JP4623136B2 - 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両 - Google Patents

車両用運転操作補助装置および車両用運転操作補助装置を備えた車両 Download PDF

Info

Publication number
JP4623136B2
JP4623136B2 JP2008126950A JP2008126950A JP4623136B2 JP 4623136 B2 JP4623136 B2 JP 4623136B2 JP 2008126950 A JP2008126950 A JP 2008126950A JP 2008126950 A JP2008126950 A JP 2008126950A JP 4623136 B2 JP4623136 B2 JP 4623136B2
Authority
JP
Japan
Prior art keywords
driving
control
host vehicle
intention
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008126950A
Other languages
English (en)
Other versions
JP2008265752A5 (ja
JP2008265752A (ja
Inventor
洋介 小林
原平 内藤
健 木村
弘之 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008126950A priority Critical patent/JP4623136B2/ja
Publication of JP2008265752A publication Critical patent/JP2008265752A/ja
Publication of JP2008265752A5 publication Critical patent/JP2008265752A5/ja
Application granted granted Critical
Publication of JP4623136B2 publication Critical patent/JP4623136B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、運転者の操作を補助する車両用運転操作補助装置に関する。
従来の車両用運転操作補助装置においては、自車両周囲のリスクの大きさおよび自車両と障害物との接触の可能性に基づいて、アクセルペダルに発生する操作反力および自車両に制駆動力を制御している(例えば特許文献1参照)。
本願発明に関連する先行技術文献としては次のものがある。
特開2005−112242号公報
上述した装置は、運転者の運転操作を補助するように、自車両周囲のリスクの大きさと障害物との接触の可能性を、アクセルペダルから発生する操作反力および自車両の減速感として運転者に伝えている。しかしながら、混雑した交通環境や合流部等、先行車との車間距離を運転者が意図的に短くして走行しているような状況で、運転者の意図に反して過剰な制御がかかるなど、交通環境に対応して運転者が運転操作を行っている場合に適切な制御が困難であるという問題があった。
本発明による車両用運転操作補助装置は、少なくとも、自車両前方に存在する障害物と自車両との距離、および自車速を検出する走行状態検出手段と、走行状態検出手段の検出結果に基づいて、自車両と障害物との相対位置関係を算出する相対位置算出手段と、走行状態検出手段の検出結果に基づいて、自車両と障害物との接近度合を示すリスクポテンシャルを算出するリスクポテンシャル算出手段と、リスクポテンシャル算出手段によって算出されるリスクポテンシャルに基づいて、アクセルペダルに発生する操作反力および自車両に発生する制駆動力を制御する制御手段と、運転者によるアクセルペダルの操作状態を検出する操作状態検出手段と、操作状態検出手段によって検出される運転者のアクセルペダル操作状態に基づいて、運転者の運転意図として、加速意図、減速意図および定常意図を推定する運転意図推定手段と、運転意図推定手段によって推定された運転意図、および自車両と障害物との前記相対位置関係に基づいて、複数の異なる制御作動領域の中から制御手段において操作反力および制駆動力を制御するための制御作動領域を決定する制御作動領域決定手段とを備え、制御作動領域決定手段は、操作反力を制御するための制御作動領域を固定とし、制駆動力を制御するための制御作動領域を、運転意図および相対位置関係に基づいて選択し、リスクポテンシャル算出手段は、制御作動領域決定手段によって決定された操作反力を制御するための制御作動領域および制駆動力を制御するための制御作動領域に従って、操作反力算出用のリスクポテンシャルおよび制駆動力算出用のリスクポテンシャルをそれぞれ算出する。
本発明による車両用運転操作補助方法は、少なくとも、自車両前方に存在する障害物と自車両との距離、および自車速を検出し、少なくとも距離および自車速に基づいて、自車両と障害物との相対位置関係を算出し、少なくとも距離および自車速に基づいて、自車両と障害物との接近度合を示すリスクポテンシャルを算出し、リスクポテンシャルに基づいて、アクセルペダルに発生する操作反力および自車両に発生する制駆動力を制御し、運転者によるアクセルペダルの操作状態を検出し、運転者のアクセルペダル操作状態に基づいて、運転者の運転意図として、加速意図、減速意図および定常意図を推定し、推定された運転意図、および自車両と障害物との相対位置関係に基づいて、複数の異なる制御作動領域の中から操作反力および制駆動力を制御するための制御作動領域を決定し、操作反力を制御するための制御作動領域を固定とし、制駆動力を制御するための制御作動領域を、運転意図および相対位置関係に基づいて選択し、決定された操作反力を制御するための制御作動領域および制駆動力を制御するための制御作動領域に従って、操作反力算出用のリスクポテンシャルおよび制駆動力算出用のリスクポテンシャルをそれぞれ算出する。
本発明による車両は、上記車両用運転操作補助装置を備える。
本発明によれば、運転意図および自車両と障害物との相対位置関係を考慮して適切な制御作動領域を選択するので、操作反力および制駆動力を用いた情報の伝達と、意図しない制御の発生によるわずらわしさの低減とを両立させることができる。
《第1の実施の形態》
本発明の第1の実施の形態による車両用運転操作補助装置について、図面を用いて説明する。図1は、第1の実施の形態による車両用運転操作補助装置1の構成を示すシステム図であり、図2は、車両用運転操作補助装置1を搭載した車両の構成図である。
まず、車両用運転操作補助装置1の構成を説明する。レーザレーダ10は、車両の前方グリル部もしくはバンパ部等に取り付けられ、水平方向に赤外光パルスを照射して車両前方領域を走査する。レーザレーダ10は、前方にある複数の反射物(通常、前方車の後端)で反射された赤外光パルスの反射波を計測し、反射波の到達時間より、複数の前方車までの車間距離とその存在方向を検出する。検出した車間距離及び存在方向はコントローラ50へ出力される。なお、本実施の形態において、前方物体の存在方向は、自車両に対する相対角度として表すことができる。レーザレーダ10によりスキャンされる前方の領域は、自車正面に対して±6deg程度であり、この範囲内に存在する前方物体が検出される。
車速センサ30は、車輪の回転数や変速機の出力側の回転数を計測することにより自車両の車速を検出し、検出した自車速をコントローラ50に出力する。
コントローラ50は、CPUと、ROMおよびRAM等のCPU周辺部品とから構成され、車両用運転操作補助装置1全体の制御を行う。コントローラ50は、車速センサ30から入力される自車速と、レーザレーダ10から入力される距離情報から、自車両周囲の障害物状況、例えば自車両と各障害物との相対距離および相対速度といった障害物に対する走行状態を認識する。コントローラ50は、障害物状況に基づいて各障害物に対する自車両の接近度合を表すリスクポテンシャルを算出する。さらに、コントローラ50は、障害物に対するリスクポテンシャルに基づいて、以下のような制御を行う。
第1の実施の形態による車両用運転操作補助装置1は、アクセルペダル72の踏み込み操作の際に発生する反力を制御することによって、運転者による自車両の加減速操作を補助し、運転者の運転操作を適切にアシストするものである。そこで、コントローラ50は、自車前方の障害物に対するリスクポテンシャルに基づいて車両前後方向の反力制御量を算出する。コントローラ50は、算出した前後方向の反力制御量をアクセルペダル反力制御装置70へと出力する。
アクセルペダル反力制御装置70は、コントローラ50から出力される反力制御量に応じて、アクセルペダル72のリンク機構に組み込まれたサーボモータ71で発生させるトルクを制御する。サーボモータ71は、アクセルペダル反力制御装置70からの指令値に応じて発生させる反力を制御し、運転者がアクセルペダル72を操作する際に発生する操作反力(踏力)を任意に制御することができる。
アクセルペダルストロークセンサ74は、リンク機構を介してサーボモータ71の回転角に変換されたアクセルペダル72の踏み込み量(操作量)を検出する。アクセルペダルストロークセンサ74は、検出したアクセルペダル操作量をコントローラ50に出力する。
図3に、コントローラ50の内部および周辺の構成を示すブロック図を示す。コントローラ50は、例えばCPUのソフトウェア形態により、障害物認識部51、リスクポテンシャル算出部52、意図検出部53、制御パターン決定部54、およびアクセルペダル反力算出部55を構成する。
障害物認識部51は、レーザレーダ10および車速センサ30から入力される検出値に基づいて自車両周囲の障害物状況を認識する。リスクポテンシャル算出部52は、障害物認識部51で認識した障害物状況に基づいて、前方障害物に対する自車両の接近度合を表すリスクポテンシャルRPを算出する。意図検出部53は、アクセルペダルストロークセンサ74によって検出されるアクセルペダル72の操作状態に基づいて、運転者の意図、具体的には加減速意図を検出する。
制御パターン決定部54は、自車両周囲の障害物状況、前方障害物に対するリスクポテンシャルRP,および運転者の加減速意図に基づいて、アクセルペダル反力制御を行うための制御パターンを決定する。アクセルペダル反力算出部55は、制御パターン決定部54で決定した制御パターンにしたがって、リスクポテンシャルRPに基づくアクセルペダル操作反力の制御指令値(反力制御量)を算出する。
以下に、第1の実施の形態による車両用運転操作補助装置1の動作を、図4を用いて詳細に説明する。図4は、第1の実施の形態のコントローラ50における運転操作補助制御処理の処理手順のフローチャートを示す。本処理内容は、一定間隔、例えば50msec毎に連続的に行われる。
まず、ステップS100で走行状態を読み込む。ここで、走行状態は、自車前方の障害物状況を含む自車両の走行状況に関する情報である。そこで、レーザレーダ10により検出される前方障害物までの車間距離Xや存在方向と、車速センサ30によって検出される自車両の走行車速Vhを読み込む。また、アクセルペダルストロークセンサ74で検出されるアクセルペダル操作量SAも読み込む。
ステップS200では、ステップS100で読み込み、認識した走行状態データに基づいて、前方障害物の状況を認識する。ここでは、前回の処理周期以前に検出され、コントローラ50のメモリに記憶されている自車両に対する障害物の相対位置やその移動方向・移動速度と、ステップS100で得られた現在の走行状態データとにより、現在の障害物の自車両に対する相対位置やその移動方向・移動速度を認識する。そして、自車両の走行に対して障害物が、自車両の前方にどのように配置され、相対的にどのように移動しているかを認識する。
ステップS300では、運転者の運転意図、具体的には加減速意図を検出する。ここでの処理を、図5のフローチャートを用いて説明する。まず、ステップS301で、アクセルペダル72が踏まれていないかを判定する。アクセルペダルストロークセンサ74で検出された現在のアクセルペダル操作量SAが0で、アクセルペダル72が解放されていると判定されると、ステップS302へ進み、運転者の意図を減速意図と判断してFlg_D=2に設定する。
ステップS301が否定判定されてアクセルペダル72が踏まれている場合は、ステップS303へ進み、アクセルペダル操作速度dSを算出する。アクセルペダル操作速度dSは、例えばアクセルペダル操作量SAを時間微分することにより算出することができる。アクセルペダル操作速度dSは、アクセルペダル72が踏み込まれている場合に正の値、戻されている場合に負の値を示す。
ステップS304では、アクセルペダル72の踏み込み操作中であるか否かを判定する。ここでは、ステップS303で算出したアクセルペダル操作速度dSを所定値dS1(>0)と比較することによって判断する。dS≧dS1でアクセルペダル72が踏み込み操作中であると判定されると、ステップS305へ進み、運転者の意図を加速意図と判断してFlg_D=1に設定する。
ステップS304が否定判定されるとステップS306へ進み、アクセルペダル72の戻し操作中であるか否かを判定する。アクセルペダル操作速度dSを所定値dS2(<0)と比較し、dS≦dS2の場合はアクセルペダル72が戻し操作中であると判定する。アクセルペダル72が戻し操作中の場合はステップS307へ進み、運転者の意図を減速意図と判断してFlg_D=2に設定する。ステップS306が否定判定されdS2<dS<dS1の場合は、運転者がアクセルペダル72の操作を保持していると判断し、ステップS308へ進む。
ステップS308では、運転者の意図が加速でも減速でもない現状維持であると判断してFlg_D=0に設定する。この場合の運転者の意図を定常(保持)意図とする。なお、所定値dS1,dS2は、運転者の加速意図、減速意図あるいは定常意図をアクセルペダル操作状態から判断するために予め適切に設定されたしきい値である。
このようにステップS300で運転者の意図を推定した後、ステップS400へ進む。
ステップS400では、アクセルペダル反力制御を行うための制御パターンを決定する。制御パターンは、アクセルペダル反力制御をどのような形態で行うかを表しており、ここでは、制御パターンとしてアクセルペダル反力制御を実行する制御作動領域を決定する。制御パターンは、制御作動領域の長いパターン0(Flg=0)、制御作動領域の中程度のパターン1(Flg=1)、および制御作動領域の短いパターン2(Flg=2)のいずれかを選択する。
制御パターン0は、制御作動領域が長いので、自車両前方に障害物が存在する場合に、早い段階から操作反力制御を開始して、前方障害物の状況を運転者に報知する。これにより、前方障害物との車間距離が適度に長く、比較的空いている交通環境で、運転者の運転操作を適切な方向へ促すことができる。制御パターン1は、制御作動領域が中程度であり、制御パターン0よりも前方障害物に接近している状態で操作反力制御を行う。
制御パターン2は、制御作動領域が短く、自車両と前方障害物との接触の可能性が高い場合に操作反力制御を行う。混雑した交通環境や合流地点等、運転者が意図的に前方障害物に接近して走行する場合は、運転者の運転操作を優先する。一方、接触の可能性が高くなると、大きな操作反力を発生させて運転者の注意を喚起し、接触の可能性を低減させる。
制御パターンの決定処理を図6のフローチャートを用いて説明する。
まず、ステップS401で、ステップS200で認識された自車両前方の障害物、例えば先行車と自車両との余裕時間TTC(Time To Contact)を算出する。余裕時間TTCは、先行車に対する現在の自車両の接近度合を示す物理量であり、現在の走行状況が継続した場合、つまり自車速Vhおよび相対車速Vr(=自車速−先行車速)が一定の場合に、何秒後に車間距離Xがゼロとなり自車両と先行車とが接触するかを示す値である。先行車に対する余裕時間TTCは、以下の(式1)で求められる。
TTC=X/Vr ・・・(式1)
余裕時間TTCの値が小さいほど、先行車への接触が緊迫し、先行車への接近度合が大きいことを意味している。例えば先行車への接近時には、余裕時間TTCが4秒以下となる前に、ほとんどのドライバが減速行動を開始することが知られている。なお、自車両前方に障害物が存在しない場合は、余裕時間TTCは無限大となる。
ステップS402では、現在、すなわち前回周期で設定した制御パターンが0(Flg=0)であるか否かを判定する。制御パターンが0で長い制御作動領域が設定されている場合は、ステップS403へ進み、ステップS300で検出した運転者の意図が加速意図(Flg_D=1)であるか否かを判定する。ステップS403が肯定判定されるとステップS404へ進み、制御パターンを1(Flg=1)に変更して中程度の制御作動領域に設定する。ステップS403が否定判定されると、前回周期で設定された制御パターン0をそのまま使用する。
ステップS402が否定判定されると、ステップS405へ進んで現在の制御パターンが1(Flg=1)であるか否かを判定する。ステップS405が肯定判定されると、ステップS406へ進んで運転者の意図が加速意図(Flg_D=1)であるか否かを判定する。ステップS406が肯定判定されるとステップS407へ進み、制御パターンを2(Flg=2)に変更して短い制御作動領域に設定する。
ステップS406が否定判定されると、ステップS408へ進み、自車両前方に障害物が存在するか否かを判定する。具体的には、レーザレーダ10が自車両前方の自車線上に存在する障害物を検知しているか否かを判定する。障害物、例えば先行車が存在する場合は、ステップS409へ進み、運転者の意図が減速意図(Flg_D=2)であるか否かを判定する。ステップS409が肯定判定されると、ステップS410へ進んでステップS401で算出した余裕時間TTCをしきい値Th0と比較する。しきい値Th0は制御作動領域の長い制御パターン0を決定するためのしきい値であり、予め適切な値を設定しておく。
余裕時間TTC>Th0の場合は、ステップS411へ進み、制御パターンを0(Flg=0)に変更して長い制御作動領域に設定する。ステップS409またはS410が否定判定され、減速意図でない場合、あるいは余裕時間TTC≦Th0の場合は、前回周期で設定した制御パターン1をそのまま使用する。ステップS408が否定判定されて自車両前方に障害物が存在しない場合は、ステップS412へ進んで制御パターンを0(Flg=0)に変更して長い制御作動領域に設定する。
ステップS405が否定判定され、現在制御パターン2が設定されている場合は、ステップS413へ進み、自車両前方に障害物が存在するか否かを判定する。障害物が存在する場合は、ステップS414へ進んで運転者の意図が減速意図(Flg_D=2)であるか否かを判定する。ステップS414が肯定判定されると、ステップS415へ進んでステップS401で算出した余裕時間TTCをしきい値Th1と比較する。しきい値Th1は制御作動領域が中程度の制御パターン1を決定するためのしきい値であり、Th1<Th0となるように、予め適切な値を設定しておく。
余裕時間TTC>Th1の場合は、ステップS416へ進み、制御パターンを1(Flg=1)に変更して中程度の制御作動領域に設定する。ステップS414またはS415が否定判定され、減速意図でない場合、あるいは余裕時間TTC≦Th1の場合は、前回周期で設定した制御パターン2をそのまま使用する。ステップS413が否定判定されて自車両前方に障害物が存在しない場合は、ステップS417へ進んで制御パターンを0(Flg=0)に変更して長い制御作動領域に設定する。
このようにステップS400で制御パターンを決定した後、ステップS500へ進む。
ステップS500では、自車両前方の障害物、例えば先行車に対する自車両の接近度合を表すリスクポテンシャルRPを算出する。リスクポテンシャル(Risk Potential)は、「潜在的なリスク/危急」を意味し、ここでは特に、自車両と自車両周囲に存在する障害物とが接近していくことにより増大するリスクの大きさを表す。したがって、リスクポテンシャルは、自車両と障害物とがどれほど近づいているか、すなわち自車両と障害物とが近づいている程度(接近度合)を表す物理量であるといえる。以下に、リスクポテンシャルRPの算出方法を説明する。
図7(a)に示すように、自車両100の前方に仮想的な弾性体300を設けたと仮定し、この仮想的な弾性体300が前方車両200に当たって圧縮され、自車両100に対する擬似的な走行抵抗を発生するというモデルを考える。ここで、障害物に対するリスクポテンシャルRPは、図7(b)に示すように仮想弾性体300が前方車両200に当たって圧縮された場合のバネ力と定義する。リスクポテンシャルRPの算出方法を、図8のフローチャートを用いて説明する。
まず、ステップS501で、ステップS400で決定した制御パターンが0(Flg=0)であるか否かを判定する。制御パターンが0で制御作動領域が長い場合は、ステップS502へ進み、リスクポテンシャルRPを算出するための余裕時間閾値Thとして、制御パターンが0であるかを判断するために用いたしきい値Th0を設定する。
ステップS501が否定判定されると、ステップS503へ進んで制御パターンが1(Flg=1)であるか否かを判定する。制御パターンが1で制御作動領域が中程度の場合は、ステップS504へ進み、余裕時間閾値Thとして、制御パターンが1であるかを判断するために用いたしきい値Th1を設定する。ステップS503が否定判定されるとステップS505へ進み、余裕時間閾値Thとしてしきい値Th2を設定する。しきい値Th2は、制御パターン2の制御作動領域を決定するために用いる所定値であり、Th2<Th1となるように、予め適切な値を設定しておく。
つづくステップS506では、ステップS400で算出した自車両の先行車に対する余裕時間TTCが、ステップS502、S504,またはS505で設定した余裕時間閾値Thよりも小さいか否かを判定する。TTC<Thの場合は、ステップS507へ進み、仮想弾性体300の長さを表す基準距離Lを算出する。基準距離Lは、余裕時間閾値Thおよび自車両と先行車との相対距離Vrを用いて以下の(式2)から算出する。
L=Th×Vr ・・・(式2)
ステップS508では、ステップS507で算出した基準距離Lを用いて、以下の(式3)から、自車両の先行車に対するリスクポテンシャルRPを算出する。
RP=K・(L−X) ・・・(式3)
ここで、Kは仮想弾性体30のバネ定数である。これにより、自車両と先行車との車間距離Xが短くなり仮想弾性体300が圧縮されるほど、リスクポテンシャルRPが大きくなる。
ステップS506が否定判定されて余裕時間TTC≧Thの場合、すなわち図7(a)に示すように仮想弾性体300が前方車両200に接触していない場合は、自車両と先行車との接触のリスクが低いと判断してリスクポテンシャルRP=0とする。
このようにステップS500でリスクポテンシャルRPを算出した後、ステップS600へ進む。ステップS600では、ステップS500で算出したリスクポテンシャルRPに基づいて、アクセルペダル72に発生させる操作反力の反力制御指令値FAを算出する。図9に、リスクポテンシャルRPとアクセルペダル反力制御指令値FAとの関係を示す。図9に示すように、リスクポテンシャルRPが所定の最小値RPminよりも大きい場合は、リスクポテンシャルRPが大きいほど、大きなアクセルペダル反力を発生させるようにアクセルペダル反力制御指令値FAを算出する。リスクポテンシャルRPが所定の最大値RPmaxより大きい場合には、最大のアクセルペダル反力を発生させるように、アクセルペダル反力制御指令値FAを最大値FAmaxに固定する。
ステップS700では、ステップS600で算出したアクセルペダル反力制御指令値FAをアクセルペダル反力制御装置70へ出力する。アクセルペダル反力制御装置70は、コントローラ50から入力される指令値に応じてアクセルペダル72に発生する操作反力を制御する。これにより、今回の処理を終了する。
以下、図面を用いて第1の実施の形態による車両用運転操作補助装置1の作用を説明する。図10(a)〜(e)に、制御パターンが0から1、2へと変化する場合の、運転意図、制御パターン、車間距離X,リスクポテンシャルRP,およびアクセルペダル反力制御指令値FAの時間変化を示す。図11(a)〜(e)に、制御パターンが2から1、0へと変化する場合の、運転意図、制御パターン、車間距離X,リスクポテンシャルRP,およびアクセルペダル反力制御指令値FAの時間変化を示す。
渋滞路を走行する場合等、自車両が混雑した交通環境にある場合は、自車速Vhや車間距離Xを調整するために運転者はアクセルペダル72を頻繁に操作する。渋滞中や合流地点等、車間距離Xが短くならざるを得ない状況では、車間距離Xが短く先行車に対する接近度合が高いからといってアクセルペダル72から大きな操作反力を発生させると、運転者のアクセルペダル操作を妨げてしまう。そこで、混雑した交通環境や合流地点等、先行車との車間距離Xが短くなってしまう状況、および先行車を追い越すために運転者が意図的に車間距離Xを短くしている状況において、運転者に走行しづらさやわずらわしさを与えないように、制御パターンを自動的に変更する。
上述したような混雑した交通流や合流地点の走行時、および追越時等には、図10(a)に示すように運転者は加速意図を示す。運転者に加速意図がある場合は、図10(b)に示すように制御パターンが0から1,2へと変化していく。図10(c)に示すように車間距離Xは徐々に短くなり自車両と先行車とが接近しつつあるが、制御パターンの変化により制御作動領域が変化するので、リスクポテンシャルRPは図10(d)に実線で示すように不連続に段階的に変化する。
制御パターン0,1,2は余裕時間閾値Thが異なり制御作動領域が異なるので、各制御パターンにおけるリスクポテンシャルRPは、図10(d)に点線で示すように異なるタイミングで発生し始める。制御パターン0が設定されると制御パターン0に対応するリスクポテンシャルRPが選択され、制御パターン1が設定されると制御パターン1に対応するリスクポテンシャルRPが選択されるので、図10(d)に示すように制御用のリスクポテンシャルRPは増加し続けずに不連続に変化する。
図10(e)に示すようにアクセルペダル反力制御指令値FAもリスクポテンシャルRPに応じて変化する。その結果、アクセルペダル操作反力が過度に増大することがなく、運転者にわずらわしさを与えたり運転操作しづらくなることを防止できる。また、操作反力の不連続な変化により、運転者は制御パターンが切り替わったことを容易に認識することができる。
運転者が減速意図を持っている場合は、アクセルペダル72からいつまでも大きな操作反力を発生させていると、運転者に違和感を与えてしまう。そこで、図11(a)に示すように運転者が減速意図を示している場合は、自車両と先行車との余裕時間TTCに基づいて制御パターンを自動的に切り替える。余裕時間TTCがしきい値Th1よりも大きくなると制御パターンを2から1に変更し、余裕時間TTCがさらにしきい値Th0よりも大きくなると制御パターンを1から0に変更する。このように、制御パターンを制御作動領域の長いものへと徐々に切り換えていく。なお、図11(c)は車間距離Xが急変した時点で障害物が検出されなくなったことを表している。
このとき、制御パターン2のときは制御パターン2に対応するリスクポテンシャルRPが選択され、制御パターン1のときは制御パターン1に対応するリスクポテンシャルRPが選択され、制御パターン0のときは制御パターン0に対応するリスクポテンシャルRPが選択されるので、図11(d)に実線で示すように制御用のリスクポテンシャルRPは0まで低下した後、RP=0を維持する。
図11(e)に示すようにアクセルペダル反力制御指令値FAもリスクポテンシャルRPに応じて変化する。その結果、運転者が減速しようとしているときに、アクセルペダル操作反力を速やかに低減して運転者の感覚にあった操作反力制御を行うことができる。また、障害物が検出されなくなると制御パターンを最も制御作動領域の長い制御パターン0に設定しておくので、新たに障害物を検出したときに、早いタイミングでリスクポテンシャルRPを算出して運転者に対する報知を行うことができる。
このように、以上説明した第1の実施の形態においては、以下のような作用効果を奏することができる。
(1)車両用運転操作補助装置1のコントローラ50は、少なくとも、自車両前方に存在する障害物と自車両との距離X、および自車速Vhを検出し、その検出結果に基づいて、自車両と障害物との相対位置関係を算出する。さらに、運転操作機器であるアクセルペダル72の運転者による操作状態を検出し、複数の制御パターンの中から、運転者のアクセルペダル操作状態および自車両と障害物との相対位置関係に基づいて、制御パターンを決定する。コントローラ50は、決定された制御パターンに従い、車間距離Xおよび自車速Vh等に基づいて自車両と障害物との接近度合を示すリスクポテンシャルRPを算出し、算出したリスクポテンシャルRPに基づいて、アクセルペダル72に発生する操作反力および自車両に発生する制駆動力の少なくともいずれかを制御する。第1の実施の形態ではアクセルペダル操作反力を制御した。これにより、自車両周囲の交通環境によって変化するアクセルペダル72の操作状態および自車両と障害物との相対位置関係を考慮して、適切な制御パターンを選択することができ、操作反力を用いた情報の伝達と、運転者の意図に反する操作反力の発生によって運転者に与えるわずらわしさの低減を両立した操作反力制御を行うことが可能となる。
(2)コントローラ50の意図検出部53は、運転者のアクセルペダル操作状態に基づいて、加速意図、減速意図、および定常意図から運転者の運転意図を推定する。複数の制御パターンは、それぞれ異なる制御作動領域を有し、コントローラ50の制御パターン決定部54は、アクセルペダル操作状態に基づいて推定された運転意図を用いて制御パターンを決定する。これにより、運転者の運転意図を考慮した制御パターンを選択して適切な操作反力制御を行うことができる。
(3)制御パターン決定部50は、加速意図が推定されると、現在の制御作動領域よりも短い制御作動領域を有する制御パターンを選択する。運転者が加速意図を示し、障害物に接近していこうとしている場合は、制御作動領域が短い制御パターンを選択することにより、自車両と障害物との接触の可能性が高くなるまでは操作反力制御が作動しない。これにより、運転者の運転操作、具体的にはアクセルペダル操作を妨げることがない。一方、接触の可能性が高くなるとアクセルペダル72から大きな操作反力が発生されるので、運転者の注意を喚起して接触の可能性を低減することが可能となる。
(4)制御パターン決定部50は、減速意図が推定され、自車両と障害物とが離れる方向に相対位置関係が変化している場合は、現在の制御作動領域よりも長い制御作動領域を有する制御パターンを選択する。これにより、運転者が減速しようとしている場合は制御作動領域が段々長くなるので、運転者の感覚にあった操作反力制御を実行することが可能となる。
(5)制御パターン決定部50は、走行状態検出手段であるレーザレーダ10で今まで検出されていた障害物が検出されなくなると、最も長い制御作動領域を有する制御パターンを選択する。これにより、次に障害物が検出され始めたときに、早い段階から操作反力制御を開始することができる。
(6)コントローラ50は、自車両と障害物との相対位置関係として、車間距離Xおよび相対速度Vrに基づいて自車両と障害物との余裕時間TTCを算出し、制御作動領域を余裕時間TTCの長さとして定義する。これにより、混雑した交通流、合流地点、追越時等、さまざまな交通環境における運転者の運転特性を考慮して制御パターンを適切に設定することができる。
《第2の実施の形態》
以下に、本発明の第2の実施の形態による車両用運転操作補助装置について説明する。図12に、第2の実施の形態による車両用運転操作補助装置2のシステム図を示し、図13に、図12に示す車両用運転操作補助装置2を搭載した車両を示す。なお、図12、図13において、図1および図2に示した第1の実施の形態と同様の機能を有する箇所には同一の符号を付している。ここでは、上述した第1の実施の形態との相違点を主に説明する。
図12に示すように、車両用運転操作補助装置2は、自車両に発生する駆動力を制御する駆動力制御装置73、自車両に発生する制動力を制御する制動力制御装置93、およびブレーキペダルストロークセンサ94をさらに備えている。ブレーキペダルストロークセンサ94は、ブレーキペダル92の踏み込み量(操作量)を検出する。ブレーキペダルストロークセンサ94は、検出したブレーキペダル操作量をコントローラ50Aに出力する。
駆動力制御装置73は、エンジンへの制御指令を算出する。図14に、駆動力制御装置73における駆動力制御のブロック図を示す。図15に、アクセルペダル操作量SAとドライバ要求駆動力Fdaとの関係を定めた特性マップを示す。駆動力制御装置73は、図15に示すようなマップを用いて、アクセルペダル操作量SAに応じてドライバ要求駆動力Fdaを算出する。そして、駆動力制御装置73は、ドライバ要求駆動力Fdaに、後述する駆動力補正量ΔDaを加えて目標駆動力を算出する。駆動力制御装置73のエンジンコントローラは、目標駆動力に従ってエンジンへの制御指令を算出する。
制動力制御装置93は、ブレーキ液圧指令を出力する。図16に、制動力制御装置93における制動力制御のブロック図を示す。図17に、ブレーキペダル操作量SBとドライバ要求制動力Fdbとの関係を定めた特性マップを示す。制動力制御装置93は、図17に示すようなマップを用いて、ブレーキペダル操作量SBに応じてドライバ要求制動力Fdbを算出する。そして、制動力制御装置93は、ドライバ要求制動力Fdbに、後述する制動力補正値ΔDbを加えて目標制動力を算出する。制動力制御装置93のブレーキ液圧コントローラは、目標制動力に従ってブレーキ液圧指令を出力する。ブレーキ液圧コントローラからの指令に応じて各車輪に設けられたブレーキ装置95が作動する。
図18に、コントローラ50Aの内部および周辺の構成を示すブロック図を示す。コントローラ50は、例えばCPUのソフトウェア形態により、障害物認識部51、リスクポテンシャル算出部52、意図検出部53、制御パターン決定部54、アクセルペダル反力算出部55,反発力算出部56、および制駆動力補正量算出部57を構成する。
反発力算出部56は、リスクポテンシャルRPに基づいて、制駆動力補正量を算出する際の基準となる反発力を算出する。制駆動力補正量算出部57は、反発力算出部56で選択した反発力に基づいて、自車両に発生させる制駆動力の補正量を算出する。
以下に、第2の実施の形態による車両用運転操作補助装置2の動作を、図19を用いて詳細に説明する。図19は、第2の実施の形態のコントローラ50Aにおける運転操作補助制御処理の処理手順のフローチャートを示す。本処理内容は、一定間隔、例えば50msec毎に連続的に行われる。ステップS100〜S600での処理は、図4に示したフローチャートにおける処理と同様であるので説明を省略する。
ステップS620では、ステップS500で算出したリスクポテンシャルRPに基づいて、制駆動力補正量を算出する際に用いる反発力Fcを算出する。ここで、反発力Fcは、図7(a)(b)に示した仮想弾性体300の反発力として考えることができる。そこで、図20に示すような関係にしたがって、リスクポテンシャルRPが大きくなるほど反発力Fcが大きくなるように反発力Fcを算出する。なお、リスクポテンシャルRPが所定値RP1を超えると、反発力Fcを最大値Fcmaxに固定する。
ステップS650では、ステップS620で算出した反発力Fcに基づいて、自車両に発生する駆動力を補正する駆動力補正量と、制動力を補正する制動力補正量をそれぞれ算出する。ここでの処理を図21のフローチャートを用いて説明する。ステップS651では、ドライバ要求駆動力Fdaを推定する。コントローラ50Aには、図15と同様のマップが記憶されており、アクセルペダル操作量SAに基づいてドライバ要求駆動力Fdaを推定する。
ステップS652では、ステップS651で推定したドライバ要求駆動力Fdaと、ステップS620で算出した反発力Fcとの大小関係を比較する。Fda≧Fcの場合は、ステップS653へ進む。ステップS653では、駆動力補正量ΔDaとして−Fcをセットし、ステップS654で制動力補正量ΔDbに0をセットする。
すなわち、Fda−Fc≧0であることから、駆動力Fdaを反発力Fcにより補正した後も正の駆動力が残る。従って、補正量の出力は駆動力制御装置73のみで行うことができる。この場合、車両の状態としては、運転者がアクセルペダル72を踏んでいるにも関わらず期待した程の駆動力が得られない状態となる。補正後の駆動力が走行抵抗より大きい場合には、加速が鈍くなる挙動として運転者に感じられ、補正後の駆動力が走行抵抗より小さい場合には、減速する挙動として運転者に感じられる。
一方、ステップS652が否定判定され、Fda<Fcの場合は、駆動力制御装置73のみでは目標とする補正量を出力できない。そこで、ステップS655へ進んで駆動力補正量ΔDaに−Fdaをセットし、ステップS656で制動力補正量ΔDbとして、補正量の不足分(Fc−Fda)をセットする。この場合、車両の減速挙動として運転者には察知される。
図22に、駆動力および制動力の補正方法を説明する図を示す。図22の横軸はアクセルペダル操作量SAおよびブレーキペダル操作量SBを示しており、原点0から右へ進むほどアクセルペダル操作量SAが大きく、左へ進むほどブレーキペダル操作量SBが大きいことを示している。図22の縦軸は駆動力および制動力を示し、原点0から上へ進むほど駆動力が大きく、下へ進むほど制動力が大きいことを示している。図22において、アクセルペダル操作量SAに応じた要求駆動力Fda、およびブレーキペダル操作量SBに応じた要求制動力Fdbをそれぞれ一点差線で示す。また、反発力Fcに基づいて補正した駆動力および制動力を実線で示す。
アクセルペダル操作量SAが大きく、アクセルペダル操作量SAに応じた要求駆動力Fdaが反発力Fc以上の場合は、駆動力を補正量ΔDaに応じて減少方向に補正する。一方、アクセルペダル操作量SAが小さく、アクセルペダル操作量SAに応じた要求駆動力Fdaが反発力Fcよりも小さい場合は、駆動力を発生しないような補正量ΔDaを設定して駆動力を補正する。さらに、反発力Fcと要求駆動力Fdaとの差を補正量ΔDbとして設定する。これにより、アクセルペダル操作量SAに応じた緩制動を行う。
ブレーキペダル92が踏み込まれると、補正量ΔDbに基づいて制動力を増大方向に補正する。これにより、全体として車両の走行抵抗を補正量、すなわち仮想弾性体の反発力Fcに相当して増大させるように制駆動力の特性を補正している。
このようにステップS650で制駆動力補正量を算出した後、ステップS700へ進む。ステップS700では、ステップS600で算出したアクセルペダル反力指令値FAをアクセルペダル反力制御装置70へ出力する。アクセルペダル反力制御装置70は、コントローラ50Aから入力される指令値に応じてアクセルペダル反力を制御する。
ステップS800では、ステップS650で算出した駆動力補正量ΔDa、及び制動力補正量ΔDbをそれぞれ駆動力制御装置73、及び制動力制御装置93に出力する。駆動力制御装置73は、駆動力補正量ΔDaと要求駆動力Fdaとから目標駆動力を算出し、算出した目標駆動力を発生するようにエンジンコントローラを制御する。また、制動力制御装置93は、制動力補正量ΔDbと要求制動力Fdbとから目標制動力を算出し、目標制動力を発生するようにブレーキ液圧コントローラを制御する。これにより、今回の処理を終了する。
以下、図面を用いて第2の実施の形態による車両用運転操作補助装置2の作用を説明する。図23(a)〜(f)に、制御パターンが0から1、2へと変化する場合の、運転意図、制御パターン、車間距離X,リスクポテンシャルRP,アクセルペダル反力制御指令値FAおよび反発力Fcの時間変化を示す。図24(a)〜(f)に、制御パターンが2から1、0へと変化する場合の、運転意図、制御パターン、車間距離X,リスクポテンシャルRP,アクセルペダル反力制御指令値FAおよび反発力Fcの時間変化を示す。
制御パターンが0から1,2へと変化する場合、リスクポテンシャルRPおよびアクセルペダル反力制御指令値FAは、図23(d)(e)に示すように制御パターンの切り替わりに応じて不連続に変化する。これに伴って、図23(f)に示すように反発力Fcも不連続に変化する。これにより、自車両の駆動力が低下しすぎる、もしくは過度の減速度が発生することがなく、運転者にわずらわしさを与えたり走行しづらくなることを防止できる。また、操作反力の不連続な変化により、運転者は制御パターンが切り替わったことを容易に認識することができる。
制御パターンが2から1,0へと変化する場合、リスクポテンシャルRPおよびアクセルペダル反力制御指令値FAは、図24(d)(e)に示すように0まで低下した後、0を維持する。これに伴って、図24(f)に示すように反発力Fcも0まで低下した後、0を維持する。これにより、運転者が自ら減速しようとしているときには運転者の要求にあった駆動力もしくは制動力を発生させることができる。また、障害物が検出されなくなると制御パターンを最も制御作動領域の長い制御パターン0に設定しておくので、新たに障害物を検出したときに、速いタイミングでリスクポテンシャルRPを算出して運転者に対する報知を行うことができる。
このように、以上説明した第2の実施の形態においては、以下のような作用効果を奏することができる。
車両用運転操作補助装置2のコントローラ50Aは、少なくとも、自車両前方に存在する障害物と自車両との距離X、および自車速Vhを検出し、その検出結果に基づいて、自車両と障害物との相対位置関係を算出する。さらに、運転操作機器であるアクセルペダル72の運転者による操作状態を検出し、複数の制御パターンの中から、運転者のアクセルペダル操作状態および自車両と障害物との相対位置関係に基づいて、制御パターンを決定する。コントローラ50Aは、決定された制御パターンに従い、車間距離Xおよび自車速Vh等に基づいて自車両と障害物との接近度合を示すリスクポテンシャルRPを算出し、算出したリスクポテンシャルRPに基づいて、アクセルペダル72に発生する操作反力および自車両に発生する制駆動力の少なくともいずれかを制御する。第2の実施の形態ではアクセルペダル操作反力および自車両に発生させる制駆動力を両方制御した。これにより、自車両周囲の交通環境によって変化するアクセルペダル72の操作状態および自車両と障害物との相対位置関係を考慮して、適切な制御パターンを選択して操作反力制御および制駆動力制御を行うことができる。
《第3の実施の形態》
以下に、本発明の第3の実施の形態による車両用運転操作補助装置について説明する。第3の実施の形態による車両用運転操作補助装置の基本構成は、図12および図13に示した第2の実施の形態と同様である。ここでは、上述した第2の実施の形態との相違点を主に説明する。
上述した第2の実施の形態では、制御パターンが変化すると、リスクポテンシャルRPと反発力Fcとを変化させ、アクセルペダル反力制御指令値FAと制駆動力制御補正量ΔDa,ΔDbを両方とも調整した。第3の実施の形態では、制御パターンの変化に応じてリスクポテンシャルRPと反発力Fcとを個々に変化させて、アクセルペダル反力制御指令値FAと制駆動力制御補正量ΔDa,ΔDbを別々に調整する。
具体的には、アクセルペダル反力制御指令値FAを算出するための反力算出用のリスクポテンシャルRPfaと、反発力算出用のリスクポテンシャルRPfcをそれぞれ算出する。そして、制御パターンの変化に応じて反発力算出用のリスクポテンシャルRPfcを切り替える一方、反力算出用のリスクポテンシャルRPfaは変化させない。
以下に、リスクポテンシャルRPfa、RPfcの算出方法を、図25のフローチャートを用いて説明する。この処理は、図19に示したフローチャートのステップS500で実行される。ステップS521〜S529での処理は、図8のステップS501〜S509での処理と同様である。ただし、ステップS528、S529で算出したリスクポテンシャルRPは、反発力算出用のリスクポテンシャルRPfcとする。
ステップS530では、余裕時間TTCが、制御パターン0の領域を決定するために用いた余裕時間閾値Th0よりも小さいか否かを判定する。TTC<Th0の場合はステップS531へ進み、余裕時間閾値Th0と相対速度Vrを用いて、以下の(式4)から基準距離L0を算出する。
L0=Th0×Vr ・・・(式4)
ステップS532では、ステップS531で算出した基準距離L0を用いて、以下の(式5)から反力算出用のリスクポテンシャルRPfaを算出する。
RPfa=K×(L0−X) ・・・(式5)
ステップS530が否定判定されると、ステップS533へ進んで反力算出用のリスクポテンシャルRPfa=0に設定する。
このように、反力算出用のリスクポテンシャルRPfaは、余裕時間TTCが余裕時間閾値Th0よりも小さくなると、実際の制御パターンに関係なく、制御パターン0に対応する値として算出される。
このようにしてリスクポテンシャルRPfa、RPfcを算出した後、ステップS600では、反力算出用のリスクポテンシャルRPfaに基づいてアクセルペダル反力制御指令値FAを算出する。図26に、リスクポテンシャルRPfaとアクセルペダル反力制御指令値FAとの関係を示す。図26に示すように、リスクポテンシャルRPfaが所定の最小値RPfa_minよりも大きくなると、リスクポテンシャルRPfaが大きくなるほどアクセルペダル反力制御指令値FAを徐々に大きくする。リスクポテンシャルRPfaが所定の最大値RPfa_maxを超えると、アクセルペダル反力制御指令値FAを最大値FAmaxに固定する。
ステップS620では、反発力算出用のリスクポテンシャルRPfcに基づいて反発力Fcを算出する。図27に、リスクポテンシャルRPfcと反発力Fcとの関係を示す。図27に示すように、リスクポテンシャルRPfcが大きくなるほど反発力Fcを徐々に大きくする。リスクポテンシャルRPfcが所定値RPfc1を超えると、反発力Fcを最大値Fcmaxに固定する。
ステップS650以降の処理は、第2の実施の形態と同様である。
以下、図面を用いて第3の実施の形態による車両用運転操作補助装置の作用を説明する。図28(a)〜(g)に、制御パターンが0から1、2へと変化する場合の、運転意図、制御パターン、車間距離X,反力算出用リスクポテンシャルRPfa,反発力算出用リスクポテンシャルRPfc、アクセルペダル反力制御指令値FAおよび反発力Fcの時間変化を示す。図29(a)〜(g)に、制御パターンが2から1、0へと変化する場合の、運転意図、制御パターン、車間距離X,反力算出用リスクポテンシャルRPfa,反発力算出用リスクポテンシャルRPfc、アクセルペダル反力制御指令値FAおよび反発力Fcの時間変化を示す。
制御パターンが0から1,2へと変化する場合、図28(d)に示すように、反力算出用リスクポテンシャルRPfaは、制御パターン0に対応する値として算出され、徐々に連続的に増加する。図28(e)に示すように、反発力算出用リスクポテンシャルRPfcは、上述した第2の実施の形態と同様に制御パターンの変化に応じて不連続に変化する。これにより、図28(f)に示すようにアクセルペダル反力制御指令値FAは徐々に連続的に増加する。一方、図28(g)に示すように反発力Fcは不連続に変化する。反発力算出用リスクポテンシャルRPfcを制御パターン0に対応する値として算出すると、反発力Fcは、図28(g)に点線で示すように徐々に増加する。
制御パターンが2から1,0へと変化する場合、図29(d)に示すように、反力算出用リスクポテンシャルRPfaは、制御パターン0に対応する値として算出され、先行車が検出されなくなる、あるいは余裕時間TTCが閾値Th0以上となると0まで低下する。図29(e)に示すように、反発力算出用リスクポテンシャルRPfcは、上述した第2の実施の形態と同様に、制御パターン2に対応して0まで低下した後、0を維持する。これにより、図29(f)に示すように、アクセルペダル反力制御指令値FAは、反力算出用リスクポテンシャルRPfaに応じて低下し、0となる。図29(g)に示すように、反発力Fcも反発力算出用リスクポテンシャルRPfcに応じて低下し、アクセルペダル反力制御指令値FAよりも早いタイミングで0となる。反発力算出用リスクポテンシャルRPfcを制御パターン0に対応する値として算出すると、反発力Fcは、図29(g)に点線で示すようにゆっくりと低下する。
このように、以上説明した第3の実施の形態においては、以下のような作用効果を奏することができる。
コントローラ50Aの制御パターン決定部54は、操作反力を制御するための制御パターンを固定とし、制駆動力を制御するための制御パターンを、運転者の運転意図および自車両と障害物との相対位置関係に基づいて選択する。具体的には、アクセルペダル反力制御指令値FAを算出するための反力算出用リスクポテンシャルRPfaを、最も制御作動領域の長い制御パターン0に対応する値として算出し、制駆動力補正量ΔDa,ΔDbを算出するための反発力算出用リスクポテンシャルRPfcを、選択された制御パターンに応じて切り替える。これにより、例えば、運転者が意図的に障害物に接近している場合には、アクセルペダル72からの操作反力としてリスクポテンシャルRPの大きさを運転者に知らせながら、駆動力の低下量が大きくなりすぎないように調整することができるので、運転者のへの情報の伝達と、わずらわしさの低減とを効果的に両立させることができる。
以上説明した第1〜第3の実施の形態では、制御作動領域の短い制御パターン2と、制御作動領域の中程度の制御パターン1と、制御作動領域の長い制御パターン0の3つの制御パターンを設定し、この中から制御パターンを選択した。ただし、これには限定されず、制御パターンを2つ、あるいは4つ以上、設定することも可能である。すなわち、異なる制御作動領域を有する複数の制御パターンを設定することができる。
以上説明した第1〜第3の実施の形態では、制御パターンとして操作反力制御および/または制駆動力制御を行う制御作動領域を設定した。ただし、本明細書では、制御パターンは、制御作動領域を含めて、リスクポテンシャルRPに応じて運転操作機器に発生させる操作反力や自車両の制駆動力をどのように制御するかを示す制御内容(制御形態)を意味する。したがって、第3の実施の形態で説明したようにアクセルペダル反力制御指令値FAを制御パターン0に対応する値に固定し、反発力Fcを制御パターンに応じて調整するという制御内容も、制御パターンに含まれる。
以上説明した第1〜第3の実施の形態においては、制御パターンを決定するために、自車両と前方障害物との余裕時間TTCを用いた。ただし、これには限定されず、例えば自車両と前方障害物との車間時間THW,または車間距離Xを用いて制御パターンを決定することも可能である。車間時間THWは、前方障害物の現在位置に自車両が到達するまでの時間を表し、車間距離Xを自車速Vhで除することによって算出できる。自車両と前方障害物との余裕時間TTC,車間時間THW,および車間距離Xは、自車両と前方障害物との相対位置関係を表しているといえる。
以上説明した第1〜第3の実施の形態では、運転者によるアクセルペダル72の操作状態、具体的にはアクセルペダル操作速度dSに基づいて運転者の加速意図、減速意図または定常意図を推定した。しかし、これには限定されず、例えばアクセルペダル72の操作量SAまたは踏増し量を用いて運転者の運転意図を推定することもできる。また、アクセルペダル72の操作状態、ウィンカの操作状態もしくはステアリング操舵状態から、先行車を追い越そうとする追越意図(車線変更意図)をさらに推定することも可能である。車線変更意図が検出された場合は、加速意図が検出された場合と同様に制御パターンの決定を行う。
上述した第2の実施の形態において、リスクポテンシャルRPに応じたアクセルペダル操作反力制御は行わず、制駆動力制御のみを行うように構成することも可能である。また、制動力制御は行わず、駆動力制御のみを行うこともできる。リスクポテンシャルRPに応じてブレーキペダル92に操作反力を発生させることもできる。アクセルペダル72およびブレーキペダル92は、運転者が運転操作を行う際に操作する運転操作機器である。
以上説明した第1〜第3の実施の形態においては、図7(a)(b)に示すモデルを設定し、前方障害物に圧縮されたときの仮想弾性体300の反発力をリスクポテンシャルRPとして算出した。しかしこれには限定されず、自車両と前方障害物との余裕時間TTCまたは車間時間THWを用いてリスクポテンシャルRPを算出したり、余裕時間TTCと車間時間THWとを組み合わせてリスクポテンシャルRPを算出することもできる。
以上説明した第1から第3の実施の形態においては、レーザレーダ10および車速センサ30が走行状態検出手段として機能し、アクセルペダルストロークセンサ74が操作状態検出手段として機能し、制御パターン決定部54が制御パターン決定手段として機能し、リスクポテンシャル算出部52がリスクポテンシャル算出手段として機能し、アクセルペダル反力算出部55、制駆動力補正量算出部57、アクセルペダル反力制御装置70、駆動力制御装置73、および制動力制御装置93が制御手段として機能することができる。また、意図検出部53が運転意図推定手段として機能することができる。ただし、これらには限定されず、走行状態検出手段として、レーザレーダ10の代わりに例えば別方式のミリ波レーダを用いたり、自車両前方領域の画像を検出するCCDカメラ等の前方カメラを用いることも可能である。なお、以上の説明はあくまで一例であり、発明を解釈する際、上記の実施形態の記載事項と特許請求の範囲の記載事項の対応関係になんら限定も拘束もされない。
本発明の第1の実施の形態による車両用運転操作補助装置のシステム図。 図1に示す車両用運転操作補助装置を搭載した車両の構成図。 コントローラの内部の構成を示すブロック図。 第1の実施の形態における運転操作補助制御プログラムの処理手順を示すフローチャート。 運転者意図検出処理の処理手順を説明するフローチャート。 制御パターン決定処理の処理手順を説明するフローチャート。 (a)(b)自車両のリスクポテンシャルの概念を説明する図。 リスクポテンシャル算出処理の処理手順を説明するフローチャート。 リスクポテンシャルとアクセルペダル反力制御量との関係を示す図。 (a)〜(e)制御パターンが0から1,2へと変化する場合の運転者意図、制御パターン、車間距離、リスクポテンシャルおよび反力制御指令値の時間変化を示す図。 (a)〜(e)制御パターンが2から1,0へと変化する場合の運転者意図、制御パターン、車間距離、リスクポテンシャルおよび反力制御指令値の時間変化を示す図。 本発明の第2の実施の形態による車両用運転操作補助装置のシステム図。 図12に示す車両用運転操作補助装置を搭載した車両の構成図。 駆動力制御の概要を説明する図。 アクセルペダル操作量と要求駆動力との関係を示す図。 制動力制御の概要を説明する図。 ブレーキペダル操作量と要求制動力との関係を示す図。 コントローラの内部の構成を示すブロック図。 第2の実施の形態における運転操作補助制御プログラムの処理手順を示すフローチャート。 リスクポテンシャルと反発力との関係を示す図。 制駆動力補正量算出処理の処理手順を説明するフローチャート。 駆動力補正および制動力補正の特性を説明する図。 (a)〜(f)制御パターンが0から1,2へと変化する場合の運転者意図、制御パターン、車間距離、リスクポテンシャル、反力制御指令値および反発力の時間変化を示す図。 (a)〜(f)制御パターンが2から1,0へと変化する場合の運転者意図、制御パターン、車間距離、リスクポテンシャル、反力制御指令値および反発力の時間変化を示す図。 リスクポテンシャル算出処理の処理手順を説明するフローチャート。 反力算出用リスクポテンシャルと反力制御指令値との関係を示す図。 反発力算出用リスクポテンシャルと反発力との関係を示す図。 (a)〜(g)制御パターンが0から1,2へと変化する場合の運転者意図、制御パターン、車間距離、反力算出用リスクポテンシャル、反発力算出用リスクポテンシャル、反力制御指令値および反発力の時間変化を示す図。 (a)〜(g)制御パターンが2から1,0へと変化する場合の運転者意図、制御パターン、車間距離、反力算出用リスクポテンシャル、反発力算出用リスクポテンシャル、反力制御指令値および反発力の時間変化を示す図。
符号の説明
10:レーザレーダ 30:車速センサ
50,50A:コントローラ 70:アクセルペダル反力制御装置
73:駆動力制御装置 74:アクセルペダルストロークセンサ
93:制動力制御装置 94:ブレーキペダルストロークセンサ

Claims (7)

  1. 少なくとも、自車両前方に存在する障害物と自車両との距離、および自車速を検出する走行状態検出手段と、
    前記走行状態検出手段の検出結果に基づいて、前記自車両と前記障害物との相対位置関係を算出する相対位置算出手段と、
    前記走行状態検出手段の検出結果に基づいて、前記自車両と前記障害物との接近度合を示すリスクポテンシャルを算出するリスクポテンシャル算出手段と、
    前記リスクポテンシャル算出手段によって算出される前記リスクポテンシャルに基づいて、前記アクセルペダルに発生する操作反力および前記自車両に発生する制駆動力を制御する制御手段と、
    運転者によるアクセルペダルの操作状態を検出する操作状態検出手段と、
    前記操作状態検出手段によって検出される前記運転者のアクセルペダル操作状態に基づいて、前記運転者の運転意図として、加速意図、減速意図および定常意図を推定する運転意図推定手段と、
    前記運転意図推定手段によって推定された前記運転意図、および前記自車両と前記障害物との前記相対位置関係に基づいて、複数の異なる制御作動領域の中から前記制御手段において前記操作反力および前記制駆動力を制御するための制御作動領域を決定する制御作動領域決定手段とを備え、
    前記制御作動領域決定手段は、前記操作反力を制御するための制御作動領域を固定とし、前記制駆動力を制御するための制御作動領域を、前記運転意図および前記相対位置関係に基づいて選択し、
    前記リスクポテンシャル算出手段は、前記制御作動領域決定手段によって決定された前記操作反力を制御するための制御作動領域および前記制駆動力を制御するための制御作動領域に従って、前記操作反力算出用のリスクポテンシャルおよび前記制駆動力算出用のリスクポテンシャルをそれぞれ算出することを特徴とする車両用運転操作補助装置。
  2. 請求項1に記載の車両用運転操作補助装置において、
    前記制御作動領域決定手段は、前記運転意図推定手段によって前記加速意図が推定されると、前記制駆動力を制御するための制御作動領域として、現在の制御作動領域よりも短い制御作動領域を選択することを特徴とする車両用運転操作補助装置。
  3. 請求項1または請求項2に記載の車両用運転操作補助装置において、
    前記制御作動領域決定手段は、前記運転意図推定手段によって前記減速意図が推定され、前記自車両と前記障害物とが離れる方向に前記相対位置関係が変化している場合は、前記制駆動力を制御するための制御作動領域として、現在の制御作動領域よりも長い制御作動領域を選択することを特徴とする車両用運転操作補助装置。
  4. 請求項1から請求項3のいずれか1項に記載の車両用運転操作補助装置において、
    前記制御作動領域決定手段は、前記走行状態検出手段によって前記障害物が検出されなくなると、前記制駆動力を制御するための制御作動領域として、最も長い制御作動領域を選択することを特徴とする車両用運転操作補助装置。
  5. 請求項1から請求項4のいずれか1項に記載の車両用運転操作補助装置において、
    前記相対位置算出手段は、前記相対位置関係として、前記自車両と前記障害物との距離および相対速度に基づいて前記自車両と前記障害物との余裕時間を算出し、
    前記制御作動領域は、前記余裕時間の長さとして定義されることを特徴とする車両用運転操作補助装置。
  6. 少なくとも、自車両前方に存在する障害物と自車両との距離、および自車速を検出し、
    少なくとも前記距離および前記自車速に基づいて、前記自車両と前記障害物との相対位置関係を算出し、
    少なくとも前記距離および前記自車速に基づいて、前記自車両と前記障害物との接近度合を示すリスクポテンシャルを算出し、
    前記リスクポテンシャルに基づいて、前記アクセルペダルに発生する操作反力および前記自車両に発生する制駆動力を制御し、
    運転者によるアクセルペダルの操作状態を検出し、
    前記運転者のアクセルペダル操作状態に基づいて、前記運転者の運転意図として、加速意図、減速意図および定常意図を推定し、
    推定された前記運転意図、および前記自車両と前記障害物との前記相対位置関係に基づいて、複数の異なる制御作動領域の中から前記操作反力および前記制駆動力を制御するための制御作動領域を決定し、
    前記操作反力を制御するための制御作動領域を固定とし、前記制駆動力を制御するための制御作動領域を、前記運転意図および前記相対位置関係に基づいて選択し、
    決定された前記操作反力を制御するための制御作動領域および前記制駆動力を制御するための制御作動領域に従って、前記操作反力算出用のリスクポテンシャルおよび前記制駆動力算出用のリスクポテンシャルをそれぞれ算出することを特徴とする車両用運転操作補助方法。
  7. 請求項1から請求項5のいずれか1項に記載の車両用運転操作補助装置を備えることを特徴とする車両。
JP2008126950A 2008-05-14 2008-05-14 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両 Active JP4623136B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126950A JP4623136B2 (ja) 2008-05-14 2008-05-14 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126950A JP4623136B2 (ja) 2008-05-14 2008-05-14 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005205238A Division JP2007022238A (ja) 2005-07-14 2005-07-14 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両

Publications (3)

Publication Number Publication Date
JP2008265752A JP2008265752A (ja) 2008-11-06
JP2008265752A5 JP2008265752A5 (ja) 2010-02-12
JP4623136B2 true JP4623136B2 (ja) 2011-02-02

Family

ID=40045822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126950A Active JP4623136B2 (ja) 2008-05-14 2008-05-14 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両

Country Status (1)

Country Link
JP (1) JP4623136B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189141A (ja) * 2002-12-12 2004-07-08 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備えた車両
JP2005115816A (ja) * 2003-10-10 2005-04-28 Honda Motor Co Ltd 車両制御装置
JP2005180196A (ja) * 2003-12-16 2005-07-07 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189141A (ja) * 2002-12-12 2004-07-08 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備えた車両
JP2005115816A (ja) * 2003-10-10 2005-04-28 Honda Motor Co Ltd 車両制御装置
JP2005180196A (ja) * 2003-12-16 2005-07-07 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両

Also Published As

Publication number Publication date
JP2008265752A (ja) 2008-11-06

Similar Documents

Publication Publication Date Title
JP2007022238A (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4740684B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
US7739022B2 (en) Vehicle driving assist system
JP4020089B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
US7155341B2 (en) System and method for informing vehicle environment
JP2006007926A (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
CN109435948B (zh) 车辆控制装置和控制方法
JP4367319B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4367254B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4055793B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4114682B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4543908B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4055788B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4239809B2 (ja) 車両用運転支援装置
JP4063283B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4742657B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4623136B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4169028B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4422077B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4631931B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP3948398B2 (ja) 車両用運転操作補助装置およびその装置を備える車両
JP4124030B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP7343840B2 (ja) 車両制御装置
JP4740549B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2004249890A (ja) 車両用運転操作補助装置およびその装置を備えた車両

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4623136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3