JP4616461B2 - 空気調和装置 - Google Patents
空気調和装置 Download PDFInfo
- Publication number
- JP4616461B2 JP4616461B2 JP2000351029A JP2000351029A JP4616461B2 JP 4616461 B2 JP4616461 B2 JP 4616461B2 JP 2000351029 A JP2000351029 A JP 2000351029A JP 2000351029 A JP2000351029 A JP 2000351029A JP 4616461 B2 JP4616461 B2 JP 4616461B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- valve opening
- valve
- air conditioner
- expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/05—Refrigerant levels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/17—Control issues by controlling the pressure of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2102—Temperatures at the outlet of the gas cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Description
【発明の属する技術分野】
本発明は、フロン冷媒に代えて二酸化炭素を冷媒として使用する空気調和装置に関する。
【0002】
【従来の技術】
近年、地球環境の保全に対する関心が高まっているが、空気調和装置の冷媒として使用されるR134a等のフロン冷媒は、地球温暖化を助長することが懸念されている。このため、このようなフロン冷媒に代わる物質として、元来自然界に存在する物質、いわゆる自然冷媒を用いた空気調和装置の研究が行われている。
【0003】
このような代替フロンの候補として、二酸化炭素(以下、CO2と表記)が注目されている。CO2は、地球温暖化への影響がフロンよりもはるかに小さいだけでなく、可燃性がないうえ、基本的には人体に無害である点が高く評価されている。
【0004】
このような背景から、二酸化炭素を使用した蒸気圧縮式冷凍サイクル(以下、CO2冷凍サイクルと表記)が提案されている。このCO2冷凍サイクルの作動は、フロンを使用した従来の蒸気圧縮式冷凍サイクルと同様である。すなわち、図9のモリエル線図(圧力−エンタルピ線図)に示すように、低温低圧のCO2(気相状態)を圧縮機により圧縮し(A−B)、高温高圧の気相状態とする。次に高温高圧のCO2(気相状態)を凝縮器にて凝縮させ(B−C)、高温高圧の気液二相状態とする。次に高温高圧のCO2(気液二相状態)を減圧器によって減圧し(C−D)、低温低圧の気液二相状態とする。次に低温低圧のCO2(気液二相状態)CO2を蒸発器にて蒸発させ(D−A)、その際に生じる蒸発潜熱を空気等の外部流体から奪って外部流体を冷却する。
【0005】
【発明が解決しようとする課題】
ところで、冷媒の凝縮は、通常は一定の圧力(高圧値)を保って進行するが、圧縮機の吐出流量が変化すると、凝縮器内に冷媒が過剰に供給されたり逆に足りなくなったりして、凝縮器内の圧力が一定に保てなくなることがある。また、冷媒の蒸発も、通常は一定の圧力(低圧値)を保って進行するが、圧縮機の吸入流量が変化すると、蒸発器内に冷媒が過剰に供給されたり逆に足りなくなったりして、蒸発器内の圧力が一定に保てなくなることがある。こうなると、十分な成績係数や冷却能力が得られないことが予想される。
【0006】
本発明は上記の事情に鑑みてなされたものであり、冷凍サイクル内の冷媒を適正な状態に保つことで冷却能力を高めることができる空気調和装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記の課題を解決するための手段として、次のような構成の空気調和装置を採用する。すなわち本発明に係る請求項1記載の空気調和装置は、冷媒を圧縮する圧縮機と、該圧縮機により圧縮された前記冷媒を凝縮させる凝縮器と、該凝縮器において凝縮した前記冷媒を膨張させて減圧する膨張弁と、該膨張弁により減圧された前記冷媒を蒸発させる蒸発器とを備え、前記冷媒として二酸化炭素を使用して冷凍サイクルを構成する空気調和装置であって、
前記圧縮機と前記凝縮器との間の冷媒圧力と、前記凝縮器と前記膨張弁との間の冷媒温度とに基づいて前記膨張弁に与えるべき第1の弁開度を算出し、現在の室内温度と、目標とする室内の設定温度とに基づいて前記膨張弁に与えるべき第2の弁開度を算出し、前記第1の弁開度と前記第2の弁開度とに基づいて前記膨張弁に与えるべき最終的な弁開度を算出し、該弁開度に従って前記膨張弁を調節することを特徴とする。
【0008】
本発明に係る請求項2記載の空気調和装置は、請求項1記載の空気調和装置において、前記膨張弁を2つの膨張弁で構成し、これら第1、第2の膨張弁を前記冷凍サイクル内に並列に配置し、いずれか一方を前記第1の弁開度に従って調節するとともに他方を前記第2の弁開度に従って調節することを特徴とする。
【0009】
本発明に係る請求項3記載の空気調和装置は、請求項1記載の空気調和装置において、前記膨張弁を2つの膨張弁で構成し、これら第1、第2の膨張弁を前記冷凍サイクル内に直列に配置し、いずれか一方を前記第1の弁開度に従って調節するとともに他方を前記第2の弁開度に従って調節することを特徴とする。
【0010】
本発明に係る請求項4記載の空気調和装置は、冷媒を圧縮する圧縮機と、該圧縮機により圧縮された前記冷媒を凝縮させる凝縮器と、該凝縮器において凝縮した前記冷媒を膨張させて減圧する膨張弁と、該膨張弁により減圧された前記冷媒を蒸発させる蒸発器とを備え、前記冷媒として二酸化炭素を使用して冷凍サイクルを構成する空気調和装置であって、
前記圧縮機と前記凝縮器との間の冷媒圧力と、前記凝縮器と前記膨張弁との間の冷媒温度とに基づいて前記膨張弁に与えるべき第1の弁開度を算出し、前記蒸発器と前記圧縮機との間の冷媒圧力および冷媒温度に基づいて前記膨張弁に与えるべき第2の弁開度を算出し、前記第1の弁開度と前記第2の弁開度とに基づいて前記膨張弁に与えるべき最終的な弁開度を算出し、該弁開度に従って前記膨張弁を調節することを特徴とする。
【0011】
本発明に係る請求項5記載の空気調和装置は、請求項4記載の空気調和装置において、前記膨張弁を2つの膨張弁で構成し、これら第1、第2の膨張弁を前記冷凍サイクル内に並列に配置し、いずれか一方を前記第1の弁開度に従って調節するとともに他方を前記第2の弁開度に従って調節することを特徴とする。
【0012】
本発明に係る請求項6記載の空気調和装置は、請求項4記載の空気調和装置において、前記膨張弁を2つの膨張弁で構成し、これら第1、第2の膨張弁を前記冷凍サイクル内に直列に配置し、いずれか一方を前記第1の弁開度に従って調節するとともに他方を前記第2の弁開度に従って調節することを特徴とする。
【0013】
【発明の実施の形態】
本発明に係る空気調和装置の第1の実施形態を図1および図2に示して説明する。
フロンの代替物としてのCO2を冷媒として冷凍サイクルを構成する空気調和装置の主な構成を図1に示す。図に示す空気調和装置は、例えば自動車のエアコンに適用されるものであり、符号1は冷媒を圧縮する圧縮機、2は圧縮された冷媒を凝縮させるガスクーラ(凝縮器)、3は凝縮した冷媒を減圧する膨張弁、4は減圧された冷媒を蒸発させるエバポレータ(蒸発器)、5は気化した冷媒中に含まれるミストを分離除去するレシーバ、6はガスクーラに車外の空気を流通させるファン、7は車内の空気を循環させつつエバポレータ4との熱交換を促すブロアである。膨張弁3には開度調節が可能な電磁膨張弁が採用されており、その弁開度は後述する各センサの検出値や設定部の設定値に基づき制御部CUによって制御される。
【0014】
圧縮機1は、駆動源(図示略、例えば自動車に搭載されたエンジン)から駆動力を得て駆動する。ガスクーラ2は、圧縮機によって圧縮された冷媒を外気と熱交換させて冷却し、凝縮させる。膨張弁3は、ガスクーラ2において凝縮した冷媒を膨張させて減圧する。エバポレータ4は、膨張弁3によって減圧された冷媒を車内の空気と熱交換させて蒸発させ、冷媒が気化する際の気化潜熱によって車内の空気を冷却する。
【0015】
圧縮機1とガスクーラ2との間には、高圧側の冷媒圧力を検出する高圧センサ8が設置され、ガスクーラ2の冷媒出口にあたる部分には、冷媒温度を検出する冷媒温度センサ9が設置されている。また、エバポレータ4と圧縮機1との間には、低圧側の冷媒圧力を検出する低圧センサ10が設置されている。
【0016】
車内には、現状の車内温度を検出する車内温度センサ11と、目標とすべき車内の設定温度を設定する温度設定部12と、ブロア6の回転数を変化させて車内に供給すべき風量を設定する風量設定部13とが設置されている。なお、車内の設定温度および風量は搭乗者の操作によって決定される。
【0017】
高圧センサ8、冷媒温度センサ9、低圧センサ10、車内温度センサ11、温度設定部12、風量設定部13はいずれも制御部CUに接続されており、制御部CUに向けてそれぞれに検出値や入力値を出力する。
【0018】
上記のように構成された空気調和装置においては、高圧センサ8および冷媒温度センサ9の検出値(HP,Tgo)に基づいて、ガスクーラ2内の圧力を最適な大きさに保つために膨張弁3に与えられるべき弁開度調整量(第1の弁開度)ΔX1を算出し、低圧センサ10および室内温度センサ11の検出値(LP,Tcab)と、温度設定部12および風量設定部13の入力値(SP(Tcab),Yblw)とに基づいて、エバポレータ4内の圧力を最適な大きさに保つために膨張弁3に与えられるべき弁開度調整量(第2の弁開度)ΔX2を算出し、2つの弁開度ΔX1,ΔX2に基づいて膨張弁3に与えるべき最終的な弁開度調整量ΔXを算出し、この弁開度調整量ΔXを現状の弁開度Xに反映させて膨張弁3を通過する冷媒流量を調節する。
【0019】
制御部CUでは、具体的には図2に示す処理を実行する。
まず、高圧センサ8によって冷凍サイクル内の冷媒の高圧値HPを、冷媒温度センサ9によってガスクーラ2出口付近の冷媒温度Tgoをそれぞれ検出する(ステップS1)。次に、冷媒温度Tgoに基づいて高圧目標値SP(HP)を算出する(ステップS2)。次に、高圧目標値SP(HP)と高圧値HPとの差をとって高圧値制御偏差Err(HP)を算出する(ステップS3)。次に、高圧制御偏差Err(HP)を記憶する(ステップS4)。この値はErr(HP)'として次回の制御サイクルに活かされる。次に、高圧制御偏差Err(HP)と前回の制御サイクルで記憶した高圧制御偏差Err(HP)'との差をとって高圧制御偏差の変化量ΔErr(HP)を算出する(ステップS5)。次に、高圧値制御偏差Err(HP)および高圧制御偏差の変化量ΔErr(HP)に基づいて弁開度調整量ΔX1を算出する(ステップS6)。
【0020】
次に、低圧センサ10によって冷凍サイクル内の冷媒の低圧値LPを、室内温度センサ11によって現状の車内温度Tcabをそれぞれ検出する。同時に、温度設定部12によって目標とすべき車内の設定温度SP(Tcab)を、風量設定部13によって車内に供給すべき風量Yblwをそれぞれ検出する(ステップS7)。
次に、現状の車内温度Tcab、設定温度SP(Tcab)および風量Yblwに基づいて低圧目標値SP(LP)を算出する(ステップS8)。次に、低圧目標値SP(LP)と低圧値LPとの差をとって低圧制御偏差Err(LP)を算出する(ステップS9)。次に、低圧制御偏差Err(LP)を記憶する(ステップS10)。この値はErr(LP)'として次回の制御サイクルに活かされる。次に、低圧制御偏差Err(LP)と前回の制御サイクルで記憶した低圧制御偏差Err(LP)'との差をとって低圧制御偏差の変化量ΔErr(LP)を算出する(ステップS11)。次に、低圧制御偏差Err(LP)および低圧制御偏差の変化量ΔErr(LP)に基づいて弁開度調整量ΔX2を算出する(ステップS12)。
【0021】
次に、弁開度調整量ΔX1,ΔX2に基づいて弁開度調整量ΔXを算出する(ステップS13)。次に、現状の弁開度Xに弁開度調整量ΔXを加えて最終的な弁開度X'を算出する(ステップS14)。次に、弁開度X'を膨張弁3に出力する(ステップS15)。その後、運転停止命令が下っていなければステップS1に戻って上記処理を繰り返し、運転停止命令が下っていれば処理を終了する(ステップS16)。
【0022】
このように、上記空気調和装置によれば、冷凍サイクル内の冷媒の高圧値および低圧値を適度な大きさに保って冷却能力を高めることができる。
【0023】
本発明に係る空気調和装置の2の実施形態を図3ないし図5に示して説明する。なお、上記第1の実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態においては、図3に示すように、ガスクーラ2とエバポレータ4との間にレシーバ5の上流側と下流側とに2つに分けて膨張弁(第1、第2の膨張弁)14,15が設置されている。これら2つの膨張弁14,15についても制御部CUによって制御される。
【0024】
上記のように構成された空気調和装置においては、算出された2つの弁開度ΔX1,ΔX2を膨張弁14,15の個々の弁開度に反映させて冷媒流量を調節する。
【0025】
制御部CUでは、具体的には図4に示す処理を実行する。なお、ステップS1からステップS6までの処理は第1の実施形態と同じなので説明は省略する。
弁開度ΔX1が算出されたら、これを膨張弁14の現状の弁開度XAに加えて最終的な弁開度XA'を算出する(ステップS17)。次に、弁開度XA'を膨張弁14に出力する(ステップS18)。
続く処理も第1の実施形態におけるステップS8からステップS12と同じなので説明は省略する。
【0026】
弁開度ΔX2が算出されたら、これを膨張弁15の現状の弁開度XBに加えて最終的な弁開度XB'を算出する(ステップS19)。次に、弁開度XB'を膨張弁15に出力する(ステップS20)。
以後の処理も第1の実施形態のステップS13以降と同じなので説明は省略する。
【0027】
このように、上記空気調和装置によっても、冷凍サイクル内の冷媒の高圧値および低圧値を適度な大きさに保って冷却能力を高めることができる。
【0028】
なお、本実施形態においては、上流側の膨張弁14を冷媒の高圧値をもとに制御し、下流側の膨張弁15を低圧値をもとに制御したが、これは逆であっても構わない。また、2つの膨張弁14,15を、レシーバ5を挟んで直列に設置したが、図5に示すように並列に設置しても構わない。
【0029】
本発明に係る空気調和装置の第3の実施形態を図6および図7に示して説明する。なお、上記第1の実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態においては、図6に示すように、エバポレータ4の冷媒出口にあたる部分に、冷媒温度を検出する温度センサ16が設置されている。温度センサ16も制御部CUに接続されており、制御部CUに向けて検出値を出力する。
【0030】
上記のように構成された空気調和装置においては、高圧センサ8および冷媒温度センサ9の検出値(HP,Tgo)に基づいて、ガスクーラ2内の圧力を最適な大きさに保つために膨張弁3に与えられるべき弁開度調整量ΔX1を算出し、低圧センサ10および冷媒温度センサ16の検出値(LP,Tevao)に基づいて、エバポレータ4内の圧力を最適な大きさに保つために膨張弁3に与えられるべき弁開度調整量ΔX2を算出し、2つの弁開度ΔX1,ΔX2に基づいて膨張弁3に与えるべき最終的な弁開度調整量ΔXを算出し、この弁開度調整量ΔXを現状の弁開度Xに反映させて膨張弁3を通過する冷媒流量を調節する。
【0031】
制御部CUでは、具体的には図7に示す処理を実行する。なお、ステップS1からステップS6までの処理は第1の実施形態と同じなので説明は省略する。
ステップS6に続いて、低圧センサ10によって冷凍サイクル内の冷媒の低圧値LPを、冷媒温度センサ16によってエバポレータ4出口付近の冷媒温度Tevaoをそれぞれ検出する(ステップS21)。次に、冷媒の低圧値LPに基づいて飽和温度Tsat(LP)を算出する(ステップS22)。次に、冷媒温度Tevaoと飽和温度Tsat(LP)との差をとってエバポレータ4出口付近の冷媒の過熱度SHevaoを算出する(ステップS23)。次に、過熱度目標値SP(SH)と過熱度SHevaoとの差をとって過熱度制御偏差Err(SH)を算出する(ステップS24)。なお、過熱度目標値SP(SH)は固定(例えば5℃)とする。次に、過熱度制御偏差Err(SH)を記憶する(ステップS25)。この値はErr(SH)'として次回の制御サイクルに活かされる。次に、過熱度制御偏差Err(SH)と前回の制御サイクルで記憶した過熱度制御偏差Err(SH)'との差をとって過熱度制御偏差の変化量ΔErr(SH)を算出する(ステップS26)。次に、過熱度制御偏差Err(SH)および過熱度制御偏差の変化量ΔErr(SH)に基づいて弁開度調整量ΔX2を算出する(ステップS27)。
以後の処理も第1の実施形態のステップS13以降と同じなので説明は省略する。
【0032】
このように、上記空気調和装置によれば、冷凍サイクル内の冷媒の高圧値およびエバポレータ4出口での過熱度を適度な大きさに保って冷却能力を高めることができる。
【0033】
本発明に係る空気調和装置の第4の実施形態を図8に示して説明する。なお、上記の各実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態においては、図8に示すように、温度センサ17が、圧縮機1の吸入口にあたる部分に設置されている。その他の構成は第2の実施形態と同じである。
【0034】
上記のように構成された空気調和装置においては、高圧センサ8および冷媒温度センサ9の検出値(HP,Tgo)に基づいて、ガスクーラ2内の圧力を最適な大きさに保つために膨張弁3に与えられるべき弁開度調整量ΔX1を算出し、低圧センサ10および冷媒温度センサ17の検出値(LP,Tcmpi)に基づいて、エバポレータ4内の圧力を最適な大きさに保つために膨張弁3に与えられるべき弁開度調整量ΔX2を算出し、2つの弁開度ΔX1,ΔX2に基づいて膨張弁3に与えるべき最終的な弁開度調整量ΔXを算出し、この弁開度調整量ΔXを現状の弁開度Xに反映させて膨張弁3を通過する冷媒流量を調節する。
【0035】
制御部CUで実行される処理についても基本的に第2の実施形態と同じであり、圧縮機吸入側の冷媒温度をもとに過熱度を算出する点のみが異なるだけである(処理フローは省略)。
【0036】
このように、上記空気調和装置によれば、冷凍サイクル内の冷媒の高圧値および圧縮機1吸入側での過熱度を適度な大きさに保って冷却能力を高めることができる。
【0037】
【発明の効果】
以上説明したように、本発明に係る空気調和装置によれば、圧縮機と凝縮器との間の冷媒圧力と、凝縮器と膨張弁との間の冷媒温度とに基づいて膨張弁に与えるべき第1の弁開度を算出し、現在の室内温度と、目標とする室内の設定温度とに基づいて膨張弁に与えるべき第2の弁開度を算出し、第1、第2の弁開度に基づいて膨張弁に与えるべき最終的な弁開度を算出し、これに従って膨張弁を調節することにより、冷凍サイクル内の冷媒の高圧値および低圧値を適度な大きさに保って冷却能力を高めることができる。
【0038】
本発明に係る空気調和装置によれば、圧縮機と凝縮器との間の冷媒圧力と、凝縮器と膨張弁との間の冷媒温度とに基づいて膨張弁に与えるべき第1の弁開度を算出し、蒸発器と圧縮機との間の冷媒圧力および冷媒温度に基づいて膨張弁に与えるべき第2の弁開度を算出し、第1、第2の弁開度に基づいて膨張弁に与えるべき最終的な弁開度を算出し、これに従って膨張弁を調節することにより、冷凍サイクル内の冷媒の高圧値および蒸発器と圧宿器との間の冷媒の過熱度を適度な大きさに保って冷却能力を高めることができる。
【図面の簡単な説明】
【図1】 本発明に係る空気調和装置の第1の実施形態を示す概略構成図である。
【図2】 第1の実施形態の空気調和装置における膨張弁の制御の仕方を示す流れ図である。
【図3】 本発明に係る空気調和装置の第2の実施形態を示す概略構成図である。
【図4】 第2の実施形態の空気調和装置における膨張弁の制御の仕方を示す流れ図である。
【図5】 第3の実施形態の変形例を示す概略構成図である。
【図6】 本発明に係る空気調和装置の第3の実施形態を示す概略構成図である。
【図7】 第3の実施形態の空気調和装置における膨張弁の制御の仕方を示す流れ図である。
【図8】 第4の実施形態の変形例を示す概略構成図である。
【図9】 二酸化炭素を冷媒として使用する従来の空気調和装置によって実現される冷凍サイクルのモリエル線図である。
【符号の説明】
1 圧縮機
2 ガスクーラ
3 膨張弁
4 エバポレータ
5 レシーバ
8 高圧センサ
9 冷媒温度センサ
10 低圧センサ
11 車内温度センサ
12 温度設定部
13 風量設定部
CU 制御部
Claims (6)
- 冷媒を圧縮する圧縮機と、該圧縮機により圧縮された前記冷媒を凝縮させる凝縮器と、該凝縮器において凝縮した前記冷媒を膨張させて減圧する膨張弁と、該膨張弁により減圧された前記冷媒を蒸発させる蒸発器とを備え、前記冷媒として二酸化炭素を使用して冷凍サイクルを構成する空気調和装置であって、
前記圧縮機と前記凝縮器との間の冷媒圧力と、前記凝縮器と前記膨張弁との間の冷媒温度とに基づいて前記膨張弁に与えるべき第1の弁開度を算出し、
現在の室内温度と、目標とする室内の設定温度とに基づいて前記膨張弁に与えるべき第2の弁開度を算出し、
前記第1の弁開度と前記第2の弁開度とに基づいて前記膨張弁に与えるべき最終的な弁開度を算出し、該弁開度に従って前記膨張弁を調節する
ことを特徴とする空気調和装置。 - 前記膨張弁を2つの膨張弁で構成し、これら第1、第2の膨張弁を前記冷凍サイクル内に並列に配置し、いずれか一方を前記第1の弁開度に従って調節するとともに他方を前記第2の弁開度に従って調節する
ことを特徴とする請求項1記載の空気調和装置。 - 前記膨張弁を2つの膨張弁で構成し、これら第1、第2の膨張弁を前記冷凍サイクル内に直列に配置し、いずれか一方を前記第1の弁開度に従って調節するとともに他方を前記第2の弁開度に従って調節する
ことを特徴とする請求項1記載の空気調和装置。 - 冷媒を圧縮する圧縮機と、該圧縮機により圧縮された前記冷媒を凝縮させる凝縮器と、該凝縮器において凝縮した前記冷媒を膨張させて減圧する膨張弁と、該膨張弁により減圧された前記冷媒を蒸発させる蒸発器とを備え、前記冷媒として二酸化炭素を使用して冷凍サイクルを構成する空気調和装置であって、
前記圧縮機と前記凝縮器との間の冷媒圧力と、前記凝縮器と前記膨張弁との間の冷媒温度とに基づいて前記膨張弁に与えるべき第1の弁開度を算出し、
前記蒸発器と前記圧縮機との間の冷媒圧力および冷媒温度に基づいて前記膨張弁に与えるべき第2の弁開度を算出し、
前記第1の弁開度と前記第2の弁開度とに基づいて前記膨張弁に与えるべき最終的な弁開度を算出し、該弁開度に従って前記膨張弁を調節する
ことを特徴とする空気調和装置。 - 前記膨張弁を2つの膨張弁で構成し、これら第1、第2の膨張弁を前記冷凍サイクル内に並列に配置し、いずれか一方を前記第1の弁開度に従って調節するとともに他方を前記第2の弁開度に従って調節する
ことを特徴とする請求項4記載の空気調和装置。 - 前記膨張弁を2つの膨張弁で構成し、これら第1、第2の膨張弁を前記冷凍サイクル内に直列に配置し、いずれか一方を前記第1の弁開度に従って調節するとともに他方を前記第2の弁開度に従って調節する
ことを特徴とする請求項4記載の空気調和装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000351029A JP4616461B2 (ja) | 2000-11-17 | 2000-11-17 | 空気調和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000351029A JP4616461B2 (ja) | 2000-11-17 | 2000-11-17 | 空気調和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002156146A JP2002156146A (ja) | 2002-05-31 |
JP4616461B2 true JP4616461B2 (ja) | 2011-01-19 |
Family
ID=18824155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000351029A Expired - Fee Related JP4616461B2 (ja) | 2000-11-17 | 2000-11-17 | 空気調和装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4616461B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6694763B2 (en) * | 2002-05-30 | 2004-02-24 | Praxair Technology, Inc. | Method for operating a transcritical refrigeration system |
EP1369648A3 (en) * | 2002-06-04 | 2004-02-04 | Sanyo Electric Co., Ltd. | Supercritical refrigerant cycle system |
NL1026728C2 (nl) * | 2004-07-26 | 2006-01-31 | Antonie Bonte | Verbetering van koelsystemen. |
JP5309424B2 (ja) * | 2006-03-27 | 2013-10-09 | ダイキン工業株式会社 | 冷凍装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214154A (ja) * | 1990-12-05 | 1992-08-05 | Matsushita Refrig Co Ltd | 多室形空気調和機 |
JPH10325621A (ja) * | 1997-05-22 | 1998-12-08 | Hitachi Ltd | 空気調和装置 |
JP2000234811A (ja) * | 1999-02-17 | 2000-08-29 | Matsushita Electric Ind Co Ltd | 冷凍サイクル装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2506377B2 (ja) * | 1987-07-20 | 1996-06-12 | 日本電信電話株式会社 | 空気調和機とその制御方法 |
-
2000
- 2000-11-17 JP JP2000351029A patent/JP4616461B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214154A (ja) * | 1990-12-05 | 1992-08-05 | Matsushita Refrig Co Ltd | 多室形空気調和機 |
JPH10325621A (ja) * | 1997-05-22 | 1998-12-08 | Hitachi Ltd | 空気調和装置 |
JP2000234811A (ja) * | 1999-02-17 | 2000-08-29 | Matsushita Electric Ind Co Ltd | 冷凍サイクル装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2002156146A (ja) | 2002-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3858297B2 (ja) | 圧力制御弁と蒸気圧縮式冷凍サイクル | |
JP3951711B2 (ja) | 蒸気圧縮式冷凍サイクル | |
JP2000234814A (ja) | 蒸気圧縮式冷凍装置 | |
JP2002130849A (ja) | 冷房サイクルおよびその制御方法 | |
JP2007057156A (ja) | 冷凍サイクル | |
JP4631721B2 (ja) | 蒸気圧縮式冷凍サイクル | |
JP2008261513A (ja) | 冷凍サイクル装置 | |
WO2010047420A1 (ja) | ガスインジエクション冷凍システム | |
JP2000346466A (ja) | 蒸気圧縮式冷凍サイクル | |
JP4616461B2 (ja) | 空気調和装置 | |
JP2001004235A (ja) | 蒸気圧縮式冷凍サイクル | |
JP2006308230A (ja) | 冷凍サイクル制御装置 | |
JP2005037056A (ja) | エジェクタサイクル | |
JP4400533B2 (ja) | エジェクタ式冷凍サイクル | |
JP2010127498A (ja) | 冷凍サイクル装置 | |
JP2008096072A (ja) | 冷凍サイクル装置 | |
JP2002168536A (ja) | 空気調和装置 | |
JP2002156163A (ja) | 空気調和装置 | |
JP2000337722A (ja) | 蒸気圧縮式冷凍サイクル | |
JPH07294033A (ja) | 冷房サイクル制御装置 | |
JP2004176938A (ja) | 冷凍サイクルの制御方法 | |
JP2005262958A (ja) | 車両用空調装置 | |
EP1728662A1 (en) | Refrigeration system for an air conditioner | |
JP2004116978A (ja) | 多室形空気調和機の制御装置 | |
JP2006138628A (ja) | 冷媒凝縮器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101022 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4616461 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |