力された例えば1.48μm帯に含まれる波長を有するポンプ光は、光カプラ44、光カプラ6、入力ポート2をこの順に通って光ファイバ伝送路ヘ送出される。従って、この装置を図2に示される光中継器18(#2)として用いてその入力側のスプライス接続点SCの損失を測定する場合には、レーザダイオード12及び42をオフにすることによって、ラマン増幅が生じない状態での測定が可能になる。この場合、レーザダイオード38からのポンプ光によってEDF8はフォワードポンピングされているので、光中継器18(#2)を介した光信号の伝送が可能であり、監視制御によるモニタリング及びモニタリング結果の監視信号による伝送が可能である。
【0051】
図13は第4実施形態における制御回路16の具体的構成例を示すブロック図、図14は第4実施形態における監視制御のフローチャートである。
【0052】
図13を参照すると、この実施形態における制御回路16は、図10に示される制御回路16と対比して、LD駆動回路169が付加的に設けられている点で特徴付けられる。駆動回路169はラマン増幅を積極的に生じさせるためのポンプ源としてのレーザダイオード42を駆動する。
【0053】
図14を参照すると、この実施形態における監視制御のフローは、図5に示されるフローにおけるステップ112及び114がそれぞれステップ112C及び114Cに変更されている点で特徴付けられる。ステップ112Cでは、モニタを行う中継器に対して送信装置よりLD12及びLD42駆動停止命令が送出され、ステップ114Cでは、その中継器からの入力レベルモニタ応答(1)が確認されたのち、LD12及びLD42駆動命令が送信装置より送出される。他のステップについては図5のフローと同様であるので、その説明を省略する。
【0054】
図15は本発明によるシステムの第1実施形態を示すブロック図である。このシステムは、各々端局装置としての送信局46及び受信局48と、送信局46及び受信局48間に付設される光ファイバ伝送路20と、光ファイバ伝送路20のと中に設けられる複数の(図では3つの)光中継器18(#1,#2及び#3)とを備えている。各光中継器18としては本発明による装置を用いることができる。送信局46は、サービス信号としての主信号と主信号に重畳された監視信号とを光信号として光ファイバ伝送路20へ送出する。光信号は各光中継器18で増幅中継され、受信局48へ送られる。
【0055】
図16を参照すると、監視信号の伝送方法が示されている。符号50で示される主信号の振幅に対して数%程度の強度変調を施すことによって、符号52で示されるように主信号よりも低速な監視信号が重畳されている。監視信号をキャリアとした変調方式としては、ASK,FSK,PSK等を採用可能である。このような監視信号を用いることによって、例えば図7に示されるシステムにおいて、各光中継器18或いは受信局48へ送信局46から遠隔制御命令を送ることができる。遠隔制御命令には、例えば予め各光中継器18に設定された識別アドレスが含まれており、これにより各光中継器18に対して個別に監視制御を行うことができる。
【0056】
図17は本発明によるシステムの第2実施形態を示すブロック図である。このシステムは、第1及び第2の端局54及び56と、端局54及び56間に付設された下りの光ファイバ伝送路20A及び上りの光ファイバ伝送路20Bと下りの光ファイバ伝送路20Aの途中に設けられた複数の(図では3つの光中継器18A(#1,#2及び#3)と、上りの光ファイバ伝送路20Bの途中に設けられた複数の(図では3つの)光中継器18B(#1,#2及び#3)とを備えている。光中継器18A(#1)と光中継器18B(#1)、光中継器18A(#2)と光中継器18B(#2)、光中継器18A(#3)と光中継器18B(#3)はそれぞれ同じ中継器筐体内に設けられており、同じ中継器筐体内に設けられている光中継器間では監視信号のやり取りが可能である。
【0057】
従って、図17のシステムを用いて本発明方法を実施する場合には、例えば光中継器18A(#1)が遠隔制御命令を受けると、その命令に従ったモニタリングが実施され、その結果を第2の端局56へ伝送することもできるし、監視信号のやり取りを行っている光中継器18B(#1)を介して第1の端局54へ伝送することもできる。尚、モニタリング結果の伝送には、前述したようなポンプ光の強度変調を用いることができる。
【0058】
以上説明した実施形態は例示的なものであり、限定的なものではない。例えば、光ファイバ伝送路の特性としてスプライス接続点の損失を例示したが、光ファイバ伝送路それ自体の損失特性を本発明に従って評価することもできる。
【0059】
(付記1) 光ファイバ伝送路の少なくとも一部が光信号をラマン増幅するように上記光ファイバ伝送路にポンプ光を供給するポンプ源を含む光増幅器を提供するステップと、
上記光信号及び上記ポンプ光を通過させる第1の状態と上記光信号を通過させ且つ上記ポンプ光を通過させない第2の状態とを選択可能に切り換える光フィルタユニットを上記光ファイバ伝送路及び上記光増幅器の間に接続するステップと、
上記光信号のパワーを上記第1の状態と上記第2の状態とで比較することに基づき上記光ファイバ伝送路の特性を評価するステップとを備えた方法。
【0060】
(付記2) 付記1に記載の方法であって、
上記評価するステップは上記光ファイバ伝送路に含まれるスプライス接続点の損失を測定するステップを含む方法。
【0061】
(付記3) 付記1に記載の方法であって、
上記光増幅器は第1端及び第2端を有する光増幅媒体を更に含み、
上記光信号は上気第1端から上記第2端に向かって伝搬するように上記光増幅媒体に供給され、
上記ポンプ光は上記第2端から上記第1端に向かって伝搬するように上記光増幅媒体に供給され、それにより、上記光増幅媒体は上記光信号を増幅し、その増幅に寄与しなかった上記ポンプ光の一部が上記第1端から上記光ファイバ伝送路に供給される方法。
【0062】
(付記4) 付記3に記載の方法であって、
上記光増幅媒体はエルビウムドープファイバであり、
上記光信号は1.55μm帯に含まれる波長を有しており、
上記ポンプ光は1.48μm帯に含まれる波長を有している方法。
【0063】
(付記5) 付記1に記載の方法であって、
上記光フィルタユニットは、上記光ファイバ伝送路及び上記光増幅器にそれぞれ接続される第1及び第2の光スイッチと、上記第1及び第2の光スイッチの間に並列に接続される第1及び第2の光パスと、上記第1の光パスの途中に設けられ上記光信号を通過させ且つ上記ポンプ光を通過させない光フィルタとを含む方法。
【0064】
(付記6) 付記1に記載の方法であって、
上記光フィルタユニットは音響光学チューナブルフィルタを含む方法。
【0065】
(付記7) 光ファイバ伝送路の少なくとも一部が光信号をラマン増幅するように上記光ファイバ伝送路にポンプ光を供給するポンプ源を含む光増幅器と、
上記光ファイバ伝送路及び上記光増幅器の間に接続され、上記光信号及び上記ポンプ光を通過させる第1の状態と上記光信号を通過させ且つ上記ポンプ光を通過させない第2の状態とを選択可能に切り換える光フィルタユニットと、
上記第1の状態及び上記第2の状態を切り換えるように上記光フィルタユニットを制御する制御回路とを備えた装置。
【0066】
(付記8) 付記7に記載の装置であって、
上記光増幅器は第1端及び第2端を有する光増幅媒体を更に含み、
上記光信号は上気第1端から上記第2端に向かって伝搬するように上記光増幅媒体に供給され、
上記ポンプ光は上記第2端から上記第1端に向かって伝搬するように上記光増幅媒体に供給され、それにより、上記光増幅媒体は上記光信号を増幅し、その増幅に寄与しなかった上記ポンプ光の一部が上記第1端から上記光ファイバ伝送路に供給される装置。
【0067】
(付記9) 付記8に記載の装置であって、
上記光増幅媒体はエルビウムドープファイバであり、
上記光信号は1.55μm帯に含まれる波長を有しており、
上記ポンプ光は1.48μm帯に含まれる波長を有している方法。
【0068】
(付記10) 付記7に記載の装置であって、
上記光フィルタユニットは、上記光ファイバ伝送路及び上記光増幅器にそれぞれ接続される第1及び第2の光スイッチと、上記第1及び第2の光スイッチの間に並列に接続される第1及び第2の光パスと、上記第1の光パスの途中に設けられ上記光信号を通過させ且つ上記ポンプ光を通過させない光フィルタとを含む装置。
【0069】
(付記11) 付記7に記載の装置であって、
上記光フィルタユニットは音響光学チューナブルフィルタを含む装置。
【0070】
(付記12) 光信号を伝搬させる光ファイバ伝送路と、
光ファイバ伝送路の少なくとも一部が上記光信号をラマン増幅するように上記光ファイバ伝送路にポンプ光を供給するポンプ源を含む光増幅器と、
上記光ファイバ伝送路及び上記光増幅器の間に接続され、上記光信号及び上記ポンプ光を通過させる第1の状態と上記光信号を通過させ且つ上記ポンプ光を通過させない第2の状態とを選択可能に切り換える光フィルタユニットと、
上記第1の状態及び上記第2の状態を切り換えるように上記光フィルタユニットを制御する制御回路とを備えたシステム。
【0071】
(付記13) 付記12に記載のシステムであって、
上記光ファイバ伝送路に接続される端局装置を更に備え、
上記端局装置は上記制御回路に関連して用いられる監視信号を出力する手段を含むシステム。
【0072】
(付記14) 希土類元素がドープされたドープファイバと、上記ドープファイバの第1端に接続され第1のポンプ光を出力する第1のポンプ源と、上記ドープファイバの第2端に接続され第2のポンプ光を出力する第2のポンプ源とを各々が備えた第1及び第2の光増幅器をそれぞれ光ファイバ伝送路の第1端及び第2端に接続するステップと、
上記第1の光増幅器の第1及び第2のポンプ源をそれぞれオフ及びオンにし上記第2の光増幅器の第1及び第2のポンプ源をそれぞれオン及びオフにする第1の状態と上記第1の光増幅器の第1及び第2のポンプ源をオンにし上記第2の光増幅器の第1及び第2のポンプ源をオンにする第2の状態とを切り換えるステップと、
上記第1の状態における上記光信号のパワーを測定することに基づき上記光ファイバ伝送路の特性を評価するステップとを備えた方法。
【0073】
(付記15) 付記14に記載の方法であって、
上記評価するステップは上記光ファイバ伝送路に含まれるスプライス接続点の損失を測定するステップを含む方法。
【0074】
(付記16) 付記14に記載の方法であって、
上記ドープファイバはエルビウムドープファイバであり、
上記光信号は1.55μm帯に含まれる波長を有しており、
上記第1のポンプ光は0.98μm帯び及び1.48μm帯のいずれかに含まれる波長を有しており、
上記第2のポンプ光は1.48μm帯に含まれる波長を有している方法。
【0075】
(付記17) 希土類元素がドープされたドープファイバと、上記ドープファイバの第1端に接続され第1のポンプ光を出力する第1のポンプ源と、上記ドープファイバの第2端に接続され第2のポンプ光を出力する第2のポンプ源とを各々が備えた第1及び第2の光増幅器と、
上記第1の光増幅器の第1及び第2のポンプ源をそれぞれオフ及びオンにし上記第2の光増幅器の第1及び第2のポンプ源をそれぞれオン及びオフにする第1の状態と上記第1の光増幅器の第1及び第2のポンプ源をオンにし上記第2の光増幅器の第1及び第2のポンプ源をオンにする第2の状態とを監視信号に基づき切り換える制御回路とを備えた装置。
【0076】
(付記18) 付記17に記載の装置であって、
上記ドープファイバはエルビウムドープファイバであり、
上記光信号は1.55μm帯に含まれる波長を有しており、
上記第1のポンプ光は0.98μm帯び及び1.48μm帯のいずれかに含まれる波長を有しており、
上記第2のポンプ光は1.48μm帯に含まれる波長を有している装置。
【0077】
(付記19) 希土類元素がドープされたドープファイバと、上記ドープファイバの第1端に接続され第1のポンプ光を出力する第1のポンプ源と、上記ドープファイバの第2端に接続され第2のポンプ光を出力する第2のポンプ源とを各々が備えた第1及び第2の光増幅器と、
上記第1及び第2の光増幅器がそれぞれ接続される第1端及び第2端を有する光ファイバ伝送路と、
上記第1の光増幅器の第1及び第2のポンプ源をそれぞれオフ及びオンにし上記第2の光増幅器の第1及び第2のポンプ源をそれぞれオン及びオフにする第1の状態と上記第1の光増幅器の第1及び第2のポンプ源をオンにし上記第2の光増幅器の第1及び第2のポンプ源をオンにする第2の状態とを監視信号に基づき切り換える制御回路とを備えたシステム。
【0078】
(付記20) 付記19に記載のシステムであって、
上記ドープファイバはエルビウムドープファイバであり、
上記光信号は1.55μm帯に含まれる波長を有しており、
上記第1のポンプ光は0.98μm帯び及び1.48μm帯のいずれかに含まれる波長を有しており、
上記第2のポンプ光は1.48μm帯に含まれる波長を有しているシステム。
【0079】
(付記21) 付記19に記載のシステムであって、
上記光ファイバ伝送路に接続される端局装置を更に備え、
上記端局装置は上記制御回路に関連して用いられる監視信号を出力する手段を含むシステム。
【0080】
(付記22) 付記19に記載のシステムであって、
上記第2の光増幅器は上記光ファイバ伝送路においてラマン増幅が生じるように上記光ファイバ伝送路に第3のポンプ光を供給する第3のポンプ源を更に備えているシステム。
【0081】
【発明の効果】
以上説明したように、本発明によると、光ファイバ伝送路の特性を正確に評価するための方法、装置及びシステムの提供が可能になるという効果が生じる。本発明の特定の実施形態により得られる効果は、以上説明した通りであるので、その説明を省略する。
【図面の簡単な説明】
【図1】図1は従来の光中継器の例を示すブロック図である。
【図2】図2は一般的な光ファイバ伝送システム及びそのパワーダイヤグラムを示す図である。
【図3】図3は本発明による装置の第1実施形態を示すブロック図である。
【図4】図4は第1実施形態における制御回路の具体的構成例を示すブロック図である。
【図5】図5は第1実施形態における監視制御のフローチャートである。
【図6】図6は本発明による装置の第2実施形態を示すブロック図である。
【図7】図7は第2実施形態における制御回路の具体的構成例を示すブロック図である。
【図8】図8は第2実施形態における監視制御のフローチャートである。
【図9】図9は本発明による装置の第3実施形態を示すブロック図である。
【図10】図10は第3実施形態における制御回路の具体的構成例を示すブロック図である。
【図11】図11は第3実施形態における監視制御のフローチャートである。
【図12】図12は本発明による装置の第4実施形態を示すブロック図である。
【図13】図13は第4実施形態における制御回路の具体的構成例を示すブロック図である。
【図14】図14は第4実施形態における監視制御のフローチャートである。
【図15】図15は本発明によるシステムの第1実施形態を示すブロック図である。
【図16】図16は監視信号の伝送方法を説明するための図である。
【図17】図17は本発明によるシステムの第2実施形態を示すブロック図である。
【符号の説明】
2 入力ポート
4 出力ポート
8 エルビウムドープファイバ(EDF)
16 制御回路
24 光フィルタユニット
36 音響光学チューナブルフィルタ(AOTF)

Claims (2)

  1. 光信号を伝搬する光ファイバ伝送路に接続され該光信号を第1及び第2の分岐光に分岐する光カプラと、上記第2の分岐光の光パワーを検出するフォトディテクタと、上記光カプラの上記第1の分岐光が出力される下流側に設けられ、希土類元素がドープされたドープファイバと、上記ドープファイバの上流側の第1端に接続されフォワードポンピングするための第1のポンプ光を上記ドープファイバに供給する第1のポンプ源と、上記ドープファイバの下流側の第2端に接続されバックワードポンピングするための第2のポンプ光を上記ドープファイバに供給するともとに該第2のポンプ光により上記光ファイバ伝送路において上記光信号がラマン増幅される第2のポンプ源と、上記第1及び第2のポンプ源を制御する制御回路とを各々が有し、直列に接続された第1及び第2の装置を提供するステップと、
    上流側の上記第1の装置の上記制御回路により、上記第1の装置の上記第1及び第2のポンプ源をオフ及びオンし、下流側の上記第2の装置の上記制御回路により、上記第2の装置の上記第1及び第2のポンプ源をオン及びオフした第1の状態で、上記第2の装置の上記フォトディテクタが検出した第1の光パワーを取得するステップと、
    上記第2の装置の上記制御回路により、上記第1の光パワーに基づいて、上記第2の装置の入力ポートと上記光ファイバ伝送路との接続点における損失を算出するステップと、
    上記第1の装置の上記制御回路により、上記第1の装置の上記第1及び第2のポンプ源をオン及びオンし、上記第2の装置の上記制御回路により、上記第2の装置の上記第1及び第2のポンプ源をオン及びオンした第2の状態で、上記第2の装置の上記フォトディテクタが検出した第2の光パワーを取得するステップとを備えた方法。
  2. 光信号を伝搬する光ファイバ伝送路に接続され該光信号を第1及び第2の分岐光に分岐する光カプラと、上記第2の分岐光の光パワーを検出するフォトディテクタと、上記光カプラの上記第1の分岐光が出力される下流側に設けられ、希土類元素がドープされたドープファイバと、上記ドープファイバの上流側の第1端に接続されフォワードポンピングするための第1のポンプ光を上記ドープファイバに供給する第1のポンプ源と、上記ドープファイバの下流側の第2端に接続されバックワードポンピングするための第2のポンプ光を上記ドープファイバに供給するともとに該ポンプ光により上記光ファイバ伝送路において上記光信号がラマン増幅される第2のポンプ源と、上記第1及び第2のポンプ源を制御する制御回路とを各々が有し、直列に接続された第1及び第2の装置を備え、
    上流側の上記第1の装置の制御回路は上記第1の装置の上記第1及び第2のポンプ源をオフ及びオンし、下流側の上記第2の装置の制御回路は上記第2の装置の上記第1及び第2のポンプ源をオン及びオフした第1状態で、上記第2の装置の制御回路は上記第2の装置の上記フォトディテクタが検出した第1の光パワーを取得し、
    上記第2の装置の制御回路は、上記第1の光パワーに基づいて、上記第2の装置の入力ポートと上記光ファイバ伝送路との接続点における損失を算出し、
    上記第1の装置の制御回路は上記第1の装置の上記第1及び第2のポンプ源をオン及びオンし、上記第2の装置の制御回路は上記第2の装置の上記第1及び第2のポンプ源をオン及びオンした第2状態で、上記第2の装置の制御回路は、上記第2の装置の上記フォトディテクタが検出した第2の光パワーを取得する装置。
JP2000176629A 2000-06-13 2000-06-13 光ファイバ伝送路の特性を評価するための方法、装置及びシステム Expired - Fee Related JP4628523B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000176629A JP4628523B2 (ja) 2000-06-13 2000-06-13 光ファイバ伝送路の特性を評価するための方法、装置及びシステム
US09/769,522 US6452721B2 (en) 2000-06-13 2001-01-26 Method, device, and system for evaluating characteristics of optical fiber transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000176629A JP4628523B2 (ja) 2000-06-13 2000-06-13 光ファイバ伝送路の特性を評価するための方法、装置及びシステム

Publications (2)

Publication Number Publication Date
JP2001356074A JP2001356074A (ja) 2001-12-26
JP4628523B2 true JP4628523B2 (ja) 2011-02-09

Family

ID=18678336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176629A Expired - Fee Related JP4628523B2 (ja) 2000-06-13 2000-06-13 光ファイバ伝送路の特性を評価するための方法、装置及びシステム

Country Status (2)

Country Link
US (1) US6452721B2 (ja)
JP (1) JP4628523B2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182253A (ja) * 2000-12-12 2002-06-26 Sumitomo Electric Ind Ltd 光源安全装置、ラマン増幅器および光伝送システム
JP4576716B2 (ja) * 2001-01-05 2010-11-10 住友電気工業株式会社 ラマン利得係数測定方法
US6734954B2 (en) * 2001-04-04 2004-05-11 Nortel Networks Limited Method and system for automatic Raman gain control
JP4647147B2 (ja) * 2001-07-16 2011-03-09 富士通株式会社 ラマン増幅を用いた光伝送方法および光伝送システム
US6757099B2 (en) 2001-08-15 2004-06-29 Pts Corporation Optical power transient control scheme for EDFA amplifiers
DE10144948B4 (de) * 2001-09-12 2007-10-31 Siemens Ag Verfahren zur Regelung einer Pumpeinrichtung bei optischer Verstärkung eines übertragenen Wellenlängen-Multiplex(-WDM)-Signals
US20030067670A1 (en) * 2001-10-04 2003-04-10 Lacra Pavel Dynamic optical spectral control scheme for optical amplifier sites
JP2003149611A (ja) * 2001-11-16 2003-05-21 Sumitomo Electric Ind Ltd 平面導波路型光回路及び光伝送システム
GB0129717D0 (en) * 2001-12-12 2002-01-30 Marconi Comm Ltd A method and an apparatus for signal transmission
WO2003069811A1 (en) * 2001-12-27 2003-08-21 Pirelli Submarine Telecom Systems Italia S.P.A. Optical transmission system with raman amplifiers comprising a supervisory system
US7274871B2 (en) * 2001-12-27 2007-09-25 Alcatel Optical transmission system with raman amplifiers comprising a supervisory system
FR2838190B1 (fr) * 2002-04-08 2004-10-15 Cit Alcatel Dispositif de mesure et/ou de controle dynamique de perte de puissance dans une ligne de transmission optique a canal de supervision, et procede associe
US6721091B2 (en) * 2002-06-13 2004-04-13 Tyco Telecommunications (Us) Inc. System and method for controlling optical amplifier pumps
US7202995B2 (en) * 2003-06-18 2007-04-10 Lucent Technologies Inc. Method and apparatus for communicating status in a lightwave communication system employing optical amplifiers
US7436582B2 (en) * 2005-11-15 2008-10-14 At&T Corp. Fast dynamic gain control in a bidirectionally-pumped Raman fiber amplifier
US7508577B2 (en) * 2005-03-29 2009-03-24 Alcatel-Lucent Usa Inc. Method and system for suppressing ASE noise
US7773884B2 (en) * 2005-10-31 2010-08-10 Red - C Optical Newworks Ltd. Method and apparatus for automatic shut-down and start-up of optical amplifiers in optical networks
CN101719800B (zh) * 2008-10-09 2013-10-30 昂纳信息技术(深圳)有限公司 一种提高放大器中信号功率和噪声功率比值的方法和装置
WO2011023220A1 (en) * 2009-08-25 2011-03-03 Nokia Siemens Networks Oy Method and arrangement for in service raman gain measurement and monitoring
WO2012161083A1 (ja) * 2011-05-24 2012-11-29 住友電気工業株式会社 パルス光源
JP6003255B2 (ja) * 2012-06-07 2016-10-05 富士通株式会社 増幅装置および制御方法
US8873135B2 (en) * 2012-12-21 2014-10-28 Ciena Corporation Extended dynamic range optical amplifier
US9766403B2 (en) * 2015-07-07 2017-09-19 Huawei Technologies Co., Ltd. Apparatus and method for tuning and switching between optical components
US9703048B2 (en) 2015-07-07 2017-07-11 Huawei Technologies Co., Ltd. Apparatus and method for tuning optical components
CN105258920B (zh) * 2015-09-01 2020-01-14 昂纳信息技术(深圳)有限公司 一种拉曼光纤放大器传输光纤接头损耗的探测方法
CN107449585B (zh) * 2017-07-26 2019-08-06 福建师范大学 一种声光滤波器角孔径的测量装置及测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256112A (ja) * 1995-03-17 1996-10-01 Fujitsu Ltd 光増幅中継器の入力モニタシステム
JPH10227719A (ja) * 1997-02-13 1998-08-25 Fujikura Ltd 光線路監視システム
JPH11112434A (ja) * 1997-10-01 1999-04-23 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ増幅器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360268A (en) * 1980-11-10 1982-11-23 Gte Automatic Electric Labs Inc. Method and apparatus for measuring the insertion loss of a splice in an optical fiber
CA1213057A (en) * 1984-10-25 1986-10-21 Northern Telecom Limited Method and apparatus for measuring absolute fiber junction loss
US5074633A (en) * 1990-08-03 1991-12-24 At&T Bell Laboratories Optical communication system comprising a fiber amplifier
GB9106181D0 (en) * 1991-03-22 1991-05-08 British Telecomm Photonic amplifier
US5216728A (en) * 1991-06-14 1993-06-01 Corning Incorporated Optical fiber amplifier with filter
US5305078A (en) * 1992-01-21 1994-04-19 Exfo Electro-Optical Engineering Inc. Measurement of attenuation of optical fibers using transmitted wavelength and power information
US5357332A (en) * 1992-08-11 1994-10-18 Photonix Industries Apparatus for, and method of, determining the effectiveness of a splice of optical fiber
DE4315846A1 (de) * 1993-03-30 1994-10-06 Sel Alcatel Ag Faseroptischer Verstärker
CA2177874C (en) 1995-06-12 2000-06-20 At&T Ipm Corp. Multi-channel optical fiber communication system
JP3487572B2 (ja) 1996-06-28 2004-01-19 日本電信電話株式会社 光中継伝送システム
JPH1073852A (ja) 1996-09-02 1998-03-17 Nippon Telegr & Teleph Corp <Ntt> 光増幅伝送システム
JPH10200509A (ja) 1997-01-10 1998-07-31 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
JP3461113B2 (ja) 1997-02-18 2003-10-27 日本電信電話株式会社 光増幅器
DE19712750A1 (de) * 1997-03-26 1998-10-01 Alsthom Cge Alcatel Prüfverfahren für ein Netzelement eines optischen Nachrichtenübertragungssystems und Netzelement
US6222652B1 (en) * 1997-06-20 2001-04-24 Nortel Networks Limited Method of and apparatus for detecting transients in an optical transmission system
KR100219719B1 (ko) * 1997-07-15 1999-09-01 윤종용 감시가능한 파장분할다중화 광증폭기 제어시스템 및 그 제어방법
US6317255B1 (en) * 1998-04-28 2001-11-13 Lucent Technologies Inc. Method and apparatus for controlling optical signal power in response to faults in an optical fiber path
JP2000244416A (ja) * 1999-02-18 2000-09-08 Nec Corp 光増幅器及び光伝送路の監視装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256112A (ja) * 1995-03-17 1996-10-01 Fujitsu Ltd 光増幅中継器の入力モニタシステム
JPH10227719A (ja) * 1997-02-13 1998-08-25 Fujikura Ltd 光線路監視システム
JPH11112434A (ja) * 1997-10-01 1999-04-23 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ増幅器

Also Published As

Publication number Publication date
JP2001356074A (ja) 2001-12-26
US6452721B2 (en) 2002-09-17
US20010050807A1 (en) 2001-12-13

Similar Documents

Publication Publication Date Title
JP4628523B2 (ja) 光ファイバ伝送路の特性を評価するための方法、装置及びシステム
US6108123A (en) Optical communication system and optical amplifier
JP3587176B2 (ja) ラマン増幅器及びラマン増幅方法
US6266466B1 (en) Optical amplifier and optical transmission system
JP2003032192A (ja) 光伝送システム
CA2577476C (en) Raman amplifier and optical communication system
EP1461877B1 (en) Optical transmission system with raman amplifiers comprising a supervisory system
JP3597267B2 (ja) 冗長性を有する光中継器
JP2951985B2 (ja) 光中継器の監視信号転送装置
JP4134249B1 (ja) コヒーレントotdr
JP4023627B2 (ja) 光通信システム及び光増幅器
US6907157B2 (en) Method and system for optical fiber transmission using raman amplification
JP3952039B2 (ja) 測定装置、光伝送システム、及びラマン利得測定方法
JP3917605B2 (ja) 光通信システム及び光増幅器
JP2674557B2 (ja) 光増幅中継装置
JPH05284114A (ja) 光中継器監視装置
JP3980617B2 (ja) 光通信システム及び光増幅器
JP3195237B2 (ja) 光伝送装置、光通信システム及び入力光信号の増幅方法
JP3193293B2 (ja) 光伝送装置、光通信システム及び入力光信号の伝送方法
JP2000341218A (ja) 光送受信システム、光受信装置、および光送受信方法
JPH08331060A (ja) 光伝送装置、光通信システム及び光信号の伝送方法
JPH08331058A (ja) 光伝送装置、光通信システム及び光信号を増幅する方法
GB2354367A (en) Optical amplifier
JPH0746192A (ja) 光アンプ中継器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees