JP4617339B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4617339B2
JP4617339B2 JP2007245851A JP2007245851A JP4617339B2 JP 4617339 B2 JP4617339 B2 JP 4617339B2 JP 2007245851 A JP2007245851 A JP 2007245851A JP 2007245851 A JP2007245851 A JP 2007245851A JP 4617339 B2 JP4617339 B2 JP 4617339B2
Authority
JP
Japan
Prior art keywords
semiconductor device
sealing resin
columnar electrode
electrode
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007245851A
Other languages
Japanese (ja)
Other versions
JP2008060588A (en
Inventor
喜孝 愛場
隆司 埜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2007245851A priority Critical patent/JP4617339B2/en
Publication of JP2008060588A publication Critical patent/JP2008060588A/en
Application granted granted Critical
Publication of JP4617339B2 publication Critical patent/JP4617339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • H01L2224/1148Permanent masks, i.e. masks left in the finished device, e.g. passivation layers

Description

本発明は半導体装置の製造方法に係り、特に一端部が半導体素子上に配設された配線層に接続されると共に他端に外部接続部材が配設される柱状電極を有した半導体装置の製造方法に関する。   The present invention relates to a method of manufacturing a semiconductor device, and in particular, manufacture of a semiconductor device having a columnar electrode in which one end is connected to a wiring layer provided on a semiconductor element and an external connection member is provided on the other end. Regarding the method.

一般に、携帯電話等の携帯端末装置に代表される小型化電子機器に搭載される半導体装置として、CSP(Chip Size Package)が広く用いられるようになってきている。このCSPタイプの半導体装置では、小型化及び高密度化を図ることができる。しかしながら、近年の半導体装置に対する更なる小型化への要求に伴って、外部接続端子の端子ピッチはますます狭くなる傾向にある。   In general, a CSP (Chip Size Package) has been widely used as a semiconductor device mounted on a miniaturized electronic device typified by a mobile terminal device such as a mobile phone. This CSP type semiconductor device can be reduced in size and density. However, with the recent demand for further miniaturization of semiconductor devices, the terminal pitch of the external connection terminals tends to become narrower.

このように、外部接続端子ピッチが狭くなった場合、実装基板に形成されている電極と半導体装置の外部接続端子との接合面積が小さくなるため、半導体装置の実装基板に対する実装信頼性は低下してしまう。これを回避するため、半導体チップと外部接続端子との間に柱状電極を形成した半導体装置が考案されている(例えば、特許文献1,2参照)。この柱状電極を有する半導体装置は、柱状電極およびその周りの樹脂層で実装時に発生する応力を緩和或は吸収することができるため、柱状電極が無い半導体装置に比べて実装信頼性に優れることが知られている。
図1及び図2は、柱状電極を有する従来の半導体装置の一例を示している。図1に示す半導体装置1Aは、半導体素子2Aの回路形成面側にポリイミド等の絶縁膜3が形成されており、この絶縁膜3の上部には配線層4(再配線層)が形成されている。この配線層4は、絶縁膜3に形成された孔を介して半導体素子2Aと電気的に接続されている。
As described above, when the pitch of the external connection terminals is narrowed, the bonding area between the electrodes formed on the mounting substrate and the external connection terminals of the semiconductor device is reduced, so that the mounting reliability of the semiconductor device with respect to the mounting substrate is reduced. End up. In order to avoid this, a semiconductor device in which a columnar electrode is formed between a semiconductor chip and an external connection terminal has been devised (see, for example, Patent Documents 1 and 2). Since the semiconductor device having the columnar electrode can relieve or absorb the stress generated during mounting by the columnar electrode and the resin layer around the columnar electrode, the mounting reliability is superior to the semiconductor device without the columnar electrode. Are known.
1 and 2 show an example of a conventional semiconductor device having a columnar electrode. In the semiconductor device 1A shown in FIG. 1, an insulating film 3 such as polyimide is formed on the circuit forming surface side of the semiconductor element 2A, and a wiring layer 4 (rewiring layer) is formed on the insulating film 3. Yes. The wiring layer 4 is electrically connected to the semiconductor element 2A through a hole formed in the insulating film 3.

柱状電極5は、この配線層4上に立設した状態で形成されている。この柱状電極5は円柱形状を有しており、その図中上端は配線層4に接合されると共に、下端部にはバリアメタル6(例えば、NiAuめっき)を介して外部接続端子となるはんだボール7が配設されている。   The columnar electrode 5 is formed standing on the wiring layer 4. The columnar electrode 5 has a cylindrical shape, and the upper end in the figure is joined to the wiring layer 4 and the lower end is a solder ball serving as an external connection terminal via a barrier metal 6 (for example, NiAu plating). 7 is disposed.

また、半導体素子2Aの底面には、封止樹脂8が形成されている。この封止樹脂8は配線層4及び柱状電極5を保護する機能を奏するものであり、従来ではバリアメタル6が形成される先端部を除き、柱状電極5の略全体を埋めるような厚さで形成されていた。このため、従来の半導体装置1Aの構造では、柱状電極5のバリアメタル6が形成される側の端部は封止樹脂8の表面と同一平面状に有り、よってはんだボール7と封止樹脂8も離間されていない構造とされていた。   A sealing resin 8 is formed on the bottom surface of the semiconductor element 2A. The sealing resin 8 has a function of protecting the wiring layer 4 and the columnar electrode 5 and has a thickness that fills substantially the entire columnar electrode 5 except for the tip portion where the barrier metal 6 is conventionally formed. Was formed. For this reason, in the structure of the conventional semiconductor device 1A, the end of the columnar electrode 5 on the side where the barrier metal 6 is formed is flush with the surface of the sealing resin 8, so that the solder ball 7 and the sealing resin 8 are provided. The structure was not separated.

これに対して図2に示す半導体装置1Bは、高周波対応の半導体装置である。図2において、図1に示した構成と同一構成については同一符号を付している。また、同図は半導体装置1Bが実装基板10に実装された状態を示しており、よって各柱状電極5.5Aは、実装基板10の接続電極11,11Aにはんだボール7を介して接合されている。   On the other hand, the semiconductor device 1B shown in FIG. 2 is a high-frequency compatible semiconductor device. In FIG. 2, the same components as those shown in FIG. Further, this figure shows a state in which the semiconductor device 1B is mounted on the mounting substrate 10, and thus each columnar electrode 5.5A is joined to the connection electrodes 11 and 11A of the mounting substrate 10 via the solder balls 7. Yes.

前記のように、半導体装置1Bは高周波対応であるため、高周波で信号がやりとりされる柱状電極5A及び接続電極11Aは、半導体素子2Bと配線層4(再配線)間の寄生容量低減のため、他の柱状電極5及び接続電極11よりも小さくなっている。尚、図中符号9で示すのはパッシベーション膜である。
特開2002−270721号公報 特開2001−291733号公報
As described above, since the semiconductor device 1B supports high frequency, the columnar electrode 5A and the connection electrode 11A that exchange signals at high frequency are used to reduce the parasitic capacitance between the semiconductor element 2B and the wiring layer 4 (rewiring). It is smaller than the other columnar electrodes 5 and connection electrodes 11. In the figure, reference numeral 9 denotes a passivation film.
JP 2002-270721 A JP 2001-291733 A

図1及び図2に示した半導体装置1A,1Bは、柱状電極5,5Aおよびその周りの封止樹脂8で実装時に発生する応力を緩和或は吸収することができるため、実装信頼性の向上を図ることができる。しかしながら、半導体装置1A,1Bの更なる小型化及び高密度化が進み、これに伴いはんだボール7(外部接続端子)の狭ピッチ化が更に進むと、柱状電極5,5Aを用いた半導体装置1A,1Bであっても、実装信頼性の低下は同様に生じてしまう。   The semiconductor devices 1A and 1B shown in FIGS. 1 and 2 can relieve or absorb stress generated during mounting by the columnar electrodes 5 and 5A and the sealing resin 8 around the columnar electrodes 5 and 5A, thereby improving mounting reliability. Can be achieved. However, when the semiconductor devices 1A and 1B are further reduced in size and density, and the pitch of the solder balls 7 (external connection terminals) is further reduced accordingly, the semiconductor device 1A using the columnar electrodes 5 and 5A. , 1B, a reduction in mounting reliability occurs in the same manner.

また、狭ピッチ化により隣接する柱状電極5,5Aの距離が近くなると、はんだボール7を柱状電極5,5Aに配設する際、また柱状電極5,5Aを実装基板10の接続電極11,11Aに接合する際に、隣接するはんだボール7間で短絡(ブリッジ)が発生しやすくなるという問題点が生じる。   Further, when the distance between the adjacent columnar electrodes 5 and 5A becomes closer due to the narrow pitch, when the solder balls 7 are disposed on the columnar electrodes 5 and 5A, the columnar electrodes 5 and 5A are connected to the connection electrodes 11 and 11A of the mounting substrate 10. When joining to each other, there arises a problem that a short circuit (bridge) is likely to occur between adjacent solder balls 7.

特に、図1及び図2に示すような外部接続端子の材料としてはんだを用いた場合には、従来のように柱状電極5,5Aの先端部と封止樹脂8の表面が略同一面である構成では、はんだ中の溶剤成分が熱印加時に封止樹脂8の表面を流れ、隣の柱状電極5,5Aに接触しやすくなる。この溶剤成分ははんだに対する濡れ性が良好であるため、結果として溶剤成分の接触により隣接する柱状電極5,5Aははんだボール7により短絡してしまう。   In particular, when solder is used as the material for the external connection terminals as shown in FIGS. 1 and 2, the tip of the columnar electrodes 5 and 5A and the surface of the sealing resin 8 are substantially flush with each other as in the prior art. In the configuration, the solvent component in the solder flows on the surface of the sealing resin 8 when heat is applied, and easily comes into contact with the adjacent columnar electrodes 5 and 5A. Since the solvent component has good wettability with respect to the solder, as a result, the adjacent columnar electrodes 5 and 5A are short-circuited by the solder ball 7 due to the contact of the solvent component.

更に、図1及び図2に示す半導体装置1A,1Bは、封止樹脂8が柱状電極5,5Aの略全部(先端部を残し)を埋設する構成とされていたため、その厚さは比較的厚いものであった。このため、シリコン等よりなる半導体素子2A,2Bと、熱膨張率がシリコンと異なる封止樹脂8との間で熱膨張差が発生し、これに起因して半導体装置1A,1Bに反りが発生してしまうという問題点があった。   Further, the semiconductor devices 1A and 1B shown in FIG. 1 and FIG. 2 are configured such that the sealing resin 8 embeds substantially the entire columnar electrodes 5 and 5A (leaving the tip portion), so that the thickness thereof is relatively It was thick. For this reason, a difference in thermal expansion occurs between the semiconductor elements 2A and 2B made of silicon or the like and the sealing resin 8 having a thermal expansion coefficient different from that of silicon, which causes warpage in the semiconductor devices 1A and 1B. There was a problem of doing.

本発明は上記の点に鑑みてなされたものであり、隣接する外部接続部材間で短絡の発生を抑制しうると共に反りの発生を抑制しうる半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a method of manufacturing a semiconductor device that can suppress the occurrence of a short circuit between adjacent external connection members and suppress the occurrence of warpage. .

上記の課題を解決するために本発明では、次に述べる各手段を講じたことを特徴とするものである。   In order to solve the above-described problems, the present invention is characterized by the following measures.

請求項1記載の発明に係る半導体装置の製造方法は、
半導体基板上に配線層を形成する工程と、
該配線層上に柱状電極を形成するための開口部を有するレジストを形成すると共に、該レジストを用いて導電性金属を前記開口部に前記レジストの厚さを超えて形成する工程と、
前記レジストを剥離した後、前記半導体基板上に封止樹脂を形成する工程と、
前記封止樹脂の表面と前記柱状電極の先端部とが離間するように前記封止樹脂の厚さを薄くする処理を行う工程と、
前記封止樹脂の厚さを薄くする処理を実施した後、前記柱状電極の先端部にリフローにより外部接続部材を形成する工程とを有することを特徴とするものである。
A method of manufacturing a semiconductor device according to the invention of claim 1
Forming a wiring layer on a semiconductor substrate;
Forming a resist having an opening for forming a columnar electrode on the wiring layer, and forming a conductive metal in the opening beyond the thickness of the resist using the resist;
Forming a sealing resin on the semiconductor substrate after removing the resist;
Performing a process of reducing the thickness of the sealing resin so that the surface of the sealing resin and the tip of the columnar electrode are separated from each other;
And a step of forming an external connection member by reflowing at the tip of the columnar electrode after performing the process of reducing the thickness of the sealing resin .

上記発明によれば、封止樹脂の厚さを薄くする処理を行うことにより柱状電極の端部を封止樹脂の表面に対して離間させるため、簡単かつ確実に柱状電極の端部を封止樹脂の表面から離間させることができる。また、封止樹脂の厚さを薄くすることにより柱状電極の端部を封止樹脂の表面から離間させた後、柱状電極の端部に外部接続部材を形成するため、外部接続部材の形成時に外部接続部材から溶剤成分が漏洩しても、この溶剤成分は封止樹脂の表面から突出した柱状電極の表面に沿うため、この溶剤成分に起因して隣接する外部接続部材間で短絡(ブリッジ)が発生することを防止できる。 According to the above invention, the end of the columnar electrode is separated from the surface of the sealing resin by performing the process of reducing the thickness of the sealing resin, so that the end of the columnar electrode is sealed easily and reliably. It can be separated from the surface of the resin. In addition, after the end of the columnar electrode is separated from the surface of the sealing resin by reducing the thickness of the sealing resin, the external connection member is formed at the end of the columnar electrode. Even if the solvent component leaks from the external connection member, the solvent component runs along the surface of the columnar electrode protruding from the surface of the sealing resin, so a short circuit (bridge) occurs between adjacent external connection members due to the solvent component. Can be prevented.

また、請求項2記載の発明は、
請求項1記載の半導体装置の製造方法において、
前記封止樹脂の厚さを薄くする処理として、アッシングを用いたことを特徴とするものである。
The invention according to claim 2
In the manufacturing method of the semiconductor device according to claim 1,
As a process for reducing the thickness of the sealing resin, ashing is used.

上記発明によれば、封止樹脂を形成した後、アッシングにより封止樹脂の厚さを薄くしているため、そのアッシングの際、柱状電極の表面等に付着した不要な封止樹脂を完全に除去することができ、よって外部端子形成時の歩留まり向上を図ることができる。   According to the above invention, after the sealing resin is formed, the thickness of the sealing resin is reduced by ashing, so that unnecessary sealing resin adhering to the surface of the columnar electrode is completely removed during the ashing. Therefore, it is possible to improve the yield when forming the external terminals.

また、請求項1または2記載の半導体装置の製造方法において、前記封止樹脂を、トランスファーモールド法を用いて形成することも有効である。   In the method for manufacturing a semiconductor device according to claim 1 or 2, it is also effective to form the sealing resin using a transfer molding method.

このようにトランスファーモールド法を用いた場合には、柱状電極の高さによらず封止が可能であり、また封止樹脂内のフィラー量やサイズを自由に変えることができるので線膨張率などを自由に選択することも可能となる。   In this way, when the transfer mold method is used, sealing is possible regardless of the height of the columnar electrode, and the amount of filler and size in the sealing resin can be freely changed, so that the linear expansion coefficient, etc. It is also possible to select freely.

本発明によれば、外部接続部材の形成時や半導体装置の実装時において隣接する外部接続部材同士が短絡(ブリッジ)してしまうことを防止でき、また、外部接続端子と封止樹脂とを離間させることにより封止樹脂を薄くすることができ、半導体装置に発生する反り量を低減することができる。   According to the present invention, it is possible to prevent the adjacent external connection members from being short-circuited (bridged) when forming the external connection member or mounting the semiconductor device, and to separate the external connection terminal from the sealing resin. By doing so, the sealing resin can be thinned, and the amount of warpage generated in the semiconductor device can be reduced.

次に、本発明を実施するための最良の形態について図面と共に説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

図3は、本発明の第1実施例である半導体装置20Aを示している。半導体装置20Aは、CSP(Chip Size Package)であり、小型化及び高密度化が図られた半導体装置である。この半導体装置20Aは、例えば携帯電話等の携帯端末装置に搭載されるものである。   FIG. 3 shows a semiconductor device 20A according to the first embodiment of the present invention. The semiconductor device 20A is a CSP (Chip Size Package), and is a semiconductor device that is reduced in size and increased in density. The semiconductor device 20A is mounted on a mobile terminal device such as a mobile phone.

半導体装置20Aは、大略すると半導体素子22,配線層24,柱状電極25A,はんだボール27及び封止樹脂28等により構成されている。半導体素子22は、シリコン基板上に電子回路が形成されたものであり、図3では半導体素子22の下面が回路形成面となっている。半導体素子22の回路形成面側には、絶縁膜23が形成されている。この絶縁膜23としては、例えばポリイミドを用いることができる。   The semiconductor device 20A generally includes a semiconductor element 22, a wiring layer 24, a columnar electrode 25A, a solder ball 27, a sealing resin 28, and the like. The semiconductor element 22 is an electronic circuit formed on a silicon substrate. In FIG. 3, the lower surface of the semiconductor element 22 is a circuit formation surface. An insulating film 23 is formed on the circuit formation surface side of the semiconductor element 22. As this insulating film 23, for example, polyimide can be used.

絶縁膜23上には、配線層24が形成されている。この配線層24は、いわゆる再配線として機能するものであり、一端は絶縁膜23に形成された孔を介して半導体素子22の電極部(図示せず)に接続されている。また、配線層24の他端部は所定位置まで引き出されて電極パッド38を一体的に形成している。この配線層24は、例えば銅により形成されている。   A wiring layer 24 is formed on the insulating film 23. The wiring layer 24 functions as a so-called rewiring, and one end thereof is connected to an electrode portion (not shown) of the semiconductor element 22 through a hole formed in the insulating film 23. Further, the other end portion of the wiring layer 24 is pulled out to a predetermined position to integrally form the electrode pad 38. The wiring layer 24 is made of, for example, copper.

柱状電極25Aは、円筒形状を有したポスト部35Aと、このポスト部35Aの直径R1よりも大きい直径R2を有した先端部36Aとにより構成されている。このポスト部35Aと先端部36Aは、後述するようにめっき法を用いて一体的に形成されるものである。また、その全体形状は、マッシュルームに類似した形状となっている。   The columnar electrode 25A includes a post portion 35A having a cylindrical shape and a tip portion 36A having a diameter R2 larger than the diameter R1 of the post portion 35A. The post portion 35A and the tip portion 36A are integrally formed by using a plating method as will be described later. The overall shape is similar to a mushroom.

ポスト部35Aの図中上端部(先端部36Aが形成されてない側の端部)は、配線層24(電極パッド38)に一体的に接合されている。また、ポスト部35Aの他端部に形成された先端部36Aにはバリアメタル26を介してはんだボール27が配設された構成とされている。このバリアメタル26は、例えばNiAuめっきである。   The upper end portion of the post portion 35A in the drawing (the end portion on the side where the tip end portion 36A is not formed) is integrally joined to the wiring layer 24 (electrode pad 38). In addition, a solder ball 27 is disposed through a barrier metal 26 at a tip portion 36A formed at the other end of the post portion 35A. This barrier metal 26 is, for example, NiAu plating.

このように、柱状電極25Aとはんだボール27との間にバリアメタル26を設けることにより、柱状電極25Aとはんだボール27材との接合信頼性を高めることができる。また、上記のようにはんだボール27が配設される先端部36Aの直径R2は、ポスト部35Aの直径R1よりも大きい(R1<R2)ため、はんだボール27と先端部36Aとの接合面積は、従来のような円筒形状の柱状電極に比べて広くなり、これによってもはんだボール27と先端部36Aとの接合信頼性を高めることができる。   Thus, by providing the barrier metal 26 between the columnar electrode 25A and the solder ball 27, the bonding reliability between the columnar electrode 25A and the solder ball 27 material can be enhanced. Further, as described above, the diameter R2 of the tip portion 36A where the solder ball 27 is disposed is larger than the diameter R1 of the post portion 35A (R1 <R2), and therefore the bonding area between the solder ball 27 and the tip portion 36A is as follows. This is wider than a conventional cylindrical columnar electrode, and this also increases the bonding reliability between the solder ball 27 and the tip portion 36A.

封止樹脂28は、半導体素子22の回路形成面側に形成されている。この封止樹脂28は、配線層24及び柱状電極25Aを保護するために設けられている。また、封止樹脂28の材質としては、例えばエポキシ系の樹脂を用いることができる。   The sealing resin 28 is formed on the circuit formation surface side of the semiconductor element 22. The sealing resin 28 is provided to protect the wiring layer 24 and the columnar electrode 25A. Further, as the material of the sealing resin 28, for example, an epoxy resin can be used.

ここで、半導体装置20Aを構成する柱状電極25Aと封止樹脂28に注目する。本実施例では、柱状電極25Aが封止樹脂28から突出するよう形成し、この柱状電極25Aの封止樹脂28から突出した他端部(即ち、先端部36A)に外部接続部材となるはんだボール27を配設した構成としている。これにより、はんだボール27は、封止樹脂28の表面から離間した構成となる。   Here, attention is paid to the columnar electrode 25A and the sealing resin 28 constituting the semiconductor device 20A. In this embodiment, the columnar electrode 25A is formed so as to protrude from the sealing resin 28, and the other end portion (that is, the front end portion 36A) protruding from the sealing resin 28 of the columnar electrode 25A is a solder ball serving as an external connection member. 27 is provided. Thereby, the solder ball 27 is separated from the surface of the sealing resin 28.

本実施例では、柱状電極25Aの封止樹脂28の表面からの突出量H2(封止樹脂28の表面からポスト部35Aと先端部36Aとの界面までの離間距離)は、10μm以上80μm以下とされている。これは、柱状電極25Aの高さの約1/2〜1/3に相当する)。尚、半導体素子22の表面(回路形成面)からポスト部35Aと先端部36Aとの界面までの離間距離H1は、約100μm程度である。   In the present embodiment, the protruding amount H2 of the columnar electrode 25A from the surface of the sealing resin 28 (the separation distance from the surface of the sealing resin 28 to the interface between the post portion 35A and the tip portion 36A) is 10 μm or more and 80 μm or less. Has been. This corresponds to about 1/2 to 1/3 of the height of the columnar electrode 25A). The separation distance H1 from the surface (circuit formation surface) of the semiconductor element 22 to the interface between the post portion 35A and the tip portion 36A is about 100 μm.

図4は、上記のように柱状電極25Aが封止樹脂28の表面から突出するよう構成した半導体装置20Aを実装基板30に実装した状態を示している。このように、柱状電極25Aを封止樹脂28の表面から突出させることにより、柱状電極25Aの先端部36Aに配設されるはんだボール27は、封止樹脂28の表面から離間した構成となる。   FIG. 4 shows a state where the semiconductor device 20 </ b> A configured such that the columnar electrode 25 </ b> A protrudes from the surface of the sealing resin 28 as described above is mounted on the mounting substrate 30. Thus, by causing the columnar electrode 25A to protrude from the surface of the sealing resin 28, the solder balls 27 disposed on the tip portion 36A of the columnar electrode 25A are separated from the surface of the sealing resin 28.

尚、実装基板30は、柱状電極25Aの形成位置に対応した接続電極31が形成されており、また接続電極31の形成位置以外の領域はソルダーレジスト32により保護された構成とされている。   The mounting substrate 30 has a connection electrode 31 corresponding to a position where the columnar electrode 25A is formed, and a region other than the position where the connection electrode 31 is formed is protected by a solder resist 32.

本実施例のように、はんだボール27と封止樹脂28とを離間させることにより、図4に示す実装時において、隣接するはんだボール27同士がブリッジ(短絡)してしまうことを防止できる。以下、この理由に付いて説明する。   By separating the solder balls 27 and the sealing resin 28 as in this embodiment, it is possible to prevent the adjacent solder balls 27 from bridging (short-circuiting) during mounting shown in FIG. Hereinafter, this reason will be described.

実装時においては、半導体素子22が実装基板30に押圧されることにより、はんだボール27には圧縮力が作用し、これにより変形しようとする。従来のようにはんだボール7が封止樹脂8に接した構成(図1参照)では、この圧縮力によりはんだボール7は横方向(隣接するはんだボール7と近接する方向)に変形しようとし、これにより短絡が発生していた。   At the time of mounting, the semiconductor element 22 is pressed against the mounting substrate 30, so that a compressive force acts on the solder balls 27, thereby attempting to deform. In the conventional configuration in which the solder ball 7 is in contact with the sealing resin 8 (see FIG. 1), the compressive force causes the solder ball 7 to deform in the lateral direction (direction adjacent to the adjacent solder ball 7). Caused a short circuit.

しかしながら、本実施例に係る半導体装置20Aでは、はんだボール27と封止樹脂28とが離間しており、またはんだボール27と封止樹脂28との間には柱状電極25A(ポスト部35A)が位置する構成となっている。このため、はんだボール27が圧縮されても、はんだボール27は柱状電極25Aに沿ってはんだボール27と封止樹脂28との離間部分に移動する。これにより、隣接するはんだボール27間でブリッジ(短絡)が発生することを防止でき、実装信頼性を高めることができる。   However, in the semiconductor device 20 </ b> A according to the present embodiment, the solder ball 27 and the sealing resin 28 are separated from each other, and the columnar electrode 25 </ b> A (post part 35 </ b> A) is provided between the solder ball 27 and the sealing resin 28. It is the composition which is located. For this reason, even if the solder ball 27 is compressed, the solder ball 27 moves along the columnar electrode 25 </ b> A to a separated portion between the solder ball 27 and the sealing resin 28. Thereby, it can prevent that a bridge | bridging (short circuit) generate | occur | produces between the adjacent solder balls 27, and can improve mounting reliability.

図5は、本実施例において隣接するはんだボール27間の短絡が防止できる他の理由を、従来例と比較しつつ説明するための図である。図5(A)は従来例を示し、図5(B)は本実施例を示している。   FIG. 5 is a diagram for explaining another reason why a short circuit between adjacent solder balls 27 can be prevented in this embodiment, as compared with the conventional example. FIG. 5A shows a conventional example, and FIG. 5B shows this embodiment.

はんだボール27は、一般にはんだペーストを用いた印刷法により柱状電極25Aに配設される。周知のように、はんだペーストにははんだ粉と共に溶剤成分が混入されており、この溶剤成分ははんだに対し濡れ性が良好な材料が選定されている。   The solder balls 27 are generally disposed on the columnar electrodes 25A by a printing method using a solder paste. As is well known, a solvent component is mixed together with solder powder in the solder paste, and a material having good wettability with respect to the solder is selected for the solvent component.

はんだペーストを用いてはんだボール7,27を形成する場合、柱状電極5,25Aにはんだペーストを印刷し、これをリフロー処理する。このリフロー時の加熱により、はんだペーストから液体状の溶剤成分14,34が溶出する。   When the solder balls 7 and 27 are formed using the solder paste, the solder paste is printed on the columnar electrodes 5 and 25A, and this is subjected to a reflow process. Due to the heating during the reflow, the liquid solvent components 14 and 34 are eluted from the solder paste.

従来例のように柱状電極5の先端が封止樹脂8の表面と略同一面である場合には、図5(A)に示すように、溶剤成分14は封止樹脂8の表面上で広がってしまい、隣接する柱状電極5の位置(即ち、はんだボール7の形成位置)に容易に達してしまう。前記したように、溶剤成分14ははんだに対する濡れ性が良好であるため、溶融したはんだは溶剤成分14に沿って広がり、これにより隣接するはんだボール7間で短絡が発生しやすくなる。その傾向は,狭ピッチになればなるほど、溶剤成分14の広がり範囲が制限されるためより顕著となる。   When the tip of the columnar electrode 5 is substantially flush with the surface of the sealing resin 8 as in the conventional example, the solvent component 14 spreads on the surface of the sealing resin 8 as shown in FIG. Therefore, it easily reaches the position of the adjacent columnar electrode 5 (that is, the position where the solder ball 7 is formed). As described above, since the solvent component 14 has good wettability with respect to the solder, the melted solder spreads along the solvent component 14, thereby causing a short circuit between adjacent solder balls 7. The tendency becomes more pronounced as the pitch becomes narrower because the range of the solvent component 14 is limited.

これに対して本実施例では、はんだボール27と封止樹脂28の表面が離間した構成であるため、図5(B)に示すように、溶剤成分34は表面張力により柱状電極25Aの先端部36Aと封止樹脂28の表面との間に留まり、封止樹脂28の表面上で広がるようなことはない。よって、隣接するはんだボール27間で短絡が発生することを防止することができる。   On the other hand, in the present embodiment, since the surfaces of the solder balls 27 and the sealing resin 28 are separated from each other, as shown in FIG. It stays between 36A and the surface of the sealing resin 28, and does not spread on the surface of the sealing resin 28. Therefore, it is possible to prevent a short circuit from occurring between adjacent solder balls 27.

また、本実施例のようにはんだボール27と封止樹脂28の表面とを離間させることにより、応力集中に起因してはんだボール27が柱状電極25Aから脱落することを防止することができる。この理由について、図6を用いて説明する。図6は、本実施例においてはんだボール27の柱状電極25Aからの脱落を防止できる他の理由を、従来例と比較しつつ説明するための図である。図6(A)は従来例を示し、図6(B)は本実施例を示している。   Further, by separating the solder ball 27 and the surface of the sealing resin 28 as in the present embodiment, it is possible to prevent the solder ball 27 from falling off the columnar electrode 25A due to stress concentration. The reason for this will be described with reference to FIG. FIG. 6 is a diagram for explaining another reason why the drop of the solder ball 27 from the columnar electrode 25A can be prevented in this embodiment, as compared with the conventional example. FIG. 6A shows a conventional example, and FIG. 6B shows this embodiment.

図6(A)に示す従来の半導体装置1Aでは、柱状電極5の先端部が封止樹脂8の表面と略同一平面上にあるため、実装時の応力は柱状電極5とはんだボール7との界面に応力が集中する(以下、この位置を応力集中部13という)。このように、従来の半導体装置1Aでは、応力集中部13に応力が集中するため、はんだボール7が柱状電極5から離脱することが多発していた。   In the conventional semiconductor device 1A shown in FIG. 6A, since the tip of the columnar electrode 5 is substantially flush with the surface of the sealing resin 8, the stress at the time of mounting is between the columnar electrode 5 and the solder ball 7. Stress concentrates on the interface (hereinafter, this position is referred to as a stress concentration portion 13). As described above, in the conventional semiconductor device 1 </ b> A, stress concentrates on the stress concentration portion 13, so that the solder ball 7 frequently leaves the columnar electrode 5.

これに対し、図6(B)に示すように本実施例に係る半導体装置20Aでは、先端部36Aの直径を大きくすることによりはんだボール27と柱状電極25Aとの接合面積を増やすことで実装信頼性を向上させている。更に本実施例では、はんだボール27と封止樹脂28とを離間させることにより、実装時に応力が印加される場所を、柱状電極25Aとはんだボール27との界面(第1の応力集中部33A)と、封止樹脂28の表面と柱状電極25Aの側面との界面(第2応力集中部33B)に分散させることができる。このように、応力が分散されることにより、はんだボール27が柱状電極25Aから脱落することを防止でき、更なる実装信頼性の向上が実現できる。   On the other hand, as shown in FIG. 6B, in the semiconductor device 20A according to the present embodiment, the mounting reliability is increased by increasing the joint area between the solder ball 27 and the columnar electrode 25A by increasing the diameter of the tip portion 36A. Improves sex. Further, in the present embodiment, the solder ball 27 and the sealing resin 28 are separated from each other so that the place where the stress is applied during mounting is the interface between the columnar electrode 25A and the solder ball 27 (first stress concentration portion 33A). And the interface (second stress concentration portion 33B) between the surface of the sealing resin 28 and the side surface of the columnar electrode 25A. Thus, by dispersing the stress, it is possible to prevent the solder ball 27 from falling off the columnar electrode 25A, and further improvement in mounting reliability can be realized.

また、はんだボール27と封止樹脂28とを離間させるため、封止樹脂28を薄くしたことにより半導体装置20Aに発生する反りを防止することができる。即ち、シリコンよりなる半導体素子22と、エポキシ等の樹脂よりなる封止樹脂28は、熱膨張率が大きく異なっている。従来例では柱状電極の高さが封止樹脂の厚さであったため、封止樹脂の厚さを任意に設定することはできなかった。封止樹脂が厚いと、封止樹脂の熱変形の影響が大きく生じ、半導体素子と封止樹脂との熱膨張差により半導体装置20Aは大きく反ってしまう。   Further, since the solder ball 27 and the sealing resin 28 are separated from each other, the warping generated in the semiconductor device 20A can be prevented by thinning the sealing resin 28. That is, the thermal expansion coefficient of the semiconductor element 22 made of silicon and the sealing resin 28 made of a resin such as epoxy are greatly different. In the conventional example, since the height of the columnar electrode was the thickness of the sealing resin, the thickness of the sealing resin could not be arbitrarily set. When the sealing resin is thick, the influence of thermal deformation of the sealing resin is greatly generated, and the semiconductor device 20A is greatly warped due to a difference in thermal expansion between the semiconductor element and the sealing resin.

これに対して本実施例では、柱状電極25Aの高さに拘わらず封止樹脂28の厚さを設定できるため、封止樹脂28を薄くすることができる。これにより、半導体装置20A内における封止樹脂28の熱膨張の影響を小さくすることができ、よって半導体装置20Aに発生する反り量を低減することができる。   On the other hand, in this embodiment, since the thickness of the sealing resin 28 can be set regardless of the height of the columnar electrode 25A, the sealing resin 28 can be made thin. Thereby, the influence of the thermal expansion of the sealing resin 28 in the semiconductor device 20A can be reduced, and thus the amount of warp generated in the semiconductor device 20A can be reduced.

前記したように、封止樹脂28の表面とはんだボール27との離間距離は、10μm以上80μm以下であることが望ましい。これは、離間距離が10μm未満となると、上記した理由により隣接するはんだボール27同士が短絡するおそれが大きくなり、また離間距離が80μmを超えると、封止樹脂28の本来的な機能である配線層24及び柱状電極25Aの保護を確実に行うことが困難になるからである。反りの低減により、応力集中部にかかる応力自体も低下するため、更なる実装信頼性の向上が実現できる。   As described above, the distance between the surface of the sealing resin 28 and the solder ball 27 is desirably 10 μm or more and 80 μm or less. This is because when the separation distance is less than 10 μm, there is a high possibility that the adjacent solder balls 27 are short-circuited due to the above-described reason, and when the separation distance exceeds 80 μm, the wiring which is an original function of the sealing resin 28 This is because it is difficult to reliably protect the layer 24 and the columnar electrode 25A. Due to the reduction of the warpage, the stress itself applied to the stress concentration portion also decreases, so that further improvement in mounting reliability can be realized.

続いて、上記した第1実施例に係る半導体装置20Aの製造方法について説明する。図7は、半導体装置20Aの製造方法を製造手順に沿って示している。   Next, a method for manufacturing the semiconductor device 20A according to the first embodiment will be described. FIG. 7 shows a method of manufacturing the semiconductor device 20A along the manufacturing procedure.

半導体装置20Aを製造するには、予め回路形成が行なわれた半導体基板21(後に、ダイシングされ半導体素子22となる)の表面に、スピンコート等によりポリイミド等の絶縁膜23を形成すると共に、この絶縁膜23の半導体基板21に形成されている電極部と対向する位置に孔23aを形成する。続いて、絶縁膜23が形成された半導体基板21をスパッタ装置に装着し、後述する電解めっきのシード層となるスパッタ膜40を形成する。図7(A)は、スパッタ膜40が形成された状態を示している。このスパッタ膜40の材料としては、チタン(Ti),クロム(Cr),銅(Cu)等のバリアメタル効果のある金属であれば、どの金属を使用してもよい。   In order to manufacture the semiconductor device 20A, an insulating film 23 such as polyimide is formed on the surface of a semiconductor substrate 21 on which a circuit has been previously formed (later diced to become a semiconductor element 22) by spin coating or the like. A hole 23 a is formed at a position of the insulating film 23 facing the electrode portion formed on the semiconductor substrate 21. Subsequently, the semiconductor substrate 21 on which the insulating film 23 is formed is mounted on a sputtering apparatus, and a sputtered film 40 that becomes a seed layer for electrolytic plating described later is formed. FIG. 7A shows a state in which the sputtered film 40 is formed. As the material of the sputtered film 40, any metal may be used as long as it has a barrier metal effect such as titanium (Ti), chromium (Cr), copper (Cu).

続いて、スパッタ膜40の上部に、配線層24の形状に対応した開口(パターン)を有した配線用レジスト42を形成する。そして、前記したスパッタ膜40をシード層として銅の電解めっきを行い、図7(B)に示すようにめっき層41を形成する。   Subsequently, a wiring resist 42 having an opening (pattern) corresponding to the shape of the wiring layer 24 is formed on the sputtered film 40. Then, copper electroplating is performed using the sputtered film 40 as a seed layer to form a plating layer 41 as shown in FIG.

配線用レジスト42を除去した後、めっき層41の上部に、柱状電極25Aに対応した開口(パターン)を有した電極用レジスト43を配設する。この電極用レジスト43としては、例えばドライフィルムレジスト(DFR)を用いることができる。そして、スパッタ膜40及びめっき層41を電源層として銅の電解めっきを行い、図7(C)に示すように柱状電極25Aを形成する。尚、本実施例ではめっき層41(配線層24)及び柱状電極25Aの材料としてCuを挙げたが,めっき成長可能な金属であればどの金属を使用してもよい。   After removing the wiring resist 42, an electrode resist 43 having an opening (pattern) corresponding to the columnar electrode 25 </ b> A is disposed on the plating layer 41. As this electrode resist 43, for example, a dry film resist (DFR) can be used. Then, copper electroplating is performed using the sputtered film 40 and the plating layer 41 as a power source layer to form a columnar electrode 25A as shown in FIG. 7C. In this embodiment, Cu is used as the material for the plating layer 41 (wiring layer 24) and the columnar electrode 25A. However, any metal may be used as long as it can be plated and grown.

また、電解めっきが終了した時点で、図7(C)に示すように、柱状電極25Aは先端部36Aと、先端部36Aよりも大径である先端部36Bが形成されている。このような形状を有する柱状電極25Aを形成するには、柱状電極25Aの形成時の銅めっき処理を電極用レジスト43の厚さを超えるまで行う。これにより、電極用レジスト43の上面には、ポスト部35Aよりも直径及び面積が大きい先端部36Aが形成される。本実施例では、このようにして柱状電極25Aが形成された後、先端部36Aの表面にニッケル(Ni)と金(Au)めっきを行うことにより、バリアメタル26を形成する。   When the electrolytic plating is completed, as shown in FIG. 7C, the columnar electrode 25A is formed with a tip portion 36A and a tip portion 36B having a larger diameter than the tip portion 36A. In order to form the columnar electrode 25A having such a shape, the copper plating process at the time of forming the columnar electrode 25A is performed until the thickness of the electrode resist 43 is exceeded. As a result, a tip portion 36A having a larger diameter and area than the post portion 35A is formed on the upper surface of the electrode resist 43. In this embodiment, after the columnar electrode 25A is formed in this way, the barrier metal 26 is formed by performing nickel (Ni) and gold (Au) plating on the surface of the tip portion 36A.

上記のように柱状電極25A及びバリアメタル26が形成されると、電極用レジスト43のレジスト剥離が行なわれる。続いて、めっき層41の不要部分がエッチングにより除去され、これにより電極パッド38を有する所定形状の配線層24が形成される。また、この状態において、柱状電極25Aは電極パッド38上に立設した状態となっている(図示せず)。   When the columnar electrode 25A and the barrier metal 26 are formed as described above, the resist for the electrode resist 43 is removed. Subsequently, unnecessary portions of the plating layer 41 are removed by etching, whereby the wiring layer 24 having a predetermined shape having the electrode pads 38 is formed. In this state, the columnar electrode 25A is erected on the electrode pad 38 (not shown).

次に、柱状電極25Aが形成された半導体基板21は、金型に装着されて封止樹脂28を形成するためのトランスファーモールド処理(例えば、175℃程度)が実施される。この際、柱状電極25Aの先端部36Aが金型のキャビティと当接する部分には、樹脂フィルムが介装され、これにより柱状電極25Aに樹脂が付着するのを防止すると共に先端部36Aの変形を防止している。   Next, the semiconductor substrate 21 on which the columnar electrodes 25A are formed is subjected to a transfer molding process (for example, about 175 ° C.) for mounting the mold on the mold and forming the sealing resin 28. At this time, a resin film is interposed in the portion where the tip portion 36A of the columnar electrode 25A contacts the cavity of the mold, thereby preventing the resin from adhering to the columnar electrode 25A and deforming the tip portion 36A. It is preventing.

このように、トランスファーモールド法を用いて封止樹脂28を形成することにより、柱状電極25Aの高さによらず封止樹脂28により柱状電極25Aを封止することが可能であり、また封止樹脂28内のフィラー量やサイズを自由に変えることができるので線膨張率などを自由に選択することも可能となる。図7(D)は、半導体基板21上に封止樹脂28が形成された状態を示している。同図に示すように、トランスファーモールドが終了した直後においては、封止樹脂28の表面はポスト部35Aと先端部36Aとの境界部分まで位置している。   Thus, by forming the sealing resin 28 using the transfer molding method, the columnar electrode 25A can be sealed with the sealing resin 28 regardless of the height of the columnar electrode 25A. Since the amount and size of the filler in the resin 28 can be freely changed, the linear expansion coefficient and the like can be freely selected. FIG. 7D shows a state where the sealing resin 28 is formed on the semiconductor substrate 21. As shown in the figure, immediately after the transfer molding is completed, the surface of the sealing resin 28 is located up to the boundary portion between the post portion 35A and the tip portion 36A.

上記のように封止樹脂28の形成処理が終了すると、続いて封止樹脂28の厚さを薄くする処理が実施される。本実施例では、封止樹脂28の厚さを薄くする方法として、アッシングを用いている。このアッシング処理を実施することにより、図7(E)に示すように、封止樹脂28の表面と柱状電極25Aの先端部(先端部36A)は、距離H2だけ離間した状態となる。   When the formation process of the sealing resin 28 is completed as described above, a process of reducing the thickness of the sealing resin 28 is subsequently performed. In this embodiment, ashing is used as a method for reducing the thickness of the sealing resin 28. By performing this ashing process, as shown in FIG. 7E, the surface of the sealing resin 28 and the tip portion (tip portion 36A) of the columnar electrode 25A are separated by a distance H2.

アッシング装置は、レジスト剥離を行う装置として一般に用いられているものである。よって、このアッシング装置を利用することにより、新たな装置を導入する必要はなく、容易、確実、かつ安価に封止樹脂28を薄くすることができる。また、アッシング法を用いることにより、封止樹脂28の形成時に柱状電極25Aの表面等に不要な樹脂が付着しても、この不要樹脂はアッシングにより除去される。これにより、柱状電極25Aに対してはんだボール27を確実に配設することができ、はんだボール27の形成時における歩留まりの向上を図ることができる。   The ashing apparatus is generally used as an apparatus for removing a resist. Therefore, by using this ashing device, it is not necessary to introduce a new device, and the sealing resin 28 can be thinned easily, reliably, and inexpensively. Further, by using the ashing method, even if unnecessary resin adheres to the surface of the columnar electrode 25A or the like when the sealing resin 28 is formed, the unnecessary resin is removed by ashing. As a result, the solder balls 27 can be reliably disposed on the columnar electrodes 25A, and the yield at the time of forming the solder balls 27 can be improved.

上記のアッシング処理が終了すると、続いて柱状電極25Aにはんだボール27を形成する処理が行われる。このはんだボール27の形成方法としては、予め別工程で形成しておいたはんだボールを搭載する方法(以下、転写法という)や、はんだを柱状電極25Aに印刷した後リフローして形成する方法(以下、印刷法という)等がある。はんだボール27の直径が0.5mmよりも小さい狭ピッチの場合は、ボール搭載用治具が高価となるため、転写法に比べて印刷法の方が有利である。また、はんだボール27の材質としては特に限定されるものではなく、共晶はんだ,いわゆる鉛フリーはんだ等のいずれであっても使用可能である。続いて、半導体基板21を半導体素子22に対応した領域でダイシングし個片化することにより、図7(F)に示す半導体装置20Aが製造される。   When the ashing process is finished, a process of forming solder balls 27 on the columnar electrodes 25A is subsequently performed. As a method of forming the solder ball 27, a method of mounting a solder ball formed in a separate process in advance (hereinafter referred to as a transfer method), or a method of forming by reflowing after printing solder on the columnar electrode 25A ( Hereinafter referred to as a printing method). When the diameter of the solder balls 27 is narrower than 0.5 mm, the ball mounting jig is expensive, so the printing method is more advantageous than the transfer method. The material of the solder ball 27 is not particularly limited, and any of eutectic solder, so-called lead-free solder, etc. can be used. Subsequently, the semiconductor substrate 21 is diced in a region corresponding to the semiconductor element 22 and separated into individual pieces, whereby the semiconductor device 20A shown in FIG. 7F is manufactured.

上記した本実施例の半導体装置20Aの製造方法では、封止樹脂28を薄くすることにより柱状電極25Aの端部(先端部36A)を封止樹脂28の表面から離間させた後、柱状電極25Aの端部にはんだボール27を形成するため、先に図5を用いて説明したように、はんだボール27のリフロー時に溶剤成分34が発生しても、隣接するはんだボール27間で短絡(ブリッジ)が発生することを防止できる。   In the manufacturing method of the semiconductor device 20A of the above-described embodiment, the end portion (tip portion 36A) of the columnar electrode 25A is separated from the surface of the sealing resin 28 by thinning the sealing resin 28, and then the columnar electrode 25A. As described above with reference to FIG. 5, even if the solvent component 34 is generated during reflow of the solder ball 27, a short circuit (bridge) occurs between the adjacent solder balls 27. Can be prevented.

次に、本発明の第2乃至第4実施例である半導体装置20B〜20Dについて、図8乃至図10を用いて説明する。尚、図8乃至図10、及びそれ以降の各図において、図2乃至図7に示した構成と同一構成については、同一符号を付してその説明を省略するものとする。   Next, semiconductor devices 20B to 20D according to second to fourth embodiments of the present invention will be described with reference to FIGS. 8 to 10 and subsequent drawings, the same components as those shown in FIGS. 2 to 7 are denoted by the same reference numerals, and the description thereof is omitted.

図8乃至図10に示す第2乃至第4実施例に係る半導体装置20B〜20Dは、第1実施例と同様に、柱状電極25B〜25Dがポスト部35B〜35Dと先端部36B〜36Dとにより構成されている。また、いずれの半導体装置20B〜20Dにおいても、柱状電極25B〜25Dの先端部36B〜36Dは、封止樹脂28の表面から突出し、よってはんだボール27は封止樹脂28の表面から離間した構成となっている。   In the semiconductor devices 20B to 20D according to the second to fourth embodiments shown in FIGS. 8 to 10, the columnar electrodes 25B to 25D are formed by the post portions 35B to 35D and the tip portions 36B to 36D, as in the first embodiment. It is configured. In any of the semiconductor devices 20B to 20D, the tip portions 36B to 36D of the columnar electrodes 25B to 25D protrude from the surface of the sealing resin 28, and thus the solder balls 27 are separated from the surface of the sealing resin 28. It has become.

第2実施例に係る半導体装置20Bは、先端部36Bに鋸歯状の凹凸を形成することにより、はんだボール27と柱状電極25Bとの接触面積を増大させた構成としている。また、第3実施例に係る半導体装置20Cは、先端部36Cに波状の凹凸を形成することにより、はんだボール27と柱状電極25Cとの接触面積を増大させた構成としている。更に、第4実施例に係る半導体装置20Dは、先端部36Dの側部までバリアメタル26を形成することにより、はんだボール27が先端部36Dの側面にも接することができるよう構成することにより、はんだボール27と柱状電極25Dの接触面積を増大させた構成としている。   The semiconductor device 20B according to the second embodiment has a configuration in which the contact area between the solder ball 27 and the columnar electrode 25B is increased by forming serrated irregularities at the tip portion 36B. Further, the semiconductor device 20C according to the third embodiment has a configuration in which the contact area between the solder ball 27 and the columnar electrode 25C is increased by forming a wave-like unevenness at the tip portion 36C. Further, the semiconductor device 20D according to the fourth embodiment is configured so that the solder ball 27 can also contact the side surface of the tip portion 36D by forming the barrier metal 26 up to the side portion of the tip portion 36D. The contact area between the solder ball 27 and the columnar electrode 25D is increased.

この第2乃至第4実施例に係るいずれの半導体装置20B〜20Dによっても、第1実施例と同様に、柱状電極25B〜25Dの先端部36B〜36Dが封止樹脂28の表面から突出しており、かつ、従来に比べてはんだボール27と先端部36B〜36Dとの接触面積の増大が図られているため、前記した第1実施例に係る半導体装置20Aと同様の効果を実現することができる。   In any of the semiconductor devices 20B to 20D according to the second to fourth embodiments, the tip portions 36B to 36D of the columnar electrodes 25B to 25D protrude from the surface of the sealing resin 28 as in the first embodiment. In addition, since the contact area between the solder ball 27 and the tip portions 36B to 36D is increased as compared with the prior art, the same effect as the semiconductor device 20A according to the first embodiment can be realized. .

図11及び図12は、第2実施例に係る半導体装置20Bの製造方法を示している。尚、第1実施例に係る半導体装置20Aの製造方法と共通する処理については説明を適宜省略する。   11 and 12 show a method for manufacturing the semiconductor device 20B according to the second embodiment. Note that description of processes common to the method of manufacturing the semiconductor device 20A according to the first embodiment will be omitted as appropriate.

図11(A),(B)に示す処理は、図7を用いて説明した第1実施例に係る半導体装置20Aの製造方法と同様である。図11(B)に示すようにめっき層41が形成されると、図7(C)を用いて説明したと同様の処理が実施され、電極用レジスト43に柱状電極25Bが形成される。図7(C)に示す第1実施例では、電極用レジスト43の上部に先端部36Aが形成されるようにしたが、本実施例では先端部36Aが形成される前に電解めっきを停止する。これにより、本実施例では電解めっきにより円柱状の柱状電極25B(図12(A)参照)が形成される。   The processes shown in FIGS. 11A and 11B are the same as the method for manufacturing the semiconductor device 20A according to the first embodiment described with reference to FIG. When the plating layer 41 is formed as shown in FIG. 11B, the same processing as described with reference to FIG. 7C is performed, and the columnar electrode 25B is formed in the electrode resist 43. In the first embodiment shown in FIG. 7C, the tip portion 36A is formed on the upper portion of the electrode resist 43, but in this embodiment, the electroplating is stopped before the tip portion 36A is formed. . Thereby, in this embodiment, the columnar electrode 25B (see FIG. 12A) is formed by electrolytic plating.

続いて、このように円柱形状の柱状電極25Bが形成されると、続いて柱状極25Bに鋸歯状の凹凸を有した先端部36Bを形成する処理を行う。図12は、鋸歯状の凹凸を有した先端部36Bの形成方法を示している。図12(A)に示す方法は、鋸歯状の凹凸部46が形成されている治具44を柱状電極25B(バリアメタル26が形成されている)にプレスすることにより、柱状電極25Bの先端部36Bに鋸歯状の凹凸を形成するものである。この方法では、プレスを用いたいわゆるスタンピングにより柱状電極25Bの成形ができるため、半導体装置20Bの生産性を高めることができる。   Subsequently, when the columnar electrode 25B having a cylindrical shape is formed in this manner, a process of forming a tip portion 36B having sawtooth-like irregularities on the columnar pole 25B is subsequently performed. FIG. 12 shows a method of forming the tip portion 36B having serrated irregularities. In the method shown in FIG. 12A, the tip end portion of the columnar electrode 25B is formed by pressing the jig 44 on which the serrated uneven portion 46 is formed on the columnar electrode 25B (where the barrier metal 26 is formed). Sawtooth-shaped irregularities are formed on 36B. In this method, since the columnar electrode 25B can be formed by so-called stamping using a press, the productivity of the semiconductor device 20B can be increased.

図12(B)に示す方法は、図11(A)に示すスパッタ膜40を形成する前に、予め絶縁膜23の柱状電極25B形成位置に凸部47を形成しておくことを特徴としている。この凸部47は、絶縁膜23と一体的に形成される。このように凸部47が形成された絶縁膜23上にスパッタ膜40,めっき層41,及び柱状電極25Bをめっき形成することにより、めっき後に凸部47の形状が履歴的にスパッタ膜40の表面、めっき層41の表面、そして柱状電極25Bの先端部に残ることとなる。これにより、柱状電極25Bの先端部36Bに鋸歯状の凹凸が形成される。   The method shown in FIG. 12B is characterized in that a convex portion 47 is formed in advance in the formation position of the columnar electrode 25B of the insulating film 23 before forming the sputtered film 40 shown in FIG. . The convex portion 47 is formed integrally with the insulating film 23. By forming the sputtered film 40, the plating layer 41, and the columnar electrode 25B on the insulating film 23 on which the convex portions 47 are formed in this way, the shape of the convex portions 47 is historically changed to the surface of the sputtered film 40 after plating. The surface of the plating layer 41 and the tip of the columnar electrode 25B remain. Thereby, serrated irregularities are formed at the tip 36B of the columnar electrode 25B.

この方法を用いた場合には、図12(A)に示した構成と異なり、治具44を用いることがないため、製造工程の簡単化を図ることができる。また、凸部47の形状を適宜変更することにより、先端部36Bの形状を任意に設定することができる。例えば、凸部47の形状を波形状とすることにより、図9に示した第3実施例に係る半導体装置20Cを形成することも可能となる。   When this method is used, unlike the configuration shown in FIG. 12A, the jig 44 is not used, so that the manufacturing process can be simplified. Moreover, the shape of the front-end | tip part 36B can be arbitrarily set by changing the shape of the convex part 47 suitably. For example, it is possible to form the semiconductor device 20C according to the third embodiment shown in FIG.

ここで、図11に戻り説明を続ける。図11(C)は、上記のようにして柱状電極25Bの先端部36Bに鋸歯状の凹凸が形成された状態を示している。また、めっき層41の不要部分もエッチングにより除去され、これにより電極パッド38を有する所定形状の配線層24が形成される。また、この状態において、柱状電極25Aは配線層24に形成された電極パッド38上に立設した状態となっている。   Here, returning to FIG. FIG. 11C shows a state in which serrated irregularities are formed at the tip portion 36B of the columnar electrode 25B as described above. Further, unnecessary portions of the plating layer 41 are also removed by etching, whereby the wiring layer 24 having a predetermined shape having the electrode pads 38 is formed. In this state, the columnar electrode 25 </ b> A is erected on the electrode pad 38 formed in the wiring layer 24.

次に、柱状電極25Bが形成された半導体基板21は、金型に装着されて封止樹脂28を形成するためのトランスファーモールド処理が実施される。トランスファーモールドが終了した直後においては、図11(D)に示すように、封止樹脂28の表面はポスト部35Bと先端部36Bとの境界部分まで位置している。   Next, the semiconductor substrate 21 on which the columnar electrodes 25 </ b> B are formed is subjected to a transfer mold process for mounting the mold on the mold and forming the sealing resin 28. Immediately after the transfer molding is finished, as shown in FIG. 11D, the surface of the sealing resin 28 is located up to the boundary portion between the post portion 35B and the tip portion 36B.

上記のように封止樹脂28の形成処理が終了すると、続いて封止樹脂28の厚さを薄くするアッシング処理が実施される。このアッシング処理を実施することにより、図11(E)に示すように、封止樹脂28の表面と柱状電極25Bの先端部(先端部36B)は、距離H2だけ離間した状態となる。このアッシング処理が終了すると、続いて柱状電極25Aにはんだボール27を形成する処理が行われる。以上の工程を経ることにより、図11(F)に示す半導体装置20Bが製造される。   When the formation process of the sealing resin 28 is completed as described above, an ashing process for reducing the thickness of the sealing resin 28 is subsequently performed. By performing this ashing process, as shown in FIG. 11E, the surface of the sealing resin 28 and the tip portion (tip portion 36B) of the columnar electrode 25B are separated by a distance H2. When this ashing process is completed, a process of forming solder balls 27 on the columnar electrodes 25A is subsequently performed. Through the above steps, the semiconductor device 20B shown in FIG. 11F is manufactured.

図13は、第4実施例に係る半導体装置20Dの製造方法を示している。尚、以下の説明においても、第1実施例に係る半導体装置20Aの製造方法と共通する処理については説明を適宜省略する。また、本実施例では柱状電極25Dにバリアメタル26を配設する方法に特徴を有するため、柱状電極25Dにバリアメタル26を配設する方法についてのみ説明するものとする。   FIG. 13 shows a method for manufacturing the semiconductor device 20D according to the fourth embodiment. In the following description, the description of processes common to the method for manufacturing the semiconductor device 20A according to the first embodiment will be omitted as appropriate. Further, since the present embodiment has a feature in the method of disposing the barrier metal 26 on the columnar electrode 25D, only the method of disposing the barrier metal 26 on the columnar electrode 25D will be described.

図13(A)は、電極用レジスト43(DFRよりなる)に形成された開口部48に柱状電極25Dを電解めっきにより形成した状態を示している。このように柱状電極25Dが形成されると、続いて電極用レジスト43に対し熱処理が行なわれる。   FIG. 13A shows a state in which the columnar electrode 25D is formed by electrolytic plating in the opening 48 formed in the electrode resist 43 (made of DFR). When the columnar electrode 25D is thus formed, the electrode resist 43 is subsequently heat-treated.

この熱処理は、電極用レジスト43として用いられDFRの材料等により異なるが、一例として温度100〜200℃の熱を5分〜60分印加することにより、電極用レジスト43の開口部48の端部を図13(B)に示すように広げることができる。これにより、開口部48の端部の形状は、ラッパ状の形状となる。   Although this heat treatment varies depending on the material of the DFR used as the electrode resist 43, for example, by applying heat at a temperature of 100 to 200 ° C. for 5 to 60 minutes, the end of the opening 48 of the electrode resist 43 Can be expanded as shown in FIG. Thereby, the shape of the edge part of the opening part 48 becomes a trumpet shape.

また、このように開口部48の端部が広がることにより、柱状電極25Dの先端部36Dは外部に広く露出した状態となる。そして、この状態で柱状電極25Dの先端部36Dに対してバリアメタル26を配設する処理を行う。これにより、バリアメタル26は、36の側部まで配設されることとなる。   In addition, since the end portion of the opening 48 is expanded in this manner, the tip end portion 36D of the columnar electrode 25D is widely exposed to the outside. In this state, a process of disposing the barrier metal 26 on the tip portion 36D of the columnar electrode 25D is performed. As a result, the barrier metal 26 is disposed up to the side portion 36.

従って、後の工程において柱状電極25Dにはんだボール27を配設する際、バリアメタル26が柱状電極25D(先端部36D)の側部まで形成されているため、はんだボール27を柱状電極25D(先端部36D)の側部まで設けることができる。これにより、はんだボール27と柱状電極25Dとの接触面積を増大させることができる。   Accordingly, when the solder ball 27 is disposed on the columnar electrode 25D in a later step, the barrier metal 26 is formed up to the side of the columnar electrode 25D (tip portion 36D). Up to the side of part 36D). Thereby, the contact area of the solder ball 27 and the columnar electrode 25D can be increased.

次に、本発明の第5及び第6実施例である半導体装置20E,20Fについて説明する。図14は第5実施例である半導体装置20Eを示しており、図15は半導体装置20Eの製造方法を示している。また、図16は第6実施例である半導体装置20Fを示しており、図17は半導体装置20Fの製造方法を示している。この半導体装置20E及び半導体装置20Fは、いずれも高周波対応(500MHz以上の高周波)の半導体装置である。   Next, semiconductor devices 20E and 20F according to fifth and sixth embodiments of the present invention will be described. FIG. 14 shows a semiconductor device 20E according to the fifth embodiment, and FIG. 15 shows a method for manufacturing the semiconductor device 20E. FIG. 16 shows a semiconductor device 20F according to the sixth embodiment, and FIG. 17 shows a method for manufacturing the semiconductor device 20F. The semiconductor device 20E and the semiconductor device 20F are both high frequency compatible (high frequency of 500 MHz or higher) semiconductor devices.

前記したように、高周波対応の半導体装置20E,20Fでは、寄生容量の低減を図るために半導体素子22との接合位置においては、高周波対応の柱状電極は、高周波対応ではない他の柱状電極よりも小さくすることが望ましい。しかしながら、単に高周波対応の柱状電極5Aを小さくした従来の半導体装置1Bの構成では、高周波用柱状電極5Aの伝送特性には優れるが、実装信頼性が低下してしまうことも前述した通りである。   As described above, in the high-frequency compatible semiconductor devices 20E and 20F, in order to reduce the parasitic capacitance, the high-frequency compatible columnar electrode is more than the other high-frequency compatible columnar electrodes at the junction position with the semiconductor element 22. It is desirable to make it smaller. However, the configuration of the conventional semiconductor device 1B in which the columnar electrode 5A for high frequency is simply reduced is excellent in the transmission characteristics of the columnar electrode 5A for high frequency, but the mounting reliability is also lowered as described above.

そこで、図14に示す半導体装置20Eでは、高周波対応である高周波用柱状電極25Fのはんだボール27と接する部分の直径(L1)が、高周波用電極パッド45A(配線層24)と接する部分の直径(L2)に比べて長くとなるよう(L1>L2)構成したことを特徴としている。従って、高周波用柱状電極25Fのはんだボール27と接する部分の面積(S1)も、高周波用電極パッド45A(配線層24)と接する部分の面積(S2)に比べて広い面積(S1>S2)となっている。
尚、高周波用電極パッド45Aは、通常の電極パッド45と同様に配線層24と一体的に形成されるものであるが、半導体素子22の高周波対応の接続パッドと接続されたものである。
Therefore, in the semiconductor device 20E shown in FIG. 14, the diameter (L1) of the portion in contact with the solder ball 27 of the high-frequency columnar electrode 25F that supports high frequency is the diameter of the portion in contact with the high-frequency electrode pad 45A (wiring layer 24) ( It is characterized in that it is configured to be longer (L1> L2) than L2). Accordingly, the area (S1) of the portion in contact with the solder ball 27 of the high-frequency columnar electrode 25F is larger than the area (S2) of the portion in contact with the high-frequency electrode pad 45A (wiring layer 24) (S1> S2). It has become.
The high frequency electrode pad 45 </ b> A is formed integrally with the wiring layer 24 in the same manner as the normal electrode pad 45, but is connected to the high frequency compatible connection pad of the semiconductor element 22.

本実施例において、高周波用柱状電極25Fは、その断面積が高周波用電極パッド45A(配線層24)から離間するに従い連続的に大きくなる形状とされている。具体的には、高周波用柱状電極25Fは、略円錐台状の形状とされている。また、本実施例に係る半導体装置20Eでは、製造上の観点より高周波対応でない通常の柱状電極25Eについても、高周波用柱状電極25Fの形状と同一の形状とされている。   In the present embodiment, the high-frequency columnar electrode 25F has a shape in which the cross-sectional area continuously increases as the distance from the high-frequency electrode pad 45A (wiring layer 24) increases. Specifically, the high-frequency columnar electrode 25F has a substantially truncated cone shape. Further, in the semiconductor device 20E according to the present embodiment, the normal columnar electrode 25E that is not compatible with high frequency from the viewpoint of manufacturing is also the same shape as the columnar electrode 25F for high frequency.

上記したように、本実施例に係る半導体装置20Eは、高周波用電極パッド45Aと接する部分では、高周波用柱状電極25Fの面積S2(直径L2)が小さいため、高周波用柱状電極25Fと半導体素子22との間の寄生容量の低減を図ることができ、伝送特性を向上することができる。また、はんだボール27と接する先端部においては、高周波用柱状電極25Fの面積S1(直径L1)を大きくできるため、高周波用柱状電極25Fとはんだボール27との接合を高めることができ、実装信頼性を高めることができる。   As described above, in the semiconductor device 20E according to the present embodiment, the area S2 (diameter L2) of the high-frequency columnar electrode 25F is small in the portion in contact with the high-frequency electrode pad 45A, and thus the high-frequency columnar electrode 25F and the semiconductor element 22 are small. The parasitic capacitance between the two can be reduced, and the transmission characteristics can be improved. Further, since the area S1 (diameter L1) of the high-frequency columnar electrode 25F can be increased at the tip portion in contact with the solder ball 27, the bonding between the high-frequency columnar electrode 25F and the solder ball 27 can be improved, and the mounting reliability can be improved. Can be increased.

尚、各柱状電極25E,25Fは、前記した各実施例と同様にその先端部が封止樹脂28の表面から突出している。また、各柱状電極25E,25Fの先端部にはバリアメタル26を介してはんだボール27が配設されている。よって、はんだボール27と封止樹脂28の表面とは離間した構成であり、前記した各実施例と同様の効果を実現することができる。   The columnar electrodes 25E and 25F have their tips protruding from the surface of the sealing resin 28 as in the above-described embodiments. In addition, solder balls 27 are disposed at the front ends of the columnar electrodes 25E and 25F via barrier metal 26. Therefore, the solder ball 27 and the surface of the sealing resin 28 are separated from each other, and the same effects as those of the above-described embodiments can be realized.

続いて、上記構成とされた半導体装置20Eの製造方法について説明する。図15は、半導体装置20Eの製造方法を製造手順に沿って示している。   Next, a method for manufacturing the semiconductor device 20E having the above configuration will be described. FIG. 15 shows a method of manufacturing the semiconductor device 20E along the manufacturing procedure.

半導体装置20Eを製造するには、図15(A)に示すように、パッシベーション膜29が形成された半導体基板21上に絶縁膜23を形成すると共に、この絶縁膜23の半導体基板21に形成されている電極部と対向する位置に孔49を形成する。   In order to manufacture the semiconductor device 20E, as shown in FIG. 15A, the insulating film 23 is formed on the semiconductor substrate 21 on which the passivation film 29 is formed, and the insulating film 23 is formed on the semiconductor substrate 21. A hole 49 is formed at a position facing the electrode portion.

続いて、図15(B)に示すように、所定のパターンが形成された配線用レジスト42を絶縁膜23の上部に形成し、この配線用レジスト42を用いて配線層24,電極パッド45,及び高周波用電極パッド45Aを形成する。この各パッド等24,45,45Aの形成処理が終了すると、図15(C)に示すように、配線用レジスト42は除去される。   Subsequently, as shown in FIG. 15B, a wiring resist 42 having a predetermined pattern is formed on the insulating film 23, and the wiring layer 24, the electrode pads 45, Then, a high frequency electrode pad 45A is formed. When the formation process of the pads 24, 45, 45A is completed, the wiring resist 42 is removed as shown in FIG.

続いて、各パッド等24,45,45Aが形成された半導体基板21上に、電極用レジスト43を形成する。この電極用レジスト43を半導体基板21上に形成するには、先ず電極用レジスト43となるDFRを半導体基板21上に配設する。このDFRは感光性の樹脂であり、露光処理等を実施することにより任意の開口パターンを形成することができる。   Subsequently, an electrode resist 43 is formed on the semiconductor substrate 21 on which the pads 24, 45, 45A are formed. In order to form the electrode resist 43 on the semiconductor substrate 21, first, the DFR to be the electrode resist 43 is disposed on the semiconductor substrate 21. This DFR is a photosensitive resin, and an arbitrary opening pattern can be formed by performing an exposure process or the like.

本実施例では、露光条件を最適化することにより、円錐台形状の開口パターン50を形成している。図15(D)は、円錐台形状の開口パターン50が形成された状態を示している。この各開口パターン50の下部には開口が形成され、よって電極パッド45及び高周波用電極パッド45Aが開口パターン50に露出した構成となっている。   In this embodiment, the frustoconical opening pattern 50 is formed by optimizing the exposure conditions. FIG. 15D shows a state in which a truncated cone-shaped opening pattern 50 is formed. An opening is formed below each opening pattern 50, so that the electrode pad 45 and the high-frequency electrode pad 45 </ b> A are exposed to the opening pattern 50.

このように開口パターン50を有する電極用レジスト43が形成されると、続いて図15(D)に示すように、電極用レジスト43を用いて開口パターン50内に高周波用柱状電極25F及び柱状電極25Eを形成する処理が行われる。また、各柱状電極25E,25Fが形成されると、その先端部にバリアメタル26が形成される。   When the electrode resist 43 having the opening pattern 50 is formed as described above, the high-frequency columnar electrode 25F and the columnar electrode are subsequently formed in the opening pattern 50 using the electrode resist 43 as shown in FIG. A process of forming 25E is performed. Further, when each columnar electrode 25E, 25F is formed, a barrier metal 26 is formed at the tip thereof.

続いて、電極用レジスト43が除去された後、トランスファーモールドにより封止樹脂28が形成される。その後、ダイシング処理が実施されることにより、半導体基板21は個片化され、これにより図15(F)に示す半導体装置20Eが形成される。   Subsequently, after the electrode resist 43 is removed, the sealing resin 28 is formed by transfer molding. Thereafter, dicing is performed, whereby the semiconductor substrate 21 is separated into individual pieces, whereby the semiconductor device 20E shown in FIG. 15F is formed.

一方、図16に示す半導体装置20Fにおいても、高周波用柱状電極25Hのはんだボール27と接する部分の直径(L3)が、高周波用電極パッド45A(配線層24)と接する部分の直径(L4)に比べて長くとなるよう(L3>L4)構成したことを特徴としている。従って、高周波用柱状電極25Hのはんだボール27と接する部分の面積(S3)も、高周波用電極パッド45A(配線層24)と接する部分の面積(S4)に比べて広い面積(S3>S4)となっている。   On the other hand, also in the semiconductor device 20F shown in FIG. 16, the diameter (L3) of the portion in contact with the solder ball 27 of the high-frequency columnar electrode 25H is equal to the diameter (L4) of the portion in contact with the high-frequency electrode pad 45A (wiring layer 24). It is characterized by being configured to be longer (L3> L4). Therefore, the area (S3) of the portion in contact with the solder ball 27 of the high-frequency columnar electrode 25H is larger than the area (S4) of the portion in contact with the high-frequency electrode pad 45A (wiring layer 24) (S3> S4). It has become.

本実施例において、高周波用柱状電極25Hは、その断面積が高周波用電極パッド45A(配線層24)から離間するに従い段階的に大きくなる形状とされている。具体的には、高周波用柱状電極25Hは、はんだボール27の配設側に位置する大径部51と、高周波用電極パッド45A側に位置する小径部52とにより構成されており、よって大径部51と小径部52との間に段部が形成された構成とされている。尚、本実施例においても、高周波対応でない通常の柱状電極25Gについても、高周波用柱状電極25Hと同一形状とされている。   In the present embodiment, the high-frequency columnar electrode 25H has a shape in which the cross-sectional area gradually increases as the distance from the high-frequency electrode pad 45A (wiring layer 24) increases. Specifically, the high-frequency columnar electrode 25H is composed of a large-diameter portion 51 located on the side where the solder balls 27 are disposed and a small-diameter portion 52 located on the high-frequency electrode pad 45A side. A step portion is formed between the portion 51 and the small diameter portion 52. In this embodiment as well, the normal columnar electrode 25G that does not support high frequency has the same shape as the high-frequency columnar electrode 25H.

本実施例に係る半導体装置20Fは、図14に示した第5実施例に係る半導体装置20Eと同様に、高周波用電極パッド45Aとが接する部分では高周波用柱状電極25Hの面積S4(直径L4)が小さいため、高周波用柱状電極25Hと半導体素子22との間の寄生容量の低減を図ることができ、伝送特性を向上することができる。また、はんだボール27と接する先端部においては、高周波用柱状電極25Hの面積S1(直径L1)が大きいため、高周波用柱状電極25Hとはんだボール27との接合を高めることができ、実装信頼性を高めることができる。   Similarly to the semiconductor device 20E according to the fifth embodiment shown in FIG. 14, the semiconductor device 20F according to the present embodiment has an area S4 (diameter L4) of the high-frequency columnar electrode 25H at a portion in contact with the high-frequency electrode pad 45A. Therefore, the parasitic capacitance between the high-frequency columnar electrode 25H and the semiconductor element 22 can be reduced, and the transmission characteristics can be improved. In addition, since the area S1 (diameter L1) of the high-frequency columnar electrode 25H is large at the tip portion in contact with the solder ball 27, the bonding between the high-frequency columnar electrode 25H and the solder ball 27 can be improved, and the mounting reliability is improved. Can be increased.

尚、本実施例に係る半導体装置20Fにおいても、各柱状電極25G,25Hは、前記した各実施例と同様にその先端部が封止樹脂28の表面から突出している。また、各柱状電極25G,25Hの先端部にはバリアメタル26を介してはんだボール27が配設されている。よって、はんだボール27と封止樹脂28の表面とは離間した構成であり、前記した各実施例と同様の効果を実現することができる。   Note that, also in the semiconductor device 20F according to the present embodiment, the end portions of the columnar electrodes 25G and 25H protrude from the surface of the sealing resin 28 as in the above-described embodiments. In addition, solder balls 27 are disposed at the front ends of the columnar electrodes 25G and 25H via barrier metals 26. Therefore, the solder ball 27 and the surface of the sealing resin 28 are separated from each other, and the same effects as those of the above-described embodiments can be realized.

続いて、上記構成とされた半導体装置20Fの製造方法について説明する。図17は、半導体装置20Fの製造方法を製造手順に沿って示している。尚、図15に示した半導体装置20Eの製造方法と共通する処理については、適宜その説明を省略するものとする。   Next, a method for manufacturing the semiconductor device 20F configured as described above will be described. FIG. 17 shows a method of manufacturing the semiconductor device 20F along the manufacturing procedure. Note that the description of processes common to the method for manufacturing the semiconductor device 20E shown in FIG. 15 will be omitted as appropriate.

図17(A)〜(C)は、図15(A)〜(C)と同一処理である。本実施例では、図17(C)に示すように各電極パッド等24,45,45Aが形成された後、図17(D)に示すように第2の絶縁膜53を形成する。この第2の絶縁膜53は、各電極パッド等45,45Aと対向する位置に小径開口54が形成されている。この小径開口54の直径及び面積は、前記した高周波用柱状電極25Hの小径部52の直径(L4)及び面積(S4)とされている。尚、この第2の絶縁膜53の材質は、内部応力発生防止の面から、絶縁膜23と同一材料であることが望ましい。   FIGS. 17A to 17C are the same processing as FIGS. 15A to 15C. In this embodiment, after the electrode pads 24, 45, 45A are formed as shown in FIG. 17C, the second insulating film 53 is formed as shown in FIG. The second insulating film 53 has a small-diameter opening 54 at a position facing the electrode pads 45 and 45A. The diameter and area of the small-diameter opening 54 are the diameter (L4) and area (S4) of the small-diameter portion 52 of the high-frequency columnar electrode 25H. The material of the second insulating film 53 is preferably the same material as that of the insulating film 23 from the viewpoint of preventing the generation of internal stress.

続いて、第2の絶縁膜53が形成された半導体基板21上に、電極用レジスト43を形成する。この電極用レジスト43を半導体基板21上に形成するには、先ず電極用レジスト43となる感光性のDFRを半導体基板21上に配設し、これに露光処理等を実施することにより大径開口55を形成する。この大径開口55の直径及び面積は、前記した高周波用柱状電極25Hの大径部51の直径(L3)及び面積(S3)とされている。   Subsequently, an electrode resist 43 is formed on the semiconductor substrate 21 on which the second insulating film 53 is formed. In order to form the electrode resist 43 on the semiconductor substrate 21, first, a photosensitive DFR to be the electrode resist 43 is disposed on the semiconductor substrate 21, and a large-diameter opening is formed by performing an exposure process or the like on the photosensitive DFR. 55 is formed. The diameter and area of the large-diameter opening 55 are the diameter (L3) and area (S3) of the large-diameter portion 51 of the high-frequency columnar electrode 25H.

図17(E)は、大径開口55が形成された状態を示している。この各大径開口55の下部には、第2の絶縁膜53に形成された小径開口54が位置している。よって、この小径開口54及び大径開口55を介して、電極パッド45及び高周波用電極パッド45Aは露出した構成となっている。   FIG. 17E shows a state where the large-diameter opening 55 is formed. Below each large-diameter opening 55, a small-diameter opening 54 formed in the second insulating film 53 is located. Therefore, the electrode pad 45 and the high-frequency electrode pad 45A are exposed through the small-diameter opening 54 and the large-diameter opening 55.

このように大径開口55を有する電極用レジスト43が形成されると、続いて図17(F)に示すように、電極用レジスト43を用いて大径開口55及び小径開口54内に高周波用柱状電極25H及び柱状電極25Gを形成する処理を行う。また、各柱状電極25G,25Hが形成されると、その先端部にバリアメタル26が形成される。   When the electrode resist 43 having the large-diameter opening 55 is formed as described above, subsequently, as shown in FIG. 17 (F), the electrode resist 43 is used to place the electrode resist 43 in the large-diameter opening 55 and the small-diameter opening 54. A process of forming the columnar electrode 25H and the columnar electrode 25G is performed. Further, when each columnar electrode 25G, 25H is formed, a barrier metal 26 is formed at the tip thereof.

続いて、電極用レジスト43が除去された後、トランスファーモールドにより封止樹脂28が形成される。その後、ダイシング処理が実施されることにより、半導体基板21は個片化され、これにより図17(G)に示す半導体装置20Fが形成される。   Subsequently, after the electrode resist 43 is removed, the sealing resin 28 is formed by transfer molding. Thereafter, dicing processing is performed, whereby the semiconductor substrate 21 is separated into individual pieces, whereby the semiconductor device 20F shown in FIG. 17G is formed.

以上の説明に関し、更に以下の項を開示する。
(付記1)
半導体素子と、
前記半導体素子上に配設された配線層と、
該配線層に一端部が接続された柱状電極と、
前記半導体素子上に形成された封止樹脂とを有する半導体装置であって、
前記柱状電極を前記封止樹脂から突出するよう形成し、
該柱状電極の前記封止樹脂から突出した他端部に、前記封止樹脂の表面から離間するよう外部接続部材を配設したことを特徴とする半導体装置。
(付記2)
付記1記載の半導体装置において、
前記封止樹脂と前記外部接続部材との離間距離が10μm以上80μm以下であることを特徴とする半導体装置。
(付記3)
付記1または2記載の半導体装置において、
前記柱状電極と前記外部接続部材との間にバリアメタルが設けられていることを特徴とする半導体装置。
(付記4)
付記1乃至3のいずれかに記載の半導体装置において、
前記柱状電極と前記外部接続部材とが接する面積が、前記柱状電極と前記配線層とが接する面積に比べて広い面積となるよう構成されていることを特徴とする半導体装置。
(付記5)
付記4記載の半導体装置において、
前記柱状電極の面積が、前記配線層から離間するに従い連続的に大きくなるよう構成したことを特徴とする半導体装置。
(付記6)
付記4記載の半導体装置において、
前記柱状電極の面積が、前記配線層から離間するに従い段階的に大きくなるよう構成したことを特徴とする半導体装置。
(付記7)
付記1乃至3のいずれかに記載の半導体装置において、
前記柱状電極の前記封止樹脂の表面から離間した側の端部の直径が、前記配線層と接する部分の直径に比べて大きくなるよう構成されていることを特徴とする半導体装置。
(付記8)
付記7記載の半導体装置において、
前記柱状電極の直径が、前記配線層から離間するに従い連続的に大きくなるよう構成したことを特徴とする半導体装置。
(付記9)
付記7記載の半導体装置において、
前記柱状電極の直径が、前記配線層から離間するに従い段階的に大きくなるよう構成したことを特徴とする半導体装置。
(付記10)
半導体基板上に配線層を形成する工程と、
該配線層上に柱状電極を形成するための開口部を有するレジストを形成すると共に、該レジストを用いて導電性金属を前記開口部に前記レジストの厚さを超えて形成する工程と、
前記レジストを剥離した後、前記半導体基板上に封止樹脂を形成する工程と、
前記封止樹脂の厚さを薄くする処理を行う工程と
を有することを特徴とする半導体装置の製造方法。
(付記11)
付記10記載の半導体装置の製造方法において、
前記封止樹脂の厚さを薄くする処理として、アッシングを用いたことを特徴とする半導体装置の製造方法。
(付記12)
付記10または11記載の半導体装置の製造方法において、
前記封止樹脂の厚さを薄くする処理を実施した後、前記柱状電極の前記封止樹脂から離間した端部に外部接続部材を形成する工程を実施することを特徴とする半導体装置の製造方法。
(付記13)
請求項10乃至12のいずれかに記載の半導体装置の製造方法において、
前記封止樹脂を、トランスファーモールド法を用いて形成したことを特徴とする半導体装置の製造方法。
Regarding the above description, the following items are further disclosed.
(Appendix 1)
A semiconductor element;
A wiring layer disposed on the semiconductor element;
A columnar electrode having one end connected to the wiring layer;
A semiconductor device having a sealing resin formed on the semiconductor element,
Forming the columnar electrode so as to protrude from the sealing resin;
An external connection member is disposed at the other end of the columnar electrode protruding from the sealing resin so as to be separated from the surface of the sealing resin.
(Appendix 2)
In the semiconductor device according to attachment 1,
A semiconductor device, wherein a separation distance between the sealing resin and the external connection member is 10 μm or more and 80 μm or less.
(Appendix 3)
In the semiconductor device according to attachment 1 or 2,
A semiconductor device, wherein a barrier metal is provided between the columnar electrode and the external connection member.
(Appendix 4)
In the semiconductor device according to any one of appendices 1 to 3,
2. A semiconductor device, wherein an area where the columnar electrode and the external connection member are in contact with each other is larger than an area where the columnar electrode and the wiring layer are in contact with each other.
(Appendix 5)
In the semiconductor device according to attachment 4,
2. A semiconductor device according to claim 1, wherein the area of the columnar electrode is continuously increased as the area is separated from the wiring layer.
(Appendix 6)
In the semiconductor device according to attachment 4,
A semiconductor device characterized in that the area of the columnar electrode increases stepwise as it is separated from the wiring layer.
(Appendix 7)
In the semiconductor device according to any one of appendices 1 to 3,
The semiconductor device is characterized in that a diameter of an end of the columnar electrode on a side away from the surface of the sealing resin is larger than a diameter of a portion in contact with the wiring layer.
(Appendix 8)
In the semiconductor device according to attachment 7,
2. A semiconductor device according to claim 1, wherein a diameter of the columnar electrode is continuously increased as the column electrode is separated from the wiring layer.
(Appendix 9)
In the semiconductor device according to attachment 7,
A semiconductor device characterized in that the diameter of the columnar electrode increases stepwise as the distance from the wiring layer increases.
(Appendix 10)
Forming a wiring layer on a semiconductor substrate;
Forming a resist having an opening for forming a columnar electrode on the wiring layer, and forming a conductive metal in the opening beyond the thickness of the resist using the resist;
Forming a sealing resin on the semiconductor substrate after removing the resist;
And a step of performing a process of reducing the thickness of the sealing resin.
(Appendix 11)
In the method for manufacturing a semiconductor device according to attachment 10,
A method for manufacturing a semiconductor device, characterized in that ashing is used as a process for reducing the thickness of the sealing resin.
(Appendix 12)
In the method for manufacturing a semiconductor device according to attachment 10 or 11,
A method of manufacturing a semiconductor device, comprising performing a process of reducing the thickness of the sealing resin and then forming an external connection member at an end portion of the columnar electrode spaced apart from the sealing resin. .
(Appendix 13)
In the manufacturing method of the semiconductor device according to claim 10,
A method of manufacturing a semiconductor device, wherein the sealing resin is formed using a transfer molding method.

図1は、従来の一例である半導体装置の断面図である(その1)。FIG. 1 is a cross-sectional view of a conventional semiconductor device (part 1). 図2は、従来の一例である半導体装置の断面図である(その2)。FIG. 2 is a cross-sectional view of a conventional semiconductor device (part 2). 図3は、本発明の第1実施例である半導体装置の断面図である。FIG. 3 is a sectional view of the semiconductor device according to the first embodiment of the present invention. 図4は、本発明の第1実施例である半導体装置が実装基板に実装された状態を示す図である。FIG. 4 is a diagram showing a state in which the semiconductor device according to the first embodiment of the present invention is mounted on a mounting board. 図5は、本発明の第1実施例に係る半導体装置の作用を従来の半導体装置と比べつつ説明する図である(その1)。FIG. 5 is a diagram for explaining the operation of the semiconductor device according to the first embodiment of the present invention while comparing it with a conventional semiconductor device (part 1). 図6は、本発明の第1実施例に係る半導体装置の作用を従来の半導体装置と比べつつ説明する図である(その2)。FIG. 6 is a diagram for explaining the operation of the semiconductor device according to the first embodiment of the present invention while comparing it with the conventional semiconductor device (part 2). 図7は、本発明の第1実施例に係る半導体装置の製造方法を説明するための図である。FIG. 7 is a diagram for explaining a method of manufacturing a semiconductor device according to the first embodiment of the present invention. 図8は、本発明の第2実施例である半導体装置の断面図である。FIG. 8 is a sectional view of a semiconductor device according to the second embodiment of the present invention. 図9は、本発明の第3実施例である半導体装置の断面図である。FIG. 9 is a sectional view of a semiconductor device according to a third embodiment of the present invention. 図10は、本発明の第4実施例である半導体装置の断面図である。FIG. 10 is a sectional view of a semiconductor device according to the fourth embodiment of the present invention. 図11は、本発明の第2実施例に係る半導体装置の製造方法を説明するための図である。FIG. 11 is a diagram for explaining a method of manufacturing a semiconductor device according to the second embodiment of the present invention. 図12(A)及び図12(B)は、本発明の第2実施例に係る半導体装置の製造方法において、柱状電極の先端に凹凸を形成する方法を説明するための図である。12A and 12B are views for explaining a method of forming irregularities at the tip of the columnar electrode in the method of manufacturing a semiconductor device according to the second embodiment of the present invention. 図13は、本発明の第4実施例に係る半導体装置の製造方法を説明するための図である。FIG. 13 is a diagram for explaining a method of manufacturing a semiconductor device according to the fourth embodiment of the present invention. 図14は、本発明の第5実施例である半導体装置の断面図である。FIG. 14 is a sectional view of a semiconductor device according to the fifth embodiment of the present invention. 図15は、本発明の第5実施例に係る半導体装置の製造方法を説明するための図である。FIG. 15 is a diagram for explaining a method of manufacturing a semiconductor device according to the fifth embodiment of the present invention. 図16は、本発明の第6実施例である半導体装置の断面図である。FIG. 16 is a sectional view of a semiconductor device according to the sixth embodiment of the present invention. 図17は、本発明の第6実施例に係る半導体装置の製造方法を説明するための図である。FIG. 17 is a diagram for explaining a method of manufacturing a semiconductor device according to the sixth embodiment of the present invention.

符号の説明Explanation of symbols

20A〜20G 半導体装置
21 半導体基板
22 半導体素子
23 絶縁膜
24 配線層
25A〜25G 柱状電極
25F,25H 高周波用柱状電極
26 バリアメタル
27 はんだボール
28 封止樹脂
30 実装基板
31 接続電極
33 応力集中部
34 溶剤成分
35A〜35D ポスト部
36A〜36D 先端部
42 配線用レジスト
43 電極用レジスト
44 治具
45,45A 電極パッド
48 開口部
50 開口パターン
53 第2の絶縁膜
20A to 20G Semiconductor device 21 Semiconductor substrate 22 Semiconductor element 23 Insulating film 24 Wiring layer 25A to 25G Columnar electrode 25F, 25H Columnar electrode for high frequency 26 Barrier metal 27 Solder ball 28 Sealing resin 30 Mounting substrate 31 Connection electrode 33 Stress concentration part 34 Solvent component 35A to 35D Post portion 36A to 36D Tip portion 42 Wiring resist 43 Electrode resist 44 Jig 45, 45A Electrode pad 48 Opening portion 50 Opening pattern 53 Second insulating film

Claims (2)

半導体基板上に配線層を形成する工程と、
該配線層上に柱状電極を形成するための開口部を有するレジストを形成すると共に、該レジストを用いて導電性金属を前記開口部に前記レジストの厚さを超えて形成する工程と、
前記レジストを剥離した後、前記半導体基板上に封止樹脂を形成する工程と、
前記封止樹脂の表面と前記柱状電極の先端部とが離間するように前記封止樹脂の厚さを薄くする処理を行う工程と、
前記封止樹脂の厚さを薄くする処理を実施した後、前記柱状電極の先端部にリフローにより外部接続部材を形成する工程とを有することを特徴とする半導体装置の製造方法。
Forming a wiring layer on a semiconductor substrate;
Forming a resist having an opening for forming a columnar electrode on the wiring layer, and forming a conductive metal in the opening beyond the thickness of the resist using the resist;
Forming a sealing resin on the semiconductor substrate after removing the resist;
Performing a process of reducing the thickness of the sealing resin so that the surface of the sealing resin and the tip of the columnar electrode are separated from each other;
And a step of forming an external connection member by reflowing at the tip of the columnar electrode after performing the process of reducing the thickness of the sealing resin .
請求項1記載の半導体装置の製造方法において、
前記封止樹脂の厚さを薄くする処理として、アッシングを用いたことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
A method for manufacturing a semiconductor device, characterized in that ashing is used as a process for reducing the thickness of the sealing resin.
JP2007245851A 2007-09-21 2007-09-21 Manufacturing method of semiconductor device Expired - Fee Related JP4617339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245851A JP4617339B2 (en) 2007-09-21 2007-09-21 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245851A JP4617339B2 (en) 2007-09-21 2007-09-21 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004142765A Division JP4119866B2 (en) 2004-05-12 2004-05-12 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2008060588A JP2008060588A (en) 2008-03-13
JP4617339B2 true JP4617339B2 (en) 2011-01-26

Family

ID=39242895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245851A Expired - Fee Related JP4617339B2 (en) 2007-09-21 2007-09-21 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4617339B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076020B2 (en) * 2012-02-29 2017-02-08 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
US9159678B2 (en) 2013-11-18 2015-10-13 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336548A (en) * 1986-07-31 1988-02-17 Nec Corp Semiconductor device and manufacture thereof
JPH0637093A (en) * 1992-07-14 1994-02-10 Sanken Electric Co Ltd Forming method for bump electrode
JP2000323510A (en) * 1999-05-11 2000-11-24 Shinko Electric Ind Co Ltd Semiconductor wafer having columnar electrodes, manufacture of the same, and semiconductor device
JP2001035869A (en) * 1999-07-21 2001-02-09 Shinko Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336548A (en) * 1986-07-31 1988-02-17 Nec Corp Semiconductor device and manufacture thereof
JPH0637093A (en) * 1992-07-14 1994-02-10 Sanken Electric Co Ltd Forming method for bump electrode
JP2000323510A (en) * 1999-05-11 2000-11-24 Shinko Electric Ind Co Ltd Semiconductor wafer having columnar electrodes, manufacture of the same, and semiconductor device
JP2001035869A (en) * 1999-07-21 2001-02-09 Shinko Electric Ind Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JP2008060588A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4119866B2 (en) Semiconductor device
JP5624649B2 (en) Fusible input / output interconnect system and method for flip chip packaging with stud bumps attached to a substrate
CN102163578B (en) Semiconductor device, method of manufacturing the semiconductor device, chip-on-chip mounting structure, and method of forming the chip-on-chip mounting structure
US7391118B2 (en) Integrated circuit device with embedded passive component by flip-chip connection and method for manufacturing the same
JP4731495B2 (en) Semiconductor device
US7928559B2 (en) Semiconductor device, electronic component module, and method for manufacturing semiconductor device
TWI502666B (en) Electronic parts mounting body, electronic parts, substrate
JP2009071156A (en) Semiconductor device and its manufacturing method
US7994638B2 (en) Semiconductor chip and semiconductor device
JP2008160158A (en) Semiconductor device
JP4617339B2 (en) Manufacturing method of semiconductor device
KR101926713B1 (en) Semiconductor package and method of fabricating the same
EP3301712A1 (en) Semiconductor package assembley
JP2008517475A (en) Substrate having electric contact and method of manufacturing the same
US20120007233A1 (en) Semiconductor element and fabrication method thereof
JP3457926B2 (en) Semiconductor device and manufacturing method thereof
JP7022541B2 (en) Semiconductor device
JP2017092341A (en) Electrode structure, bonding method and semiconductor device
JP2893634B2 (en) Connection structure of electronic components
KR101025418B1 (en) Semiconductor Device And Fabricating Method Thereof
JP3078781B2 (en) Semiconductor device manufacturing method and semiconductor device
KR101046377B1 (en) Printed circuit board for semiconductor package and manufacturing method thereof
JPH11261210A (en) Method for connecting chip parts to printed wiring board
JP2002353265A (en) Mounting structure and method of mounting the same
JPH1131696A (en) Semiconductor element, semiconductor device and its manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees