JP4623309B2 - レジスト下層膜材料並びにそれを用いたパターン形成方法 - Google Patents

レジスト下層膜材料並びにそれを用いたパターン形成方法 Download PDF

Info

Publication number
JP4623309B2
JP4623309B2 JP2006138637A JP2006138637A JP4623309B2 JP 4623309 B2 JP4623309 B2 JP 4623309B2 JP 2006138637 A JP2006138637 A JP 2006138637A JP 2006138637 A JP2006138637 A JP 2006138637A JP 4623309 B2 JP4623309 B2 JP 4623309B2
Authority
JP
Japan
Prior art keywords
resist
group
underlayer film
film
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006138637A
Other languages
English (en)
Other versions
JP2007140461A (ja
Inventor
畠山  潤
隆信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006138637A priority Critical patent/JP4623309B2/ja
Publication of JP2007140461A publication Critical patent/JP2007140461A/ja
Application granted granted Critical
Publication of JP4623309B2 publication Critical patent/JP4623309B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、半導体素子などの製造工程における微細加工に用いられる多層レジスト膜のレジスト下層膜材料に関し、特に、遠紫外線、KrFエキシマレーザー光(248nm)、ArFエキシマレーザー光(193nm)、F2レーザー光(157nm)、Kr2レーザー光(146nm)、Ar2レーザー光(126nm)、軟X線、電子ビーム、イオンビーム、X線等での露光に好適な多層レジスト膜のレジスト下層膜材料に関する。更に、本発明は、これを用いてリソグラフィーにより基板にパターンを形成する方法に関する。
近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている中、現在汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
レジストパターン形成の際に使用するリソグラフィー用の光源として、水銀灯のg線(436nm)もしくはi線(365nm)を光源とする光露光が広く用いられているが、更なる微細化のための手段として、露光光を短波長化する方法が有効とされてきた。このため、例えば64MビットDRAM加工方法の量産プロセスには、露光光源としてi線(365nm)に代わって短波長のKrFエキシマレーザー(248nm)が利用されている。しかし、更に微細な加工技術(例えば、加工寸法が0.13μm以下)を必要とする集積度1G以上のDRAMの製造には、より短波長の光源が必要とされ、特にArFエキシマレーザー(193nm)を用いたリソグラフィーが検討されてきている。
一方、従来、ダマシンプロセスなどの段差基板上に高アスペクト比のパターンを形成するには多層レジストプロセスが優れていることが知られている。この多層レジストプロセスは、近年のパターンルールの微細化の急激な進行と共にレジスト膜の薄膜化が進行し、それに伴うエッチング耐性の低下を克服するために検討されてきたものである。
このような多層レジストプロセスとしては、レジスト下層膜の上に珪素原子を含有するレジスト上層膜などを用いる2層レジストプロセスと、レジスト上層膜とレジスト下層膜の間に、珪素原子を含有するレジスト中間層膜を適用する3層レジストプロセスが挙げられる(例えば、非特許文献1:J.Vac.Sci.Technol.,16(6),Nov./Dec.1979参照)。
このうち、3層レジストプロセスの珪素含有レジスト中間層膜は、反射防止膜としての機能を有していてもよく、あるいは有していなくてもよいが、基板反射を十分に抑えることができない場合は珪素含有レジスト中間層膜の上に更に通常の有機反射防止膜を適用することもある。それ故、反射防止機能を有する珪素含有レジスト中間層膜の方が、有機反射防止膜が不要である分、プロセスの簡便性の点で有利である。
また、3層レジストプロセスのレジスト下層膜には、被加工基板の加工時における高いドライエッチング耐性、基板反射を抑えるための反射防止膜機能、高アスペクト基板での埋め込み特性などが要求される。特に、基板加工時のドライエッチング耐性を向上させるために炭素含有量の高い材料が検討されている。
ここで、多層膜プロセス用下層膜として特許文献1,2:国際公開第00/53645号パンフレット、国際公開第00/54105号パンフレットに示されるヒドロキシ基を架橋サイトとして有するポリマーを用いる下層膜材料、及び特許文献3:米国特許第6818381号明細書に示されるエポキシ基などの環状エーテル基を有する繰り返し単位と、脂環族基を有する繰り返し単位と、芳香族基を有する繰り返し単位とを有するポリマーからなる下層膜材料が提案されている。特許文献4:特開2002−047430号公報には低分子量のヒドロキシ基含有樹脂を用いる下層膜材料、特許文献5:特開2002−014474号公報にはナフトールとホルムアルデヒドを縮合させたノボラック樹脂を下層膜として適用することを特徴とするパターン形成方法、特許文献6:特開2002−305187号公報には炭素原子の割合が80質量%以上の下層膜を用いることを特徴とするパターン形成方法、特許文献7:特開2004−317930号公報には分子量500以下の低分子体の含有率が1%以下の下層膜材料が提案されている。
ところで、90nmプロセスからシリコン酸化膜より低誘電率な絶縁膜が使われるようになり、それとともに電気伝導度の高い銅配線を埋め込むためのダマシンプロセスが適用されるようになった。絶縁膜の誘電率の低下は更に進み、45nmにおいては比誘電率2.5以下の材料が検討されている。比誘電率2.5以下の材料としては多孔質シリカが有望である。多孔質シリカは比誘電率が1.0の空気穴を膜中に形成することで比誘電率を大幅に低下させている。初期は膜中に空孔が存在することで機械的強度が低下する欠点があったが、穴の構造、大きさや分布の最適化、あるいはシリカの改良によって機械的強度の低下を最小限にしている。しかしながら、多孔質シリカの問題点として、基板の洗浄などの化学的処理によって塩基性物質が吸着しやすいことがある。この塩基性物質が多孔質シリカ基板からリソグラフィープロセス中に発生することによってレジスト材料中の酸を失活させ、ポジ型のレジスト材料においては本来溶解すべきところに溶け残りやフッティングが生じる、いわゆるポイゾニングという問題が生じていた。
ポイゾニング防止策として、多層レジスト膜は有効である。特に酸で架橋するタイプの下層膜は、塩基性物質のポイゾニングの元となる物質のレジスト層への拡散を防止する効果が高い。
また、多孔質シリカ膜をドライエッチングによって加工した後のレジスト下層膜の表面は、フロン系のドライエッチングガスによって変質したフルオロカーボン層に覆われている。この場合、フルオロカーボン層は熱的、化学的に安定であり、剥離液に溶解しないために化学的処理によってレジスト下層膜を剥離することが困難である。そこで、酸素ガスやアンモニアガス、水素ガスなどのアッシングによってレジスト下層膜の剥離を行うが、長時間及び高濃度のガスによるアッシングは多孔質シリカの表面を変質させ、比誘電率を低下させるので好ましくない。
そこで、特に、多孔質シリカ直上の埋めこみ用レジスト下層膜としてアッシング速度が速い材料が求められている。
アッシングが速い材料としては、ドライエッチング耐性が低い材料が挙げられる。例えば有機反射防止膜に用いられるようなアクリル系、ポリエステル系の材料で、ArFレジスト材料に用いられるようなエッチング耐性を上げるための脂環基を有していないものが挙げられる。しかしながらこの場合、アッシング速度は速いものの、低誘電膜を加工するときのドライエッチング耐性が低く、ドライエッチング時に寸法変換差が生じる問題がある。このため、基板加工時におけるドライエッチング耐性が高く、かつ基板加工後の下層膜除去のアッシング速度が速い材料が求められているのである。
J.Vac.Sci.Technol.,16(6),Nov./Dec.1979 国際公開第00/53645号パンフレット 国際公開第00/54105号パンフレット 米国特許第6818381号明細書 特開2002−047430号公報 特開2002−014474号公報 特開2002−305187号公報 特開2004−317930号公報
本発明はこのような問題点に鑑みてなされたもので、多層レジストプロセス用のレジスト下層膜材料であって、基板エッチングにおけるエッチング耐性が高く、かつ基板エッチング後に行うアッシングの速度が速く、このため、アッシング中に直下の基板が変質するのを防ぐことのできるレジスト下層膜材料、及びこれを用いてリソグラフィーにより基板にパターンを形成する方法を提供することを目的とする。
本発明は、上記課題を解決するためになされたもので、リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、少なくとも、水素を10質量%以上、炭素を70質量%以上含むモノマーに由来する繰り返し単位(A)とヒドロキシ基又はエポキシ環を有する繰り返し単位(B)とを有する重合体を含むものであることを特徴とするレジスト下層膜材料を提供する。そして、この場合、前記繰り返し単位(A)が全繰り返し単位に対して10モル%以上であることが好ましい。この様な重合体は下記一般式(1)で示す繰り返し単位(A)を含む(請求項)。
Figure 0004623309

(式中、R1は炭素数4〜40の直鎖状、分岐状又は環状のアルキル基又はアルケニル基であり、ヒドロキシ基又はエーテル基を含んでいてもよく、R2は水素原子又はメチル基、R3は炭素数18〜40の直鎖状、分岐状又は環状のアルキル基であり、0≦a1≦1.0、0≦a2≦1.0、0.1≦a1+a2≦1.0の範囲である。)
このように、本発明のレジスト下層膜材料は、上記繰り返し単位を有する重合体をベース樹脂として含むものである。このようなレジスト下層膜材料から形成したレジスト下層膜は、基板加工におけるエッチング耐性が高くかつ基板エッチング後に行うアッシングの速度が速い。このため、基板エッチング後に、容易かつ迅速にレジスト下層膜を剥離することができる。このように、本発明のレジスト下層膜は、アッシング時間が短くてすむので、特に、レジスト下層膜直下が多孔質シリカである場合でも、その表面の変質を防ぐことができ、比誘電率の低下を最小限に抑えることができる。
この場合、重合体が、更に下記式から選ばれるモノマーに由来する繰り返し単位を有することが好ましい(請求項2)。
Figure 0004623309
また、本発明のレジスト下層膜材料は、更に、有機溶剤を含有するものとすることができる(請求項)。
本発明のレジスト下層膜材料には、有機溶剤が使用可能であり、これに前記繰り返し単位を有する重合体などを溶解して用いる。
また、本発明のレジスト下層膜材料では、更に、酸発生剤、架橋剤のうち一以上を含有するものとするのが好ましい(請求項)。
このように、本発明のレジスト下層膜材料が、架橋剤、酸発生剤のうち一以上を含有することで、基板への塗布後のベーク等により、レジスト下層膜内での架橋反応を促進させることなどができる。従って、このような材料から形成されたレジスト下層膜は、レジスト上層膜あるいはレジス中間層膜とのインターミキシングのおそれが少なく、レジスト上層膜等への低分子成分の拡散が少ないものとなる。
また、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、前記本発明のレジスト下層膜材料を用いてレジスト下層膜を基板上に形成し、該下層膜の上にフォトレジスト組成物によるレジスト上層膜を形成して2層レジスト膜を形成し、該2層レジスト膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト下層膜をエッチングし、少なくともパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成し、更に、アッシングによって前記レジスト下層膜の剥離を行うことを特徴とするパターン形成方法を提供する(請求項)。
本発明のレジスト下層膜材料は、このように、2層レジストプロセスのレジスト下層膜を形成する材料として用いることができる。前述のように、本発明のレジスト下層膜は、基板エッチング後のアッシング速度が速いので、アッシング時間が短くてすむ。このため、特に、レジスト下層膜直下が多孔質シリカの場合でも、アッシングで用いるガスにより多孔質シリカの表面が変質するのを防ぐことができ、その比誘電率の低下を最小限に抑えることができる。
また、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、前記本発明のレジスト下層膜材料を用いてレジスト下層膜を基板上に形成し、該下層膜の上に珪素原子を含有するレジスト中間層膜を形成し、該中間層膜の上にフォトレジスト組成物によるレジスト上層膜を形成して3層レジスト膜を形成し、該レジスト3層膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト中間層膜をエッチングし、少なくともパターンが形成されたレジスト中間層膜をマスクにしてレジスト下層膜をエッチングし、少なくともパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成し、更に、アッシングによって前記レジスト下層膜の剥離を行うことを特徴とするパターン形成方法を提供する(請求項)。
このように本発明のレジスト下層膜材料は、3層レジストプロセスのレジスト下層膜を形成する材料として用いることもできる。3層レジストプロセスでは、レジスト上層膜として、解像度の高い単層用のレジストを用いることも可能である。このため、更に高精度で、レジスト上層膜、ひいては基板にパターンを形成することができる。
本発明のレジスト下層膜材料は、少なくとも、水素を10質量%以上、炭素を70質量%以上含むモノマーに由来する繰り返し単位とヒドロキシ基又はエポキシ環を有する繰り返し単位を含むポリマーをベース樹脂として含むものであるので、基板エッチングにおけるエッチング耐性が高く、基板エッチング後のアッシングの速度が速い。このため、基板加工後に、アッシングにより短時間でレジスト下層膜を剥離することができるので、長時間のアッシングにより基板表面が変質したり、比誘電率が低下するといったおそれが少ない。
以下、本発明の実施形態を説明するが、本発明はこれらに限定されるものではない。
本発明者らは、基板エッチング速度が遅く、即ちエッチング耐性が高く、かつ基板エッチング後に行うアッシングの速度の速いレジスト下層膜材料を開発すべく鋭意検討を重ねた。この場合、エッチング速度が遅くアッシング速度が速いという特性は矛盾する特性ともいえる。本発明者らは、種々実験の結果、酸素や窒素の割合が高い材料や、水素の割合が高い材料がアッシングが速いという特性を見出した。ところが、酸素、窒素の割合が高い材料はエッチング速度を低下させる。エッチング耐性を上げるには高い炭素比率が必要であり、酸素、窒素の割合が高くなるとこれらよりも原子量が小さい炭素は、急激に割合が低下し、エッチング耐性が低下する。一方、原子量が小さい水素の割合が増えても炭素割合の低下は軽微である。ここで、アッシングは一般的には酸素、水素、アンモニアなどのガスを用いる。特に水素ガスによるアッシングは下地の低誘電率膜表面へのダメージが小さいため、広く一般的に用いられている。水素によるアッシングは還元反応なので、下層膜材料としては水素の割合が高い方がアッシング速度が速い。
前述のように、従来、基板加工時のドライエッチングに対する耐性が高いレジスト下層膜が検討されてきた。基板加工時のドライエッチング耐性を高めるためには、炭素の割合が高い材料が好ましいとされてきた。しかしながら、炭素の割合を高めることでドライエッチング耐性を高めたレジスト下層膜は、逆にアッシング速度が遅い欠点がある。
検討の結果、本発明者らは、エッチング耐性が高く、かつアッシング速度が速い材料としては、炭素の割合が高くかつ水素の割合が高い材料が適していることを見出した。
水素割合が高い材料としては、アルキル基が挙げられる。エッチング耐性を高めるには、環状のアルキル基が好ましい。芳香族など2重結合を有するアリール基は水素の割合が低下する。エッチング耐性低下につながる酸素を減らすにはアクリル化合物よりもビニルエーテルのほうが有利である。
よって、ベース樹脂を構成する繰り返し単位として、ビニルエーテル、あるいは炭素数が多いアルキル基を有する(メタ)アクリル化合物に由来する繰り返し単位を用いることによってエッチング耐性が高く、アッシング速度が速い材料を設計できる。
多層膜に用いる下層膜に要求される特性として、エッチング耐性とアッシング速度の他に耐熱性が挙げられる。珪素含有の中間層の塗布及び架橋のためのベークには200〜300℃の加熱が必要で、CVDによる珪素含有中間層の作製には300〜400℃の熱が加わることになり、この様な熱に下層膜は分解せずに耐えなければならない。
耐熱性が高い架橋基としては、エポキシ基を挙げることができる。更に耐熱の点では下記一般式(1)に示されるアルキル基R1、R3としては環状の脂環族基が好ましい。
Figure 0004623309

(式中、R1は炭素数4〜40の直鎖状、分岐状又は環状のアルキル基又はアルケニル基であり、ヒドロキシ基又はエーテル基を含んでいてもよく、R2は水素原子又はメチル基、R3は炭素数18〜40の直鎖状、分岐状又は環状のアルキル基であり、0≦a1≦1.0、0≦a2≦1.0、0.1≦a1+a2≦1.0の範囲である。)
以上のことから、本発明者らは、レジスト下層膜材料が、少なくとも、芳香族よりも水素の割合が高い脂環族基を有し、特に酸素の割合が低いビニルエーテルを繰り返し単位として有する重合体、炭素数が多く、水素の割合も高い脂環族基を有する(メタ)アクリレートを繰り返し単位として含むものであれば、該レジスト下層膜材料から形成されたレジスト下層膜は、エッチング速度が遅くかつアッシング速度が速く、特に多孔質シリカ上での剥離が容易かつ迅速にできることに想到し、本発明を完成させた。
即ち、本発明のレジスト下層膜材料は、リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、水素を10質量%以上、炭素を70質量%以上含むモノマーに由来する繰り返し単位(A)とヒドロキシ基又はエポキシ環を有する繰り返し単位(B)とを有する重合体をベース樹脂として含有する。
ここで、上記重合体としては、少なくとも、ビニルエーテルを繰り返し単位として有する重合体、及び/又は炭素数が多く、水素の割合も高い脂環族基有する(メタ)アクリレートを繰り返し単位(A)として有する重合体であることが好ましく、この繰り返し単位(A)としては下記一般式(1)で示すものを挙げることができる。
Figure 0004623309

(式中、R1は炭素数4〜40の直鎖状、分岐状又は環状のアルキル基又はアルケニル基であり、ヒドロキシ基又はエーテル基を含んでいてもよく、R2は水素原子又はメチル基、R3は炭素数18〜40の直鎖状、分岐状又は環状のアルキル基であり、0≦a1≦1.0、0≦a2≦1.0、0.1≦a1+a2≦1.0の範囲である。)
ここで、一般式(1)中繰り返し単位a1を与えるビニルエーテルモノマーは、具体的には下記に例示することができる。
Figure 0004623309
Figure 0004623309
Figure 0004623309
一方、一般式(1)中繰り返し単位a2を与える(メタ)アクリレートモノマーは、テルペンやステロイド構造を有するものが好ましく、具体的には下記に例示することができる。
Figure 0004623309
Figure 0004623309
次に、エポキシ基を有する繰り返し単位(B)を与えるモノマーb1としては下記に例示することができる。
Figure 0004623309
更に、ヒドロキシ基を有する繰り返し単位(B)を与えるモノマーb2としては下記に例示することができる。
Figure 0004623309
本発明は、一般式(1)中a1、a2に示される繰り返し単位(A)を与えるモノマーと、エポキシ基を有する繰り返し単位(B)を与えるモノマーb1又はヒドロキシ基を有する繰り返し単位(B)を与えるモノマーb2とを共重合してなる高分子化合物をベース樹脂とすることを特徴とする下層膜材料であるが、更に共重合可能なモノマーcとして、下記のモノマーを挙げることができる。
下記モノマーcの特徴としては、ラジカル重合での反応性が低いビニルエーテルモノマーとの共重合性に優れる特徴がある。
Figure 0004623309
更に、分子量を上げるために、下記に例示されるビニルエーテル、ジビニルベンゼンなどの2官能オレフィンdを共重合することもできる。
Figure 0004623309
a1、a2、b1、b2、c、dの共重合比率は、0≦a1≦1.0、0≦a2≦1.0、0.1≦a1+a2≦1.0、0≦b1≦0.9、0≦b2≦0.9、0<b1+b2≦0.9、特に0.1≦b1+b2≦0.9、0≦c≦0.9、0≦d≦0.6の範囲が好ましく用いることができる。より好ましくは0≦a1≦0.9、0≦a2≦0.9、0.2≦a1+a2≦0.9、0.2≦b1+b2≦0.9、0≦c≦0.8、0≦d≦0.5、更に好ましくは0≦a1≦0.8、0≦a2≦0.8、0.2≦a1+a2≦0.8、0.2≦b1+b2≦0.8、0≦c≦0.7、0≦d≦0.4である。
また、本発明のレジスト下層膜材料は、上記重合体の他に、例えばクレゾールノボラック類、スチレン誘導体、アリルベンゼン誘導体、エチレン、プロピレン、ブタジエンなどのオレフィン類、メタセシス開環重合などによるポリマーをブレンドすることもできる。
被加工基板にアスペクト比の高いホールなどが形成されている場合、下層膜のコーティング時にホールの底まで十分に埋め込められなければならない。埋めこみ特性を向上させるには、ポリマーのガラス転移点(Tg)を下げる必要がある。Tgを下げるために、前記樹脂とのブレンドは有効であり、特にクレゾールノボラック樹脂の低核体とのブレンドはホールの埋めこみ特性向上を劇的に改善する。
この場合、ブレンド比率は、本発明に係る重合体100部(質量部、以下同じ)に対して、10〜1,000部、より好ましくは20〜300部であることが望ましい。
本発明のベース樹脂として含むレジスト下層膜材料は、基板加工におけるエッチング耐性が高くかつ基板加工後のアッシングによる剥離において、剥離速度が速いという特徴を有する。特に、多孔質シリカなどの低誘電率膜材料上でのアッシング剥離が容易かつ迅速である。
そして、本発明のレジスト下層膜材料は、多層レジストプロセス用のレジスト下層膜として、特に、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3〜20nmの軟X線、電子ビーム、X線を用いたリソグラフィーに好適に用いることができる。
また、本発明のレジスト下層膜材料には、以下に説明するように、更に有機溶剤、酸発生剤、架橋剤等を添加してよい。
下層膜に要求される性能の一つとして、上層膜とのインターミキシングがないこと、上層膜への低分子成分の拡散がないことが挙げられる[Proc.SPIE Vol.2195、p225−229(1994)]。これらを防止するために、一般的に下層膜のスピンコート後のベークで熱架橋するという方法がとられている。そのため、本発明の下層膜材料に用いるポリマーにはエポキシ基を有する繰り返し単位を含む。更に添加剤として架橋剤を加えることもできる。
本発明で使用可能な架橋剤の具体例を列挙すると、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたメラミン化合物、グアナミン化合物、グリコールウリル化合物又はウレア化合物、エポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物を挙げることができる。これらは添加剤として用いてもよいが、ポリマー側鎖にペンダント基として導入してもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いられる。
前記諸化合物のうち、エポキシ化合物を例示すると、トリス(2,3−エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテル、ジシクロペンタジエンジオキシド、1,2,5,6−ジエポキシシクロオクタン、(R,R)−(+)−1,2,9,10−ジエポキシデカン、1,2,7,8−ジエポキシオクタン、3,4−エポキシシクロヘキシルメチル3,4−エポキシシクロヘキサンカルボキシレート、グリセロールジグリシジルエーテル、グリセロールプロポキシレートトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテルトリフェニロールメタントリグリシジルエーテル、トリス(2,3−エポキシプロピル)イソシアヌレートなどが例示される。メラミン化合物を具体的に例示すると、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1〜6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1〜6個がアシロキシメチル化した化合物又はその混合物が挙げられる。グアナミン化合物としては、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がアシロキシメチル化した化合物又はその混合物が挙げられる。グリコールウリル化合物としては、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1〜4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1〜4個がアシロキシメチル化した化合物又はその混合物が挙げられる。ウレア化合物としてはテトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1〜4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
イソシアネート化合物としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられ、アジド化合物としては、1,1’−ビフェニル−4,4’−ビスアジド、4,4’−メチリデンビスアジド、4,4’−オキシビスアジドが挙げられる。
アルケニルエーテル基を含む化合物としては、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2−プロパンジオールジビニルエーテル、1,4−ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4−シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテルなどが挙げられる。
ヒドロキシ基を含む化合物としては、ナフトールノボラック、m−及びp−クレゾールノボラック、ナフトール−ジシクロペンタジエンノボラック、m−及びp−クレゾール−ジシクロペンタジエンノボラック、4,8−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]−デカン、ペンタエリトリトール、1,2,6−ヘキサントリオール、4,4’,4’’−メチリデントリスシクロヘキサノール、4,4’−[1−[4−[1−(4−ヒドロキシシクロヘキシル)−1−メチルエチル]フェニル]エチリデン]ビスシクロヘキサノール、[1,1’−ビシクロヘキシル]−4,4’−ジオール、メチレンビスシクロヘキサノール、デカヒドロナフタレン−2,6−ジオール、[1,1’−ビシクロヘキシル]−3,3’,4,4’−テトラヒドロキシなどのアルコール基含有化合物、ビスフェノール、メチレンビスフェノール、2,2’−メチレンビス[4−メチルフェノール]、4,4’−メチリデン−ビス[2,6−ジメチルフェノール]、4,4’−(1−メチル−エチリデン)ビス[2−メチルフェノール]、4,4’−シクロヘキシリデンビスフェノール、4,4’−(1,3−ジメチルブチリデン)ビスフェノール、4,4’−(1−メチルエチリデン)ビス[2,6−ジメチルフェノール]、4,4’−オキシビスフェノール、4,4’−メチレンビスフェノール、ビス(4−ヒドロキシフェニル)メタノン、4,4’−メチレンビス[2−メチルフェノール]、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスフェノール、4,4’−(1,2−エタンジイル)ビスフェノール、4,4’−(ジエチルシリレン)ビスフェノール、4,4’−[2,2,2−トリフルオロ−1−(トリフルオロメチル)エチリデン]ビスフェノール、4,4’,4’’−メチリデントリスフェノール、4,4’−[1−(4−ヒドロキシフェニル)−1−メチルエチル]フェニル]エチリデン]ビスフェノール、2,6−ビス[(2−ヒドロキシ−5−メチルフェニル)メチル]−4−メチルフェノール、4,4’,4’’−エチリジントリス[2−メチルフェノール]、4,4’,4’’−エチリジントリスフェノール、4,6−ビス[(4−ヒドロキシフェニル)メチル]1,3−ベンゼンジオール、4,4’−[(3,4−ジヒドロキシフェニル)メチレン]ビス[2−メチルフェノール]、4,4’,4’’,4’’’−(1,2−エタンジイリデン)テトラキスフェノール、4,4’,4’’,4’’’−(エタンジイリデン)テトラキス[2−メチルフェノール]、2,2’−メチレンビス[6−[(2−ヒドロキシ−5−メチルフェニル)メチル]−4−メチルフェノール]、4,4’,4’’,4’’’−(1,4−フェニレンジメチリジン)テトラキスフェノール、2,4,6−トリス(4−ヒドロキシフェニルメチル)1,3−ベンゼンジオール、2,4’,4’’−メチリデントリスフェノール、4,4’,4’’’−(3−メチル−1−プロパニル−3−イリデン)トリスフェノール、2,6−ビス[(4−ヒドロキシ−3−フロロフェニル)メチル]−4−フルオロフェノール、2,6−ビス[4−ヒドロキシ−3−フルオロフェニル]メチル]−4−フルオロフェノール、3,6−ビス[(3,5−ジメチル−4−ヒドロキシフェニル)メチル]−1,2−ベンゼンジオール、4,6−ビス[(3,5−ジメチル−4−ヒドロキシフェニル)メチル]−1,3−ベンゼンジオール、p−メチルカリックス[4]アレン、2,2’−メチレンビス[6−[(2,5/3,6−ジメチル−4/2−ヒドロキシフェニル)メチル]−4−メチルフェノール、2,2’−メチレンビス[6−[(3,5−ジメチル−4−ヒドロキシフェニル)メチル]−4−メチルフェノール、4,4’,4’’,4’’’−テトラキス[(1−メチルエチリデン)ビス(1,4−シクロヘキシリデン)]フェノール、6,6’−メチレンビス[4−(4−ヒドロキシフェニルメチル)−1,2,3−ベンゼントリオール、3,3’,5,5’−テトラキス[(5−メチル−2−ヒドロキシフェニル)メチル]−[(1,1’−ビフェニル)−4,4’−ジオール]などのフェノール低核体、及びこれらのフェノール低核体のヒドロキシ基がグリシジルエーテルで置換された架橋剤を添加することもできる。
本発明における架橋剤の配合量は、ベース樹脂(全樹脂分)100部に対して5〜50部が好ましく、特に10〜40部が好ましい。5部以上であると上層の膜とミキシングを起こすおそれが少なく、50部以下であれば、架橋後の膜にひび割れが入るおそれが少ない。
本発明のレジスト下層膜材料においては、熱による架橋反応を更に促進させるための酸発生剤を添加することができる。酸発生剤は熱分解によって酸を発生するものや、光照射によって酸を発生するものがあるが、いずれのものも添加することができる。
本発明のレジスト下層膜材料で使用される酸発生剤としては、
i.下記一般式(P1a−1)、(P1a−2)、(P1a−3)又は(P1b)のオニウム塩、
ii.下記一般式(P2)のジアゾメタン誘導体、
iii.下記一般式(P3)のグリオキシム誘導体、
iv.下記一般式(P4)のビススルホン誘導体、
v.下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
vi.β−ケトスルホン酸誘導体、
vii.ジスルホン誘導体、
viii.ニトロベンジルスルホネート誘導体、
ix.スルホン酸エステル誘導体
等が挙げられる。
Figure 0004623309

(式中、R101a、R101b、R101cはそれぞれ炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ炭素数1〜6のアルキレン基を示す。K-は非求核性対向イオンを表す。R101d、R101e、R101f、R101gは、R101a、R101b、R101cと同様の基及び水素原子から選ばれる。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基を示す。)
上記R101a、R101b、R101c、R101d、R101e、R101f、R101gは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。オキソアルケニル基としては、2−オキソ−4−シクロヘキセニル基、2−オキソ−4−プロペニル基等が挙げられる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド、ビス(パーフルオロブチルスルホニル)イミド等のイミド酸、トリス(トリフルオロメチルスルホニル)メチド、トリス(パーフルオロエチルスルホニル)メチド等のメチド酸、更には下記一般式(K−1)で示されるα位がフルオロ置換されたスルホネート、下記一般式(K−2)で示されるα,β位がフルオロ置換されたスルホネートが挙げられる。
Figure 0004623309

(上記式(K−1)中、R102は水素原子、炭素数1〜20の直鎖状、分岐状又は環状のアルキル基又はアシル基、炭素数2〜20のアルケニル基、又は炭素数6〜20のアリール基又はアリーロキシ基である。式(K−2)中、R103は水素原子、炭素数1〜20の直鎖状、分岐状又は環状のアルキル基、炭素数2〜20のアルケニル基、又は炭素数6〜20のアリール基である。)
(P1a−1)と(P1a−2)は光酸発生剤、熱酸発生剤の両方の効果があるが、(P1a−3)は熱酸発生剤として作用する。
Figure 0004623309

(式中、R102a、R102bはそれぞれ炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ炭素数3〜7の2−オキソアルキル基を示す。K-は非求核性対向イオンを表す。)
上記R102a、R102bとして具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bとしては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は式(P1a−1)、(P1a−2)及び(P1a−3)で説明したものと同様のものを挙げることができる。
Figure 0004623309

(式中、R105、R106は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。)
105、R106のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。
Figure 0004623309

(式中、R107、R108、R109は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状又は分岐状のアルキレン基を示す。R105は、式(P2)のものと同様である。)
107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
Figure 0004623309

(式中、R101a、R101bは前記と同様である。)
Figure 0004623309

(式中、R110は炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
具体的には、オニウム塩としては、例えばトリフルオロメタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラn−ブチルアンモニウム、ノナフルオロブタンスルホン酸テトラフェニルアンモニウム、p−トルエンスルホン酸テトラメチルアンモニウム、トリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート、トリエチルアンモニウムノナフレート、トリブチルアンモニウムノナフレート、テトラエチルアンモニウムノナフレート、テトラブチルアンモニウムノナフレート、トリエチルアンモニウムビス(トリフルオロメチルスルホニル)イミド、トリエチルアンモニウムトリス(パーフルオロエチルスルホニル)メチド等のオニウム塩が挙げられる。
また、ジアゾメタン誘導体としては、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体が挙げられる。
グリオキシム誘導体としては、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体が挙げられる。
ビススルホン誘導体としては、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体が挙げられる。
β−ケトスルホン誘導体としては、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体が挙げられる。
ジスルホン誘導体としては、ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体を挙げることができる。
ニトロベンジルスルホネート誘導体としては、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体を挙げることができる。
スルホン酸エステル誘導体としては、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体を挙げることができる。
N−ヒドロキシイミド化合物のスルホン酸エステル誘導体としては、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体等が挙げられる。
中でも、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、
ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、
ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、
ビスナフチルスルホニルメタン等のビススルホン誘導体、
N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。
酸発生剤の添加量は、ベース樹脂100部に対して好ましくは0.1〜50部、より好ましくは0.5〜40部である。0.1部以上であれば酸発生量が十分で、架橋反応が不十分となるおそれが少なく、50部以下であれば上層レジストへ酸が移動することによるミキシング現象が起こるおそれが少ない。
更に、本発明のレジスト下層膜材料には、保存安定性を向上させるための塩基性化合物を配合することができる。
塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。
アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。
イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
塩基性化合物の配合量は全ベース樹脂100部に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部以上であれば十分な配合効果が得られ、2部以下であれば熱で発生した酸を全てトラップして架橋しなくなるおそれが少ない。
本発明のレジスト下層膜材料において使用可能な溶媒としては水、有機溶剤が挙げられる。
有機溶剤としては、前記ビニルエーテル、炭素数が多い(メタ)アクリレートを繰り返し単位として含む重合体、酸発生剤、架橋剤、その他添加剤等が溶解するものであれば特に制限はない。その具体例を列挙すると、シクロヘキサノン、メチル−2−アミルケトン等のケトン類;3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類;プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル,プロピオン酸tert−ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類が挙げられ、これらの1種又は2種以上を混合使用できるが、これらに限定されるものではない。本発明においては、これら有機溶剤の中でもジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル及びこれらの混合溶剤が好ましく使用される。
有機溶剤の配合量は、全ベース樹脂100部に対して200〜10,000部が好ましく、特に300〜5,000部とすることが好ましい。
また、本発明のレジスト下層膜材料には、界面活性剤を添加することもできる。界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンラウリルエーテル、ポリエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノール等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノバルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノバルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、エフトップEF301、EF303、EF352(トーケムプロダクツ)、メガファックF171、F172、F173(大日本インキ化学工業)、フロラードFC430、FC431、FC4430(住友スリーエム)、アサヒガードAG710、サーフロンS−381、S―382、SC101、SC102,SC103、SC104、SC105、SC106、サーフィノールE1004、KH−10、KH−20、KH−30、KH−40(旭硝子)等のフッ素系界面活性剤、オルガノシロキサンポリマ−KP−341、X−70−092、X−70−093(信越化学工業)、アクリル酸系又はメタクリル酸系ポリフローNo.75,No.95(共栄社油脂化学工業)が挙げられる。また、特開平9−43838号公報、特開2001−125259号公報に示されるパーフルオロアルキルエーテル基を持つ界面活性剤が挙げられる。
これらは単独あるいは2種以上の組み合わせで用いることができる。界面活性剤の添加量は、水あるいは有機溶剤の0.0001〜5%の範囲であるのが好ましい。
本発明は、上記レジスト下層膜材料を用いたパターン形成方法を提供する。即ち、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、前記本発明のレジスト下層膜材料を用いてレジスト下層膜を基板上に形成し、該下層膜の上に珪素原子を含有するレジスト中間層膜を形成し、該中間層膜の上にフォトレジスト組成物のレジスト上層膜を形成して3層レジスト膜を形成し、該レジスト3層膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト中間層膜をエッチングし、少なくともパターンが形成されたレジスト中間層膜をマスクにしてレジスト下層膜をエッチングし、少なくともパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成し、更に、アッシングによって前記レジスト下層膜の剥離を行うことを特徴とするパターン形成方法を提供する。
この3層レジストプロセスについて、図1を参照してより具体的に説明する。
まず、図1(a)に示すように、ベース層10b上に被加工層10aが積層されてなる基板10上に、レジスト下層膜11、レジスト中間層膜12、レジスト上層膜13を形成する。
本発明のレジスト下層膜11は、フォトレジストと同様にスピンコート法などで被加工基板10上に形成することが可能である。スピンコート後、溶媒を蒸発し、レジスト中間層膜12とのミキシング防止のため、架橋反応を促進させるためにベークをすることが望ましい。ベーク温度は80〜300℃の範囲内で、10〜300秒の範囲内が好ましく用いられる。なお、このレジスト下層膜11の厚さは適宜選定されるが、30〜20,000nm、特に50〜15,000nmとすることが好ましい。
珪素含有レジスト中間層膜12の上にはフォトレジスト組成物のレジスト上層膜13を成膜するが、レジスト上層膜13の下(珪素含有レジスト中間層膜12の上)に有機反射防止膜を成膜してもよい。
フォトレジスト組成物によりレジスト上層膜13を形成する場合、上記レジスト下層膜11を形成する場合と同様に、スピンコート法が好ましく用いられる。そしてレジスト上層膜13をスピンコート法などにより形成後、プリベークを行うが、80〜180℃で10〜300秒の範囲が好ましい。なお、レジスト上層膜13の厚さは特に制限されないが、30〜500nm、特に50〜400nmが好ましい。
ここで、レジスト下層膜11を形成するための材料としては、前述のように、好ましくは一般式(1)で示される繰り返し単位を含む重合体をベース樹脂とする本発明のレジスト下層膜材料を用いる。
また、3層レジストプロセス用の珪素含有レジスト中間層膜12としては、シルセスキオキサンベースのレジスト中間層膜が好ましく用いられる。
レジスト中間層膜に反射防止膜としての効果を持たせることによって、反射をより抑えることができる。特に193nm露光用として、本発明に係るレジスト下層膜のベース樹脂に吸収基がない場合、レジスト中間層膜で反射を抑えることによって基板反射を0.5%以下にすることができる。反射防止効果があるレジスト中間層膜としては、248nm、157nm露光用としてはアントラセン基を有し、193nm露光用としてはフェニル基又は珪素−珪素結合を有し、酸あるいは熱で架橋するシルセスキオキサンが好ましく用いられる。
また、レジスト中間層膜としては、Chemical Vapour Deposition(CVD)法で形成したレジスト中間層膜を用いることもできる。CVDで形成する珪素含有レジスト中間層膜として反射防止膜としての効果があるのはSiON膜が知られていが、反射防止膜としての効果がないSiO2膜を用いることもできる。
但し、CVD法よりスピンコート法によるレジスト中間層膜の形成の方が、CVD装置導入コストが無いメリットがある。
更に、レジスト上層膜13を形成するためのフォトレジスト組成物としては、公知のものを使用することができる。
3層レジストプロセスにおけるレジスト上層膜13は、ポジ型でもネガ型でもどちらでもよく、通常用いられている単層レジストと同じものを用いることができる。
次に、図1(b),(c)に示すように、露光、現像を行う。
上記のようにレジスト上層膜13を形成後、常法に従い、露光14を行い(図1(b)参照)、ポストエクスポジュアーベーク(PEB)、現像を行い、レジストパターン13aを得る(図1(c)参照)。
次に、図1(d)に示すように、得られたレジストパターンをマスクにして珪素含有レジスト中間層膜12のエッチングを行う。
このとき、フロン系ガスを用いるのがよい。フロン系のガスとしては、CF4、CHF3、C26、C24、C310、C38、C410、C48などが挙げられる。
次に、上記レジストパターン(上層膜)を除去した後、図1(e)に示すように、珪素含有レジスト中間層膜12をマスクにしてレジスト下層膜11のエッチングを行う。なお、レジストパターンの除去は、レジスト下層膜のエッチング時に同時に行うことができる。
このときに用いるガスは、酸素、水素、アンモニアガスなどである。酸素ガスなどに加えて、He、Arなどの不活性ガスや、CO、CO2、SO2、N2、NO2ガスを加えることも可能である。特に後者のガスはパターン側壁のアンダーカット防止のための側壁保護のために用いられる。
次に、図1(f)に示すように、基板10の被加工層10aのエッチングを行う。
この被加工基板10のエッチングも、常法によって行うことができる。例えば、基板10がSiO2、SiN、シリカ系の低誘電率膜であればフロン系ガスを主体としたエッチング、p−SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行う。基板加工をフロン系ガスでエッチングした場合、珪素含有レジスト中間層膜12は被加工基板10の加工と同時に剥離される。また、塩素系、臭素系ガスでエッチングする場合は、予めフロン系ガスのエッチングにより中間層膜12を除去しておく。
次に、図1(g)に示すように、レジスト下層膜11等を剥離するためのアッシングを行う。
レジスト下層膜11等を剥離するためのアッシングは、酸素、水素ガスなどを用いて行うことができる。
本発明のレジスト下層膜材料から形成したレジスト下層膜11は、被加工基板のエッチング耐性が高くかつアッシング速度が速い特徴を有する。
なお、図1に示すように、基板10は、ベース層10bと被加工層10aで構成されてよい。基板10のベース層10bとしては、特に限定されるものではなく、Si、α−Si、p−Si、SiO2、SiN、SiON、W、TiN、Al等で被加工層(被加工基板)10aと異なる材質のものが用いられる。被加工層10aとしては、Si、SiO2、SiON、SiN、p−Si、α−Si、W、W−Si、Al、Cu、Al−Si等種々の低絶縁(Low−k)膜及びそのストッパー膜が用いられ、通常50〜10,000nm、特に100〜5,000nm厚さに形成し得る。
本発明のレジスト下層膜は、アッシング速度が速く、アッシング時間が短くてすむので、特に、ポーラスシリカなどのLow−K膜の加工プロセスに対して有効である。
また、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、前記本発明のレジスト下層膜材料を用いてレジスト下層膜を基板上に形成し、該レジスト下層膜の上にフォトレジスト組成物のレジスト上層膜を形成して2層レジスト膜を形成し、該2層レジスト膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト下層膜をエッチングし、少なくともパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成し、更に、アッシングによって前記レジスト下層膜の剥離を行うことを特徴とするパターン形成方法を提供する。
このように、本発明のレジスト下層膜材料は、2層レジストプロセスのレジスト下層膜を形成する材料として用いることもできる。
2層レジストプロセスについて、図2を参照して、より具体的に説明する。
まず、図2(a)に示すように、ベース層10b上に被加工層10aが積層されてなる基板10上に本発明のレジスト下層膜11、レジスト上層膜13を形成する。
2層レジストプロセスでは、図1の3層レジストプロセスで説明したようなレジスト中間層膜12を設けず、レジスト膜13とレジスト下層膜11の2層で構成する。
レジスト膜13としては、珪素を含有するポリマーを用いる。珪素含有ポリマーとしては、シルセスキオキサンポリマー、ビニルシラン誘導体ポリマー、シロキサンペンダントアクリルポリマーなどが挙げられる。
レジスト下層膜11は、前記3層レジストプロセスで説明したのと同様である。
次に、図2(b),(c)に示すように露光14、現像を行い、レジストパターン13aを得る。
次に、図2(d)に示すように、珪素含有レジスト上層膜13をマスクにしてレジスト下層膜11のエッチングを行う。
次に、図2(e)に示すように、パターンが形成されたレジスト下層膜11をマスクにして基板10のエッチングを行う。
そして、最後に、図2(f)に示すように、アッシングを行い、レジスト下層膜11を剥離する。
なお、図2に示すように、基板10は、ベース層10bと被加工層10aで構成されてよく、被加工層10a及びベース層10bとしては、図1で述べたものが挙げられる。
以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例によって限定されるものではない。
[合成例1]
100mLのフラスコにグリシジルメタクリレート9.9g、シクロヘキシルビニルエーテル5.8g、溶媒としてテトラヒドロフランを10g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてアゾビスイソブチロニトリル(AIBN)を0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール100mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比
グリシジルメタクリレート:シクロヘキシルビニルエーテル=0.7:0.3(モル比)
分子量(Mw)=9,300
分散度(Mw/Mn)=1.93
この重合体をポリマー1とする。
Figure 0004623309
[合成例2]
100mLのフラスコにグリシジルメタクリレート5.6g、シクロヘキシルビニルエーテル3.8g、無水マレイン酸2.9g、溶媒としてテトラヒドロフランを10g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール100mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比
グリシジルメタクリレート:シクロヘキシルビニルエーテル:無水マレイン酸=0.4:0.3:0.3(モル比)
分子量(Mw)=8,800
分散度(Mw/Mn)=1.61
この重合体をポリマー2とする。
Figure 0004623309
[合成例3]
100mLのフラスコにα−トリフルオロメチルグリシジルアクリレート9.8g、シクロヘキシルビニルエーテル6.3g、溶媒としてテトラヒドロフランを10g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール100mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比
α−トリフルオロメチルグリシジルアクリレート:シクロヘキシルビニルエーテル=0.5:0.5(モル比)
分子量(Mw)=9,600
分散度(Mw/Mn)=1.78
この重合体をポリマー3とする。
Figure 0004623309
[合成例4]
100mLのフラスコにグリシジルメタクリレート5.6g、シクロヘキシルビニルエーテル3.8g、アクリロニトリル1.6g、溶媒としてテトラヒドロフランを10g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール100mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比
グリシジルメタクリレート:シクロヘキシルビニルエーテル:アクリロニトリル=0.4:0.3:0.3(モル比)
分子量(Mw)=8,800
分散度(Mw/Mn)=1.78
この重合体をポリマー4とする。
Figure 0004623309
[合成例5]
100mLのフラスコにグリシジルメタクリレート7.1g、シクロヘキシルビニルエーテル3.8g、スチレン4.2g、溶媒としてテトラヒドロフランを10g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール100mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比
グリシジルメタクリレート:シクロヘキシルビニルエーテル:スチレン=0.5:0.3:0.2(モル比)
分子量(Mw)=9,600
分散度(Mw/Mn)=1.88
この重合体をポリマー5とする。
Figure 0004623309
[合成例6]
100mLのフラスコにグリシジルメタクリレート7.1g、2−ノルボルニルビニルエーテル4.1g、スチレン4.2g、溶媒としてテトラヒドロフランを15g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール100mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比
グリシジルメタクリレート:2−ノルボルニルビニルエーテル:スチレン=0.5:0.3:0.2(モル比)
分子量(Mw)=9,200
分散度(Mw/Mn)=1.81
この重合体をポリマー6とする。
Figure 0004623309
[合成例7]
100mLのフラスコにグリシジルメタクリレート7.1g、2−デカヒドロナフチルビニルエーテル5.4g、スチレン4.2g、溶媒としてテトラヒドロフランを15g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール100mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比
グリシジルメタクリレート:2−デカヒドロナフチルビニルエーテル:スチレン=0.5:0.3:0.2(モル比)
分子量(Mw)=9,600
分散度(Mw/Mn)=1.89
この重合体をポリマー7とする。
Figure 0004623309
[合成例8]
100mLのフラスコにグリシジルメタクリレート7.1g、下記モノマー1の12.5g、スチレン4.2g、溶媒としてテトラヒドロフランを15g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール100mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比
グリシジルメタクリレート:モノマー1:スチレン=0.5:0.3:0.2(モル比)
分子量(Mw)=10,200
分散度(Mw/Mn)=1.92
この重合体をポリマー8とする。
Figure 0004623309
[合成例9]
100mLのフラスコにグリシジルメタクリレート7.1g、下記モノマー2の22.7g、溶媒としてテトラヒドロフランを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール100mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比
グリシジルメタクリレート:モノマー2=0.5:0.5(モル比)
分子量(Mw)=13,800
分散度(Mw/Mn)=1.78
この重合体をポリマー9とする。
Figure 0004623309
[合成例10]
100mLのフラスコに4−ヒドロキシスチレン2.4g、ジシクロペンタニルビニルエーテル14.5g、溶媒として1,2−ジクロロエタンを20g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素を0.5g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比
4−ヒドロキシスチレン:ジシクロペンタニルビニルエーテル=0.2:0.8(モル比)
分子量(Mw)=5,100
分散度(Mw/Mn)=1.72
この重合体をポリマー10とする。
Figure 0004623309
また、従来から用いられている重合体として、分子量(Mw)=6,200、分散度(Mw/Mn)=5.3のm−クレゾールノボラック、分子量(Mw)=11,600、分散度(Mw/Mn)=1.68のポリ−p−ヒドロキシスチレンを準備した。
[レジスト下層膜材料の調製]
上記ポリマー1〜10、ブレンドオリゴマー1、ブレンドフェノール低核体1〜3、CR1,2で示される架橋剤、AG1で示される酸発生剤を、FC−430(住友スリーエム社製)0.1質量%を含む有機溶剤中に表1に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによってレジスト下層膜材料(実施例1〜17、比較例1,2)の溶液をそれぞれ調製した。
表1中の各レジスト下層膜材料の組成は次の通りである。
ポリマー1〜10:上記合成例1〜10で得たポリマー
架橋剤:CR1,2(下記構造式参照)
Figure 0004623309

酸発生剤:AG1,AG2(下記構造式参照)
Figure 0004623309
ブレンドオリゴマー1
Figure 0004623309

ブレンドフェノール低核体1〜3
Figure 0004623309

有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
[珪素含有レジスト中間層膜材料の調製]
下記に示す重合体(ArF珪素含有中間層ポリマー1)、AG1で示される酸発生剤を、FC−430(住友スリーエム社製)0.1質量%を含む有機溶剤中に表1に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによってレジスト中間層膜材料(SOG1)の溶液を調製した。
表1中のレジスト中間層膜材料の組成は次の通りである。
重合体:ArF珪素含有中間層ポリマー1(下記構造式参照)
Figure 0004623309

酸発生剤:AG1(前記参照)
有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
Figure 0004623309
[レジスト上層膜材料の調製]
次に、下記に示す重合体(ArF単層レジストポリマー1)、PAG1で示される酸発生剤、TMMEAで示される塩基性化合物をFC−430(住友スリーエム社製)0.1質量%を含む有機溶剤中に表2に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって、レジスト上層膜材料(ArF用SLレジスト)の溶液を調製した。
表2中のレジスト上層膜材料の組成は次の通りである。
重合体:ArF単層レジストポリマー1(下記構造式参照)
Figure 0004623309

酸発生剤:PAG1(下記構造式参照)
Figure 0004623309

塩基性化合物:TMMEA(下記構造式参照)
Figure 0004623309

有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
Figure 0004623309
[エッチング試験]
ドライエッチング耐性のテストは、前記屈折率測定に用いたものと同じ下層膜(実施例1〜17、比較例1,2)を作製し、これらの下層膜のCF4/CHF3系ガスでのエッチング試験として下記(1)の条件で試験した。この場合、東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後の下層膜及びレジストの膜厚差を測定した。結果を表3に示す。
(CF4/CHF3系ガスでのエッチング試験)
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
ギャップ 9mm
CHF3ガス流量 30ml/min
CF4ガス流量 30ml/min
Arガス流量 100ml/min
時間 60sec
Figure 0004623309
[アッシング試験]
次に、上記調製したレジスト下層膜材料(実施例1〜17、比較例1,2)の溶液をSi(シリコン)基板上に塗布して、200℃で60秒間ベークして膜厚300nmのレジスト下層膜を形成した。
そして、アッシング速度のテストを行った。このテストは、上記形成したレジスト下層膜を、下記の条件(O2系ガス)で、東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用いて、アッシングすることで行った。
(O2系ガスでのアッシング試験)
アッシング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 600W
ギャップ 9mm
2ガス流量 5ml/min
2ガス流量 500ml/min
時間 15sec
そして、アッシング前後のレジスト下層膜の膜厚差を測定した。その結果を表4に示す。
Figure 0004623309
この試験で、実施例1〜17の材料を用いて形成したレジスト下層膜は、エッチング速度がクレゾールノボラック樹脂やポリヒドロキシスチレン並みであり、アッシング速度がこれらの樹脂に比べて非常に速いことが確認できた。
[現像後のレジストパターン形状の観察]
次に、レジストパターン形状についての試験を行った。
まず、レジスト下層膜材料(実施例1〜17、比較例1,2)の溶液をSi基板上に塗布して、200℃で60秒間ベークして第1のレジスト下層膜を形成した。
更に、その上に表2に記載のレジスト上層膜材料(ArF用SLレジスト)溶液を塗布し、120℃で60秒間ベークし、厚さ180nmのレジスト上層膜を形成した。
このようにして、基板の上に、レジスト下層膜、レジスト中間層膜、レジスト上層膜を積層した積層構造を形成した。
次いで、形成したレジスト上層膜を、ArF露光装置((株)ニコン製;S307E、NA0.85、σ0.93、4/5輪体照明、6%透過率ハーフトーン位相シフトマスク)で露光し、110℃で60秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像し、ポジ型のレジストパターンを得た。そして、得られたパターンの0.08μmL/Sのパターン形状を観察した。
このとき、パターン断面を日立製作所社製電子顕微鏡(S−4700)にて観察し、その形状を比較した。その結果を、表5にまとめた。
Figure 0004623309
実施例1〜17のレジスト下層膜材料を用いた場合でも、従来型の3層レジストプロセス用のレジスト下層膜と同様に、パターニング後のレジストパターン形状が良好であることが確認できた。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
3層レジストプロセスによる本発明のパターン形成方法の一例を示す説明図である。 2層レジストプロセスによる本発明のパターン形成方法の一例を示す説明図である。
符号の説明
10 基板
10a 被加工層
10b ベース層
11 レジスト下層膜
12 レジスト中間層膜
13 レジスト上層膜
14 露光

Claims (6)

  1. リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、水素を10質量%以上、炭素を70質量%以上含むモノマーに由来する下記一般式(1)で示される繰り返し単位(A)とヒドロキシ基又はエポキシ環を有する繰り返し単位(B)とを有する重合体を含むものであることを特徴とするレジスト下層膜材料。
    Figure 0004623309

    (式中、R 1 は炭素数4〜40の直鎖状、分岐状又は環状のアルキル基又はアルケニル基であり、ヒドロキシ基又はエーテル基を含んでいてもよく、R 2 は水素原子又はメチル基、R 3 は炭素数18〜40の直鎖状、分岐状又は環状のアルキル基であり、0≦a1≦1.0、0≦a2≦1.0、0.1≦a1+a2≦1.0の範囲である。)
  2. 重合体が、更に下記式から選ばれるモノマーに由来する繰り返し単位を含有する請求項1記載のレジスト下層膜材料。
    Figure 0004623309
  3. 更に、有機溶剤を含有することを特徴とする請求項1又は2に記載のレジスト下層膜材料。
  4. 更に、酸発生剤、架橋剤のうち一以上を含有することを特徴とする請求項1乃至のいずれか1項に記載のレジスト下層膜材料。
  5. リソグラフィーにより基板にパターンを形成する方法であって、請求項1乃至のいずれか1項に記載のレジスト下層膜材料を用いてレジスト下層膜を基板上に形成し、該下層膜の上にフォトレジスト組成物によるレジスト上層膜を形成して2層レジスト膜を形成し、該2層レジスト膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト下層膜をエッチングし、次いでパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成し、更に、アッシングによって前記レジスト下層膜の剥離を行うことを特徴とするパターン形成方法。
  6. リソグラフィーにより基板にパターンを形成する方法であって、請求項1乃至のいずれか1項に記載のレジスト下層膜材料を用いてレジスト下層膜を基板上に形成し、該下層膜の上に珪素原子を含有するレジスト中間層膜を形成し、該中間層膜の上にフォトレジスト組成物によるレジスト上層膜を形成して3層レジスト膜を形成し、該レジスト3層膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト中間層膜をエッチングし、パターンが形成されたレジスト中間層膜をマスクにしてレジスト下層膜をエッチングし、次いでパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成し、更に、アッシングによって前記レジスト下層膜の剥離を行うことを特徴とするパターン形成方法。
JP2006138637A 2005-10-19 2006-05-18 レジスト下層膜材料並びにそれを用いたパターン形成方法 Active JP4623309B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138637A JP4623309B2 (ja) 2005-10-19 2006-05-18 レジスト下層膜材料並びにそれを用いたパターン形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005304648 2005-10-19
JP2006138637A JP4623309B2 (ja) 2005-10-19 2006-05-18 レジスト下層膜材料並びにそれを用いたパターン形成方法

Publications (2)

Publication Number Publication Date
JP2007140461A JP2007140461A (ja) 2007-06-07
JP4623309B2 true JP4623309B2 (ja) 2011-02-02

Family

ID=38203335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138637A Active JP4623309B2 (ja) 2005-10-19 2006-05-18 レジスト下層膜材料並びにそれを用いたパターン形成方法

Country Status (1)

Country Link
JP (1) JP4623309B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813537B2 (ja) 2008-11-07 2011-11-09 信越化学工業株式会社 熱酸発生剤を含有するレジスト下層材料、レジスト下層膜形成基板及びパターン形成方法
JP6226142B2 (ja) * 2012-07-02 2017-11-08 日産化学工業株式会社 溶剤現像リソグラフィープロセス用有機下層膜形成組成物を用いた半導体装置の製造方法
JP6119667B2 (ja) 2013-06-11 2017-04-26 信越化学工業株式会社 下層膜材料及びパターン形成方法
JP6135600B2 (ja) 2013-06-11 2017-05-31 信越化学工業株式会社 下層膜材料及びパターン形成方法
JP6119668B2 (ja) 2013-06-11 2017-04-26 信越化学工業株式会社 下層膜材料及びパターン形成方法
JP6119669B2 (ja) 2013-06-11 2017-04-26 信越化学工業株式会社 下層膜材料及びパターン形成方法
JP6509496B2 (ja) * 2014-04-08 2019-05-08 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ 下層膜形成用組成物
JP6550760B2 (ja) * 2015-01-26 2019-07-31 Jsr株式会社 多層レジストプロセス用レジスト下層膜形成組成物及びレジスト下層膜の形成方法
JP6502885B2 (ja) 2015-05-18 2019-04-17 信越化学工業株式会社 レジスト下層膜材料及びパターン形成方法
US9899218B2 (en) 2015-06-04 2018-02-20 Shin-Etsu Chemical Co., Ltd. Resist under layer film composition and patterning process
JP6625934B2 (ja) 2015-07-14 2019-12-25 信越化学工業株式会社 レジスト下層膜材料、パターン形成方法、及び化合物
KR20180108654A (ko) * 2016-02-15 2018-10-04 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 패터닝된 기판의 제조 방법
US11262656B2 (en) * 2016-03-31 2022-03-01 Rohm And Haas Electronic Materials Korea Ltd. Coating compositions for use with an overcoated photoresist
JP6718406B2 (ja) * 2017-03-31 2020-07-08 信越化学工業株式会社 レジスト下層膜材料、パターン形成方法、及びレジスト下層膜形成方法
WO2023157772A1 (ja) * 2022-02-16 2023-08-24 日産化学株式会社 保護膜形成用組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049810A (ja) * 2003-07-17 2005-02-24 Shin Etsu Chem Co Ltd フォトレジスト下層膜形成材料およびパターン形成方法
JP2005092014A (ja) * 2003-09-19 2005-04-07 Jsr Corp 多層レジストプロセス用熱分解性下層膜形成組成物、下層膜、多層レジストおよびパターン形成方法
JP2005114921A (ja) * 2003-10-06 2005-04-28 Shin Etsu Chem Co Ltd レジスト下層膜材料およびパターン形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049810A (ja) * 2003-07-17 2005-02-24 Shin Etsu Chem Co Ltd フォトレジスト下層膜形成材料およびパターン形成方法
JP2005092014A (ja) * 2003-09-19 2005-04-07 Jsr Corp 多層レジストプロセス用熱分解性下層膜形成組成物、下層膜、多層レジストおよびパターン形成方法
JP2005114921A (ja) * 2003-10-06 2005-04-28 Shin Etsu Chem Co Ltd レジスト下層膜材料およびパターン形成方法

Also Published As

Publication number Publication date
JP2007140461A (ja) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4623309B2 (ja) レジスト下層膜材料並びにそれを用いたパターン形成方法
JP4809378B2 (ja) レジスト下層膜材料およびこれを用いたパターン形成方法
JP5741518B2 (ja) レジスト下層膜材料及びパターン形成方法
JP4496432B2 (ja) フォトレジスト下層膜形成材料及びパターン形成方法
JP4482763B2 (ja) フォトレジスト下層膜形成材料及びパターン形成方法
JP4823959B2 (ja) レジスト下層膜材料及びパターン形成方法
JP4662063B2 (ja) フォトレジスト下層膜形成材料及びパターン形成方法
JP5415982B2 (ja) レジスト下層膜材料、パターン形成方法
JP4666166B2 (ja) レジスト下層膜材料及びパターン形成方法
US7358025B2 (en) Photoresist undercoat-forming material and patterning process
JP4355943B2 (ja) フォトレジスト下層膜形成材料及びパターン形成方法
JP4539845B2 (ja) フォトレジスト下層膜形成材料及びパターン形成方法
JP4388429B2 (ja) レジスト下層膜材料ならびにパターン形成方法
JP3981825B2 (ja) パターン形成方法及び下層膜形成材料
JP4671046B2 (ja) レジスト下層膜材料ならびにパターン形成方法
JP4662052B2 (ja) フォトレジスト下層膜形成材料及びパターン形成方法
US7303855B2 (en) Photoresist undercoat-forming material and patterning process
JP4809376B2 (ja) 反射防止膜材料およびこれを用いたパターン形成方法
JP4832955B2 (ja) レジスト下層膜材料並びにそれを用いたパターン形成方法
JP2004354554A (ja) レジスト下層膜材料ならびにパターン形成方法
JP2005010431A (ja) レジスト下層膜材料ならびにパターン形成方法
JP4638378B2 (ja) レジスト下層膜材料並びにそれを用いたパターン形成方法
JP5835194B2 (ja) レジスト下層膜材料及びパターン形成方法
JP5579553B2 (ja) レジスト下層膜材料、レジスト下層膜形成方法、パターン形成方法
US7427464B2 (en) Patterning process and undercoat-forming material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Ref document number: 4623309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3