JP4621621B2 - Charged beam lithography system - Google Patents

Charged beam lithography system Download PDF

Info

Publication number
JP4621621B2
JP4621621B2 JP2006099133A JP2006099133A JP4621621B2 JP 4621621 B2 JP4621621 B2 JP 4621621B2 JP 2006099133 A JP2006099133 A JP 2006099133A JP 2006099133 A JP2006099133 A JP 2006099133A JP 4621621 B2 JP4621621 B2 JP 4621621B2
Authority
JP
Japan
Prior art keywords
charged beam
deflection
deflection electrode
capacitance
electrostatic deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006099133A
Other languages
Japanese (ja)
Other versions
JP2007273838A (en
Inventor
宗博 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006099133A priority Critical patent/JP4621621B2/en
Priority to US11/710,930 priority patent/US7692158B2/en
Publication of JP2007273838A publication Critical patent/JP2007273838A/en
Application granted granted Critical
Publication of JP4621621B2 publication Critical patent/JP4621621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/03Mounting, supporting, spacing or insulating electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1504Associated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/151Electrostatic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)

Description

本発明は、荷電ビームを用いてLSIパターンを描画する荷電ビーム描画装置に係わり、特に静電偏向器の改良をはかった荷電ビーム描画装置に関する。   The present invention relates to a charged beam drawing apparatus for drawing an LSI pattern using a charged beam, and more particularly to a charged beam drawing apparatus in which an electrostatic deflector is improved.

電子ビーム描画装置においては、ブランキング偏向器,成形偏向器,及び対物偏向器などの各種の静電偏向器が用いられている。静電偏向器は、複数の偏向電極を有し、各々の電極に偏向アンプで発生させた電位を与えて、電極間に生ずる電場により電子ビームを偏向するものである。   In the electron beam drawing apparatus, various electrostatic deflectors such as a blanking deflector, a shaping deflector, and an objective deflector are used. The electrostatic deflector has a plurality of deflection electrodes, applies a potential generated by a deflection amplifier to each electrode, and deflects an electron beam by an electric field generated between the electrodes.

偏向アンプの出力端には同軸ケーブルの一端が接続され、同軸ケーブルの他端は静電偏向器の偏向電極に接続されている。通常、静電偏向器の偏向電極は電気的には同軸ケーブルとのみ接続されているから、等価回路的には同軸ケーブルの先に容量負荷が付いたものと考えられる。このため、偏向アンプから入力した信号は偏向電極でほぼ全反射し、入力信号が同軸ケーブルの長さに応じた一定時間遅れで、偏向アンプに戻ってくることになる。このような状態では、偏向アンプの高速での動作は難しい。   One end of a coaxial cable is connected to the output end of the deflection amplifier, and the other end of the coaxial cable is connected to a deflection electrode of the electrostatic deflector. Usually, since the deflection electrode of the electrostatic deflector is electrically connected only to the coaxial cable, it is considered that a capacitive load is attached to the tip of the coaxial cable in terms of an equivalent circuit. For this reason, the signal input from the deflection amplifier is almost totally reflected by the deflection electrode, and the input signal returns to the deflection amplifier with a certain time delay corresponding to the length of the coaxial cable. In such a state, it is difficult to operate the deflection amplifier at high speed.

一方で、偏向電極を同軸ケーブルの特性インピーダンスと等しい抵抗を介して接地側と接続することで、偏向電極での信号の反射を抑えて、高速動作を行うことが可能である(例えば、特許文献1参照)。しかし、この場合は電圧が一定の状態でも抵抗に流れる電流があるため、偏向アンプへの負荷が大きくなってしまい、駆動電圧を高くすることが難しい。例えば、終端抵抗に50Ωを用い、且つ50Vの電圧を加えることを考えると、終端抵抗では最大では定常的に1Aの電流が流れることになり、アンプ,ケーブル,終端抵抗への負担が大きく現実的ではない。
特開平11−150055号公報
On the other hand, by connecting the deflection electrode to the ground side through a resistance equal to the characteristic impedance of the coaxial cable, it is possible to perform high-speed operation while suppressing the reflection of the signal at the deflection electrode (for example, Patent Documents). 1). However, in this case, since there is a current flowing through the resistor even when the voltage is constant, the load on the deflection amplifier becomes large and it is difficult to increase the drive voltage. For example, considering that 50Ω is used for the termination resistor and a voltage of 50V is applied, the termination resistor has a maximum current of 1A flowing at the maximum, which is a realistic burden on the amplifier, cable, and termination resistor. is not.
Japanese Patent Laid-Open No. 11-150055

このように、従来の電子ビーム描画装置においては、偏向アンプに対する負荷を増大させることなく、静電偏向器の高速高電圧動作を実現することは困難であった。また、上記の問題は電子ビーム描画装置に限らずイオンビーム描画装置についても同様に言えることである。   As described above, in the conventional electron beam drawing apparatus, it is difficult to realize the high-speed and high-voltage operation of the electrostatic deflector without increasing the load on the deflection amplifier. The above-mentioned problem can be similarly applied not only to the electron beam drawing apparatus but also to the ion beam drawing apparatus.

本発明は、上記事情を考慮してなされたもので、その目的とするところは、偏向アンプに対する負荷の増大を招くことなく、静電偏向器の高速高電圧動作を実現することができ、これによって描画速度の向上をはかり得る荷電ビーム描画装置を提供することにある。   The present invention has been made in consideration of the above circumstances, and the object of the present invention is to realize high-speed and high-voltage operation of an electrostatic deflector without causing an increase in load on the deflection amplifier. It is an object of the present invention to provide a charged beam drawing apparatus capable of improving the drawing speed.

上記課題を解決するために本発明は、次のような構成を採用している。   In order to solve the above problems, the present invention adopts the following configuration.

即ち、本発明の一態様は、荷電ビーム源から発生された荷電ビームを試料上の所望の位置に照射することでパターンを描画する荷電ビーム描画装置であって、前記荷電ビーム源よりも下流側に荷電ビームを電場によって偏向するための静電偏向器が設けられており、該静電偏向器の偏向電極と接地面との間は直流的には絶縁され、該静電偏向器の偏向電極と接地面との間に静電容量と電気抵抗が直列に配置されていることを特徴とする。   That is, one embodiment of the present invention is a charged beam drawing apparatus that draws a pattern by irradiating a charged beam generated from a charged beam source to a desired position on a sample, and is downstream of the charged beam source. Is provided with an electrostatic deflector for deflecting a charged beam by an electric field, and the deflection electrode of the electrostatic deflector and the ground plane are insulated in a direct current manner, and the deflection electrode of the electrostatic deflector A capacitance and an electric resistance are arranged in series between the ground and the ground plane.

また、本発明の別の一態様は、荷電ビーム源から発生された荷電ビームを静電偏向器により偏向し、試料上の所望の位置に荷電ビームを照射することでパターンを描画する荷電ビーム描画装置であって、前記静電偏向器は、前記荷電ビームの光学軸を中心に点対称に配置された複数の偏向電極と、前記光学軸と同軸的に配置され、前記偏向電極を囲むように設けられた接地外筒と、前記接地外筒の内側表面に設けられた抵抗膜と、前記抵抗膜の表面に設けられた導電膜とを具備し、前記偏向電極と導電膜との間に静電容量が形成され、前記接地導体と導電膜との間に電気抵抗が形成されることを特徴とする。   Another embodiment of the present invention is a charged beam drawing in which a charged beam generated from a charged beam source is deflected by an electrostatic deflector and a pattern is drawn by irradiating the charged beam on a desired position on the sample. The electrostatic deflector includes a plurality of deflection electrodes arranged symmetrically with respect to the optical axis of the charged beam, and is arranged coaxially with the optical axis so as to surround the deflection electrode. A grounding outer cylinder provided; a resistance film provided on an inner surface of the grounding outer cylinder; and a conductive film provided on a surface of the resistance film, wherein a static electricity is provided between the deflection electrode and the conductive film. A capacitance is formed, and an electrical resistance is formed between the ground conductor and the conductive film.

また、本発明の更に別の一態様は、電子銃から発生された電子ビームを静電偏向器により偏向し、試料上の所望の位置に電子ビームを照射することでパターンを描画する荷電ビーム描画装置であって、前記静電偏向器は、前記電子ビームの光学軸を中心に点対称に配置された複数の偏向電極と、前記光学軸と同軸的に配置され、前記偏向電極を囲むように設けられた接地外筒と、前記接地外筒の内側表面に前記偏向電極に対向するようにそれぞれ設けられた抵抗膜と、前記抵抗膜の表面にそれぞれ設けられた導電膜と、前記導電膜と前記偏向電極との間にそれぞれ挿入され、前記偏向電極を機械的に支持する高誘電体膜とを具備し、前記偏向電極と導電膜との間に前記高誘電体膜による静電容量が形成され、前記接地導体と導電膜との間に前記抵抗膜による電気抵抗が形成されることを特徴とする。   According to still another aspect of the present invention, charged beam drawing is performed by drawing a pattern by deflecting an electron beam generated from an electron gun by an electrostatic deflector and irradiating the sample with a desired position on the sample. The electrostatic deflector includes a plurality of deflection electrodes arranged symmetrically with respect to the optical axis of the electron beam, and is arranged coaxially with the optical axis so as to surround the deflection electrode. A grounding outer cylinder provided; a resistance film provided on an inner surface of the grounding outer cylinder so as to face the deflection electrode; a conductive film provided on a surface of the resistance film; and the conductive film; A high dielectric film inserted between the deflection electrode and mechanically supporting the deflection electrode, and an electrostatic capacitance is formed between the deflection electrode and the conductive film by the high dielectric film. Between the ground conductor and the conductive film Wherein the electrical resistance is formed by the resistance film.

本発明によれば、偏向電極と接地面又は接地外筒との間に静電容量と電気抵抗を直列に挿入することにより、偏向アンプに対する負荷の増大を招くことなく、静電偏向器の高速高電圧動作を実現することができ、これにより描画速度の向上をはかることができる。   According to the present invention, by inserting an electrostatic capacitance and an electrical resistance in series between the deflection electrode and the ground plane or the outer shell, the electrostatic deflector can be operated at high speed without increasing the load on the deflection amplifier. High voltage operation can be realized, and thereby the drawing speed can be improved.

以下、本発明の詳細を図示の実施形態によって説明する。   The details of the present invention will be described below with reference to the illustrated embodiments.

(第1の実施形態)
図1は、本発明の第1の実施形態に係わる電子ビーム描画装置を示す概略構成図である。
(First embodiment)
FIG. 1 is a schematic configuration diagram showing an electron beam drawing apparatus according to the first embodiment of the present invention.

図中の11は電子ビームを発生する電子銃(荷電ビーム源)、12,13はコンデンサレンズ、14は投影レンズ、15は縮小レンズ、16は対物レンズ、21は第1成形アパーチャ、22は第2成形アパーチャ、31はビームをオン・オフするためのブランキング偏向器,32はビームの寸法及び形状を可変するための成形偏向器、33はビームを試料面上で走査するための対物偏向器、41はマスクやウェハ等の試料、42は試料ステージを示している。なお、図には示さないが、電子銃11、各種レンズ12〜16、アパーチャ21,22、各種偏向器31〜33は電子光学鏡筒内に収容されている。   In the figure, 11 is an electron gun (charged beam source) that generates an electron beam, 12 and 13 are condenser lenses, 14 is a projection lens, 15 is a reduction lens, 16 is an objective lens, 21 is a first shaping aperture, and 22 is a first lens. 2 shaping apertures, 31 a blanking deflector for turning on and off the beam, 32 a shaping deflector for changing the size and shape of the beam, and 33 an objective deflector for scanning the beam on the sample surface , 41 indicates a sample such as a mask or a wafer, and 42 indicates a sample stage. Although not shown in the figure, the electron gun 11, the various lenses 12 to 16, the apertures 21 and 22, and the various deflectors 31 to 33 are accommodated in an electron optical column.

加速電圧50kVで電子銃11から放出された電子ビームは、クロスオーバ像が成形偏向器32の偏向不動点に一致するように励磁されたコンデンサレンズ12,13により集束され、第1成形アパーチャ21に照射される。第1成形アパーチャ21には矩形の開口が設けてあり、この開口を透過した電子ビームは矩形断面形状を有する。この第1成形アパーチャ21で矩形に成形された電子ビームは、次に第1成形アパーチャ21の像が第2成形アパーチャ22上に結像するように励磁された投影レンズ14により集束され、第2成形アパーチャ22に照射される。   The electron beam emitted from the electron gun 11 at the acceleration voltage of 50 kV is focused by the condenser lenses 12 and 13 excited so that the crossover image coincides with the deflection fixed point of the shaping deflector 32, and is focused on the first shaping aperture 21. Irradiated. The first shaping aperture 21 is provided with a rectangular opening, and the electron beam transmitted through the opening has a rectangular cross-sectional shape. The electron beam shaped into a rectangle by the first shaping aperture 21 is then focused by the projection lens 14 excited so that an image of the first shaping aperture 21 is formed on the second shaping aperture 22, and the second The molding aperture 22 is irradiated.

ここで、成形偏向器32により第2成形アパーチャ22上のビーム照射位置を変更することができる。第2成形アパーチャ22上には、様々な形状の開口が設けてあり、第2成形アパーチャ22の所望の位置にビームを透過させることにより、所望の断面形状を有する電子ビームを得ることができる。   Here, the beam irradiation position on the second shaping aperture 22 can be changed by the shaping deflector 32. Various shapes of openings are provided on the second shaping aperture 22, and an electron beam having a desired cross-sectional shape can be obtained by transmitting the beam to a desired position of the second shaping aperture 22.

第2成形アパーチャ22を透過した電子ビームは、縮小レンズ15と対物レンズ16により集束されて、ステージ42上に載置された試料41の表面に達する。このとき、電子ビームは対物偏向器33により偏向されて、試料41上の所望の位置に到達する。   The electron beam that has passed through the second shaping aperture 22 is focused by the reduction lens 15 and the objective lens 16 and reaches the surface of the sample 41 placed on the stage 42. At this time, the electron beam is deflected by the objective deflector 33 and reaches a desired position on the sample 41.

ここで、偏向器31,32,33には、複数の偏向電極から構成された静電偏向器が使用されている。これらは、偏向電極に偏向アンプで発生させた電位を与えて、各々の電極間に生じる電場により電子ビームを偏向するものである。   Here, as the deflectors 31, 32, and 33, electrostatic deflectors composed of a plurality of deflection electrodes are used. In these methods, a potential generated by a deflection amplifier is applied to a deflection electrode, and an electron beam is deflected by an electric field generated between the electrodes.

図2及び図3は、本実施形態に用いた成形偏向器32の具体的構成を示す図である。図2は、成形偏向器32をビーム進行方向と垂直に切断した断面であり、図3は成形偏向器32をビーム進行方向に沿って切断した断面である。例として、偏向電極の数は4としている。ここでは、静電偏向器として成形偏向器32の例を説明するが、対物偏向器33も同様に構成することが可能である。   2 and 3 are diagrams illustrating a specific configuration of the shaping deflector 32 used in the present embodiment. FIG. 2 is a cross section obtained by cutting the shaping deflector 32 perpendicular to the beam traveling direction, and FIG. 3 is a cross section obtained by cutting the shaping deflector 32 along the beam traveling direction. As an example, the number of deflection electrodes is four. Here, an example of the shaping deflector 32 will be described as an electrostatic deflector, but the objective deflector 33 can be similarly configured.

成形偏向器32は、4個の偏向電極51(51a,51b,51c,51d)で構成されている。即ち、偏向電極51a,51cがビーム軸を挟んで対向配置され、これらの偏向電極間に例えばx方向の偏向電圧が印加される。偏向電極51b,51dがビーム軸を挟んで対向配置され、これらの偏向電極間に例えばy方向の偏向電圧が印加されるものとなっている。   The shaping deflector 32 includes four deflection electrodes 51 (51a, 51b, 51c, 51d). That is, the deflection electrodes 51a and 51c are arranged opposite to each other with the beam axis interposed therebetween, and a deflection voltage in the x direction, for example, is applied between these deflection electrodes. The deflection electrodes 51b and 51d are arranged opposite to each other with the beam axis interposed therebetween, and a deflection voltage in the y direction, for example, is applied between these deflection electrodes.

光軸と同軸的に配置された接地外筒52内に、4つの偏向電極51が同心円状に配置されている。各々の偏向電極51は板体からなり、ビーム軸を中心とする同心円に沿って湾曲している。即ち、ビーム軸と直交する方向の断面が円弧状に形成されている。そして、偏向電極51の互いに隣接する部分は薄くなっており、これにより隣接する偏向電極間の容量が小さくなっている。各々の偏向電極51と接地外筒52との間には、抵抗体53(53a,53b,53c,53d)がそれぞれ配置されている。抵抗体53は、例えば炭化珪素の膜である。   Four deflection electrodes 51 are arranged concentrically in a grounded outer cylinder 52 arranged coaxially with the optical axis. Each deflection electrode 51 is formed of a plate and is curved along a concentric circle centered on the beam axis. That is, the cross section in the direction orthogonal to the beam axis is formed in an arc shape. The portions of the deflection electrode 51 that are adjacent to each other are thinned, thereby reducing the capacitance between the adjacent deflection electrodes. Resistors 53 (53a, 53b, 53c, 53d) are respectively disposed between the respective deflection electrodes 51 and the grounded outer cylinder 52. The resistor 53 is, for example, a silicon carbide film.

偏向アンプ54は4個の偏向電極51のそれぞれに同軸ケーブル55により接続されているが、図2では一つの接続のみ、図3では2つの接続のみを示している。同軸ケーブル55の特性インピーダンスZcは50Ωとして説明する。Zcとしては75Ω、或いは更に高い値のケーブルを使うことも可能である。本図は模式的なものであり、実際の構造及び寸法を再現していない。   The deflection amplifier 54 is connected to each of the four deflection electrodes 51 by a coaxial cable 55. FIG. 2 shows only one connection and FIG. 3 shows only two connections. The description will be made assuming that the characteristic impedance Zc of the coaxial cable 55 is 50Ω. It is also possible to use a cable with a value of 75Ω or higher as Zc. This figure is schematic and does not reproduce the actual structure and dimensions.

成形偏向器32は内側から、偏向電極51、空間、抵抗体53、接地外筒52と構成されている。従って、偏向電極51と接地外筒53との間には、静電容量と電気抵抗が直列に接続されたものとなり、等価回路は図4に示す通りである。   The shaping deflector 32 includes a deflection electrode 51, a space, a resistor 53, and a grounding outer cylinder 52 from the inside. Therefore, an electrostatic capacity and an electric resistance are connected in series between the deflection electrode 51 and the grounded outer cylinder 53, and an equivalent circuit is as shown in FIG.

抵抗体53は偏向電極51の数だけ分割されていることが望ましいが、特性の低下を許容できる場合は、図5に示すように一体構造でも良い。偏向電極51と抵抗体53は電気的に絶縁されている。この絶縁構造を保つために、実際は電極構造に比べて十分小さい絶縁物で抵抗体53から絶縁されている。厳密には絶縁物でつないでいる場合でも偏向電極51と抵抗体53との間の抵抗値は有限である。しかしながら、抵抗体53の抵抗よりも十分大きな値であれば絶縁物と見做すことができる。例えば通常1MΩ以上あれば十分である。なお、図2では省略しているが、抵抗体53と偏向電極51との間の一部に、偏向電極51を機械的に保持するための絶縁体56が設けられている。そして、抵抗体53の内側表面には、例えば銅のような良導電体57がコーティングされている。   The resistors 53 are desirably divided by the number of the deflection electrodes 51. However, when the deterioration of the characteristics can be allowed, an integrated structure may be used as shown in FIG. The deflection electrode 51 and the resistor 53 are electrically insulated. In order to maintain this insulation structure, the insulation body 53 is actually insulated from the resistor 53 with an insulator sufficiently smaller than the electrode structure. Strictly speaking, the resistance value between the deflection electrode 51 and the resistor 53 is finite even when they are connected by an insulator. However, if the value is sufficiently larger than the resistance of the resistor 53, it can be regarded as an insulator. For example, 1 MΩ or more is usually sufficient. Although omitted in FIG. 2, an insulator 56 for mechanically holding the deflection electrode 51 is provided in a part between the resistor 53 and the deflection electrode 51. The inner surface of the resistor 53 is coated with a good conductor 57 such as copper.

この構造において、接地外筒52と抵抗体53の内側導体57との間の抵抗値Rを同軸ケーブル55の特性インピーダンスZcとほぼ等しい値とする。この例では50Ωとなるように決めている。偏向電極51の光軸方向の長さLは120mmとし、4つの偏向電極からなる円筒の外径2rを20mmとする。さらに、偏向電極51と抵抗体53の内側導体面との距離を0.6mmとする。この場合の静電容量Cは、真空中の誘電率をε0とすると近似的には
C〜ε0×2π×r×L/4d〜28pF
となる。この値は、隣接する偏向電極間の電極間容量よりも十分に大きいものである。
In this structure, the resistance value R between the grounding outer cylinder 52 and the inner conductor 57 of the resistor 53 is set to a value substantially equal to the characteristic impedance Zc of the coaxial cable 55. In this example, it is determined to be 50Ω. The length L in the optical axis direction of the deflection electrode 51 is 120 mm, and the outer diameter 2r of the cylinder formed of the four deflection electrodes is 20 mm. Further, the distance between the deflection electrode 51 and the inner conductor surface of the resistor 53 is set to 0.6 mm. The capacitance C in this case is approximately C to ε0 × 2π × r × L / 4d to 28 pF when the dielectric constant in vacuum is ε0.
It becomes. This value is sufficiently larger than the interelectrode capacitance between adjacent deflection electrodes.

このとき、抵抗体53の内側導体57と接地外筒52との間の抵抗値Rを50Ωとすると、この偏向電極51の外部から見た時の時定数は約1.4nsとなる。1.4nsという時定数は通常の偏向アンプのビーム静定時間よりも短いものであり、従ってこの時定数により応答遅れが生じることもない。抵抗体53と偏向電極51との間の絶縁体56は静電容量を大きくするように働くので、実際は偏向電極51の外径をもう少し小さくして容量が上記値に比べて大きくならないようにすることが望ましい。   At this time, if the resistance value R between the inner conductor 57 of the resistor 53 and the grounded outer cylinder 52 is 50Ω, the time constant when viewed from the outside of the deflection electrode 51 is about 1.4 ns. The time constant of 1.4 ns is shorter than the beam stabilization time of a normal deflection amplifier, and therefore there is no response delay due to this time constant. Since the insulator 56 between the resistor 53 and the deflection electrode 51 works to increase the capacitance, the outer diameter of the deflection electrode 51 is actually made slightly smaller so that the capacitance does not become larger than the above value. It is desirable.

今、抵抗体53として、抵抗率105 Ωcmの炭化珪素を用いるとすると、内径21.2mmとして、厚さを2mmにすれば、ビーム軸と直交する方向の抵抗値をほぼ50Ωとすることができる。抵抗体53は接地外筒52に接触抵抗をできる限り小さくするように密着して固定されている。偏向電極51への電圧の印加のために、接地外筒52及び抵抗体53には適当な孔があけられており、それを通して、同軸ケーブル55の芯線と偏向電極51とが接続される。偏向電極51の円周角方向の端部の厚さを1mmとすると、隣り合う電極との間隔を1mmとした場合に隣の電極との間の相互容量は約1pFであり、偏向電極51と抵抗体53との間の容量よりも十分小さくできる。 If silicon carbide having a resistivity of 10 5 Ωcm is used as the resistor 53, if the inner diameter is 21.2 mm and the thickness is 2 mm, the resistance value in the direction perpendicular to the beam axis may be approximately 50 Ω. it can. The resistor 53 is fixed in close contact with the grounding outer cylinder 52 so as to make the contact resistance as small as possible. In order to apply a voltage to the deflection electrode 51, appropriate holes are formed in the grounding outer cylinder 52 and the resistor 53, and the core wire of the coaxial cable 55 and the deflection electrode 51 are connected through the hole. If the thickness of the end portion in the circumferential angle direction of the deflection electrode 51 is 1 mm, the mutual capacitance between the adjacent electrodes is about 1 pF when the interval between the adjacent electrodes is 1 mm. The capacitance between the resistor 53 and the resistor 53 can be made sufficiently smaller.

図6は、上記のように構成にしたときの成形偏向器32の電気的特性を概念的に示す図である。図6(a)に示すように、比較的低周波数領域、例えば1MHzでは成形偏向器32の複素インピーダンスZLの絶対値は|−i/(Cω)+R|=5.7kΩとなり、振幅50Vの正弦波電圧に対して電流は振幅で10mA程度に抑えられる。一方、図6(b)に示すように、比較的高周波数領域、例えば1GHzでは、ほぼ50Ωとなり、成形偏向器32での電圧反射率は0.06以下と小さい。つまり、高周波領域では反射は殆ど無い状態にすることが可能となる。時定数を1.4nsとすると、0ボルトからVボルトへのステップ入力に対して、0ボルトから(1−1万分の1)Vボルトになるまでの時間はおよそ13nsである。即ち、電圧の非常に速い立ち上がりが可能となる。   FIG. 6 is a diagram conceptually showing the electrical characteristics of the shaping deflector 32 when configured as described above. As shown in FIG. 6A, in a relatively low frequency region, for example, 1 MHz, the absolute value of the complex impedance ZL of the shaping deflector 32 is | −i / (Cω) + R | = 5.7 kΩ and a sine with an amplitude of 50V. The current is suppressed to about 10 mA in amplitude with respect to the wave voltage. On the other hand, as shown in FIG. 6B, in a relatively high frequency region, for example, 1 GHz, it is almost 50Ω, and the voltage reflectivity at the shaping deflector 32 is as small as 0.06 or less. That is, it is possible to make almost no reflection in the high frequency region. Assuming that the time constant is 1.4 ns, the time from 0 volt to (1-110,000) V volt is about 13 ns with respect to the step input from 0 volt to V volt. That is, the voltage can rise very quickly.

このように本実施形態によれば、成形偏向器32の偏向電極51を抵抗体53からなる電気抵抗と静電容量を介して接地外筒52と接続し、且つ抵抗体53の抵抗値を偏向電極51に電圧を加えるために接続された同軸ケーブル55の特性インピーダンスとほぼ等しい値にすることで、直流的には接地面から絶縁された状態を保ったまま、高周波領域ではインピーダンス整合が取れた状態に近くして信号の反射を抑えることができる。これにより、成形偏向器32を駆動する偏向アンプ54に対しては高周波領域で反射波の影響が小さくなり、成形偏向器32の高速高電圧での動作が可能となる。即ち、偏向アンプ54に対する負荷の増大を招くことなく、成形偏向器32の高速高電圧動作を実現することができ、これによって描画速度の向上をはかることが可能となる。   As described above, according to the present embodiment, the deflection electrode 51 of the shaping deflector 32 is connected to the grounded outer cylinder 52 via the electric resistance and capacitance formed of the resistor 53, and the resistance value of the resistor 53 is deflected. By making the value approximately equal to the characteristic impedance of the coaxial cable 55 connected to apply a voltage to the electrode 51, impedance matching can be achieved in the high frequency region while maintaining a state in which the direct current is insulated from the ground plane. Signal reflection can be suppressed by approaching the state. As a result, the influence of the reflected wave is reduced in the high frequency region for the deflection amplifier 54 that drives the shaping deflector 32, and the shaping deflector 32 can be operated at a high speed and a high voltage. That is, it is possible to realize a high-speed and high-voltage operation of the shaping deflector 32 without causing an increase in load on the deflection amplifier 54, thereby making it possible to improve the drawing speed.

(第2の実施形態)
図7は、本発明の第2の実施形態に係わる電子ビーム描画装置に用いた成形偏向器の例を示す図である。なお、図2と同一部分には同一符号を付して、その詳しい説明は省略する。
(Second Embodiment)
FIG. 7 is a view showing an example of a shaping deflector used in an electron beam drawing apparatus according to the second embodiment of the present invention. The same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態が先に説明した第1の実施形態と異なる点は、成形偏向器32の各偏向電極51と抵抗体53との間に、絶縁物である高誘電体71(71a〜71d)を挿入したことにある。高誘電体71としては、例えばアルミナを用いることができる。ここで、厳密には高誘電体の抵抗は有限であるが、抵抗体53の抵抗よりも十分抵抗が大きいので絶縁物と見做せる。高誘電体71を設けることにより、抵抗体53と偏向電極51とが同じ距離であれば容量を大きくでき、同じ容量であれば抵抗体53と偏向電極51との距離を長くすることができる。   This embodiment is different from the first embodiment described above in that a high dielectric 71 (71a to 71d) that is an insulator is provided between each deflection electrode 51 and the resistor 53 of the shaping deflector 32. It is in having inserted. As the high dielectric 71, for example, alumina can be used. Strictly speaking, although the resistance of the high dielectric is finite, it can be regarded as an insulator because the resistance is sufficiently larger than the resistance of the resistor 53. By providing the high dielectric 71, the capacitance can be increased if the resistor 53 and the deflection electrode 51 are the same distance, and the distance between the resistor 53 and the deflection electrode 51 can be increased if the capacitance is the same.

このような構成であれば、先の第1の実施形態と同様の効果が得られるのは勿論のこと、偏向電極51と抵抗体53との間隔を図2の例よりも広くすることができるので、機械加工や組み立てが容易となる利点がある。   With such a configuration, the same effect as that of the first embodiment can be obtained, and the distance between the deflection electrode 51 and the resistor 53 can be made wider than the example of FIG. Therefore, there is an advantage that machining and assembly are easy.

(第3の実施形態)
図8は、本発明の第3の実施形態に係わる電子ビーム描画装置に用いた成形偏向器の例を示す図である。なお、図2と同一部分には同一符号を付して、その詳しい説明は省略する。
(Third embodiment)
FIG. 8 is a diagram showing an example of a shaping deflector used in an electron beam drawing apparatus according to the third embodiment of the present invention. The same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態が先に説明した第1の実施形態と異なる点は、成形偏向器32の各偏向電極51と抵抗体53との間に誘電体81(81a〜81d)を挿入し、更に誘電体81及び抵抗体53を板状ではなく一体化した棒状(直方体)にしたことにある。そして、抵抗体53及び誘電体81は一体となって偏向電極51を支持している。   This embodiment is different from the first embodiment described above in that a dielectric 81 (81a to 81d) is inserted between each deflection electrode 51 of the shaping deflector 32 and the resistor 53, and further a dielectric. 81 and the resistor 53 are not formed in a plate shape but in an integrated rod shape (cuboid). The resistor 53 and the dielectric 81 integrally support the deflection electrode 51.

本実施形態の場合も抵抗体53の抵抗値Rは50Ωとなるように材料、形状を決める。例えば断面が一辺の長さが2cmの正方形で、内部に1辺の長さ1cmの正方形の孔の開いたパイプ状材料で、抵抗率を100Ωcmとすると、抵抗体53の必要な長さは1.5cmとなる。そして、直方体材料と誘電体材料の穴に絶縁物材料で形成されたネジを通して、偏向電極51を接地外筒52に固定することができる。   Also in this embodiment, the material and shape are determined so that the resistance value R of the resistor 53 is 50Ω. For example, if the cross-section is a square with a side of 2 cm and a hole with a square hole with a side of 1 cm inside, and the resistivity is 100 Ωcm, the required length of the resistor 53 is 1 .5cm. Then, the deflection electrode 51 can be fixed to the grounding outer cylinder 52 through a screw formed of an insulating material in a hole of the rectangular parallelepiped material and the dielectric material.

このような構成であれば、先の第1の実施形態と同様の効果が得られるのは勿論のこと、誘電体81及び抵抗体53の穴を通して偏向電極51を接地外筒52にネジ止めするだけで構成することが可能となり、機械加工や組み立てが更に容易となる利点がある。   With such a configuration, the same effect as in the first embodiment can be obtained, and the deflection electrode 51 is screwed to the grounding outer cylinder 52 through the holes of the dielectric 81 and the resistor 53. Therefore, there is an advantage that machining and assembly are further facilitated.

(変形例)
なお、本発明は上述した各実施形態に限定されるものではない。実施形態では、偏向電極をビーム軸を中心とする円弧に沿った形状としたが、必ずしも偏向電極は円弧状である必要はなく、平板状の電極としても良い。また、偏向電極の数は4個に何ら限定されるものではなく、2個や8個の偏向電極としても良い。
(Modification)
The present invention is not limited to the above-described embodiments. In the embodiment, the deflection electrode has a shape along an arc centered on the beam axis. However, the deflection electrode does not necessarily have an arc shape, and may be a flat electrode. Further, the number of deflection electrodes is not limited to four, and may be two or eight deflection electrodes.

また、本実施形態では光学鏡筒内に接地外筒を設けたが、この接地外筒は省略することも可能である。この場合、電子光学鏡筒自体を接地面として用いればよい。また、実施形態では、電子ビーム描画装置を例に取り説明したが、ビームを静電的に偏向するイオンビーム描画装置にも同様に適用できるのは勿論のことである。その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。   In the present embodiment, the grounding outer cylinder is provided in the optical barrel, but the grounding outer cylinder may be omitted. In this case, the electron optical column itself may be used as the ground plane. In the embodiments, the electron beam drawing apparatus has been described as an example. However, it is needless to say that the present invention can be similarly applied to an ion beam drawing apparatus that electrostatically deflects a beam. In addition, various modifications can be made without departing from the scope of the present invention.

第1の実施形態に係わる電子ビーム描画装置を示す概略構成図。1 is a schematic configuration diagram showing an electron beam drawing apparatus according to a first embodiment. 第1の実施形態に用いた成形偏向器を光軸方向と直交する方向に切断して示す断面図。Sectional drawing which cut | disconnects and shows the shaping | molding deflector used for 1st Embodiment in the direction orthogonal to an optical axis direction. 第1の実施形態に用いた成形偏向器を光軸方向に沿って切断して示す断面図。Sectional drawing which cut | disconnects and shows the shaping | molding deflector used for 1st Embodiment along an optical axis direction. 第1の実施形態の偏向器と偏向アンプとの接続状態を示す等価回路図。The equivalent circuit diagram which shows the connection state of the deflector and deflection | deviation amplifier of 1st Embodiment. 第1の実施形態の変形例を示す断面図。Sectional drawing which shows the modification of 1st Embodiment. 第1の実施形態の作用を説明するためのもので、低周波領域と高周波領域でのインピーダンスの変化を示す模式図。The schematic diagram for demonstrating the change of the impedance in a low frequency area | region and a high frequency area | region for demonstrating the effect | action of 1st Embodiment. 第2の実施形態に用いた成形偏向器を光軸方向と直交する方向に切断して示す断面図。Sectional drawing which cut | disconnects and shows the shaping | molding deflector used for 2nd Embodiment in the direction orthogonal to an optical axis direction. 第3の実施形態に用いた成形偏向器を光軸方向と直交する方向に切断して示す断面図。Sectional drawing which cut | disconnects and shows the shaping | molding deflector used for 3rd Embodiment in the direction orthogonal to an optical axis direction.

符号の説明Explanation of symbols

11…電子銃(荷電ビーム源)
12,13…コンデンサレンズ
14…投影レンズ
15…縮小レンズ
15…対物レンズ
21…第1成形アパーチャ
22…第2成形アパーチャ
31…ブランキング偏向器
32…成形偏向器
33…対物偏向器
41…試料
42…ステージ
51(51a〜51d)…偏向電極
52…接地外筒
53(53a〜53d)…抵抗体
54…偏向アンプ
55…同軸ケーブル
56…絶縁体
57…内部導体
71(71a〜71d)…高誘電体
81(81a〜81d)…誘電体
11 ... electron gun (charged beam source)
DESCRIPTION OF SYMBOLS 12, 13 ... Condenser lens 14 ... Projection lens 15 ... Reduction lens 15 ... Objective lens 21 ... 1st shaping | molding aperture 22 ... 2nd shaping | molding aperture 31 ... Blanking deflector 32 ... Molding deflector 33 ... Objective deflector 41 ... Sample 42 ... Stage 51 (51a to 51d) ... Deflection electrode 52 ... Grounding outer cylinder 53 (53a to 53d) ... Resistor 54 ... Deflection amplifier 55 ... Coaxial cable 56 ... Insulator 57 ... Internal conductor 71 (71a to 71d) ... High dielectric Body 81 (81a-81d) ... dielectric

Claims (7)

荷電ビーム源から発生された荷電ビームを試料上の所望の位置に照射することでパターンを描画する荷電ビーム描画装置であって、
前記荷電ビーム源よりも下流側に荷電ビームを電場によって偏向するための静電偏向器が設けられており、該静電偏向器の偏向電極と接地面との間は直流的には絶縁され、該静電偏向器の偏向電極と接地面との間に静電容量と電気抵抗が直列に配置されていることを特徴とする荷電ビーム描画装置。
A charged beam drawing apparatus for drawing a pattern by irradiating a desired position on a sample with a charged beam generated from a charged beam source,
An electrostatic deflector for deflecting the charged beam by an electric field is provided downstream of the charged beam source, and the deflection electrode of the electrostatic deflector and the ground plane are insulated in a direct current manner. A charged beam drawing apparatus, wherein a capacitance and an electric resistance are arranged in series between a deflection electrode of the electrostatic deflector and a ground plane.
荷電ビーム源から発生された荷電ビームを静電偏向器により偏向し、試料上の所望の位置に荷電ビームを照射することでパターンを描画する荷電ビーム描画装置であって、
前記静電偏向器は、前記荷電ビームの光学軸を中心に点対称に配置された複数の偏向電極と、前記光学軸と同軸的に配置され、前記偏向電極を囲むように設けられた接地外筒と、前記接地外筒の内側表面に設けられた抵抗膜と、前記抵抗膜の表面に設けられた導電膜とを具備し、
前記偏向電極と導電膜との間に静電容量が形成され、前記接地導体と導電膜との間に前記抵抗膜からなる電気抵抗が形成されることを特徴とする荷電ビーム描画装置。
A charged beam drawing apparatus for drawing a pattern by deflecting a charged beam generated from a charged beam source by an electrostatic deflector and irradiating the charged beam on a desired position on a sample,
The electrostatic deflector includes a plurality of deflecting electrodes arranged symmetrically with respect to the optical axis of the charged beam, and a grounding device disposed coaxially with the optical axis so as to surround the deflecting electrode. A tube, a resistance film provided on the inner surface of the grounded outer cylinder, and a conductive film provided on the surface of the resistance film,
A charged beam drawing apparatus, wherein a capacitance is formed between the deflection electrode and the conductive film, and an electric resistance composed of the resistance film is formed between the ground conductor and the conductive film.
前記偏向電極と接地面又は接地外筒との間の前記静電容量を形成すべき部分には高誘電体が配置されており、該誘電体が前記偏向電極を機械的に支持していることを特徴とする請求項1又は2記載の荷電ビーム描画装置。   A high dielectric is disposed in a portion where the electrostatic capacitance is to be formed between the deflection electrode and a ground plane or a grounding outer cylinder, and the dielectric mechanically supports the deflection electrode. The charged beam drawing apparatus according to claim 1, wherein 電子銃から発生された電子ビームを静電偏向器により偏向し、試料上の所望の位置に電子ビームを照射することでパターンを描画する荷電ビーム描画装置であって、
前記静電偏向器は、前記電子ビームの光学軸を中心に点対称に配置された複数の偏向電極と、前記光学軸と同軸的に配置され、前記偏向電極を囲むように設けられた接地外筒と、前記接地外筒の内側表面に前記偏向電極に対向するようにそれぞれ設けられた抵抗膜と、前記抵抗膜の表面にそれぞれ設けられた導電膜と、前記導電膜と前記偏向電極との間にそれぞれ挿入され、前記偏向電極を機械的に支持する高誘電体膜とを具備し、
前記偏向電極と導電膜との間に前記高誘電体膜による静電容量が形成され、前記接地導体と導電膜との間に前記抵抗膜による電気抵抗が形成されることを特徴とする荷電ビーム描画装置。
A charged beam drawing apparatus for drawing a pattern by deflecting an electron beam generated from an electron gun by an electrostatic deflector and irradiating the electron beam to a desired position on a sample,
The electrostatic deflector includes a plurality of deflection electrodes arranged symmetrically with respect to the optical axis of the electron beam, and an external ground provided coaxially with the optical axis and surrounding the deflection electrode. A tube, a resistance film provided on the inner surface of the grounding outer cylinder so as to face the deflection electrode, a conductive film provided on the surface of the resistance film, and the conductive film and the deflection electrode. Each having a high dielectric film inserted between them and mechanically supporting the deflection electrode,
A charged beam in which an electrostatic capacitance is formed by the high dielectric film between the deflection electrode and the conductive film, and an electric resistance is formed by the resistive film between the ground conductor and the conductive film. Drawing device.
前記静電容量と電気抵抗の積で決まる時定数は、前記静電偏向器に電場を加えるための偏向アンプの静定時間よりも短いことを特徴とする請求項1〜4の何れかに記載の荷電ビーム描画装置。   5. A time constant determined by a product of the capacitance and electric resistance is shorter than a settling time of a deflection amplifier for applying an electric field to the electrostatic deflector. Charged beam lithography system. 前記静電偏向器は、偏向アンプの出力端と同軸ケーブルを介して接続され、前記電気抵抗は、前記同軸ケーブルの特性インピーダンスとほぼ等しいことを特徴とする請求項1〜4の何れかに記載の荷電ビーム描画装置。   5. The electrostatic deflector is connected to an output end of a deflection amplifier via a coaxial cable, and the electric resistance is substantially equal to a characteristic impedance of the coaxial cable. Charged beam lithography system. 前記偏向電極と接地面又は接地外筒との間の静電容量は、隣接する偏向電極間の静電容量よりも大きいことを特徴とする請求項1〜4の何れかに記載の荷電ビーム描画装置。   5. The charged beam drawing according to claim 1, wherein a capacitance between the deflection electrode and a ground plane or a grounding outer cylinder is larger than a capacitance between adjacent deflection electrodes. apparatus.
JP2006099133A 2006-03-31 2006-03-31 Charged beam lithography system Expired - Fee Related JP4621621B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006099133A JP4621621B2 (en) 2006-03-31 2006-03-31 Charged beam lithography system
US11/710,930 US7692158B2 (en) 2006-03-31 2007-02-27 Charged beam drawing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099133A JP4621621B2 (en) 2006-03-31 2006-03-31 Charged beam lithography system

Publications (2)

Publication Number Publication Date
JP2007273838A JP2007273838A (en) 2007-10-18
JP4621621B2 true JP4621621B2 (en) 2011-01-26

Family

ID=38557444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099133A Expired - Fee Related JP4621621B2 (en) 2006-03-31 2006-03-31 Charged beam lithography system

Country Status (2)

Country Link
US (1) US7692158B2 (en)
JP (1) JP4621621B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875921B2 (en) * 2006-04-17 2012-02-15 株式会社日立ハイテクノロジーズ Electron beam drawing apparatus, electron beam inspection apparatus, and electron beam microscope
JP5737984B2 (en) * 2011-02-08 2015-06-17 キヤノン株式会社 Drawing apparatus and article manufacturing method
US8957394B2 (en) * 2011-11-29 2015-02-17 Kla-Tencor Corporation Compact high-voltage electron gun
JP5964067B2 (en) * 2012-02-02 2016-08-03 株式会社ニューフレアテクノロジー Charged particle beam lithography system
JP6185267B2 (en) * 2013-03-25 2017-08-23 京セラ株式会社 Control element and charged particle beam apparatus using the same
EP3872836A1 (en) * 2020-02-28 2021-09-01 ASML Netherlands B.V. Electrostatic lens designs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106117A (en) * 1998-09-30 2000-04-11 Advantest Corp Electrostatic deflector for electron beam irradiating device
JP2000173522A (en) * 1998-12-08 2000-06-23 Toshiba Corp Charged beam plotter device
JP2000306808A (en) * 1999-04-21 2000-11-02 Advantest Corp Charged particle beam exposure system
JP2002100317A (en) * 2000-09-26 2002-04-05 Toshiba Corp Electric charge beam device, electron beam device and electron beam drawing device
JP2002198294A (en) * 2000-12-27 2002-07-12 Hitachi Ltd Electron beam drawing apparatus and semiconductor device manufactured by it
JP2009510694A (en) * 2005-09-30 2009-03-12 アプライド マテリアルズ インコーポレイテッド Electrostatic deflection system with impedance matching with high positioning accuracy

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119845A (en) 1985-11-20 1987-06-01 Fujitsu Ltd Electrostatic deflection device
JPS632239A (en) 1986-06-20 1988-01-07 Fujitsu Ltd Electrostatic deflector
JPH067466B2 (en) 1986-11-27 1994-01-26 日電アネルバ株式会社 Electrostatic deflector for charged beam
US5153901A (en) * 1988-01-06 1992-10-06 Jupiter Toy Company Production and manipulation of charged particles
US5208560A (en) * 1989-11-27 1993-05-04 Fujitsu Limited Signal transmission circuit
JPH067466A (en) 1992-06-23 1994-01-18 Naka Ind Ltd Ladder support structure for evacuation device
JPH07104098A (en) 1993-10-04 1995-04-21 Hitachi Ltd Charged particle beam deflector
JP3489644B2 (en) 1995-11-10 2004-01-26 富士通株式会社 Charged particle beam exposure method and apparatus
JPH09293472A (en) * 1996-04-26 1997-11-11 Fujitsu Ltd Charged particle beam exposure device, its exposure method, and its manufacture
US7780962B2 (en) * 1997-10-09 2010-08-24 Wellstat Biologics Corporation Treatment of neoplasms with RNA viruses
JP3057042B2 (en) 1997-11-18 2000-06-26 株式会社東芝 Blanking system for charged particle beam writing
JP3801333B2 (en) 1997-12-10 2006-07-26 株式会社アドバンテスト Charged particle beam exposure system
JP3436878B2 (en) * 1998-03-19 2003-08-18 株式会社東芝 Charged particle beam equipment
US20070066972A1 (en) * 2001-11-29 2007-03-22 Medwaves, Inc. Ablation catheter apparatus with one or more electrodes
US6894245B2 (en) * 2000-03-17 2005-05-17 Applied Materials, Inc. Merie plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
JP3641582B2 (en) * 2000-10-27 2005-04-20 日本無線株式会社 ADE unit for AIS
JPWO2002037527A1 (en) * 2000-11-02 2004-03-11 株式会社荏原製作所 Electron beam apparatus and device manufacturing method using the same
MXPA03002208A (en) * 2003-03-13 2004-09-15 Servicios Condumex Sa Dry water-resistant coaxial cable and manufacturing method of the same.
JP4908800B2 (en) 2005-08-08 2012-04-04 株式会社ニューフレアテクノロジー Electron beam equipment
JP2008235464A (en) * 2007-03-19 2008-10-02 Toshiba Corp Electron-beam drafting apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106117A (en) * 1998-09-30 2000-04-11 Advantest Corp Electrostatic deflector for electron beam irradiating device
JP2000173522A (en) * 1998-12-08 2000-06-23 Toshiba Corp Charged beam plotter device
JP2000306808A (en) * 1999-04-21 2000-11-02 Advantest Corp Charged particle beam exposure system
JP2002100317A (en) * 2000-09-26 2002-04-05 Toshiba Corp Electric charge beam device, electron beam device and electron beam drawing device
JP2002198294A (en) * 2000-12-27 2002-07-12 Hitachi Ltd Electron beam drawing apparatus and semiconductor device manufactured by it
JP2009510694A (en) * 2005-09-30 2009-03-12 アプライド マテリアルズ インコーポレイテッド Electrostatic deflection system with impedance matching with high positioning accuracy

Also Published As

Publication number Publication date
US20070228297A1 (en) 2007-10-04
JP2007273838A (en) 2007-10-18
US7692158B2 (en) 2010-04-06

Similar Documents

Publication Publication Date Title
JP4621621B2 (en) Charged beam lithography system
KR101956941B1 (en) Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams
JP4512037B2 (en) Ion generator
KR100970520B1 (en) Electrostatic deflection system with impedance matching for high positioning accuracy
JPH0213418B2 (en)
KR920017163A (en) Pinch-type electron beam cathode ray tube with high voltage Einzel focus lens
JP3069849B2 (en) Optical device
JPH06187901A (en) Electrostatic lens and manufacture thereof
JP5798326B2 (en) Apparatus for focusing and accumulating ions and apparatus for separating pressure regions
EP0275611A2 (en) Electron beam device and a focusing lens therefor
JP3436878B2 (en) Charged particle beam equipment
JP2010225728A (en) Charged particle beam drawing apparatus
JP2010015818A (en) Electron source device and ion system
JP2008235464A (en) Electron-beam drafting apparatus
JP3485888B2 (en) Electron beam writing apparatus and semiconductor device manufactured using the same
JP7564357B2 (en) PARTICLE ACCELERATION STRUCTURE AND CHARGED PARTICLE BEAM DEVICE
JP2006139958A (en) Charged beam device
JP7296274B2 (en) Writer and deflector
JP7124216B2 (en) Charged particle beam device
CN115485804A (en) Device for manipulating a charged particle beam using an enhanced deflector
JP5964067B2 (en) Charged particle beam lithography system
TWI855243B (en) Inspection apparatus and method for influencing charged particle beam
JP3110777B2 (en) Image display device
JPH0588500B2 (en)
JP3409799B2 (en) Traveling wave deflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees