JP4627938B2 - Square glass plate shape measuring device - Google Patents

Square glass plate shape measuring device Download PDF

Info

Publication number
JP4627938B2
JP4627938B2 JP2001271963A JP2001271963A JP4627938B2 JP 4627938 B2 JP4627938 B2 JP 4627938B2 JP 2001271963 A JP2001271963 A JP 2001271963A JP 2001271963 A JP2001271963 A JP 2001271963A JP 4627938 B2 JP4627938 B2 JP 4627938B2
Authority
JP
Japan
Prior art keywords
glass plate
rectangular glass
moving
rotary table
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001271963A
Other languages
Japanese (ja)
Other versions
JP2003075121A (en
Inventor
元男 八日市屋
啓介 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2001271963A priority Critical patent/JP4627938B2/en
Publication of JP2003075121A publication Critical patent/JP2003075121A/en
Application granted granted Critical
Publication of JP4627938B2 publication Critical patent/JP4627938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フォトマスクや液晶基板等の方形ガラス板の縦、横の寸法及び4隅の直角度を測定する方形ガラス板の形状測定装置に関する。
【0002】
【従来の技術】
従来、1台で、方形ガラス板の縦、横の寸法及び4隅の直角度を測定する方形ガラス板の形状測定装置は存在せず、縦、横の寸法と4隅の直角度を個別に測定する装置が知られている。
方形ガラス板の縦、横の寸法を測定する外形測定装置は、基準面に方形ガラス板の対向する一方の側面を押し当てた後、他方の側面に、マグネスケールに取り付けられた測定子を押し当て、基準面との差を縦、横の寸法として測定するものであり、測定結果をデジタル表示したり、簡易印字することが可能である。
一方、方形ガラス板の4隅の直角度を測定する直角度測定装置は、基準面に方形ガラス板の一側面を押し当て、隣り合う側面の中央付近の形状をダイヤルゲージで測定し、測定結果を計算機で角度に換算するものである。
【0003】
【発明が解決しようとする課題】
しかし、従来の方形ガラス板の形状測定装置では、方形ガラス板の縦、横の寸法と4隅の直角度の測定を別個の装置を用い人手によって行わなければならないので、再現性が低下し、かつ、方形ガラス板のハンドリングタイムが重複することもあって、測定時間が長くなる不具合がある。
又、いずれの測定装置も接触子が金属であるため、測定した方形ガラス板に傷等の欠陥を発生させる不具合がある。
更に、方形ガラス板が、フォトマスクのように縁が面取りされた中凸の側面形状である場合、側面を測定装置の基準面に正確に押し付けることができず、測定精度が低下する不具合がある。
【0004】
そこで、本発明は、縦、横の寸法と4隅の直角度の測定を、再現性を高めて短時間で、しかも、欠陥を生じることなく、かつ、高精度でなし得る方形ガラス板の形状測定装置を提供することを主目的とする。
【0005】
【課題を解決するための手段】
前記課題を解決するため、本発明の第1の方形ガラス板の形状測定装置は、ベース上に設けられ、水平方向へ直線的に往復移動可能な移動テーブルと、移動テーブル上に垂直軸回りに可逆回転可能に設けられ、方形ガラス板を水平に載置する回転テーブルと、前記移動テーブルの移動方向と直交する水平な方向へピストンロッドを伸縮するエアシリンダと、前記ピストンロッドの端部に上端部が係止、垂下され、下端部が前記方形ガラス板の側面に係合する1対のワークハンドとから構成され、回転テーブルに載置された方形ガラス板を前記ワークハンドでクランプし一方向目の位置合わせを行い、更に前記回転テーブルで90°回転させ、再び方形ガラス板を前記ワークハンドでクランプし、2方向目の位置合わせを行うことにより、方形ガラス板の中心を回転テーブルの回転中心に位置決めする位置決め手段と、移動テーブルの移動経路の両側方に対向配置してベース上に設けられ、回転テーブルに載置された方形ガラス板の側面との間の距離を測定する2つのレーザ距離計と、移動テーブル、回転テーブル、位置決め手段及び両レーザ距離計の動作を制御し、かつ、両レーザ距離計のデータから方形ガラス板の縦、横の寸法及び4隅の直角度を演算する制御・演算手段とを備えることを特徴とする。
【0006】
第2の方形ガラス板の形状測定装置は、第1のものにおいて、前記回転テーブルの上面に装着され、方形ガラス板を載置するフッ素樹脂プレートを備えることを特徴とする。
【0007】
又、第3の方形ガラス板の形状測定装置は、第1のものにおいて、前記回転テーブルの上面に装着され、方形ガラス板を真空吸着する真空チャックを備えることを特徴とする。
【0008】
【作用】
本発明の第1の方形ガラス板の形状測定装置においては、方形ガラス板の縦、横の寸法と4隅の直角度の測定が、1台で、かつ、非接触で、自動的に行われる。
【0009】
位置決め手段としては、移動テーブルの移動経路の一方の端部において移動テーブルを跨ぐようにしてベースに立設した門形の支持フレームと、支持フレームの梁部の下面中央に取り付けられ、ピストンロッドを移動テーブル2の移動方向と直交する水平な方向へ片側2本ずつ同期して伸縮可能に設けたブロック状のエアシリンダと、エアシリンダの両側のピストンロッドの端部に上端部を係止して垂下され、下端部を回転テーブルに載置される方形ガラス板の側面に係合可能に設けた1対のワークハンドとからなるものが用いられる。
【0010】
第2の方形ガラス板の形状測定装置においては、第1のものによる作用の他、回転テーブル上での方形ガラス板の移動が円滑になる。
【0011】
又、第3の方形ガラス板の形状測定装置においては、第1のものによる作用の他、回転テーブル上での方形ガラス板の位置ずれ防止が可能になる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
図1、図2、図3及び図4は本発明に係る方形ガラス板の形状測定装置の実施の形態の一例を示す平面図、図1におけるII−II線矢視断面図、一部を省略した右側面図及び図1におけるIV−IV線矢視断面図である。
図中1は4隅を面取りした矩形板状のベースで、このベース1は、図示しないレベリングブロックを介して上面が水平となるように設置されるものである。
ベース1上には、方形板状の移動テーブル2が、ベース1上にその長手方向へ敷設した2条の平行なガイドレール3及びガイドレール3に摺動自在に係合した複数のスライダ4を介してガイドレール3に沿って移動自在に設けられていると共に、ガイドレール3と平行で、移動テーブル2の下面に取り付けたナット部材5に螺入されたボールねじ6を、ベース1の一端部(図1においては右端部)に付設したステンピングモータ等の可逆回転可能な回転駆動装置により正逆回転することによって、水平方向へ直線的に往復移動可能に設けられている。
移動テーブル2上には、円板状の回転テーブル8が、移動テーブル2に付設したステッピングモータ等の可逆回転可能な回転駆動装置、ウォーム、ウォームホイール等(いずれも図示せず)により垂直軸回りに可逆回転可能に設けられており、この回転テーブル8の上面には、方形ガラス板Wを水平に載置するほぼ方形板状のフッ素樹脂プレート9が装着されている。
【0013】
又、ベース1上には、フッ素樹脂プレート9に載置された方形ガラス板Wの中心を回転テーブル8の回転中心に位置決めする(センタリング)位置決め手段10が、移動テーブル2の移動経路の一方の端部(図1、図2においては左端部)に位置させて設けられている。
位置決め手段10は、移動テーブル2の移動経路の一方の端部において移動テーブル2を跨ぐようにしてベース1に立設した門形の支持フレーム11と、支持フレーム11の梁部11aの下面中央に取り付けられ、ピストンロッド12aを移動テーブル2の移動方向と直交する水平な方向へ片側2本ずつ同期して伸縮可能に設けたブロック状のエアシリンダ12と、エアシリンダ12の両側のピストンロッド12aの端部に上端部を係止して垂下され、下端部をフッ素樹脂プレート9に載置される方形ガラス板Wの側面に係合可能に設けた1対のワークハンド13とから構成されている。
【0014】
更に、ベース1上には、移動テーブル2の移動に従って回転テーブル8と共に移動するフッ素樹脂プレート9に載置された方形ガラス板Wの側面との間の距離を測定する2つのレーザ距離計14が、ベース1に立設したスタンド15を介して、移動テーブル2の移動経路の途中の両側方に対向配置されている。
【0015】
一方、上述した移動テーブル2、回転テーブル8、位置決め手段10及び両レーザ距離計14を操作するコンピュータ(図示せず)には、上記移動テーブル2等の動作を制御し、かつ、両レーザ距離計14のデータから方形ガラス板Wの縦、横の寸法及び4隅の直角度を演算する制御・演算手段が備えられていると共に、演算結果を表示する表示手段、その他が備えられ、又、演算結果をプリントアウトする印字手段が付設されている。
図1〜図3において16は回転テーブル8のモータの電源及び制御用ケーブルで、17,18はこのケーブルをベース1及び移動テーブル2に取り付けるための支持金具である。
又、図1〜図4において19は移動テーブル2の移動を阻止すべくベース1に立設したストッパである。
【0016】
上述した方形ガラス板の形状測定装置によって、方形ガラス板W、例えば、フォトマスクの形状を測定するには、以下のようにして行う。
1)図1、図2に示すように、移動テーブル2を移動経路の一方の端部に位置させた状態で、オペレータが方形ガラス板Wをフッ素樹脂プレート9に載置する。
2)位置決め手段10におけるエアシリンダ12のピストンロッド12aを縮小作動させ、1対のワークハンド13を接近移動させて方形ガラス板Wをクランプし、その一方向目の位置合わせを行った後、ワークハンド13を原位置に復帰させる。
3)回転テーブル8を90°回転させ、再度ワークハンド13で方形ガラス板Wをクランプし、その2方向目の位置合わせを行った後、ワークハンド13を原位置に復帰させる。
以上の操作で、方形ガラス板Wの中心が回転テーブル8の回転中心に位置決めされる。
4)移動テーブル2を移動経路の他方の端部へ移動させながら、一方のレーザ距離計14により、それと対向する方形ガラス板Wの一側面の数個所の測定点との間の距離を測定する。
5)移動テーブル2の移動距離とレーザ距離計14の測定値とから座標を求め、方形ガラス板Wの一側面の近似直線を算出する。
6)近似直線から、レーザ距離計14に対する方形ガラス板Wの一側面の傾きを算出し、方形ガラス板Wの一側面がレーザ距離計14に対して直角となるように、回転テーブル8を適宜に回転し、方形ガラス板Wの一側面の傾きを修正する(方形ガラス板の一側面を基準面とする)。
7)再度、移動テーブル2を移動して2つのレーザ距離計14間に方形ガラス板Wを通過させ、両レーザ距離計14により方形ガラス板14の縦の寸法を同時測定する。この時、直角度を演算するため、両側面の測定点の座標を求め、近似直線を算出しておく。
8)直角度算出のため、回転テーブル8を正確に90°回転させた後、両レーザ距離計14間に方形ガラス板Wを通過させ、残りの対向する2側面の近似直線を求める。
9)隣り合う側面の近似直線と回転テーブル8の回転角から方形ガラス板の直角度を算出する。
10)一方の側面を基準とし、6)と同様にして方形ガラス板Wの傾きを修正した後、7)と同様にして方形ガラス板Wの横の寸法を求める。
以上の操作で、方形ガラス板Wの縦、横の寸法及び4隅の直角度の測定が完了する。
【0017】
上記方形ガラス板Wの形状測定に際し、予め、トレーサビリティ(測定結果の高い信頼性、統一性)の確立されたマスタワークを用い、移動テーブル2の移動精度の補正係数、レーザ距離計14の測定精度の補正係数及び回転テーブル8の回転精度の補正係数を求めておき、測定値の校正に用いる。
このようにすることにより、高精度の測定が可能となる。
【0018】
なお、上述した実施の形態においては、方形ガラス板Wの移動を円滑にするため、回転テーブル8の上面にフッ素樹脂プレート9を装着する場合について説明したが、これに限定されるものではなく、フッ素樹脂プレート9を用いなくてもよく、あるいはフッ素樹脂プレート9に代え、回転テーブル8の上面に、方形ガラス板Wを真空吸着する真空チャックを装着するようにしてもよい。
真空チャックを回転テーブル8の上面に装着すると、方形ガラス板Wの位置ずれ防止が可能になるので、移動テーブル2及び回転テーブル8の動作速度を上げることができ、タクトタイムの向上が可能となる。
【0019】
【発明の効果】
以上説明したように、本発明の第1の方形ガラス板の形状測定装置によれば、方形ガラス板の縦、横の寸法と4隅の直角度の測定が、1台で、かつ、非接触で、自動的に行われるので、方形ガラス板の縦、横の寸法と4隅の直角度の測定を、再現性を高めて短時間で、しかも、欠陥を生じることなく、かつ、高精度で行うことができる。
【0020】
第2の方形ガラス板の形状測定装置によれば、第1のものによる作用効果の他、回転テーブル上での方形ガラス板の移動が円滑になるので、位置決めをスムースに行うことができる。
【0021】
又、第3の方形ガラス板の形状測定装置によれば、第1のものによる作用効果の他、回転テーブル上での方形ガラス板の位置ずれ防止が可能になるので、移動テーブル及び回転テーブルの動作速度を上げることができ、タクトタイムを一層向上することができる。
【図面の簡単な説明】
【図1】本発明に係る方形ガラス板の形状測定装置の実施の形態の一例を示す平面図である。
【図2】図1におけるII−II線矢視断面図である。
【図3】図1の装置の一部を省略した右側面図である。
【図4】図1におけるIV−IV線矢視断面図である。
【符号の説明】
1 ベース
2 移動テーブル
3 ガイドレール
8 回転テーブル
9 フッ素樹脂プレート
10 位置決め手段
11 支持フレーム
12 エアシリンダ
12a ピストンロッド
13 ワークハンド
14 レーザ距離計
W 方形ガラス板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rectangular glass plate shape measuring apparatus for measuring vertical and horizontal dimensions and squareness of four corners of a rectangular glass plate such as a photomask or a liquid crystal substrate.
[0002]
[Prior art]
Conventionally, there is no square glass plate shape measuring device that measures the vertical and horizontal dimensions and squareness of four corners of a square glass plate. Devices for measuring are known.
An external shape measuring device that measures the vertical and horizontal dimensions of a square glass plate, presses the opposite side of the square glass plate against the reference surface, and then presses the measuring element attached to the magnescale on the other side. The difference from the reference surface is measured as vertical and horizontal dimensions, and the measurement result can be digitally displayed or simply printed.
On the other hand, a squareness measuring device that measures the squareness of the four corners of a square glass plate presses one side of the square glass plate against a reference surface, measures the shape near the center of adjacent side surfaces with a dial gauge, and the measurement results Is converted into an angle by a computer.
[0003]
[Problems to be solved by the invention]
However, in the conventional rectangular glass plate shape measuring device, the vertical and horizontal dimensions of the rectangular glass plate and the perpendicularity of the four corners must be manually measured using separate devices, so the reproducibility is reduced, And the handling time of a square glass plate may overlap, and there exists a malfunction which becomes long measurement time.
In addition, since any of the measuring devices is made of a metal, there is a problem that defects such as scratches are generated on the measured rectangular glass plate.
Furthermore, when the square glass plate has a middle convex side shape with a chamfered edge such as a photomask, the side surface cannot be accurately pressed against the reference surface of the measuring device, and the measurement accuracy decreases. .
[0004]
Therefore, the present invention provides a rectangular glass plate shape that can be measured in a short time, with high precision, with high reproducibility by measuring the vertical and horizontal dimensions and the squareness of the four corners. The main purpose is to provide a measuring device.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first rectangular glass plate shape measuring apparatus according to the present invention is provided on a base and is capable of linearly reciprocating in a horizontal direction, and a vertical axis on the moving table. A rotary table that is reversibly rotated and horizontally mounts a rectangular glass plate, an air cylinder that expands and contracts a piston rod in a horizontal direction perpendicular to the moving direction of the moving table, and an upper end at the end of the piston rod A part is latched and drooped, and a lower end part is composed of a pair of work hands that engage with side surfaces of the rectangular glass plate, and the rectangular glass plate placed on the rotary table is clamped by the work hand in one direction. aligns the eye, by further 90 ° rotated with the rotary table, and clamp again a square glass plate in the work hand, to align the two directions th square Positioning means for positioning the center of the lath plate at the rotation center of the rotary table, and a side surface of a square glass plate placed on the base and arranged opposite to both sides of the moving path of the moving table and placed on the rotary table Controls the operation of two laser rangefinders that measure the distance between them, the moving table, rotary table, positioning means and both laser rangefinders, and the vertical and horizontal dimensions of the square glass plate from the data of both laser rangefinders and characterized in that it comprises 4 control-calculating means for calculating the squareness of the corner, the.
[0006]
The shape measuring apparatus for the second rectangular glass plate is characterized in that, in the first device, a fluororesin plate is mounted on the upper surface of the rotary table and on which the rectangular glass plate is placed.
[0007]
According to a third aspect of the present invention, there is provided a third apparatus for measuring a shape of a square glass plate, comprising a vacuum chuck attached to the upper surface of the rotary table and vacuum-sucking the square glass plate.
[0008]
[Action]
In the first rectangular glass plate shape measuring apparatus according to the present invention, the vertical and horizontal dimensions and the squareness of the four corners of the rectangular glass plate are automatically measured in a single and non-contact manner. .
[0009]
The positioning means includes a gate-shaped support frame standing on the base so as to straddle the moving table at one end of the moving path of the moving table, and a piston rod attached to the center of the lower surface of the beam portion of the supporting frame. The upper end is locked to the end of the piston rod on both sides of the air cylinder and the block-shaped air cylinder that can be expanded and contracted in synchronization in the horizontal direction perpendicular to the moving direction of the moving table 2 What consists of a pair of work hand suspended and provided so that a lower end part can be engaged with the side surface of the square glass plate mounted in a rotary table is used.
[0010]
In the shape measuring apparatus for the second rectangular glass plate, the movement of the rectangular glass plate on the rotary table becomes smooth in addition to the operation of the first one.
[0011]
Further, in the third apparatus for measuring the shape of a rectangular glass plate, it is possible to prevent the displacement of the rectangular glass plate on the rotary table, in addition to the effect of the first one.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1, FIG. 2, FIG. 3 and FIG. 4 are plan views showing an example of an embodiment of a rectangular glass plate shape measuring apparatus according to the present invention, a sectional view taken along line II-II in FIG. 4 is a right side view taken along the line IV-IV in FIG.
In the figure, reference numeral 1 denotes a rectangular plate-shaped base with four corners chamfered. The base 1 is installed so that the upper surface is horizontal via a leveling block (not shown).
On the base 1, a rectangular plate-shaped moving table 2 has two parallel guide rails 3 laid on the base 1 in the longitudinal direction thereof and a plurality of sliders 4 slidably engaged with the guide rails 3. And a ball screw 6 screwed into a nut member 5 attached to the lower surface of the movable table 2 in parallel with the guide rail 3 and parallel to the guide rail 3. It is provided so as to be able to reciprocate linearly in the horizontal direction by rotating in the forward and reverse directions by a reversible rotation drive device such as a stamping motor attached to the right end (in FIG. 1).
On the moving table 2, a disk-shaped rotating table 8 is rotated around the vertical axis by a reversible rotating drive device such as a stepping motor attached to the moving table 2, a worm, a worm wheel, etc. (none of which are shown). An approximately square plate-like fluororesin plate 9 on which a square glass plate W is horizontally mounted is mounted on the upper surface of the turntable 8.
[0013]
Further, on the base 1, positioning means 10 for positioning the center of the rectangular glass plate W placed on the fluororesin plate 9 to the rotation center of the rotary table 8 (centering) is one of the moving paths of the moving table 2. It is located at the end (left end in FIGS. 1 and 2).
The positioning means 10 includes a gate-shaped support frame 11 erected on the base 1 so as to straddle the movement table 2 at one end of the movement path of the movement table 2, and a center of the lower surface of the beam portion 11 a of the support frame 11. A block-shaped air cylinder 12 that is mounted and can be expanded and contracted in a horizontal direction perpendicular to the moving direction of the moving table 2 and two piston rods 12a on each side, and piston rods 12a on both sides of the air cylinder 12 It is composed of a pair of work hands 13 which are suspended by being engaged with the upper end portion at the end portion and the lower end portion is engageable with the side surface of the rectangular glass plate W placed on the fluororesin plate 9. .
[0014]
Furthermore, on the base 1, two laser rangefinders 14 for measuring the distance between the side surface of the rectangular glass plate W placed on the fluororesin plate 9 that moves together with the rotary table 8 according to the movement of the moving table 2. These are arranged opposite to each other on both sides of the moving path of the moving table 2 via a stand 15 erected on the base 1.
[0015]
On the other hand, a computer (not shown) for operating the moving table 2, the rotary table 8, the positioning means 10, and the both laser distance meters 14 described above controls the operation of the moving table 2 and the like, and both the laser distance meters. Control / calculation means for calculating the vertical and horizontal dimensions and squareness of the four corners of the square glass plate W from 14 data, as well as display means for displaying the calculation results, etc. are provided. Printing means for printing out the result is attached.
In FIG. 1 to FIG. 3, reference numeral 16 denotes a power source and control cable for the motor of the rotary table 8, and reference numerals 17 and 18 denote support fittings for attaching the cable to the base 1 and the moving table 2.
1 to 4, reference numeral 19 denotes a stopper erected on the base 1 to prevent the movement table 2 from moving.
[0016]
In order to measure the shape of the rectangular glass plate W, for example, the photomask, using the above-described rectangular glass plate shape measuring apparatus, the measurement is performed as follows.
1) As shown in FIGS. 1 and 2, the operator places the rectangular glass plate W on the fluororesin plate 9 with the moving table 2 positioned at one end of the moving path.
2) The piston rod 12a of the air cylinder 12 in the positioning means 10 is contracted, the pair of work hands 13 are moved closer to each other, the rectangular glass plate W is clamped, and the first direction is aligned. The hand 13 is returned to the original position.
3) The rotary table 8 is rotated by 90 °, the rectangular glass plate W is clamped again by the work hand 13, and after the alignment in the second direction, the work hand 13 is returned to the original position.
With the above operation, the center of the rectangular glass plate W is positioned at the rotation center of the turntable 8.
4) While moving the moving table 2 to the other end of the moving path, the distance between several measuring points on one side surface of the rectangular glass plate W is measured with one laser distance meter 14. .
5) Coordinates are obtained from the moving distance of the moving table 2 and the measured value of the laser rangefinder 14, and an approximate straight line on one side of the square glass plate W is calculated.
6) From the approximate straight line, the inclination of one side surface of the square glass plate W with respect to the laser distance meter 14 is calculated, and the turntable 8 is appropriately set so that one side surface of the square glass plate W is perpendicular to the laser distance meter 14. And the inclination of one side surface of the square glass plate W is corrected (one side surface of the square glass plate is used as a reference surface).
7) The moving table 2 is moved again to allow the rectangular glass plate W to pass between the two laser distance meters 14, and the vertical dimensions of the rectangular glass plate 14 are simultaneously measured by both laser distance meters 14. At this time, in order to calculate the squareness, the coordinates of the measurement points on both sides are obtained, and an approximate straight line is calculated.
8) For calculating the squareness, after rotating the rotary table 8 exactly 90 °, the rectangular glass plate W is passed between the two laser distance meters 14, and the remaining approximate two straight lines are obtained.
9) The squareness of the square glass plate is calculated from the approximate straight line of the adjacent side surfaces and the rotation angle of the turntable 8.
10) Using one side as a reference, after correcting the inclination of the rectangular glass plate W in the same manner as in 6), the horizontal dimension of the rectangular glass plate W is obtained in the same manner as in 7).
With the above operation, the measurement of the vertical and horizontal dimensions and the squareness of the four corners of the square glass plate W is completed.
[0017]
When measuring the shape of the rectangular glass plate W, a master work whose traceability (high reliability and uniformity of measurement results) has been established in advance is used, the correction coefficient of the moving accuracy of the moving table 2, and the measuring accuracy of the laser rangefinder 14 And the correction coefficient of the rotation accuracy of the rotary table 8 are obtained and used for calibration of the measured value.
By doing in this way, a highly accurate measurement is attained.
[0018]
In the above-described embodiment, the case where the fluororesin plate 9 is mounted on the upper surface of the turntable 8 to facilitate the movement of the rectangular glass plate W has been described. However, the present invention is not limited to this. The fluororesin plate 9 may not be used, or instead of the fluororesin plate 9, a vacuum chuck that vacuum-sucks the rectangular glass plate W may be mounted on the upper surface of the rotary table 8.
When the vacuum chuck is mounted on the upper surface of the rotary table 8, it is possible to prevent the displacement of the rectangular glass plate W, so that the operation speed of the moving table 2 and the rotary table 8 can be increased, and the tact time can be improved. .
[0019]
【The invention's effect】
As described above, according to the first rectangular glass plate shape measuring apparatus of the present invention, the vertical and horizontal dimensions and the squareness of the four corners of the rectangular glass plate can be measured by one unit and in a non-contact manner. Since the measurement is performed automatically, the vertical and horizontal dimensions and squareness of the four corners of a square glass plate can be measured in a short time with high reproducibility and without any defects and with high accuracy. It can be carried out.
[0020]
According to the shape measuring apparatus for the second rectangular glass plate, since the movement of the rectangular glass plate on the rotary table becomes smooth in addition to the effects of the first, positioning can be performed smoothly.
[0021]
Further, according to the third rectangular glass plate shape measuring apparatus, it is possible to prevent the positional deviation of the rectangular glass plate on the rotary table in addition to the effects of the first one. The operating speed can be increased and the tact time can be further improved.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of an embodiment of a square glass plate shape measuring apparatus according to the present invention.
2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a right side view in which a part of the apparatus of FIG. 1 is omitted.
4 is a cross-sectional view taken along line IV-IV in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base 2 Moving table 3 Guide rail 8 Rotating table 9 Fluoro resin plate 10 Positioning means 11 Support frame 12 Air cylinder 12a Piston rod 13 Work hand 14 Laser distance meter W Square glass plate

Claims (3)

ベース上に設けられ、水平方向へ直線的に往復移動可能な移動テーブルと、移動テーブル上に垂直軸回りに可逆回転可能に設けられ、方形ガラス板を水平に載置する回転テーブルと、前記移動テーブルの移動方向と直交する水平な方向へピストンロッドを伸縮するエアシリンダと、前記ピストンロッドの端部に上端部が係止、垂下され、下端部が前記方形ガラス板の側面に係合する1対のワークハンドとから構成され、回転テーブルに載置された方形ガラス板を前記ワークハンドでクランプし一方向目の位置合わせを行い、更に前記回転テーブルで90°回転させ、再び方形ガラス板を前記ワークハンドでクランプし、2方向目の位置合わせを行うことにより、方形ガラス板の中心を回転テーブルの回転中心に位置決めする位置決め手段と、移動テーブルの移動経路の両側方に対向配置してベース上に設けられ、回転テーブルに載置された方形ガラス板の側面との間の距離を測定する2つのレーザ距離計と、移動テーブル、回転テーブル、位置決め手段及び両レーザ距離計の動作を制御し、かつ、両レーザ距離計のデータから方形ガラス板の縦、横の寸法及び4隅の直角度を演算する制御・演算手段とを備えることを特徴とする方形ガラス板の形状測定装置。Provided on the base, the linearly reciprocally movable moving table horizontally reversibly rotatably mounted about a vertical axis on a moving table, a rotary table for horizontally placed rectangular glass plate, said moving An air cylinder that extends and contracts a piston rod in a horizontal direction orthogonal to the moving direction of the table, and an upper end is locked and suspended at the end of the piston rod, and a lower end engages with a side surface of the rectangular glass plate 1 A rectangular glass plate, which is composed of a pair of work hands, is clamped with the work hand and aligned in the first direction, and further rotated by 90 ° with the rotary table. clamped by the work hand, by performing positioning of two directions th and positioning means for positioning the center of the square glass plate at the rotational center of the rotary table, Two laser rangefinders that measure the distance between the side of the rectangular glass plate placed on the rotary table and placed opposite to both sides of the moving path of the moving table, the moving table, and the rotating table table, and controls the operation of the positioning means and two laser rangefinders, and comprises a vertical rectangular glass plate from data of both the laser rangefinder, and a control-calculating means for calculating a lateral perpendicularity dimensions and four corners, the An apparatus for measuring the shape of a rectangular glass plate. 前記回転テーブルの上面に装着され、方形ガラス板を載置するフッ素樹脂プレートを備えることを特徴とする請求項1記載の方形ガラス板の形状測定装置。  The apparatus for measuring a shape of a rectangular glass plate according to claim 1, further comprising a fluororesin plate mounted on an upper surface of the rotary table and on which the rectangular glass plate is placed. 前記回転テーブルの上面に装着され、方形ガラス板を真空吸着する真空チャックを備えることを特徴とする請求項1記載の方形ガラス板の形状測定装置。  The apparatus for measuring a shape of a rectangular glass plate according to claim 1, further comprising a vacuum chuck mounted on the upper surface of the rotary table and vacuum-sucking the rectangular glass plate.
JP2001271963A 2001-09-07 2001-09-07 Square glass plate shape measuring device Expired - Lifetime JP4627938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271963A JP4627938B2 (en) 2001-09-07 2001-09-07 Square glass plate shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271963A JP4627938B2 (en) 2001-09-07 2001-09-07 Square glass plate shape measuring device

Publications (2)

Publication Number Publication Date
JP2003075121A JP2003075121A (en) 2003-03-12
JP4627938B2 true JP4627938B2 (en) 2011-02-09

Family

ID=19097400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271963A Expired - Lifetime JP4627938B2 (en) 2001-09-07 2001-09-07 Square glass plate shape measuring device

Country Status (1)

Country Link
JP (1) JP4627938B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101967A (en) * 2010-11-09 2012-05-31 Nippon Electric Glass Co Ltd Apparatus and method for processing corner of glass sheet
ITBS20130052A1 (en) * 2013-04-15 2014-10-16 Cms Spa APPARATUS AND METHOD OF DETECTION OF GEOMETRIC MEASUREMENTS OF PIECES POWERED TO A MACHINE OPERATOR
JP7174350B2 (en) 2018-11-28 2022-11-17 日本電気硝子株式会社 table
CN115265359B (en) * 2022-06-23 2024-07-30 宿州捷创模具有限公司 Automobile sheet metal acceptance check tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826753Y1 (en) * 1970-02-25 1973-08-06
JPS5972727A (en) * 1982-10-19 1984-04-24 Matsushita Electric Ind Co Ltd Positioning table
JPS62211245A (en) * 1986-03-10 1987-09-17 Canon Inc Glass base conveying device
JPS63172131U (en) * 1987-04-30 1988-11-09
JPH0649958U (en) * 1992-10-01 1994-07-08 京セラ株式会社 Semiconductor wafer thickness measuring machine
JPH08233517A (en) * 1995-02-24 1996-09-13 Nikon Corp Three-dimensional shape measuring apparatus
JPH1073513A (en) * 1996-04-10 1998-03-17 Seiko Epson Corp Method and apparatus for inspection of glasses lens and recording medium
JP2001133986A (en) * 1999-11-10 2001-05-18 Orc Mfg Co Ltd Exposure table for exposure device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172131A (en) * 1987-01-12 1988-07-15 Canon Inc Depth of field priority controller

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826753Y1 (en) * 1970-02-25 1973-08-06
JPS5972727A (en) * 1982-10-19 1984-04-24 Matsushita Electric Ind Co Ltd Positioning table
JPS62211245A (en) * 1986-03-10 1987-09-17 Canon Inc Glass base conveying device
JPS63172131U (en) * 1987-04-30 1988-11-09
JPH0649958U (en) * 1992-10-01 1994-07-08 京セラ株式会社 Semiconductor wafer thickness measuring machine
JPH08233517A (en) * 1995-02-24 1996-09-13 Nikon Corp Three-dimensional shape measuring apparatus
JPH1073513A (en) * 1996-04-10 1998-03-17 Seiko Epson Corp Method and apparatus for inspection of glasses lens and recording medium
JP2001133986A (en) * 1999-11-10 2001-05-18 Orc Mfg Co Ltd Exposure table for exposure device

Also Published As

Publication number Publication date
JP2003075121A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP4745727B2 (en) Paste applicator
TWI502672B (en) Method for manufacturing electronic or non-electronic comoponents, apparatus therefor, and substrate for manufacturing electronic or non-electronic components
TWI457534B (en) Vision inspection system and method for converting coordinates using the same
US6949733B2 (en) Determination of a movable gantry position including a dual measurement module
JPS63292005A (en) Detecting apparatus of amount of movement corrected from running error
CN113483698B (en) Calibration device and calibration method for perpendicularity between laser planes
JP4627938B2 (en) Square glass plate shape measuring device
JP6128977B2 (en) Plate material peripheral edge processing apparatus and processing accuracy measurement and correction method
CN109959350A (en) The detection method and device of prism right angle working face verticality
JP2014006202A (en) Origin coordinate correcting method
JP2933187B2 (en) Three-dimensional measuring devices
CN207643458U (en) A kind of orientation tooling and orientation system
CN114322755B (en) Automatic detection device and detection method for switch tie bottom template
JPH04140691A (en) Positioner
JP7112880B2 (en) Standard scale and straightness measurement method
TWI392845B (en) Method and system for measuring squareness
KR20150012103A (en) Grinding device for hard and brittle plate and method for measuring and compensating machining accuracy
KR102584826B1 (en) How to correct detection values of linear scale
CN114636374B (en) Automatic measuring device and method for chord plane deviation
JPH0515819A (en) Method for positioning nozzle of paste applying machine
CN114593697B (en) Device for detecting gap and flatness of product
TWI600499B (en) Hard brittle plate grinding device and processing precision measurement and correction method
JP2005181023A (en) Measuring device and method of height difference and tilt angle between planes
JPH0355932Y2 (en)
JP2007178137A (en) Device and method for measuring displacement amount of surface shape

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term