JP4623706B2 - Ultrasonic cleaning equipment - Google Patents

Ultrasonic cleaning equipment Download PDF

Info

Publication number
JP4623706B2
JP4623706B2 JP2004119037A JP2004119037A JP4623706B2 JP 4623706 B2 JP4623706 B2 JP 4623706B2 JP 2004119037 A JP2004119037 A JP 2004119037A JP 2004119037 A JP2004119037 A JP 2004119037A JP 4623706 B2 JP4623706 B2 JP 4623706B2
Authority
JP
Japan
Prior art keywords
cleaning
gas
cleaning liquid
flow rate
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004119037A
Other languages
Japanese (ja)
Other versions
JP2005296868A (en
Inventor
広太郎 鶴崎
裕司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2004119037A priority Critical patent/JP4623706B2/en
Publication of JP2005296868A publication Critical patent/JP2005296868A/en
Application granted granted Critical
Publication of JP4623706B2 publication Critical patent/JP4623706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

この発明は、例えば半導体ウエハやLCD用ガラス基板等の被処理体を、超音波を利用して洗浄する超音波洗浄処理装置に関するものである。   The present invention relates to an ultrasonic cleaning processing apparatus for cleaning an object to be processed such as a semiconductor wafer or a glass substrate for LCD using ultrasonic waves.

一般に、半導体製造装置の製造工程においては、半導体ウエハやLCD用ガラス基板等を薬液やリンス液等の洗浄液が貯留された洗浄槽に順次浸漬して洗浄を行う洗浄処理方法が広く採用されている。   In general, in a manufacturing process of a semiconductor manufacturing apparatus, a cleaning processing method is widely adopted in which a semiconductor wafer, a glass substrate for LCD, and the like are sequentially immersed in a cleaning tank in which a cleaning solution such as a chemical solution or a rinsing solution is stored for cleaning. .

このような洗浄処理方法を実施する洗浄処理の一例として、超音波洗浄処理が使用されている。この超音波洗浄処理によれば、被処理体例えば半導体ウエハ(以下にウエハという)を収容する洗浄槽内に洗浄液を供給し、ウエハを浸漬する洗浄液に超音波を照射して、ウエハを洗浄することができる。   An ultrasonic cleaning process is used as an example of a cleaning process that implements such a cleaning process. According to this ultrasonic cleaning process, a cleaning liquid is supplied into a cleaning tank that accommodates an object to be processed such as a semiconductor wafer (hereinafter referred to as a wafer), and the cleaning liquid for immersing the wafer is irradiated with ultrasonic waves to clean the wafer. be able to.

また、洗浄効果を高めるために、洗浄液供給系路にガス溶解手段を設けて、洗浄液にガスを溶解させて、ウエハを洗浄する方法も知られている(例えば、特許文献1参照)。   In order to enhance the cleaning effect, there is also known a method of cleaning a wafer by providing a gas dissolving means in the cleaning liquid supply system and dissolving the gas in the cleaning liquid (for example, see Patent Document 1).

この方法によれば、洗浄液にガスを溶解させて超音波洗浄を行うことにより、洗浄時にキャビテーションを発生させて、洗浄効率の向上が図れる。   According to this method, by performing ultrasonic cleaning by dissolving gas in the cleaning liquid, cavitation is generated during cleaning, and cleaning efficiency can be improved.

また、別の超音波洗浄処理方法として、超音波洗浄中に気体を送出し気泡を発生させることにより、洗浄むらの発生を防止及びダメージの発生を防止するようにした技術も知られている(例えば、特許文献2)。
特許第2821887号公報(特許請求の範囲、第1図) 特開昭64−4285号公報(特許請求の範囲、第1図)
In addition, as another ultrasonic cleaning method, there is also known a technique that prevents generation of uneven cleaning and generation of damage by sending gas during ultrasonic cleaning to generate bubbles ( For example, Patent Document 2).
Japanese Patent No. 2821887 (Claims, Fig. 1) JP-A 64-4285 (Claims, Fig. 1)

ところで、近年においては、配線パターンの微細化の傾向にあり、かかる配線パターが微細化されたウエハの洗浄に超音波洗浄処理を施す場合、超音波振動によりウエハがダメージを受けるのを抑制する必要がある。   By the way, in recent years, there is a trend toward miniaturization of wiring patterns, and it is necessary to suppress damage to the wafer due to ultrasonic vibration when performing ultrasonic cleaning processing for cleaning a wafer in which such wiring pattern is miniaturized. There is.

上記問題を解決するために、超音波発振手段の出力を小さくすることが考えられるが、超音波発振手段の出力を小さくするとウエハに付着するパーティクル等の除去効率が低下し、洗浄効率が低下するという問題がある。   In order to solve the above problem, it is conceivable to reduce the output of the ultrasonic oscillating means. However, if the output of the ultrasonic oscillating means is reduced, the removal efficiency of particles adhering to the wafer is lowered and the cleaning efficiency is lowered. There is a problem.

また、前者すなわち特許第2821887号公報に記載の技術においては、洗浄液にガスを溶解させて超音波洗浄を行うことにより、洗浄時にキャビテーションを発生させるため、ウエハへのダメージが大きくなるという問題がある。また、後者すなわち特開昭64−4285号公報に記載の技術においては、洗浄槽内に配設される気泡発生部がウエハと超音波振動子の間に位置するため、超音波振動が洗浄槽全体に均一に伝えられず、処理の均一化が図れないという問題がある。   Further, in the technique described in the former, ie, Japanese Patent No. 2821887, there is a problem that cavitation is generated at the time of cleaning by dissolving the gas in the cleaning liquid and performing ultrasonic cleaning, thereby increasing the damage to the wafer. . In the latter technique, that is, in the technique described in Japanese Patent Application Laid-Open No. 64-4285, since the bubble generating portion disposed in the cleaning tank is located between the wafer and the ultrasonic vibrator, ultrasonic vibration is generated in the cleaning tank. There is a problem in that it cannot be uniformly transmitted to the whole and the processing cannot be made uniform.

この発明は、上記事情に鑑みてなされたもので、被処理体へのダメージを抑制すると共に、洗浄効率の向上を図れるようにした超音波洗浄処理装置を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultrasonic cleaning apparatus capable of suppressing damage to an object to be processed and improving cleaning efficiency. .

上記課題を解決するために、請求項1記載の発明は、洗浄槽内に供給される洗浄液に被処理体を浸漬すると共に、上記洗浄槽の底部に設けられた超音波発振手段によって洗浄槽の下方から洗浄液に超音波を照射して、被処理体を洗浄する超音波洗浄処理装置において、 上記洗浄槽の側壁下部に配設され、洗浄槽内に上記洗浄液とガスを供給する供給手段と、 上記供給手段と洗浄液供給源及びガス供給源とを接続する供給配管に介設される洗浄液の流量調整手段及びガスの流量調整手段と、 上記洗浄液の流量に対するガスの流量を制御すべく、上記両流量調整手段を制御可能な制御手段と、を具備し、 上記供給手段は、上記洗浄液供給源に上記洗浄液の流量制御手段を介して接続する洗浄液供給ノズルと、上記ガス供給源に上記ガスの流量制御手段を介して接続するガス供給ノズルとを具備し、 上記ガス供給ノズルの上方近接位置に上記洗浄液供給ノズルを配設してなる、ことを特徴とする。 In order to solve the above-mentioned problem, the invention according to claim 1, the object to be processed is immersed in the cleaning liquid supplied into the cleaning tank, and the ultrasonic oscillator provided at the bottom of the cleaning tank is used for the cleaning tank. In an ultrasonic cleaning processing apparatus for irradiating the cleaning liquid with ultrasonic waves from below to clean the object to be processed, a supply means that is disposed below the side wall of the cleaning tank and supplies the cleaning liquid and gas into the cleaning tank; A cleaning liquid flow rate adjusting means and a gas flow rate adjusting means provided in a supply pipe connecting the supply means, the cleaning liquid supply source and the gas supply source, and both the flow rate control means for controlling the gas flow rate relative to the cleaning liquid flow rate. Control means capable of controlling the flow rate adjusting means, wherein the supply means is connected to the cleaning liquid supply source via the cleaning liquid flow rate control means, and the flow rate of the gas to the gas supply source. System And a gas supply nozzle connected via a control means, wherein the cleaning liquid supply nozzle is disposed at a position near the upper side of the gas supply nozzle.

請求項2記載の発明は、洗浄槽内に供給される洗浄液に被処理体を浸漬すると共に、上記洗浄槽の底部に設けられた超音波発振手段によって洗浄槽の下方から洗浄液に超音波を照射して、被処理体を洗浄する超音波洗浄処理装置において、 上記洗浄槽の側壁下部に配設され、洗浄槽内に上記洗浄液とガスを供給する供給手段と、 上記供給手段と洗浄液供給源及びガス供給源とを接続する供給配管に介設される洗浄液の流量調整手段及びガスの流量調整手段と、 上記洗浄液の流量に対するガスの流量を制御すべく、上記両流量調整手段を制御可能な制御手段と、を具備し、 上記供給手段は、上記洗浄液供給源に上記洗浄液の流量制御手段を介して接続する洗浄液供給ノズルと、上記ガス供給源に上記ガスの流量制御手段を介して接続するガス供給ノズルとを具備し、 上記洗浄液供給ノズルの上方近接位置に上記ガス供給ノズルを配設し、上記洗浄液供給ノズルから上向きに洗浄液を吐出し、上記ガス供給ノズルから下向きにガスを吐出してなる、ことを特徴とする。 According to the second aspect of the present invention, the object to be processed is immersed in the cleaning liquid supplied into the cleaning tank, and the cleaning liquid is irradiated with ultrasonic waves from below the cleaning tank by the ultrasonic oscillation means provided at the bottom of the cleaning tank. Then, in the ultrasonic cleaning apparatus for cleaning an object to be processed, a supply means that is disposed under the side wall of the cleaning tank and supplies the cleaning liquid and gas into the cleaning tank, the supply means, a cleaning liquid supply source, A flow rate adjusting unit for the cleaning liquid and a gas flow rate adjusting unit provided in a supply pipe connected to the gas supply source, and a control capable of controlling both the flow rate adjusting units to control the flow rate of the gas with respect to the flow rate of the cleaning liquid. A cleaning liquid supply nozzle connected to the cleaning liquid supply source via the cleaning liquid flow rate control means, and a gas connected to the gas supply source via the gas flow rate control means. A supply nozzle, and the gas supply nozzle is disposed at a position close to the cleaning liquid supply nozzle. The cleaning liquid is discharged upward from the cleaning liquid supply nozzle, and the gas is discharged downward from the gas supply nozzle. It is characterized by that.

この発明の超音波洗浄処理装置において、上記制御手段を、上記洗浄液の流量に対するガスの流量を1/60以上、好ましくは1/60〜2/75に制御可能に形成する方がよい(請求項3,4)。 In the ultrasonic cleaning apparatus of the present invention, the control means is preferably formed so that the flow rate of the gas with respect to the flow rate of the cleaning liquid can be controlled to 1/60 or more, preferably 1/60 to 2/75. 3, 4 ).

また、請求項記載の発明は、請求項1ないし4のいずれかに記載の超音波洗浄処理装置において、 複数枚の上記被処理体を適宜間隔をおいて列設保持して洗浄槽内に配置する保持手段を更に具備し、 上記供給手段から上記保持手段によって保持された上記被処理体間に洗浄液とガスを供給可能に形成してなる、ことを特徴とする。 The invention according to claim 5 is the ultrasonic cleaning apparatus according to any one of claims 1 to 4 , wherein the plurality of objects to be processed are arranged and held at appropriate intervals in the cleaning tank. It further comprises holding means to be arranged, and is formed such that a cleaning liquid and a gas can be supplied between the objects to be processed held by the holding means from the supply means.

また、この発明の超音波洗浄処理装置において、上記洗浄液供給ノズル及びガス供給ノズルを、それぞれ洗浄槽の対向する部位に配設する方が好ましい(請求項)。 Further, in the ultrasonic cleaning apparatus of the present invention, the cleaning liquid supply nozzle and the gas supply nozzle, it is better to dispose the portion facing the respective cleaning tanks preferably (claim 6).

(1)請求項1〜4記載の発明によれば、超音波洗浄時に洗浄槽の外部から洗浄槽内に、洗浄液と共にガスを供給し、この際、所定の流量比(例えば、洗浄液の流量に対するガスの流量を、1/60以上、好ましくは1/60〜2/75で供給することにより、気泡が発生した状態の洗浄液に超音波を照射することができるので、少ない超音波出力によって洗浄に効果的なキャビテーションを発生させることができる。したがって、被処理体へのダメージを抑制することができると共に、洗浄効率の向上を図ることができる。 (1) According to the first to fourth aspects of the present invention, gas is supplied together with the cleaning liquid from the outside of the cleaning tank to the cleaning tank at the time of ultrasonic cleaning, and at this time, a predetermined flow ratio (for example, the flow rate of the cleaning liquid) By supplying the gas flow rate at 1/60 or more, preferably 1/60 to 2/75, it is possible to irradiate the cleaning liquid in a state where bubbles are generated with ultrasonic waves. Effective cavitation can be generated, so that damage to the object to be processed can be suppressed and cleaning efficiency can be improved.

(2)請求項記載の発明によれば、被処理体を適宜間隔をおいて複数枚列設し、洗浄液を被処理体間に供給することにより、上記(1)に加えて複数枚の被処理体を効率よく洗浄処理することができる。 (2) According to the invention described in claim 5, a plurality of objects to be processed are arranged in a row at an appropriate interval, and a cleaning liquid is supplied between the objects to be processed. The object to be processed can be efficiently cleaned.

(3)請求項記載の発明によれば、洗浄液供給ノズル及びガス供給ノズルを、それぞれ洗浄槽の対向する部位に配設することにより、被処理体と超音波振動子の間に遮るものがなく、振動を洗浄槽全体に均一に伝えられ、被処理体を均一に洗浄処理することができるので、上記(1),(2)に加えて更に洗浄効率の向上を図ることができる。 (3) According to the invention described in claim 6 , by disposing the cleaning liquid supply nozzle and the gas supply nozzle at the opposite portions of the cleaning tank, there is an obstacle between the object to be processed and the ultrasonic vibrator. In addition, since the vibration can be transmitted uniformly to the entire cleaning tank and the object to be processed can be uniformly cleaned, the cleaning efficiency can be further improved in addition to the above (1) and (2).

以下に、この発明の最良の実施形態を添付図面に基づいて詳細に説明する。ここでは、この発明に係る超音波洗浄処理装置を半導体ウエハの洗浄処理装置に適用した場合について説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best embodiment of the present invention will be described in detail with reference to the accompanying drawings. Here, the case where the ultrasonic cleaning apparatus according to the present invention is applied to a semiconductor wafer cleaning apparatus will be described.

<第1実施形態>
図1は、この発明に係る超音波洗浄処理装置(以下に洗浄処理装置という)の第1実施形態を示す概略断面図、図2は、その概略平面図である。
<First Embodiment>
FIG. 1 is a schematic sectional view showing a first embodiment of an ultrasonic cleaning processing apparatus (hereinafter referred to as a cleaning processing apparatus) according to the present invention, and FIG. 2 is a schematic plan view thereof.

上記洗浄処理装置は、被処理体例えば半導体ウエハW(以下にウエハWという)を浸漬する洗浄液例えば純水(DIW)が貯留される洗浄槽1と、複数枚例えば50枚のウエハWを適宜間隔をおいて垂直状に列設し、保持して洗浄槽1内に配置する保持手段であるウエハボート2と、洗浄槽1内の洗浄液Lに超音波を照射、すなわち超音波振動を与えるための超音波発振手段3と、洗浄槽1の側壁の下部における対向する位置に配設される純水とガス例えばN2ガスの供給手段4とを具備している。   The cleaning processing apparatus appropriately separates a cleaning tank 1 in which a cleaning liquid, such as pure water (DIW), into which an object to be processed such as a semiconductor wafer W (hereinafter referred to as a wafer W) is stored, and a plurality of, for example, 50 wafers W. The wafer boat 2 is a holding means that is arranged vertically and held in the cleaning tank 1 and the cleaning liquid L in the cleaning tank 1 is irradiated with ultrasonic waves, that is, for applying ultrasonic vibration. The ultrasonic wave oscillating means 3 and pure water and gas, for example, N 2 gas supply means 4 disposed at opposing positions in the lower portion of the side wall of the cleaning tank 1 are provided.

上記洗浄槽1は、耐薬品性に富む材料例えば石英製材料によって形成される内槽1aと、この内槽1aの上端開口部から溢流(オーバーフロー)する洗浄液Lを受け止める外槽1bとで構成されている。   The cleaning tank 1 is composed of an inner tank 1a formed of a chemical-resistant material, for example, a quartz material, and an outer tank 1b that receives the cleaning liquid L that overflows (overflows) from the upper end opening of the inner tank 1a. Has been.

上記ウエハボート2は、図1及び図2に示すように、複数枚例えば50枚のウエハWを水平方向に垂直状に保持すべく複数の保持溝(図示せず)を有する互いに平行な3本の保持棒2aと、これら保持棒2aの一端から垂直状に起立する垂直部2bとを具備し、垂直部2bを図示しない昇降機構によって昇降させることによって、ウエハボート2によって保持される複数枚例えば50枚のウエハWが洗浄槽1内の純水に浸漬され、あるいは、洗浄槽1から上方に搬出されるように構成されている。   As shown in FIGS. 1 and 2, the wafer boat 2 includes a plurality of, for example, 50 wafers W, which are parallel to each other and have a plurality of holding grooves (not shown) for holding the wafers W vertically in the horizontal direction. The holding rod 2a and a vertical portion 2b that rises vertically from one end of the holding rod 2a. The vertical portion 2b is moved up and down by an elevating mechanism (not shown), and a plurality of pieces are held by the wafer boat 2, for example Fifty wafers W are soaked in pure water in the cleaning tank 1 or carried out from the cleaning tank 1 upward.

上記超音波発振手段3は、洗浄槽1の底部の下面に装着される振動子31と、これら振動子31と高周波駆動電源32との間に介設される超音波発振器34と、駆動切換手段33とを具備しており、駆動切換手段33によって振動子31の駆動を選択的に行えるように形成されている。   The ultrasonic oscillating means 3 includes a vibrator 31 mounted on the bottom surface of the bottom of the cleaning tank 1, an ultrasonic oscillator 34 interposed between the vibrator 31 and the high frequency driving power source 32, and a drive switching means. 33, and the drive switching means 33 is configured to selectively drive the vibrator 31.

上記のように構成される超音波発振手段3の振動子31が振動すると、この振動が洗浄槽1内に貯留された純水に伝搬されて、超音波が照射される。   When the vibrator 31 of the ultrasonic wave oscillating means 3 configured as described above vibrates, this vibration is propagated to the pure water stored in the cleaning tank 1 and is irradiated with ultrasonic waves.

上記供給手段4は、洗浄槽1の側壁の下端部に配設される洗浄液供給ノズルである純水供給ノズル10と、この純水供給ノズル10の上方の近接位置に配設されるガス供給ノズルであるN2供給ノズル20とを具備している。この場合、純水供給ノズル10及びN2供給ノズル20は、図2に純水供給ノズル10を代表して示すように、適宜間隔をおいてノズル孔30を穿設したパイプ部材40によって形成されている。この場合、ノズル孔30のピッチpは、ウエハボート2によって保持されたウエハW間のピッチに合わせて設けられており、ノズル孔30から吐出される純水がウエハW間に供給されるようになっている。これにより、ノズル孔30から吐出される純水が直接ウエハWに当たるのを防止し、ウエハWのダメージを抑制することができると共に、ウエハWの表面に付着するパーティクルを効率的に除去することができる。   The supply means 4 includes a pure water supply nozzle 10 which is a cleaning liquid supply nozzle provided at the lower end portion of the side wall of the cleaning tank 1, and a gas supply nozzle provided at a close position above the pure water supply nozzle 10. The N2 supply nozzle 20 is provided. In this case, the pure water supply nozzle 10 and the N2 supply nozzle 20 are formed by a pipe member 40 having nozzle holes 30 formed at appropriate intervals, as shown by the pure water supply nozzle 10 in FIG. Yes. In this case, the pitch p of the nozzle holes 30 is provided in accordance with the pitch between the wafers W held by the wafer boat 2 so that pure water discharged from the nozzle holes 30 is supplied between the wafers W. It has become. Thereby, the pure water discharged from the nozzle hole 30 can be prevented from directly hitting the wafer W, damage to the wafer W can be suppressed, and particles adhering to the surface of the wafer W can be efficiently removed. it can.

また、上記純水供給ノズル10は、洗浄液供給配管である純水供給管12を介して洗浄液供給源である純水供給源14に接続されている。この純水供給管12には、純水供給源14側から順に流量調整手段であるフローメータFM1と開閉弁V1が介設されている。このように構成される純水供給ノズル10のノズル孔30の位置、すなわち純水の吐出方向は、被処理体であるウエハWの大きさや配列ピッチによって異なって吐出されるようになっている。   The pure water supply nozzle 10 is connected to a pure water supply source 14 which is a cleaning liquid supply source via a pure water supply pipe 12 which is a cleaning liquid supply pipe. The pure water supply pipe 12 is provided with a flow meter FM1 and an on-off valve V1 as flow rate adjusting means in order from the pure water supply source 14 side. The position of the nozzle hole 30 of the pure water supply nozzle 10 configured as described above, that is, the discharge direction of the pure water is differently discharged depending on the size and arrangement pitch of the wafers W to be processed.

一方、N2供給ノズル20は、ガス供給管22を介してガス供給源であるN2ガス供給源24に接続されている。このガス供給管22には、N2ガス供給源24側から順にレギュレータRと流量調整手段であるフローメータFM2と開閉弁V2とフィルタFが介設されている。このように構成されるN2供給ノズル20からは下向きにN2ガスが吐出されるようになっている。N2供給ノズル20から下向きに吐出されるN2ガスは、下方に位置する純水供給ノズル10から上向きに吐出される純水に瞬時に混合する。   On the other hand, the N 2 supply nozzle 20 is connected to an N 2 gas supply source 24 that is a gas supply source via a gas supply pipe 22. The gas supply pipe 22 is provided with a regulator R, a flow meter FM2, which is a flow rate adjusting means, an on-off valve V2, and a filter F in that order from the N2 gas supply source 24 side. N2 gas is discharged downward from the N2 supply nozzle 20 configured as described above. The N2 gas discharged downward from the N2 supply nozzle 20 is instantaneously mixed with pure water discharged upward from the pure water supply nozzle 10 located below.

また、上記フローメータFM1,FM2は、制御手段であるCPU50に電気的に接続されており、予め記憶されたCPU50からの制御信号によって純水の供給流量に対するN2ガスの供給流量の割合が制御されるようになっている。この場合、純水の供給流量に対するN2ガスの供給流量の割合は、1/60以上、好ましくは1/60〜2/75に設定されている。   The flow meters FM1 and FM2 are electrically connected to the CPU 50 as control means, and the ratio of the N2 gas supply flow rate to the pure water supply flow rate is controlled by a control signal from the CPU 50 stored in advance. It has become so. In this case, the ratio of the supply flow rate of N2 gas to the supply flow rate of pure water is set to 1/60 or more, preferably 1/60 to 2/75.

次に、上記のように構成される超音波洗浄装置の動作態様について説明する。まず、純水供給源14から洗浄槽1内に純水を供給してウエハWが浸漬できるように貯留しておく。   Next, an operation mode of the ultrasonic cleaning apparatus configured as described above will be described. First, pure water is supplied into the cleaning tank 1 from the pure water supply source 14 and stored so that the wafer W can be immersed therein.

次に、図示しないウエハ搬送手段によって保持された複数例えば50枚のウエハWを、ウエハボート2に受け渡して、ウエハWを純水に浸漬する。その後、超音波発振手段3の超音波発振器34を駆動して、振動子31に高周波電源を印加して励振することにより、洗浄槽1内に貯留された純水に超音波を照射する。この動作と同時に、開閉弁V1,V2を開放すると共に、CPU50からの制御信号に基づいてフローメータFM1,FM2が制御、例えば純水の供給流量に対するN2ガスの供給流量が1/60〜2/75に制御されて、純水と共にN2ガスが洗浄槽1内に供給(吐出)される。この際、N2供給ノズル20から下向きに吐出されたN2ガスは、純水供給ノズル10から上向きに吐出される純水に瞬時に混合し、N2ガスが混合した純水に超音波が照射される。これにより、超音波発振器34の駆動出力を低く(例えば200W)して、洗浄に効果的なキャビテーションを発生させることができ、ウエハWに付着したパーティクル等を除去することができる。   Next, a plurality of, for example, 50 wafers W held by a wafer transfer means (not shown) are transferred to the wafer boat 2 and the wafers W are immersed in pure water. Thereafter, the ultrasonic oscillator 34 of the ultrasonic oscillating means 3 is driven, and a high frequency power source is applied to the vibrator 31 to excite it, thereby irradiating the pure water stored in the cleaning tank 1 with ultrasonic waves. Simultaneously with this operation, the on-off valves V1 and V2 are opened, and the flow meters FM1 and FM2 are controlled based on a control signal from the CPU 50. For example, the supply flow rate of N2 gas with respect to the supply flow rate of pure water is 1/60 to 2 / The N 2 gas is supplied (discharged) into the cleaning tank 1 together with pure water under the control of 75. At this time, the N2 gas discharged downward from the N2 supply nozzle 20 is instantaneously mixed with the pure water discharged upward from the pure water supply nozzle 10, and the pure water mixed with the N2 gas is irradiated with ultrasonic waves. . Thereby, the drive output of the ultrasonic oscillator 34 can be lowered (for example, 200 W), cavitation effective for cleaning can be generated, and particles and the like attached to the wafer W can be removed.

なお、洗浄中においても純水供給ノズル10及びN2供給ノズル20から、洗浄槽1内に純水及びN2ガスを供給し続ける。このように、純水及びN2ガスを随時供給することにより、ウエハWから除去されて液面に浮かんだパーティクル等を、外槽1bにオーバーフローする純水と共に効果的に外部へ流出させることができるので、洗浄槽1内の純水(洗浄液)を清浄な状態に保つことができる。また、洗浄槽1から外部に流出した使用済みの純水は、洗浄槽1の下方に配設されたパン(図示せず)に受け止められ、図示しないドレン管から排液される。   Note that pure water and N 2 gas continue to be supplied into the cleaning tank 1 from the pure water supply nozzle 10 and the N 2 supply nozzle 20 even during cleaning. Thus, by supplying pure water and N2 gas as needed, particles and the like that are removed from the wafer W and float on the liquid surface can be effectively discharged to the outside together with the pure water that overflows to the outer tank 1b. Therefore, the pure water (cleaning liquid) in the cleaning tank 1 can be kept clean. The used pure water that has flowed out of the cleaning tank 1 is received by a pan (not shown) disposed below the cleaning tank 1 and drained from a drain pipe (not shown).

上記のようにして所定時間洗浄処理を行った後、開閉弁V1,V2を閉じて、純水及びN2ガスの供給を停止する。   After performing the cleaning process for a predetermined time as described above, the on-off valves V1 and V2 are closed, and the supply of pure water and N2 gas is stopped.

その後、ウエハボート2を上昇させてウエハWを洗浄槽1の上方に搬送させて、図示しない搬送手段にウエハWを受け渡す。   Thereafter, the wafer boat 2 is raised to transfer the wafer W to above the cleaning tank 1 and deliver the wafer W to a transfer means (not shown).

<第2実施形態>
図3は、この発明に係る超音波洗浄処理装置の第2実施形態を示す概略断面図である。
<Second Embodiment>
FIG. 3 is a schematic sectional view showing a second embodiment of the ultrasonic cleaning apparatus according to the present invention.

第2実施形態は、第1実施形態における純水供給ノズル10とN2供給ノズル20の配置形態を逆にした場合である。すなわち、洗浄槽1の対向する側壁の下端部にN2供給ノズル20を配設し、このN2供給ノズル20の上方の近接位置に純水供給ノズル10を配設した場合である。 In the second embodiment, the arrangement of the pure water supply nozzle 10 and the N2 supply nozzle 20 in the first embodiment is reversed. That is, this is a case where the N2 supply nozzle 20 is disposed at the lower end portion of the opposite side wall of the cleaning tank 1 and the pure water supply nozzle 10 is disposed at a close position above the N2 supply nozzle 20.

この場合、純水供給ノズル10においては、第1実施形態と同様に、ウエハWの大きさ及び間隔に応じて上向き、あるいは上向き及び下向きに純水が吐出(供給)される。一方、N2供給ノズル20においては、下向きから水平の範囲にN2ガスが吐出(供給)されるようになっている。   In this case, in the pure water supply nozzle 10, pure water is discharged (supplied) upward or upward and downward according to the size and interval of the wafer W, as in the first embodiment. On the other hand, in the N2 supply nozzle 20, N2 gas is discharged (supplied) from a downward direction to a horizontal range.

なお、第2実施形態において、その他の部分は第1実施形態と同じであるので、同一部分には同一符号を付して、説明は省略する。   In the second embodiment, the other parts are the same as those in the first embodiment, so the same parts are denoted by the same reference numerals and description thereof is omitted.

第2実施形態において、第1実施形態と同様に、洗浄時に、CPU50からの制御信号に基づいてフローメータFM1,FM2が制御、例えば純水の供給流量に対するN2ガスの供給流量が1/60〜2/75に制御されて、純水と共にN2ガスが洗浄槽1内に供給(吐出)される。この際、N2供給ノズル20から吐出されるN2ガスは上方に浮上し、上方に位置する純水供給ノズル10から吐出される純水に混合し、気泡が発生した純水に超音波が照射される。これにより、超音波発振器34の駆動出力を低く(例えば200W)して、洗浄に効果的なキャビテーションを発生させることができ、ウエハWに付着したパーティクル等を除去することができる。   In the second embodiment, as in the first embodiment, during the cleaning, the flow meters FM1 and FM2 are controlled based on a control signal from the CPU 50. For example, the supply flow rate of N2 gas is 1/60 to the supply flow rate of pure water. Controlled to 2/75, N2 gas is supplied (discharged) into the cleaning tank 1 together with pure water. At this time, the N2 gas discharged from the N2 supply nozzle 20 floats upward, mixes with the pure water discharged from the pure water supply nozzle 10 located above, and ultrasonic waves are applied to the pure water in which bubbles are generated. The Thereby, the drive output of the ultrasonic oscillator 34 can be lowered (for example, 200 W), cavitation effective for cleaning can be generated, and particles and the like attached to the wafer W can be removed.

<第3実施形態>
図4は、この発明に係る超音波洗浄処理装置の第3実施形態における純水供給ノズルとN2ノズルの変形例を示す要部断面図(a)及び(a)の横断面図(b)である。
<Third Embodiment>
FIG. 4 is a cross-sectional view (a) of the principal part showing a modification of the pure water supply nozzle and the N2 nozzle in the third embodiment of the ultrasonic cleaning apparatus according to the present invention, and a cross-sectional view (b) of (a). is there.

第3実施形態は、純水とN2ガスの供給手段4を二重管構造とした場合である。すなわち、供給手段4の一部を構成する純水供給ノズル10を、洗浄槽1の側壁の下部に配設される角形パイプ部材40Aによって純水供給ノズル10Aを形成し、供給手段4の別の一部を構成するN2供給ノズル20Aを、角形パイプ部材40Aの内方に間隔をおいて内挿されるパイプ部材40Bによって形成した場合である。この場合、角形パイプ部材40Aは、洗浄槽1の側壁に設けられた取付用開口1cに図示しないパッキンやシール部材を介して気水密に装着されており、洗浄槽1内に対向する面に適宜間隔をおいて複数のノズル孔30Aが穿設されている。また、N2供給ノズル20Aを形成するパイプ部材40Bにおける洗浄槽1側の面には、ノズル孔30Aに対して偏倚した等間隔位置に複数のノズル孔30Bが穿設されている。   The third embodiment is a case where the pure water and N2 gas supply means 4 has a double tube structure. That is, the pure water supply nozzle 10 constituting a part of the supply means 4 is formed by the square pipe member 40A disposed at the lower part of the side wall of the cleaning tank 1, and the pure water supply nozzle 10A is formed. This is a case where the N2 supply nozzle 20A constituting a part is formed by a pipe member 40B inserted at an interval inward of the square pipe member 40A. In this case, the square pipe member 40 </ b> A is attached to a mounting opening 1 c provided on the side wall of the cleaning tank 1 in an air-watertight manner via a packing or a seal member (not shown), and is appropriately disposed on a surface facing the cleaning tank 1. A plurality of nozzle holes 30A are formed at intervals. In addition, a plurality of nozzle holes 30B are formed on the surface of the pipe member 40B forming the N2 supply nozzle 20A on the cleaning tank 1 side at equidistant positions offset from the nozzle holes 30A.

上記のように構成される純水とN2ガスの供給手段4において、内方のパイプ部材40Bのノズル孔30Bから吐出されるN2ガスは角形パイプ部材40A内に流入して、角形パイプ部材40A内の純水に混入し、角形パイプ部材40Aのノズル孔30Aから純水と共に吐出される。   In the pure water and N2 gas supply means 4 configured as described above, the N2 gas discharged from the nozzle hole 30B of the inner pipe member 40B flows into the square pipe member 40A, and enters the square pipe member 40A. And is discharged together with pure water from the nozzle hole 30A of the square pipe member 40A.

なお、上記説明では、純水供給ノズル10を形成するパイプ部材が角形パイプ部材40Aによって形成される場合について説明したが、円形状パイプ部材によって形成してもよい。   In the above description, the case where the pipe member forming the pure water supply nozzle 10 is formed by the square pipe member 40A has been described, but it may be formed by a circular pipe member.

なお、第3実施形態において、その他の部分は、第1実施形態と同じであるので、同一部分には同一符号を付して、説明は省略する。   In addition, in 3rd Embodiment, since another part is the same as 1st Embodiment, the same code | symbol is attached | subjected to the same part and description is abbreviate | omitted.

第3実施形態において、第1実施形態と同様に、洗浄時に、CPU50からの制御信号に基づいてフローメータFM1,FM2が制御、例えば純水の供給流量に対するN2ガスの供給流量が1/60〜2/75に制御されて、純水と共にN2ガスが洗浄槽1内に供給(吐出)される。この際、N2供給ノズル20Aを形成するパイプ部材40Bのノズル孔30Bから吐出されるN2ガスは、純水供給ノズル10を形成する角形パイプ部材40A内に流入して、角形パイプ部材40A内の純水に混合した後、角形パイプ部材40Aのノズル孔30Aから純水と共に洗浄槽1内に供給(吐出)され、N2ガスが混合して気泡が発生した純水に超音波が照射される。これにより、超音波発振器34の駆動出力を低く(例えば200W)して、洗浄に効果的なキャビテーションを発生させることができ、ウエハWに付着したパーティクル等を除去することができる。   In the third embodiment, as in the first embodiment, during the cleaning, the flow meters FM1 and FM2 are controlled based on a control signal from the CPU 50. For example, the supply flow rate of N2 gas with respect to the supply flow rate of pure water is 1/60 to Controlled to 2/75, N2 gas is supplied (discharged) into the cleaning tank 1 together with pure water. At this time, the N2 gas discharged from the nozzle hole 30B of the pipe member 40B that forms the N2 supply nozzle 20A flows into the rectangular pipe member 40A that forms the pure water supply nozzle 10, and the pure gas in the square pipe member 40A After being mixed with water, it is supplied (discharged) into the cleaning tank 1 together with pure water from the nozzle hole 30A of the square pipe member 40A, and ultrasonic waves are applied to the pure water in which bubbles are generated by mixing N2 gas. Thereby, the drive output of the ultrasonic oscillator 34 can be lowered (for example, 200 W), cavitation effective for cleaning can be generated, and particles and the like attached to the wafer W can be removed.

<第4実施形態>
図5は、この発明に係る超音波洗浄処理装置の第4実施形態における純水供給ノズルとN2ノズルの更に別の変形例を示す要部断面図(a)及び(a)のI−I線に沿う断面図(b)である。
<Fourth embodiment>
FIG. 5: is principal part sectional drawing (a) and II line | wire of (a) which shows another modification of the pure water supply nozzle and N2 nozzle in 4th Embodiment of the ultrasonic cleaning processing apparatus based on this invention. It is sectional drawing (b) which follows this.

第4実施形態は、第3実施形態と同様に、純水とN2ガスの供給手段4を形成する純水供給ノズル10とN2供給ノズル20を二重管構造にした場合であるが、純水供給ノズル10を形成する角形パイプ部材40AとN2供給ノズル20を形成するパイプ部材40Bを一体に形成し、ノズル孔30A,30Bを、それぞれ洗浄槽1の内面側に設けた点で相違している。   As in the third embodiment, the fourth embodiment is a case where the pure water supply nozzle 10 and the N2 supply nozzle 20 forming the pure water and N2 gas supply means 4 have a double pipe structure. The difference is that the rectangular pipe member 40A forming the supply nozzle 10 and the pipe member 40B forming the N2 supply nozzle 20 are integrally formed, and the nozzle holes 30A and 30B are provided on the inner surface side of the cleaning tank 1, respectively. .

すなわち、第4実施形態では、角形パイプ部材40Aとパイプ部材40Bとを一体に形成した二重パイプ部材40Cを、洗浄槽1の側壁に設けられた取付用開口1cに図示しないパッキンやシール部材を介して気水密に装着し、角形パイプ部材40Aとパイプ部材40Bの洗浄槽1内に面する箇所にそれぞれ適宜間隔をおいてノズル孔30A,30Bを設けた構造となっている。この場合、パイプ部材40Bは、上部側に設けられている。また、角形パイプ部材40Aのノズル孔30Aは上向きに設けられ、パイプ部材40Bのノズル孔30Bは下向きに設けられ、これらノズル孔30A,30Bは、互いに偏倚して、全体が千鳥状に配列されている。   That is, in the fourth embodiment, the double pipe member 40C formed integrally with the square pipe member 40A and the pipe member 40B is replaced with a packing or seal member (not shown) in the mounting opening 1c provided on the side wall of the cleaning tank 1. The nozzle holes 30 </ b> A and 30 </ b> B are provided at appropriate intervals at locations where the square pipe member 40 </ b> A and the pipe member 40 </ b> B face the cleaning tank 1. In this case, the pipe member 40B is provided on the upper side. Further, the nozzle hole 30A of the rectangular pipe member 40A is provided upward, the nozzle hole 30B of the pipe member 40B is provided downward, and the nozzle holes 30A and 30B are offset from each other and are arranged in a staggered manner as a whole. Yes.

なお、第4実施形態において、その他の部分は、第1実施形態と同じであるので、同一部分には同一符号を付して、説明は省略する。   In addition, in 4th Embodiment, since another part is the same as 1st Embodiment, the same code | symbol is attached | subjected to the same part and description is abbreviate | omitted.

第4実施形態において、第1実施形態と同様に、洗浄時に、CPU50からの制御信号に基づいてフローメータFM1,FM2が制御、例えば純水の供給流量に対するN2ガスの供給流量が1/60〜2/75に制御されて、純水と共にN2ガスが洗浄槽1内に供給(吐出)される。この際、N2供給ノズル20を形成するパイプ部材40Bから下向きに吐出されたN2ガスは、純水供給ノズル10を形成する角形パイプ部材40Aから上向きに吐出される純水に瞬時に混合し、N2ガスが混合して気泡が発生した純水に超音波が照射される。これにより、超音波発振器34の駆動出力を低く(例えば200W)して、洗浄に効果的なキャビテーションを発生させることができ、ウエハWに付着したパーティクル等を除去することができる。   In the fourth embodiment, as in the first embodiment, during the cleaning, the flow meters FM1 and FM2 are controlled based on a control signal from the CPU 50. For example, the supply flow rate of N2 gas with respect to the supply flow rate of pure water is 1/60 to Controlled to 2/75, N2 gas is supplied (discharged) into the cleaning tank 1 together with pure water. At this time, N2 gas discharged downward from the pipe member 40B forming the N2 supply nozzle 20 is instantaneously mixed with pure water discharged upward from the square pipe member 40A forming the pure water supply nozzle 10, and N2 Ultrasonic waves are applied to pure water in which bubbles are generated by mixing gases. Thereby, the drive output of the ultrasonic oscillator 34 can be lowered (for example, 200 W), cavitation effective for cleaning can be generated, and particles and the like attached to the wafer W can be removed.

<その他の実施形態>
上記実施形態では、純水とN2ガスの供給手段4が純水供給ノズル10とN2供給ノズル20とで構成される場合について説明したが、純水の供給流量に対するN2ガスの供給流量が1/60〜2/75に制御可能なものであれば、図6に示すように、純水供給ノズル10のみで構成し、純水供給管12にN2ガス供給管22を接続し、純水供給管12中で気泡を発生させた後、純水供給ノズル10より供給する構造のものであってもよい。なお、図6において、その他の部分は第1実施形態と同じであるので、同一部分には同一符号を符して、説明は省略する。
<Other embodiments>
In the above embodiment, the case where the pure water and N2 gas supply means 4 is constituted by the pure water supply nozzle 10 and the N2 supply nozzle 20 has been described. However, the supply flow rate of N2 gas with respect to the supply flow rate of pure water is 1 / As long as it can be controlled to 60 to 2/75, as shown in FIG. 6, it is constituted only by the pure water supply nozzle 10, the N2 gas supply pipe 22 is connected to the pure water supply pipe 12, and the pure water supply pipe A structure in which bubbles are generated in 12 and then supplied from the pure water supply nozzle 10 may be used. In FIG. 6, the other parts are the same as those in the first embodiment, so the same parts are denoted by the same reference numerals and the description thereof is omitted.

なお、上記実施形態では、この発明に係る超音波洗浄処理方法及び装置を半導体ウエハの洗浄処理に適用した場合について説明したが、LCD用ガラス基板の洗浄処理にも適用できる。   In the above embodiment, the ultrasonic cleaning method and apparatus according to the present invention are applied to a semiconductor wafer cleaning process, but the present invention can also be applied to an LCD glass substrate cleaning process.

次に、ウエハWへのダメージとパーティクルの除去性能について説明する。   Next, damage to the wafer W and particle removal performance will be described.

<ウエハへのダメージ>
配線パターンを有するウエハWに対して、N2ガスを用いない従来の超音波洗浄方法で超音波を照射した場合、超音波発信器34の出力(通常約400W)が高いとウエハWの配線にダメージを与えることが確認されている。したがって、超音波発信器34の出力を低くして洗浄を行う必要がある。しかし、超音波発信器34の出力を低くすると、ウエハWに付着するパーティクルの除去効率が低下するという問題が生じる。
<Damage to wafer>
When the wafer W having a wiring pattern is irradiated with ultrasonic waves by a conventional ultrasonic cleaning method that does not use N2 gas, the wiring of the wafer W is damaged if the output of the ultrasonic transmitter 34 (usually about 400 W) is high. Has been confirmed to give. Therefore, it is necessary to perform cleaning with a low output of the ultrasonic transmitter 34. However, if the output of the ultrasonic transmitter 34 is lowered, there arises a problem that the efficiency of removing particles adhering to the wafer W is lowered.

<パーティクルの除去性能>
超音波発信器34の出力を低くして、如何にパーティクルの除去効率の向上を図れるかを調べるために、以下の条件で実験を行った。
<Particle removal performance>
In order to investigate how the output of the ultrasonic transmitter 34 can be lowered to improve the particle removal efficiency, an experiment was conducted under the following conditions.

すなわち、超音波発信器34の出力を、ウエハWにダメージを与えない出力の低い200Wにして、純水の供給流量30L/minに対するN2ガスの供給流量を変化させてパーティクルの除去率を調べたところ、図7に示すような結果が得られた。   That is, the output of the ultrasonic transmitter 34 was set to 200 W, which is a low output that does not damage the wafer W, and the N2 gas supply flow rate with respect to the pure water supply flow rate 30 L / min was changed to examine the particle removal rate. However, the results shown in FIG. 7 were obtained.

上記実験の結果、N2ガスの供給流量が500mL/min以上、すなわち純水の供給流量30L/minに対するN2ガスの供給流量の比率が1/60以上のとき、パーティクルの除去率が一般的にウエハ製作上問題ないと判断される85%以上であることが判った。また、N2ガスの供給流量が800mL/min(純水の供給流量30L/minに対するN2ガスの供給流量の比率が2/75)を超えるとパーティクルの除去率が90%で一定であることが判った。   As a result of the above experiment, when the N2 gas supply flow rate is 500 mL / min or more, that is, when the ratio of the N2 gas supply flow rate to the pure water supply flow rate 30 L / min is 1/60 or more, the particle removal rate is generally a wafer. It was found that it was 85% or more, which was judged as no problem in production. Further, when the N2 gas supply flow rate exceeds 800 mL / min (the ratio of the N2 gas supply flow rate to the pure water supply flow rate of 30 L / min is 2/75), it is found that the particle removal rate is constant at 90%. It was.

したがって、純水の供給流量に対するN2ガスの供給流量を1/60以上、N2ガスを多大に消費しないことを考えると、好ましくは1/60〜2/75に制御することにより、ウエハWにダメージを与えることなく、パーティクルの除去率を高めることができる。   Therefore, considering that the supply flow rate of N2 gas with respect to the supply flow rate of pure water is 1/60 or more and that N2 gas is not consumed much, it is preferable to control the supply flow rate to 1/60 to 2/75. The removal rate of the particles can be increased without giving any.

この発明に係る超音波洗浄処理装置の第1実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing a first embodiment of an ultrasonic cleaning processing apparatus according to the present invention. 上記超音波洗浄処理装置の概略平面図である。It is a schematic plan view of the said ultrasonic cleaning processing apparatus. 上記超音波洗浄処理装置の第2実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 2nd Embodiment of the said ultrasonic cleaning processing apparatus. 上記超音波洗浄処理装置の第3実施形態の要部を示す断面図(a)及び(a)の横断面図(b)である。It is sectional drawing (a) which shows the principal part of 3rd Embodiment of the said ultrasonic cleaning processing apparatus, and the cross-sectional view (b) of (a). 上記超音波洗浄処理装置の第4実施形態の要部を示す断面図(a)及び(a)のI−I線に沿う断面図(b)である。It is sectional drawing (b) which follows the II line of (a) and (a) which shows the principal part of 4th Embodiment of the said ultrasonic cleaning apparatus. 上記超音波洗浄処理装置の更に別の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows another embodiment of the said ultrasonic cleaning processing apparatus. パーティクル除去率とN2ガス流量との関係を示すグラフである。It is a graph which shows the relationship between a particle removal rate and N2 gas flow volume.

W 半導体ウエハ(被処理体)
1 洗浄槽
2 ウエハボート(保持手段)
3 超音波発振手段
4 供給手段
10,10A 純水供給ノズル
12 純水供給管(洗浄液供給管)
14 純水供給源(洗浄液供給源)
20,20A N2供給ノズル(ガス供給ノズル)
22 ガス供給管
24 N2ガス供給源(ガス供給源)
30,30A,30B ノズル孔
40,40A,40B,40C パイプ部材
50 CPU(制御手段)
FM1,FM2 フローメータ(流量調整手段)
W Semiconductor wafer (object to be processed)
1 Cleaning tank 2 Wafer boat (holding means)
3 Ultrasonic oscillation means 4 Supply means 10, 10A Pure water supply nozzle 12 Pure water supply pipe (cleaning liquid supply pipe)
14 Pure water supply source (cleaning liquid supply source)
20,20A N2 supply nozzle (gas supply nozzle)
22 Gas supply pipe 24 N2 gas supply source (gas supply source)
30, 30A, 30B Nozzle hole 40, 40A, 40B, 40C Pipe member 50 CPU (control means)
FM1, FM2 flow meter (flow rate adjusting means)

Claims (6)

洗浄槽内に供給される洗浄液に被処理体を浸漬すると共に、上記洗浄槽の底部に設けられた超音波発振手段によって洗浄槽の下方から洗浄液に超音波を照射して、被処理体を洗浄する超音波洗浄処理装置において、
上記洗浄槽の側壁下部に配設され、洗浄槽内に上記洗浄液とガスを供給する供給手段と、
上記供給手段と洗浄液供給源及びガス供給源とを接続する供給配管に介設される洗浄液の流量調整手段及びガスの流量調整手段と、
上記洗浄液の流量に対するガスの流量を制御すべく、上記両流量調整手段を制御可能な制御手段と、を具備し、
上記供給手段は、上記洗浄液供給源に上記洗浄液の流量制御手段を介して接続する洗浄液供給ノズルと、上記ガス供給源に上記ガスの流量制御手段を介して接続するガス供給ノズルとを具備し、
上記ガス供給ノズルの上方近接位置に上記洗浄液供給ノズルを配設してなる、
ことを特徴とする超音波洗浄処理装置。
The object to be processed is immersed in the cleaning liquid supplied into the cleaning tank, and the cleaning object is cleaned by irradiating the cleaning liquid with ultrasonic waves from below the cleaning tank by the ultrasonic oscillation means provided at the bottom of the cleaning tank. In the ultrasonic cleaning apparatus
A supply means disposed at a lower portion of the side wall of the cleaning tank and supplying the cleaning liquid and gas into the cleaning tank;
A cleaning liquid flow rate adjusting means and a gas flow rate adjusting means provided in a supply pipe connecting the supply means to the cleaning liquid supply source and the gas supply source;
Control means capable of controlling both the flow rate adjusting means in order to control the flow rate of the gas with respect to the flow rate of the cleaning liquid,
The supply means comprises a cleaning liquid supply nozzle connected to the cleaning liquid supply source via the cleaning liquid flow rate control means, and a gas supply nozzle connected to the gas supply source via the gas flow rate control means,
The cleaning liquid supply nozzle is disposed at a position close to the upper side of the gas supply nozzle.
An ultrasonic cleaning apparatus characterized by the above.
洗浄槽内に供給される洗浄液に被処理体を浸漬すると共に、上記洗浄槽の底部に設けられた超音波発振手段によって洗浄槽の下方から洗浄液に超音波を照射して、被処理体を洗浄する超音波洗浄処理装置において、
上記洗浄槽の側壁下部に配設され、洗浄槽内に上記洗浄液とガスを供給する供給手段と、
上記供給手段と洗浄液供給源及びガス供給源とを接続する供給配管に介設される洗浄液の流量調整手段及びガスの流量調整手段と、
上記洗浄液の流量に対するガスの流量を制御すべく、上記両流量調整手段を制御可能な制御手段と、を具備し、
上記供給手段は、上記洗浄液供給源に上記洗浄液の流量制御手段を介して接続する洗浄液供給ノズルと、上記ガス供給源に上記ガスの流量制御手段を介して接続するガス供給ノズルとを具備し、
上記洗浄液供給ノズルの上方近接位置に上記ガス供給ノズルを配設し、上記洗浄液供給ノズルから上向きに洗浄液を吐出し、上記ガス供給ノズルから下向きにガスを吐出してなる、
ことを特徴とする超音波洗浄処理装置。
The object to be processed is immersed in the cleaning liquid supplied into the cleaning tank, and the cleaning object is cleaned by irradiating the cleaning liquid with ultrasonic waves from below the cleaning tank by the ultrasonic oscillation means provided at the bottom of the cleaning tank. In the ultrasonic cleaning apparatus
A supply means disposed at a lower portion of the side wall of the cleaning tank and supplying the cleaning liquid and gas into the cleaning tank;
A cleaning liquid flow rate adjusting means and a gas flow rate adjusting means provided in a supply pipe connecting the supply means to the cleaning liquid supply source and the gas supply source;
Control means capable of controlling both the flow rate adjusting means in order to control the flow rate of the gas with respect to the flow rate of the cleaning liquid,
The supply means comprises a cleaning liquid supply nozzle connected to the cleaning liquid supply source via the cleaning liquid flow rate control means, and a gas supply nozzle connected to the gas supply source via the gas flow rate control means,
The gas supply nozzle is disposed near the cleaning liquid supply nozzle, the cleaning liquid is discharged upward from the cleaning liquid supply nozzle, and the gas is discharged downward from the gas supply nozzle.
An ultrasonic cleaning apparatus characterized by the above.
請求項1又は2に記載の超音波洗浄処理装置において、
上記制御手段は、上記洗浄液の流量に対するガスの流量を1/60以上に制御可能に形成されている、ことを特徴とする超音波洗浄処理装置。
In the ultrasonic cleaning processing apparatus according to claim 1 or 2,
The ultrasonic cleaning apparatus according to claim 1, wherein the control means is formed so that the flow rate of the gas with respect to the flow rate of the cleaning liquid can be controlled to 1/60 or more.
請求項1又は2に記載の超音波洗浄処理装置において、
上記制御手段は、上記洗浄液の流量に対するガスの流量を1/60〜2/75に制御可能に形成されている、ことを特徴とする超音波洗浄処理装置。
In the ultrasonic cleaning processing apparatus according to claim 1 or 2,
The ultrasonic cleaning apparatus according to claim 1, wherein the control means is formed so that the flow rate of the gas with respect to the flow rate of the cleaning liquid can be controlled to 1/60 to 2/75.
請求項1ないし4のいずれかに記載の超音波洗浄処理装置において、
複数枚の上記被処理体を適宜間隔をおいて列設保持して洗浄槽内に配置する保持手段を更に具備し、
上記供給手段から上記保持手段によって保持された上記被処理体間に洗浄液とガスを供給可能に形成してなる、ことを特徴とする超音波洗浄処理装置。
In the ultrasonic cleaning processing apparatus according to any one of claims 1 to 4,
It further comprises holding means for arranging and holding a plurality of the above-mentioned objects to be processed in an appropriate interval in a cleaning tank,
An ultrasonic cleaning apparatus characterized in that a cleaning liquid and a gas can be supplied between the object to be processed held by the holding means from the supply means.
請求項1ないし5のいずれかに記載の超音波洗浄処理装置において、
上記洗浄液供給ノズル及びガス供給ノズルを、それぞれ洗浄槽の対向する部位に配設してなる、ことを特徴とする超音波洗浄処理装置。
In the ultrasonic cleaning processing apparatus according to any one of claims 1 to 5,
An ultrasonic cleaning processing apparatus, wherein the cleaning liquid supply nozzle and the gas supply nozzle are respectively disposed in opposing portions of the cleaning tank.
JP2004119037A 2004-04-14 2004-04-14 Ultrasonic cleaning equipment Expired - Fee Related JP4623706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004119037A JP4623706B2 (en) 2004-04-14 2004-04-14 Ultrasonic cleaning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004119037A JP4623706B2 (en) 2004-04-14 2004-04-14 Ultrasonic cleaning equipment

Publications (2)

Publication Number Publication Date
JP2005296868A JP2005296868A (en) 2005-10-27
JP4623706B2 true JP4623706B2 (en) 2011-02-02

Family

ID=35329059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119037A Expired - Fee Related JP4623706B2 (en) 2004-04-14 2004-04-14 Ultrasonic cleaning equipment

Country Status (1)

Country Link
JP (1) JP4623706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418575A (en) * 2012-05-24 2013-12-04 硅电子股份公司 Ultrasonic cleaning method and ultrasonic cleaning apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008050832A1 (en) * 2006-10-27 2010-02-25 東京エレクトロン株式会社 Substrate cleaning apparatus, substrate cleaning method, program, and recording medium
JP5015717B2 (en) * 2007-10-15 2012-08-29 東京エレクトロン株式会社 Substrate cleaning device
CN102029273B (en) * 2009-10-05 2015-09-16 东京毅力科创株式会社 Ultrasonic cleaning equipment, method for suppersonic cleaning
JP5729678B2 (en) * 2011-03-18 2015-06-03 三浦工業株式会社 Cleaning device
JP5894858B2 (en) * 2012-05-24 2016-03-30 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Ultrasonic cleaning method
JP5872382B2 (en) 2012-05-24 2016-03-01 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Ultrasonic cleaning method
CN102861745B (en) * 2012-09-18 2014-07-30 北京七星华创电子股份有限公司 Power-off protection silicon chip cleaning machine
KR20210093906A (en) * 2018-11-30 2021-07-28 도쿄엘렉트론가부시키가이샤 Substrate cleaning method, processing vessel cleaning method and substrate processing apparatus
JP7381351B2 (en) * 2020-01-20 2023-11-15 株式会社ジェイ・イー・ティ Substrate processing equipment
CN114653651A (en) * 2020-12-24 2022-06-24 中国科学院微电子研究所 Wafer cleaning device and cleaning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418575A (en) * 2012-05-24 2013-12-04 硅电子股份公司 Ultrasonic cleaning method and ultrasonic cleaning apparatus

Also Published As

Publication number Publication date
JP2005296868A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
KR101191549B1 (en) Method and apparatus for cleaning substrate, and program recording medium
US7108003B2 (en) Ultrasonic cleaning apparatus
JP4705517B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and recording medium
US8777695B2 (en) Ultrasonic cleaning apparatus, ultrasonic cleaning method, and storage medium storing computer program for executing ultrasonic cleaning method
KR20070102475A (en) Substrate treatment apparatus
JP4623706B2 (en) Ultrasonic cleaning equipment
KR101062255B1 (en) Method, apparatus for cleaning substrate and program recording medium
US6840250B2 (en) Nextgen wet process tank
JP4248257B2 (en) Ultrasonic cleaning equipment
JP5063103B2 (en) Substrate processing apparatus, substrate processing method, program, and recording medium
JP3338926B2 (en) Ultrasonic cleaning equipment
JP4829094B2 (en) Substrate processing apparatus, substrate processing method, substrate processing program, and program recording medium
JPWO2008050832A1 (en) Substrate cleaning apparatus, substrate cleaning method, program, and recording medium
JP5015763B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and program recording medium
JP4842794B2 (en) Substrate processing apparatus, substrate processing method, substrate processing program, and program recording medium
KR20070073311A (en) Apparatus and method for cleaning wafers using megasonic energy
WO2008075643A1 (en) Substrate treating apparatus and method of treating substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091118

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees