JP4610437B2 - Surface mounting apparatus and surface mounting method - Google Patents

Surface mounting apparatus and surface mounting method Download PDF

Info

Publication number
JP4610437B2
JP4610437B2 JP2005224066A JP2005224066A JP4610437B2 JP 4610437 B2 JP4610437 B2 JP 4610437B2 JP 2005224066 A JP2005224066 A JP 2005224066A JP 2005224066 A JP2005224066 A JP 2005224066A JP 4610437 B2 JP4610437 B2 JP 4610437B2
Authority
JP
Japan
Prior art keywords
mounting
dimensional inspection
inspection camera
flatness measuring
surface mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005224066A
Other languages
Japanese (ja)
Other versions
JP2007042785A (en
Inventor
和久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2005224066A priority Critical patent/JP4610437B2/en
Publication of JP2007042785A publication Critical patent/JP2007042785A/en
Application granted granted Critical
Publication of JP4610437B2 publication Critical patent/JP4610437B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、表面実装デバイスの実装にかかる表面実装装置及び表面実装方法に関する。   The present invention relates to a surface mounting apparatus and a surface mounting method for mounting a surface mounting device.

通常、表面実装デバイス(以下、デバイスと記す)を実装する場合、事前に実装するデバイスの良不良を確認することが必要である。特に表面実装装置によって自動実装する場合、実装前にデバイスの外観状態を測定することによって、リード端子形状、ボール端子形状、デバイス及び端子の有無(折れや曲がり)を検査する。また、同時に、デバイスを供給するトレイ内でのデバイスセットミス、デバイスの反転、位置決めされたデバイスの位置ずれ量(X、Y、θ)と向き(0°〜270°)等の情報も検査している。   Usually, when mounting a surface-mounted device (hereinafter referred to as a device), it is necessary to confirm whether the device to be mounted is good or bad in advance. In particular, when automatic mounting is performed by a surface mounting apparatus, the external state of the device is measured before mounting to inspect the lead terminal shape, the ball terminal shape, and the presence of devices and terminals (breaking or bending). At the same time, it also inspects information such as device set mistakes, device reversal, positional displacement (X, Y, θ) and orientation (0 ° to 270 °) of the positioned device in the tray for supplying devices. ing.

デバイスの中でも、特にSOP(Small Outline Package)やQFP(Quad Flat Package)のようなデバイスは、平坦な実装基板の端子ランドに複数のリード状の電極端子を合致し、接合される。また、CSP(Chip Size Package)やBGA(Ball Grid Array)のようなデバイスは、パッケージにバンプと呼ばれる直径数百マイクロメートル程のボール状の電極端子を配置し、実装基板の端子ランドに圧着させて接合する。従って、それらの各電極端子高さが実装基板に沿って平行に配列していない場合、接合時にデバイスが傾いたり、一部の電極端子が実装基板から離れて接合できないという問題が発生する。   Among devices, especially devices such as SOP (Small Outline Package) and QFP (Quad Flat Package), a plurality of lead-like electrode terminals are matched with and joined to a terminal land of a flat mounting substrate. In addition, devices such as CSP (Chip Size Package) and BGA (Ball Grid Array) have ball-shaped electrode terminals with a diameter of several hundred micrometers called bumps placed on the package, and are crimped to the terminal lands on the mounting board. And join. Therefore, when the heights of these electrode terminals are not arranged in parallel along the mounting substrate, there arises a problem that the device is tilted at the time of bonding or that some electrode terminals cannot be separated from the mounting substrate.

そこで、デバイス毎に電極端子の平坦度(以下、コプラナリティと記す)を検査することが必要であり、前記SOP、QFP、CSP及びBGA等のデバイス実装前には、コプラナリティを計測する平坦度測定器を用いた3次元検査が実施される。従って、前記デバイスの実装作業時においては、デバイスの電極端子形状等の外観状態は2次元検査装置によって検査し、デバイスの電極端子のコプラナリティは平坦度測定器によって3次元検査を実施している。   Therefore, it is necessary to inspect the flatness (hereinafter referred to as coplanarity) of the electrode terminal for each device, and the flatness measuring instrument that measures the coplanarity before mounting the device such as the SOP, QFP, CSP, and BGA. A three-dimensional inspection using is performed. Therefore, at the time of mounting the device, the appearance state of the electrode terminal shape of the device is inspected by a two-dimensional inspection apparatus, and the coplanarity of the electrode terminal of the device is inspected three-dimensionally by a flatness measuring device.

図3に、従来の表面実装装置の構成を示す。
表面実装装置20には、実装基板21を搬送する搬送部22や、トレイフィーダ23等のデバイス供給装置、実装するデバイス24を実装基板21へ移送するためのヘッド部27等の他に、デバイス24の端子形状等を検査する2次元検査カメラ25が含まれている。従って、2次元検査は表面実装作業の前工程として表面実装装置20の実装動作の中で実施される。一方、平坦度測定器30による3次元検査は、別置きのスタンドアロン型の平坦度測定器30によって実施されている。
FIG. 3 shows a configuration of a conventional surface mounting apparatus.
The surface mounting apparatus 20 includes a device 24 in addition to a transport unit 22 that transports the mounting substrate 21, a device supply device such as a tray feeder 23, a head unit 27 that transports the device 24 to be mounted to the mounting substrate 21, and the like. A two-dimensional inspection camera 25 for inspecting the terminal shape and the like is included. Therefore, the two-dimensional inspection is performed in the mounting operation of the surface mounting apparatus 20 as a pre-process of the surface mounting operation. On the other hand, the three-dimensional inspection by the flatness measuring device 30 is performed by a separate stand-alone flatness measuring device 30.

図4に、前記SOP、QFP、CSP及びBGA等のデバイスにおける、従来の表面実装フローを示す。まず表面実装装置20とは別置きのスタンドアロン型平坦度測定器30によって、デバイス24のコプラナリティの検査を行い(S34)、選別された良品デバイスを良品トレイ31に貯めていく。各デバイスごとの数量とデバイスの種類を必要なだけ確保したのち(S39)、製造担当者が良品トレイ31を運び、表面実装装置20のトレイフィーダ23にセットする(S40)。その後、表面実装装置20の2次元検査カメラ25によって、デバイス24の外観を検査した後(S45)、良品デバイスが実装基板21に実装される(S46)。   FIG. 4 shows a conventional surface mounting flow in the devices such as SOP, QFP, CSP, and BGA. First, the coplanarity of the device 24 is inspected by the stand-alone flatness measuring device 30 separately from the surface mounting apparatus 20 (S34), and the selected non-defective devices are stored in the non-defective product tray 31. After securing the necessary quantity and device type for each device (S39), the person in charge carries the non-defective tray 31 and sets it in the tray feeder 23 of the surface mounting apparatus 20 (S40). Thereafter, after the appearance of the device 24 is inspected by the two-dimensional inspection camera 25 of the surface mounting apparatus 20 (S45), a non-defective device is mounted on the mounting substrate 21 (S46).

なお、表面実装デバイスの実装にかかる表面実装装置については、例えば特許文献1に開示されている。
特開平8−51297号公報
A surface mounting apparatus for mounting a surface mounting device is disclosed in, for example, Patent Document 1.
JP-A-8-51297

しかし、上述のように、平坦度測定器30による検査は、独立した装置で行われるため、表面実装作業を実施する場合、表面実装装置20と平坦度測定器30による検査装置を両方準備する必要があり、装置導入による製造コストがかかる。   However, as described above, since the inspection by the flatness measuring device 30 is performed by an independent device, it is necessary to prepare both the surface mounting device 20 and the inspection device by the flatness measuring device 30 when performing the surface mounting operation. There is a manufacturing cost due to the introduction of the device.

また、平坦度測定器30では、デバイス24の3次元情報(XYZ)によってコプラナリティを検査し、表面実装装置20で行う2次元検査は、デバイス24の2次元情報(XY)によって外観を検査していることから、各装置にて検出されるデバイス24の中心位置や電極端子の位置等の2次元情報(XY)が共通のものとなる。従って、平坦度測定器30による3次元検査と表面実装装置20での2次元検査において同じ情報の検出を繰り返すことになり、検査時間が増加し、その結果、製造コストがかかる。   Further, the flatness measuring device 30 inspects the coplanarity by the three-dimensional information (XYZ) of the device 24, and the two-dimensional inspection performed by the surface mounting apparatus 20 inspects the appearance by the two-dimensional information (XY) of the device 24. Therefore, two-dimensional information (XY) such as the center position of the device 24 and the position of the electrode terminal detected by each apparatus is common. Accordingly, the same information is repeatedly detected in the three-dimensional inspection by the flatness measuring device 30 and the two-dimensional inspection by the surface mounting apparatus 20, and the inspection time increases, resulting in high manufacturing costs.

また、平坦度測定器30と表面実装装置20とが別置きの構成のため、装置間の搬送に係る作業や、装置毎に作業記録を管理する作業が必要となり、作業員投入による製造コストがかかる。   In addition, since the flatness measuring device 30 and the surface mount device 20 are configured separately, work related to conveyance between devices and work for managing work records for each device are required, and the manufacturing cost due to input of workers is increased. Take it.

また、平坦度測定器による3次元検査の後、内部に格子状のポケットが複数形成されたトレイに収納された良品デバイスは、表面実装装置20まで搬送され、トレイフィーダ23にセットされる。この際、手作業による搬送やトレイフィーダ23へのセット時の振動衝撃によりデバイス24が格子状のポケット内壁に衝突したり、良品トレイ31から飛び出す等して、検査済みの良品デバイスの電極端子形状が曲がったり、折れたりする等の不良となる場合がある。   After the three-dimensional inspection by the flatness measuring device, the non-defective device stored in the tray having a plurality of lattice-like pockets formed therein is conveyed to the surface mounting apparatus 20 and set on the tray feeder 23. At this time, the device 24 collides with the inner wall of the lattice-like pocket due to manual conveyance or vibration shock during setting on the tray feeder 23, or jumps out of the non-defective tray 31, so that the electrode terminal shape of the non-defective device has been inspected. May be bent or broken.

更に、上述における振動衝撃により、コプラナリティに不具合が生じ、例えばZ方向の変形によって不良品となってしまったデバイス24が、表面実装装置20で行われるXY情報に基づく2次元検査において検査をパスし、実装されてしまう場合がある。実装後に半田付け不良が発覚した場合は、一般的には基板ごと廃棄することになるため、歩留まりが低下する上、使用材料全ての費用だけでなく、最終工程までの工数分の費用がかかることとなり、製造コストが増加する。   Further, the device 24 that has a defect in coplanarity due to the vibration shock described above and has become a defective product due to deformation in the Z direction, for example, passes the inspection in the two-dimensional inspection based on the XY information performed by the surface mounting apparatus 20. May be implemented. If a soldering failure is detected after mounting, the entire board is generally discarded, resulting in a decrease in yield, and not only the cost of all the materials used, but also the cost of man-hours to the final process. Thus, the manufacturing cost increases.

しかも、上述のように誤って実装されたデバイス24の中には、実装直後の電気的導通が正常であるため、市場に流出するものがある。特に、BGAやCSP等は、電極端子の接続部がパッケージと実装基板の間にあり、目視検査においても半田付け不良の確認は困難である。そのようなデバイス24は、実装直後は正常であっても、不完全な半田付けとなっているため、運用中の環境による温度変化(気温、通電停電)の繰り返しによるヒートショックや振動により、半田付け部にクラックを生じさせ、最終的には、ユーザーでの使用中に動作不良となる。特に高信頼性が要求される医療機器や通信設備等や、温度変動が大きく振動が激しい自動車、鉄道車両、航空機等における利用分野での動作不良は重大事故につながる。   Moreover, some of the devices 24 that are erroneously mounted as described above are out of the market because the electrical continuity immediately after mounting is normal. In particular, in BGA, CSP, and the like, the connection part of the electrode terminal is between the package and the mounting substrate, and it is difficult to confirm the soldering failure even in the visual inspection. Since such a device 24 is incomplete soldering even if it is normal immediately after mounting, the solder is caused by heat shock or vibration due to repeated temperature changes (air temperature, power failure) due to the operating environment. A crack is caused in the attaching portion, and eventually the operation becomes defective during use by the user. In particular, malfunctions in fields of use such as medical equipment and communication facilities that require high reliability, automobiles, railway vehicles, aircraft, etc. that have large temperature fluctuations and severe vibrations can lead to serious accidents.

一方、近年の表面実装装置の高速化及び高精度化に伴い、デバイス24の実装サイクルは0.数秒/チップ、実装精度は±数十マイクロメートルレベルとなっている。例えば上述した問題を解決するために、コプラナリティ検査機能を備えた表面実装装置を製造する場合、表面実装装置の実装タクトや実装精度に対応できるコプラナリティの検査スピード及び検査精度を得るのが困難という問題がある。   On the other hand, with the recent increase in speed and accuracy of the surface mounting apparatus, the mounting cycle of the device 24 is 0. Several seconds / chip, mounting accuracy is on the order of ± tens of micrometers. For example, when manufacturing a surface mounting device having a coplanarity inspection function in order to solve the above-described problem, it is difficult to obtain a coplanarity inspection speed and inspection accuracy corresponding to the mounting tact and mounting accuracy of the surface mounting device. There is.

本発明は、このような問題点を解決するためになされたものであり、表面実装デバイスの実装において、コプラナリティ検査機能を備えた表面実装装置及び表面実装方法を提供することを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to provide a surface mounting apparatus and a surface mounting method having a coplanarity inspection function in mounting a surface mounting device.

本発明は、表面実装デバイスの外観形状を測定する2次元検査カメラと、前記表面実装デバイスのコプラナリティを測定する平坦度測定器と、前記2次元検査カメラ及び平坦度測定器によって得られた情報に基づいて、前記表面実装デバイスを実装基板に実装するかどうかを判定する制御部と、前記表面実装デバイスを前記2次元検査カメラ及び平坦度測定器の測定位置と前記実装基板の実装位置へ移動させる駆動部を有する表面実装装置である。このような構成のコプラナリティ検査機能を備えた表面実装装置を実現することによって、別個の装置を導入することによる装置費用や、別個の装置を運用することによる作業管理上のコスト等の製造コストを削減することができる。   The present invention relates to a two-dimensional inspection camera that measures the external shape of a surface-mounted device, a flatness measuring device that measures the coplanarity of the surface-mounted device, and information obtained by the two-dimensional inspection camera and the flatness measuring device. And a control unit that determines whether or not to mount the surface-mounted device on a mounting board, and moves the surface-mounted device to a measurement position of the two-dimensional inspection camera and flatness measuring device and a mounting position of the mounting board. A surface-mount apparatus having a drive unit. By realizing a surface mounting device having a coplanarity inspection function with such a configuration, it is possible to reduce the manufacturing cost such as the cost of equipment by introducing a separate device and the cost of work management by operating the separate device. Can be reduced.

また、前記2次元検査カメラ及び平坦度測定器によって測定された情報において、前記2次元検査カメラ及び平坦度測定器のどちらか一方によって測定された情報を、他の一方で利用し、前記2次元検査カメラ及び平坦度測定器によって得られた情報に基づいて、前記表面実装デバイスを前記実装基板に実装するかどうかを判定する制御部を有する表面実装装置である。このような構成によって、表面実装装置の実装タクト及び実装精度に対応できるコプラナリティの検査を実現することができる。   Further, in the information measured by the two-dimensional inspection camera and the flatness measuring device, the information measured by one of the two-dimensional inspection camera and the flatness measuring device is used in the other one, and the two-dimensional It is a surface mounting apparatus which has a control part which judges whether the surface mount device is mounted in the mounting board based on information obtained by an inspection camera and a flatness measuring device. With such a configuration, it is possible to realize a coplanarity inspection that can cope with the mounting tact and mounting accuracy of the surface mounting apparatus.

さらに、前記2次元検査カメラ及び平坦度測定器による測定、及び前記実装基板への実装において、前記2次元検査カメラ及び平坦度測定器の測定位置と前記実装基板の実装位置へ、前記表面実装デバイスを移動させる駆動部が同一の表面実装装置である。このような構成によって、前記測定部から実装までの搬送中に発生する振動衝撃による不具合を抑制でき、材料費や工数費等の製造コストを削減することができる。   Further, in the measurement by the two-dimensional inspection camera and the flatness measuring device and the mounting on the mounting substrate, the surface mounting device is moved to the measurement position of the two-dimensional inspection camera and the flatness measuring device and the mounting position of the mounting substrate. The surface mount device is the same drive unit for moving the. With such a configuration, it is possible to suppress problems due to vibration and impact generated during conveyance from the measurement unit to mounting, and to reduce manufacturing costs such as material costs and man-hour costs.

また、前記コプラナリティを測定する平坦度測定器が、モアレトポグラフィ法を用いた計測装置である表面実装装置である。このような構成によって、コプラナリティの検査スピード及び検査精度を高くすることができ、且つコプラナリティの測定部を簡便に表面実装装置に取り付けることができる。   Further, the flatness measuring device for measuring the coplanarity is a surface mounting device which is a measuring device using a moire topography method. With such a configuration, the inspection speed and inspection accuracy of the coplanarity can be increased, and the coplanarity measurement unit can be easily attached to the surface mounting apparatus.

なお、本発明に係る表面実装方法は、表面実装デバイスの外観形状を2次元検査カメラによって測定し、前記表面実装デバイスのコプラナリティを平坦度測定器によって測定し、前記2次元検査カメラ及び平坦度測定器によって得られた情報に基づいて、前記表面実装デバイスを実装基板に実装するかどうかを判定し、前記表面実装デバイスを前記2次元検査カメラ及び平坦度測定器の測定位置と実装基板の実装位置へ移動させるものである。   In the surface mounting method according to the present invention, the external shape of the surface mounted device is measured by a two-dimensional inspection camera, the coplanarity of the surface mounted device is measured by a flatness measuring device, and the two-dimensional inspection camera and the flatness measurement are measured. It is determined whether or not the surface mount device is mounted on a mounting substrate based on the information obtained by the measuring device, and the surface mounting device is measured by the two-dimensional inspection camera and the flatness measuring device, and the mounting position of the mounting substrate. To move to.

また、前記2次元検査カメラ及び平坦度測定器によって測定された情報において、前記2次元検査カメラ及び平坦度測定器のどちらか一方によって測定された情報を、他の一方で利用し、前記2次元検査カメラ及び平坦度測定器によって得られた情報に基づいて、前記表面実装デバイスを実装基板に実装するかどうかを判定する方法である。   Further, in the information measured by the two-dimensional inspection camera and the flatness measuring device, the information measured by one of the two-dimensional inspection camera and the flatness measuring device is used in the other one, and the two-dimensional This is a method for determining whether or not to mount the surface-mounted device on a mounting board based on information obtained by an inspection camera and a flatness measuring device.

また、前記2次元検査カメラ及び平坦度測定器による測定、及び前記実装基板の実装は、連続的に実施される方法である。   Further, the measurement by the two-dimensional inspection camera and the flatness measuring device and the mounting of the mounting board are continuously performed methods.

さらに、前記コプラナリティを測定する測定方法が、モアレトポグラフィ法を用いた方法である。   Furthermore, the measuring method for measuring the coplanarity is a method using a moire topography method.

本発明によって、コプラナリティ機能を備えた表面実装装置及び表面実装方法を提供することができる。   According to the present invention, a surface mounting apparatus and a surface mounting method having a coplanarity function can be provided.

図1は、本実施の形態に係る表面実装装置の構成を示したものである。なお、以下の説明は、本発明の実施形態例を説明するものであり、本発明が以下の実施形態に限定されるものではない。   FIG. 1 shows a configuration of a surface mounting apparatus according to the present embodiment. In addition, the following description demonstrates the embodiment example of this invention, and this invention is not limited to the following embodiment.

図1に示す表面実装装置1は、実装基板2を搬送する搬送部3と、テーピングで供給されるデバイス4を収納するテープフィーダ5と、テーピングできないデバイス4を収納するためのトレイフィーダ6を有する。また、デバイス4のコプラナリティを検査する平坦度測定器7と、デバイス4の外観状態を検査する2次元検査カメラ8と、検査によって不良となったデバイス4を収容する不良品トレイ9を有する。そして、デバイス4を表面実装装置1内の任意のX,Y及びZ方向に可動する駆動部11を有し、その駆動部11は、デバイス4を吸着しθ方向に可動できるヘッド部10を含んでいる。さらに、一連の表面実装動作を制御する制御部12と、一連の表面実装動作を設定及び操作する操作部13から構成される。   A surface mounting apparatus 1 shown in FIG. 1 includes a transport unit 3 that transports a mounting substrate 2, a tape feeder 5 that stores devices 4 supplied by taping, and a tray feeder 6 that stores devices 4 that cannot be taped. . Further, it has a flatness measuring instrument 7 for inspecting the coplanarity of the device 4, a two-dimensional inspection camera 8 for inspecting the appearance of the device 4, and a defective product tray 9 for storing the device 4 that has become defective due to the inspection. And it has the drive part 11 which can move the device 4 to arbitrary X, Y, and Z directions in the surface mounting apparatus 1, The drive part 11 contains the head part 10 which can adsorb | suck the device 4 and can move to (theta) direction. It is out. Furthermore, it comprises a control unit 12 for controlling a series of surface mounting operations and an operation unit 13 for setting and operating a series of surface mounting operations.

図2は、本実施の形態に係る表面実装方法のフローチャートを示したものである。あらかじめデバイス4は、必要量がトレイフィーダ6に配置され(S12)、実装基板2が搬送部3によって表面実装装置1内に移動する(S13)。実装基板2には、本工程の前工程において、デバイス4との接合材料が印刷されている。   FIG. 2 shows a flowchart of the surface mounting method according to the present embodiment. The required amount of the device 4 is placed in advance on the tray feeder 6 (S12), and the mounting substrate 2 is moved into the surface mounting apparatus 1 by the transport unit 3 (S13). The mounting substrate 2 is printed with a bonding material to the device 4 in the previous step of this step.

そして、ヘッド部10は、駆動部11によってトレイフィーダ6に配置されたデバイス4の上部まで移動し(S14)、Z軸方向に沿ってデバイス4に近づきデバイス4を吸着し(S15)、2次元検査カメラ8位置に移動する(S16)。2次元検査カメラ8によって得られたデバイス4の2次元情報により、デバイス4の2次元検査及び位置認識を実施し、ヘッド部10において角度調整をする(S17)。その後、駆動部11によりヘッド部10を平坦度測定器7位置に移動し(S18)、コプラナリティ測定による3次元検査を実施する(S19)。   Then, the head unit 10 moves to the upper part of the device 4 disposed on the tray feeder 6 by the driving unit 11 (S14), approaches the device 4 along the Z-axis direction, and sucks the device 4 (S15). It moves to the inspection camera 8 position (S16). Based on the two-dimensional information of the device 4 obtained by the two-dimensional inspection camera 8, two-dimensional inspection and position recognition of the device 4 are performed, and angle adjustment is performed in the head unit 10 (S17). Thereafter, the head unit 10 is moved to the position of the flatness measuring device 7 by the driving unit 11 (S18), and a three-dimensional inspection by coplanarity measurement is performed (S19).

2次元検査カメラ8による2次元検査と平坦度測定器7による3次元検査の結果、所定の閾値により不良と判定されたデバイス4は、ヘッド部10に吸着されたまま、駆動部11によって不良品トレイ9に移動され収納される(S20)。なお、2次元検査と3次元検査の結果、所定の閾値により良品と判定されたデバイス4は、ヘッド部10に吸着されたまま、駆動部11によって実装基板2上の実装位置に配置される(S22)。制御部12は、上述した検査結果を判定し、表面実装作業に係る一連の動きを制御する。   As a result of the two-dimensional inspection by the two-dimensional inspection camera 8 and the three-dimensional inspection by the flatness measuring device 7, the device 4 determined to be defective by a predetermined threshold is inferior by the drive unit 11 while being adsorbed to the head unit 10. It is moved to and stored in the tray 9 (S20). As a result of the two-dimensional inspection and the three-dimensional inspection, the device 4 determined to be a non-defective product by a predetermined threshold is placed at the mounting position on the mounting substrate 2 by the driving unit 11 while being attracted to the head unit 10 ( S22). The control unit 12 determines the above-described inspection result and controls a series of movements related to the surface mounting operation.

なお、デバイス4の外観情報を検査する2次元検査は、デバイス4の電極形状や、パッケージ面の文字、傷及び腐食等の項目について検査するものであり、自動機による表面実装作業の実装スピードに対応するための検査スピードを要し、デバイス4を高精度実装するための検出精度を有している。例えば高性能CCDカメラを使用した画像認識による方法等、上述の項目が検査できれば検査方式は問わない。   The two-dimensional inspection for inspecting the appearance information of the device 4 is for inspecting items such as the electrode shape of the device 4, characters on the package surface, scratches, and corrosion. Inspection speed is required to cope with it, and it has detection accuracy for mounting the device 4 with high accuracy. For example, any inspection method can be used as long as the above-described items can be inspected, such as an image recognition method using a high-performance CCD camera.

一方、デバイス4のコプラナリティを検査する3次元検査は、電極端子のコプラナリティの他、デバイス4の本体の反り等の項目も検査する。上述の項目が検査できれば、検査方式は問わないが、自動機による表面実装作業の実装スピードに対応し、且つデバイス4を高精度実装するための検出精度を有し、更に表面実装装置1に簡便に取り付けられる構造であることが必要である。   On the other hand, the three-dimensional inspection for inspecting the coplanarity of the device 4 inspects items such as the warp of the main body of the device 4 in addition to the coplanarity of the electrode terminals. If the above-mentioned items can be inspected, the inspection method is not limited, but it corresponds to the mounting speed of the surface mounting work by the automatic machine, has the detection accuracy for mounting the device 4 with high accuracy, and is easy for the surface mounting apparatus 1. It is necessary to have a structure that can be attached to.

上述の2次元検査及び3次元検査においては、デバイス4が同一の駆動部11によって測定位置に配置されるため、デバイス4の中心位置、各電極端子の位置・有無・形状、また、デバイス材料の輝度情報、デバイス4の向き等のXY情報に基づく情報が共有化され、お互いの検査に利用される。例えば2次元検査カメラ8で測定されたデバイス4の各電極端子の位置情報を用いて、電極端子のコプラナリティを3次元検査によって検査するというものである。従って、平坦度測定器7と表面実装装置1を別置きした場合の実装時よりも検査時間が少なくなるため作業時間が短縮される。但し、表面実装装置1内において、2次元検査工程及び実装工程に連動して3次元検査工程を実施するには、実装タクトと連動できる検査時間であることが必要である。   In the above-described two-dimensional inspection and three-dimensional inspection, since the device 4 is arranged at the measurement position by the same driving unit 11, the center position of the device 4, the position / presence / absence / shape of each electrode terminal, and the device material Information based on the XY information such as the luminance information and the orientation of the device 4 is shared and used for mutual inspection. For example, using the positional information of each electrode terminal of the device 4 measured by the two-dimensional inspection camera 8, the coplanarity of the electrode terminal is inspected by a three-dimensional inspection. Accordingly, since the inspection time is shorter than that when mounting the flatness measuring device 7 and the surface mounting apparatus 1 separately, the operation time is shortened. However, in order to perform the three-dimensional inspection process in conjunction with the two-dimensional inspection process and the mounting process in the surface mounting apparatus 1, it is necessary to have an inspection time that can be interlocked with the mounting tact.

そこで、更に上記を詳しく述べると、一般的にXY方向の情報を検出する2次元検査の計測スピード及び計測精度は、2軸の情報を検出しているため、XYZ方向の3軸情報を検出する3次元検査のそれよりも高い計測スピード及び計測精度が得られる。従って、上述のように2次元検査によって得られた高速且つ高精度な情報を利用して3次元検査をすることによって、3次元検査のみの検査時間よりも高速且つ高精度に検査することができる。3次元検査時間の短縮により、2次元検査工程及び実装工程の実装タクトと連動できる3次元検査を実現することができる。   Therefore, in more detail, since the measurement speed and measurement accuracy of the two-dimensional inspection that generally detects information in the XY directions detects information on two axes, three-axis information in the XYZ directions is detected. Measurement speed and measurement accuracy higher than that of three-dimensional inspection can be obtained. Therefore, by performing the three-dimensional inspection using the high-speed and high-accuracy information obtained by the two-dimensional inspection as described above, the inspection can be performed at a higher speed and higher accuracy than the inspection time of only the three-dimensional inspection. . By shortening the three-dimensional inspection time, it is possible to realize a three-dimensional inspection that can be linked to the mounting tact of the two-dimensional inspection process and the mounting process.

ここで、コプラナリティを検査する3次元計測方式として、特にモアレトポグラフィ法による利用が好ましい。モアレトポグラフィとは、立体の表面に二つの格子縞を投影したときに発生するモアレ縞と呼ばれる干渉縞の形状から物体の立体形状を得る非接触型の3次元計測方法である。   Here, as a three-dimensional measurement method for inspecting coplanarity, use by the moire topography method is particularly preferable. Moire topography is a non-contact type three-dimensional measurement method for obtaining a three-dimensional shape of an object from the shape of interference fringes called moire fringes generated when two lattice fringes are projected on a three-dimensional surface.

3次元計測の方式としては、三角測量方式が多く用いられている。三角測量式は、ポリゴンミラー等でレーザ等の光源の走査と、測定対象の定速移動が必要である。実際は、定速性に限界があるため、計測装置側でその補正をすることになり、移動速度の収集が必要である。移動速度の収集方法としては、駆動用の制御装置から出力されるエンコーダパルスを計数する。従って、レーザ等の光源による走査を行って画像を取り入れるだけでなく、駆動用制御装置との同期に係るデータの処理も必要であるため、撮像時間が長くなり、表面実装作業の実装タクトに対応するのが困難である。   A triangulation method is often used as a three-dimensional measurement method. The triangulation method requires scanning of a light source such as a laser with a polygon mirror or the like and a constant speed movement of a measurement target. Actually, since there is a limit to the constant speed, the measurement device side corrects it, and it is necessary to collect the moving speed. As a method of collecting the moving speed, the encoder pulses output from the drive control device are counted. Therefore, in addition to scanning images with a light source such as a laser, it is necessary to process data related to synchronization with the drive control device, which increases the imaging time and supports mounting tact for surface mounting work. Difficult to do.

モアレトポグラフィ法は、生体のような被測定物体を固定することが難しい計測に使用でき、高速且つ高精度の計測を行うことができる。なお、モアレトポグラフィ法については、例えば格子を被計測物体に対して斜め方向に移動し、計測に悪影響を及ぼす成分を除去することで計測時間の短縮を実現する3次元計測装置及び3次元計測方法が特開2004−125652公報に、また、2種類のモアレ縞を同時に形成し、被計測物体に照射することで計測精度を向上させる3次元計測装置及び3次元計測方法が特開2004−361142公報に参照されている。   The moire topography method can be used for measurement in which it is difficult to fix an object to be measured such as a living body, and can perform high-speed and high-precision measurement. As for the moire topography method, for example, a three-dimensional measurement apparatus and a three-dimensional measurement method that realize a reduction in measurement time by moving a grid in an oblique direction with respect to an object to be measured and removing components that adversely affect the measurement. Discloses a three-dimensional measuring apparatus and a three-dimensional measuring method for improving measurement accuracy by simultaneously forming two types of moire fringes and irradiating the object to be measured. Is referenced.

更に、モアレトポグラフィ法によるセンサ部は、主に光源、格子状スリット及びCCDカメラ等の比較的小規模な機構によって構成されるため、表面実装装置1に簡便に取り付けることができる。以上の構成により、表面実装装置1内の2次元検査工程及び実装工程との実装タクトに連動できる、コプラナリティ検査機能を備えた表面実装装置を実現することが可能となる。   Furthermore, since the sensor unit based on the moire topography method is mainly configured by a relatively small-scale mechanism such as a light source, a lattice slit, and a CCD camera, it can be easily attached to the surface mounting apparatus 1. With the above configuration, it is possible to realize a surface mounting apparatus having a coplanarity inspection function that can be linked to a mounting tact with a two-dimensional inspection process and a mounting process in the surface mounting apparatus 1.

本実施の形態の検査対象とされるデバイス4は、例えばSOP、QFP、CSP、BGA及びコネクタ等、複数の電極端子を有し、実装基板2と半田接合される際の平坦度が重要な表面実装用のデバイス4である。但し、上述した表面実装装置1は、デープフィーダ5で供給されるチップコンデンサ等のデバイス4のような、コプラナリティを測定する必要のないデバイス4の実装も可能である。このため、平坦度測定器7によるコプラナリティ検査の実施有無は、デバイス4毎に任意に選択することができる。   The device 4 to be inspected in the present embodiment has a plurality of electrode terminals such as SOP, QFP, CSP, BGA, and connectors, for example, and a surface on which flatness is important when soldered to the mounting substrate 2. This is a device 4 for mounting. However, the surface mounting apparatus 1 described above can also mount a device 4 that does not require measurement of coplanarity, such as a device 4 such as a chip capacitor supplied by the deep feeder 5. Therefore, whether or not the coplanarity test is performed by the flatness measuring device 7 can be arbitrarily selected for each device 4.

また、ヘッド部10は、表面実装装置1内の実装領域を移動することができる駆動部11に接続され、トレイフィーダ6やテープフィーダ5等のデバイス供給部からデバイス4を保持し、2次元検査カメラ8位置や平坦度測定器7位置及び実装基板2の実装位置へ移動するものである。これらの作業に係る一連の動きは、制御部12によって制御されている。従って、2次元検査や平坦度測定器7による3次元検査、及び実装動作を同一の駆動部11によって、連続的に実施することができる。好ましくは、デバイス4の保持には、不活性ガスの負圧力によって吸着する機構が使用される。   The head unit 10 is connected to a drive unit 11 that can move a mounting area in the surface mounting apparatus 1, holds the device 4 from a device supply unit such as the tray feeder 6 or the tape feeder 5, and performs two-dimensional inspection. It moves to the camera 8 position, the flatness measuring instrument 7 position, and the mounting position of the mounting board 2. A series of movements related to these operations are controlled by the control unit 12. Therefore, the two-dimensional inspection, the three-dimensional inspection by the flatness measuring device 7 and the mounting operation can be continuously performed by the same driving unit 11. Preferably, the device 4 is held by a mechanism that adsorbs by a negative pressure of an inert gas.

また、実装されるデバイス4は多品種に及ぶため、ヘッド部10は形状の異なったものを複数配置されてもよい。従って、ヘッド部10が複数あることにより、複数のデバイス4において同時に2次元検査や平坦度測定器7による3次元検査、及び実装動作を実施することも可能である。   Further, since the devices 4 to be mounted are of various types, a plurality of head portions 10 having different shapes may be arranged. Accordingly, since there are a plurality of head portions 10, it is possible to simultaneously perform a two-dimensional inspection, a three-dimensional inspection by the flatness measuring device 7, and a mounting operation in a plurality of devices 4.

例えばヘッド部10を3セット用意し、2次元検査位置と3次元検査位置との間、及び3次元検査位置と実装位置との間に中継ステージを用意する。そして、第1のヘッド部10でデバイス4を吸着し2次元検査カメラ8位置まで移動して2次元検査を実施した後デバイス4を第1の中継ステージに配置し、第2のヘッドで第1の中継ステージに配置されたデバイス4を吸着し3次元検査位置に移動して3次元検査を実施した後第2の中継ステージに配置し、第3のヘッドで第2の中継ステージに配置されたデバイス4を吸着し実装基板2に実装する、というようなリレー方式でデバイス4を搬送することもできる。   For example, three sets of head units 10 are prepared, and relay stages are prepared between the two-dimensional inspection position and the three-dimensional inspection position, and between the three-dimensional inspection position and the mounting position. Then, after the device 4 is sucked by the first head unit 10 and moved to the position of the two-dimensional inspection camera 8 to perform the two-dimensional inspection, the device 4 is placed on the first relay stage, and the first head is used by the second head. The device 4 placed on the relay stage is sucked and moved to the three-dimensional inspection position to perform the three-dimensional inspection, then placed on the second relay stage, and placed on the second relay stage with the third head. The device 4 can also be transported by a relay method in which the device 4 is sucked and mounted on the mounting substrate 2.

その場合、第1のヘッド部10が第1の中継ステージにデバイス4を配置させた後、第2のヘッド部10が第1の中継ステージからデバイス4を吸着させる動作時に、第1のヘッド部10は次のデバイス4を吸着するというように、2次元検査と3次元検査と実装作業が同期して並列に実施される。従って、平坦度測定器7と表面実装装置1が別置きで実施していた方法に対して、平坦度測定器による3次元検査時間そのものが削減できる。また、3次元検査工程のみに、同時に複数個のデバイス4を検査する等して、2次元検査や実装工程との実装タクトを合わせることも可能である。   In that case, after the first head unit 10 places the device 4 on the first relay stage, the first head unit is operated during the operation in which the second head unit 10 sucks the device 4 from the first relay stage. The two-dimensional inspection, the three-dimensional inspection, and the mounting operation are performed in parallel in synchronism such that the next device 4 is attracted by 10. Therefore, compared with the method in which the flatness measuring instrument 7 and the surface mounting apparatus 1 are separately provided, the three-dimensional inspection time itself by the flatness measuring instrument can be reduced. It is also possible to match the mounting tact with the two-dimensional inspection and the mounting process by inspecting a plurality of devices 4 at the same time only in the three-dimensional inspection process.

また、当業者であれば、以上の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能である。例えば、上記実施形態においては、表面実装装置1のヘッド部10はデバイス4の上部を保持し、2次元検査カメラ8位置や平坦度測定器7位置に移動することから、デバイス4の下方より2次元検査及び3次元検査を実施するが、供給されたデバイス4を反転させた状態で搬送ステージ等に固定し、2次元検査カメラ8位置及び平坦度測定器7位置に移動し、デバイス4上方より2次元検査及び3次元検査を実施することも可能である。   Moreover, those skilled in the art can easily change, add, and convert each element of the above embodiments within the scope of the present invention. For example, in the above-described embodiment, the head unit 10 of the surface mounting apparatus 1 holds the upper part of the device 4 and moves to the position of the two-dimensional inspection camera 8 or the flatness measuring device 7. Dimensional inspection and three-dimensional inspection are performed. The supplied device 4 is fixed to a transfer stage or the like in an inverted state, moved to the position of the two-dimensional inspection camera 8 and the flatness measuring instrument 7, and from above the device 4. Two-dimensional inspection and three-dimensional inspection can also be performed.

以上のように、表面実装装置1にコプラナリティ検査機能を含めたことによって、平坦度測定器7の装置設置スペースが削減される。また、デバイス4を収納するトレイや、制御部12、操作部13及びデバイス4を移送するヘッド部10等、表面実装装置1と平坦度測定器7の両装置に重複していた機構を共通化することで機構数が減り、表面実装装置1と平坦度測定器7をただ合わせただけの装置設置面積よりも縮小できる。   As described above, by including the coplanarity inspection function in the surface mounting apparatus 1, the apparatus installation space of the flatness measuring instrument 7 is reduced. In addition, a mechanism that overlaps both the surface mounting device 1 and the flatness measuring device 7 such as the tray for storing the device 4, the control unit 12, the operation unit 13, and the head unit 10 for transferring the device 4 is shared. By doing so, the number of mechanisms can be reduced, and the surface mounting device 1 and the flatness measuring device 7 can be reduced from the device installation area which is simply combined.

また、平坦度測定器7と表面実装装置1が別置きの場合に実施する各装置間のデバイス4の搬送作業にかかる時間や、装置毎のデータ入力やデータ管理に係るセッティング時間、及び装置毎に実施するテストサンプルによる実装チェック等の製造前の立ち上げ準備時間が削減され、製造時間が短縮できる。   In addition, the time required for transporting the device 4 between the devices performed when the flatness measuring device 7 and the surface mounting device 1 are separately placed, the setting time for data input and data management for each device, and each device The preparation time before start-up such as mounting check using test samples is reduced, and the manufacturing time can be shortened.

また、検査前のデバイス4を表面実装装置1のトレイフィーダ6にセットした後は、2次元検査、3次元検査及び実装が、表面実装装置1内で連続的あるいは並列に行われる。従って、平坦度測定器7と表面実装装置1が別置きで実施するよりも、工程毎の所要時間が短縮され、製造時間を短縮できる。   After the device 4 before inspection is set on the tray feeder 6 of the surface mounting apparatus 1, two-dimensional inspection, three-dimensional inspection and mounting are performed continuously or in parallel in the surface mounting apparatus 1. Therefore, the time required for each process can be shortened and the manufacturing time can be shortened as compared with the case where the flatness measuring instrument 7 and the surface mounting apparatus 1 are separately provided.

更に、2次元検査、3次元検査及び実装が、表面実装装置1内にて連続的に行われることにより、従来平坦度測定器7から表面実装装置1へのデバイス4の移動時に発生していた振動衝撃による不具合も抑制できるため、不具合品を過誤により実装基板2へ実装し、実装後に廃棄することがなくなる。また、過誤により実装された不具合品が、実装直後の電気的導通が正常であったため市場に流出し、運用中に動作不良となる事故を削減するという効果がある。   Furthermore, since the two-dimensional inspection, the three-dimensional inspection, and the mounting are continuously performed in the surface mounting apparatus 1, it has conventionally occurred when the device 4 is moved from the flatness measuring device 7 to the surface mounting apparatus 1. Since defects due to vibration shock can also be suppressed, a defective product is not mounted on the mounting board 2 due to an error and discarded after mounting. In addition, there is an effect that a defective product mounted due to an error flows out to the market because the electrical continuity immediately after mounting is normal, thereby reducing accidents that cause malfunction during operation.

本発明の実施形態にかかる表面実装装置の構成を示す図である。It is a figure which shows the structure of the surface mounting apparatus concerning embodiment of this invention. 本発明の実施形態にかかる表面実装方法を示すフローチャートである。It is a flowchart which shows the surface mounting method concerning embodiment of this invention. 従来の表面実装装置の構成を示す図である。It is a figure which shows the structure of the conventional surface mounting apparatus. 従来の表面実装方法を示すフローチャートである。It is a flowchart which shows the conventional surface mounting method.

符号の説明Explanation of symbols

1 表面実装装置、 2 実装基板、 3 搬送部、 4 デバイス、
5 テープフィーダ、 6 トレイフィーダ、 7 平坦度測定器、
8 2次元検査カメラ、 9 不良品トレイ、 10 ヘッド部、
11 駆動部、 12 制御部、 13 操作部、
20 表面実装装置、 21 実装基板、 22 搬送部、
23 トレイフィーダ、 24 デバイス、 25 2次元検査カメラ、
26 テープフィーダ、 27 ヘッド部、 28 制御部、 29 操作部、
30 平坦度測定器、 31 良品トレイ、 32 不良品トレイ、
33 ヘッド部、 34 制御装置、 35 検査前トレイ
1 surface mount device, 2 mounting board, 3 transport unit, 4 device,
5 Tape feeder, 6 Tray feeder, 7 Flatness measuring instrument,
8 2D inspection camera, 9 defective product tray, 10 head,
11 drive unit, 12 control unit, 13 operation unit,
20 surface mounting device, 21 mounting substrate, 22 transport section,
23 tray feeder, 24 devices, 25 2D inspection camera,
26 tape feeder, 27 head section, 28 control section, 29 operation section,
30 flatness measuring device, 31 good product tray, 32 defective product tray,
33 head unit, 34 control device, 35 tray before inspection

Claims (8)

表面実装デバイスの外観形状を測定する2次元検査カメラと、
前記表面実装デバイスのコプラナリティを測定する平坦度測定器と、
前記2次元検査カメラ及び平坦度測定器によって得られた情報に基づいて、前記表面実装デバイスを実装基板に実装するかどうかを判定する制御部と、
前記表面実装デバイスを前記2次元検査カメラ及び平坦度測定器の測定位置と前記実装基板の実装位置へ移動させる駆動部を有する表面実装装置において、
前記駆動部は、前記表面実装デバイスを前記2次元検査カメラの測定位置へ配置する機構と、前記2次元検査カメラの測定位置から前記平坦度測定器の測定位置へ移動させる機構と、前記平坦度測定器の測定位置から取り除く機構とをそれぞれ有するとともに、少なくとも前記2次元検査カメラによる測定と、前記平坦度測定器による測定とを時間的に同期して並列に実施可能に構成されたことを特徴とする表面実装装置
A two-dimensional inspection camera for measuring the external shape of the surface mount device;
A flatness measuring instrument for measuring the coplanarity of the surface mount device;
A control unit for determining whether to mount the surface-mount device on a mounting board based on information obtained by the two-dimensional inspection camera and the flatness measuring device;
In the surface mounting apparatus having a driving unit for moving the surface mounting device to the measurement position of the two-dimensional inspection camera and the flatness measuring device and the mounting position of the mounting substrate ,
The drive unit includes a mechanism for disposing the surface mount device at a measurement position of the two-dimensional inspection camera, a mechanism for moving the measurement device from the measurement position of the two-dimensional inspection camera to the measurement position of the flatness measuring device, and the flatness Each of which has a mechanism for removing from the measurement position of the measuring device, and at least the measurement by the two-dimensional inspection camera and the measurement by the flatness measuring device can be performed in parallel in synchronization with each other in time. Surface mount device .
前記2次元検査カメラ及び平坦度測定器によって測定された情報において、
前記2次元検査カメラ及び平坦度測定器のどちらか一方によって測定された情報を、他の一方で利用し、
前記2次元検査カメラ及び平坦度測定器によって得られた情報に基づいて、前記表面実装デバイスを前記実装基板に実装するかどうかを判定する制御部を有する請求項1に記載の表面実装装置。
In the information measured by the two-dimensional inspection camera and the flatness measuring device,
Information measured by one of the two-dimensional inspection camera and the flatness measuring device is used by the other,
The surface mounting apparatus of Claim 1 which has a control part which determines whether the said surface mounted device is mounted in the said mounting board | substrate based on the information obtained by the said two-dimensional inspection camera and a flatness measuring device.
前記2次元検査カメラ及び平坦度測定器による測定、及び前記実装基板への実装において、前記2次元検査カメラ及び平坦度測定器の測定位置と前記実装基板の実装位置へ、前記表面実装デバイスを移動させる駆動部が同一のものである請求項1又は2に記載の表面実装装置。   In the measurement by the two-dimensional inspection camera and the flatness measuring instrument and the mounting on the mounting board, the surface mounting device is moved to the measurement position of the two-dimensional inspection camera and the flatness measuring instrument and the mounting position of the mounting board. The surface mounting apparatus according to claim 1, wherein the driving units are the same. 前記コプラナリティを測定する平坦度測定器が、モアレトポグラフィ法を用いた計測装置である請求項1〜3のいずれかに記載の表面実装装置。   The surface mounting apparatus according to claim 1, wherein the flatness measuring instrument for measuring the coplanarity is a measuring apparatus using a moire topography method. 表面実装デバイスの外観形状を2次元検査カメラによって測定し、
前記表面実装デバイスのコプラナリティを平坦度測定器によって測定し、
前記2次元検査カメラ及び平坦度測定器によって得られた情報に基づいて、前記表面実装デバイスを実装基板に実装するかどうかを判定し、
前記表面実装デバイスを前記2次元検査カメラ及び平坦度測定器の測定位置と実装基板の実装位置へ移動させる表面実装方法において、
前記実装位置への移動は、前記表面実装デバイスを前記2次元検査カメラの測定位置へ配置するステップと、前記2次元検査カメラの測定位置から前記平坦度測定器の測定位置へ移動させるステップと、前記平坦度測定器の測定位置から取り除くステップとを有するとともに、少なくとも前記2次元検査カメラによる測定ステップと、前記平坦度測定器による測定ステップとを時間的に同期して並列に実施することを特徴とする表面実装方法
Measure the external shape of the surface mount device with a 2D inspection camera,
Measuring the coplanarity of the surface mount device with a flatness meter;
Based on the information obtained by the two-dimensional inspection camera and the flatness measuring device, it is determined whether to mount the surface mount device on a mounting substrate,
In the surface mounting method of moving the surface mounting device to the measurement position of the two-dimensional inspection camera and the flatness measuring device and the mounting position of the mounting substrate ,
The movement to the mounting position includes the step of placing the surface mount device at the measurement position of the two-dimensional inspection camera, the step of moving from the measurement position of the two-dimensional inspection camera to the measurement position of the flatness measuring device, Removing from the measurement position of the flatness measuring device, and performing at least the measuring step by the two-dimensional inspection camera and the measuring step by the flatness measuring device in parallel in synchronization in time. Surface mounting method .
前記2次元検査カメラ及び平坦度測定器によって測定された情報において、
前記2次元検査カメラ及び平坦度測定器のどちらか一方によって測定された情報を、他の一方で利用し、
前記2次元検査カメラ及び平坦度測定器によって得られた情報に基づいて、前記表面実装デバイスを実装基板に実装するかどうかを判定する請求項5に記載の表面実装方法。
In the information measured by the two-dimensional inspection camera and the flatness measuring device,
Information measured by one of the two-dimensional inspection camera and the flatness measuring device is used by the other,
6. The surface mounting method according to claim 5, wherein whether or not to mount the surface mounting device on a mounting board is determined based on information obtained by the two-dimensional inspection camera and a flatness measuring device.
前記2次元検査カメラ及び平坦度測定器による測定、及び前記実装基板の実装は、連続的に実施されるものである請求項5又は6に記載の表面実装方法。   The surface mounting method according to claim 5 or 6, wherein the measurement by the two-dimensional inspection camera and the flatness measuring device and the mounting of the mounting substrate are performed continuously. 前記コプラナリティを測定する測定方法が、モアレトポグラフィ法を用いたものである請求項5〜7のいずれかに記載の表面実装方法。   The surface mounting method according to claim 5, wherein the measurement method for measuring the coplanarity uses a moire topography method.
JP2005224066A 2005-08-02 2005-08-02 Surface mounting apparatus and surface mounting method Expired - Fee Related JP4610437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224066A JP4610437B2 (en) 2005-08-02 2005-08-02 Surface mounting apparatus and surface mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224066A JP4610437B2 (en) 2005-08-02 2005-08-02 Surface mounting apparatus and surface mounting method

Publications (2)

Publication Number Publication Date
JP2007042785A JP2007042785A (en) 2007-02-15
JP4610437B2 true JP4610437B2 (en) 2011-01-12

Family

ID=37800507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224066A Expired - Fee Related JP4610437B2 (en) 2005-08-02 2005-08-02 Surface mounting apparatus and surface mounting method

Country Status (1)

Country Link
JP (1) JP4610437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001939A (en) * 2012-06-15 2014-01-09 Juki Corp Component checkup apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148674B2 (en) * 2012-08-08 2017-06-14 富士機械製造株式会社 Board work system
JP6587871B2 (en) * 2015-09-04 2019-10-09 ヤマハ発動機株式会社 Component mounting apparatus and component mounting system
JP6629617B2 (en) * 2016-02-04 2020-01-15 ヤマハ発動機株式会社 Component mounting machine, component mounting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060800A (en) * 1999-08-24 2001-03-06 Juki Corp Electronic parts-mounting method and device
JP2004125652A (en) * 2002-10-03 2004-04-22 Yamatake Corp Three-dimensional measuring instrument and three-dimensional measuring method
JP2004150929A (en) * 2002-10-30 2004-05-27 Yamatake Corp Three-dimensional measuring instrument and three-dimensional measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060800A (en) * 1999-08-24 2001-03-06 Juki Corp Electronic parts-mounting method and device
JP2004125652A (en) * 2002-10-03 2004-04-22 Yamatake Corp Three-dimensional measuring instrument and three-dimensional measuring method
JP2004150929A (en) * 2002-10-30 2004-05-27 Yamatake Corp Three-dimensional measuring instrument and three-dimensional measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001939A (en) * 2012-06-15 2014-01-09 Juki Corp Component checkup apparatus

Also Published As

Publication number Publication date
JP2007042785A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
KR100857580B1 (en) Visual inspection apparatus and carrier for visual inspection apparatus
US10107853B2 (en) Apparatus and method for inspecting PCB-mounted integrated circuits
TW201430356A (en) Electronic component operation unit, operation method and operation apparatus applied thereof
TW201810489A (en) Transfer system for flipping and multiple checking of electronic devices
JP4610437B2 (en) Surface mounting apparatus and surface mounting method
JP2018098333A (en) Electronic component transfer device
KR101275133B1 (en) Flip chip bonding device
KR102393237B1 (en) Conductive ball inspection and repair device
CN105845594A (en) Method of inspecting printed circuit board for semiconductor package
US7355386B2 (en) Method of automatically carrying IC-chips, on a planar array of vacuum nozzles, to a variable target in a chip tester
KR101120129B1 (en) Method of adjusting work position automatically by reference value and automatic apparatus for the same
JPWO2017126025A1 (en) Mounting apparatus and imaging processing method
JP4999502B2 (en) Component transfer device and surface mounter
JP2003060398A (en) Method and apparatus for mounting component
JP4119039B2 (en) Surface mount component mounting machine
KR20130117191A (en) Transfering device of processing unit
KR20030041733A (en) A Coplanarity Inspection System and a Method Thereof of Package
JP2000013097A (en) Part mounting system
JP4421281B2 (en) Component recognition method, component recognition device, surface mounter, component test device, and board inspection device
JP2008153458A (en) Electronic component transfer apparatus and surface mounting machine
JP2008041758A (en) Method and apparatus for inspecting transferred state of flux
US6315185B2 (en) Ball mount apparatus
TWI671839B (en) Electronic component conveying device and inspection device, positioning device and method, and component conveying device
JP2007225317A (en) Apparatus for three-dimensionally measuring component
JP2005167235A (en) Electronic component and packaging method for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees