JP4609599B2 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
JP4609599B2
JP4609599B2 JP2010101076A JP2010101076A JP4609599B2 JP 4609599 B2 JP4609599 B2 JP 4609599B2 JP 2010101076 A JP2010101076 A JP 2010101076A JP 2010101076 A JP2010101076 A JP 2010101076A JP 4609599 B2 JP4609599 B2 JP 4609599B2
Authority
JP
Japan
Prior art keywords
data
pulse
bits
cpu
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010101076A
Other languages
English (en)
Other versions
JP2010218567A (ja
Inventor
秋弘 村松
明彦 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2010101076A priority Critical patent/JP4609599B2/ja
Publication of JP2010218567A publication Critical patent/JP2010218567A/ja
Application granted granted Critical
Publication of JP4609599B2 publication Critical patent/JP4609599B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ファームウエア等を書き換える際に用いて好適な電子機器に関する。
アンプやDVDプレーヤなどのオーディオ装置には、プログラムに基づいて動作するCPUが組み込まれている。このプログラムのうちハードウエアとソフトウ エアの中間的位置づけにあるものを、一般にファームウエアと呼ぶ。このファームウエアをフラッシュメモリなどに記憶させておけば、後から機能の追加や不具 合の修正を行うことが可能になる。
特許文献1には、ファームウエアを書き換えるに際してアップグレードモードに切り替えてから、デジタルオーディオ信号用の入力端子やその他の端子からファームウエア書き換え用のデータを入力し、このデータをメモリの再生処理プログラム領域に適宜上書きすることによってアップグレードを行う装置が記載されている。
特開2002−149428号公報
特許文献1に記載される装置にあっては、ファームウエア書き換え用のデータは、オーディオ信号とはフォーマットが異なるので大きな雑音が再生されるおそれがあり、書き換え用のデータを処理している間は、雑音が再生されないように、モードを切り替える必要があった。
一方、RS232C等の端子を使ってオーディオ信号とは別系統で処理を行うという装置もあるが、処理速度が遅いという問題があり、また、高速化(同期シリアル化等)するには高価な専用の書き込み機器が必要になるという問題があった。
本発明は、上述した事情に鑑みてなされたものであり、高価な高速の電子回路を使うことなく、かつ、プログラム等の書き換え中に大きな雑音が発生しない電子機器を提供することを目的としている。
上述した問題を解決するため、この発明においては、装置各部を制御するCPUを有した電子機器において、前記CPUで使用されるファームウエアまたはデータの少なくともいずれか一方が記憶される記憶手段と、所定のフォーマットのデジタル信号が入力される入力端子と、前記入力端子から入力される前記デジタル信号に対して所定の処理を行う処理手段と、前記デジタル信号の1フレームを規定するクロック信号に応じてパルスを発生するパルス発生手段と、前記パルス発生手段が発生したパルスが入力され、入力されたパルスを遅延させて出力する遅延手段と、前記入力端子から入力される前記デジタル信号の1フレーム中の所定タイミング位置にあるデータを、前記遅延手段から出力されるパルスを契機に抽出して抽出データとして出力する抽出手段と、前記抽出データを解析し、この解析結果と前記抽出データに基づいて前記記憶手段内のファームウエアまたはデータの少なくともいずれか一方を書き換える書換手段とを具備し、前記CPUは少なくとも前記抽出手段として機能することを特徴とする。
別の態様としては、前記遅延手段は、前記1フレームの時間内において、遅延されたパルスを遅延させる処理を複数回行い、パルスの遅延が行われる毎に遅延されたパルスを出力し、前記抽出手段は、前記遅延手段から出力されるパルス毎に該パルスを契機に前記データを抽出して抽出データとして出力すること特徴とする。
処理手段が扱う所定のフォーマットのデジタル信号の1フレーム中の所定タイミングのデータを抽出し、抽出データを解析して書き換えを行うようにしているので、通常処理のフォーマットと同じフォーマットで書き換え用のプログラムや書き換えコマンドを供給することができる。
また、各フレームの所定のタイミングのデータを抽出するために、抽出のためのサンプリングレートは元のデジタル信号のサンプリングレートに比較して低速とすることができるから、抽出手段や処理手段の処理速度が遅くても充分に対応することができる。これは、抽出手段や処理手段に速度の遅いCPUを用いた場合に特に好適である。しかも、処理速度は、元のデジタル信号を分周する程度の処理と同様になるので、書き換え全体に要する時間が極端に遅くなることはなく、実用上充分なスピードを得ることができる。
本実施形態の構成を示すブロック図である。 同実施形態におけるI2Sバスに含まれる信号を示す波形図である。 同実施形態においてデジタルオーディオ信号からデータを抽出する場合のタイミングを示すタイ ミングチャートである。 同実施形態においては、データ抽出タイミングをハードウエアで抽出する場合の回路例を示すブロック図である。 同実施形態においてデジタルオーディオ信号のフォーマットに書き換え用のデータを埋め込む場合の処理方法を示す説明図である。 同実施形態において4ビット分周を行う場合のフレームの内容を示す対応表である。 同実施形態において8ビット分周を行う場合のフレームの内容を示す対応表である。 同実施形態において16ビット分周を行う場合のフレームの内容を示す対応表である。 同実施形態において1フレームが24ビットの場合の分周の一態様におけるフレームの内容を示す対応表である。 同実施形態において1フレームが24ビットの場合の分周の一態様におけるフレームの内容を示す対応表である。 上位ビットを使用しない場合の雑音レベルの減少状態を示す図表である。 1フレームにおいて、オーディオ信号と書き換え用のデータとを混在させる場合の各フレームの内容を示す対応表である。 書換指示コマンドの他の例を示す図表である。 書換指示コマンド認識の他の例を示す波形図である。 書換指示コマンド認識の他の例を示す波形図である。 読み取りタイミングの他の例を示すタイミングチャートである。
(実施形態の構成)
以下、本発明の実施の形態について説明する。図1は、本実施形態の構成を示すブロック図である。図において、1は入力端子であり、デジタルオーディオインターフェース規格の一つであるSPDIF(Sony/Philips Digital Interface Format)規格のデジタルオーディオ信号DASが入力される。本実施形態の場合は、CDプレーヤ30がコンパクトディスク35を再生処理して、SPDIFの規格に従ったデジタルオーディオ信号DASを入力端子1に供給する。
デジタルオーディオ信号DASはデジタルインターフェースレシーバ(以下、DIRと略称する)2によってI2Sバス(The Inter-IC Sound Bus)に適合した信号等に変換される。I2Sバスは、一般に2CH(ステレオ)の音声サンプリングデジタルデータの送受信に使用されている規格であり、このバスに含まれる信号には、図2に示すように、フレームを規定するワードクロックLRCLK(図2(イ))、各ビットのタイミングを示すビットクロックBCLK(図2(ロ))、転送されるデータの内容を示すデータ信号RDATA(図2(ハ))がある。ワードクロックLRCLKは、図2(イ)に示すように、Lレベルの期間がL−ch(左チャネル)を示し、Hレベルの期間がR−ch(右チャネル)を示す。なお、実際のI2S規格においては、図2(ニ)に示すように、データ信号RDATAはワードクロックLRCLKの立ち下がりから1ビットずれるように規定されているが、理解の簡単化のために、図2(ハ)に示すようにビットのずれがないものとして説明を行う。
また、I2Sバス規格においては、1フレームのデータ長は規定されておらず、任意であるが、本実施形態においては64ビットとしている。そして、本実施形態においては、片側チャネル32ビットのうちデータの内容を示す有効ビットは16ビットであり、その他のビットは制御用のデータや空き(予備)ビットとなっているが、説明の簡単化のために、以下においては、片側チャネル16ビットし、その全ビットが有効ビットであるとする(図3参照)。
I2Sバスの各信号はデジタルシグナルプロセッサ(以下、DSPという)3に供給され、ここでビットクロックBCLKの立ち上がりタイミングにおいてデータ信号RDATAが読み取られる。読み取られたデータ信号RDATAは、各チャネルについてデコード処理や音場付与処理などが行われた後、DAC4によってアナログ信号に変換される。DAC4から出力される左右のチャネルのアナログ信号はアンプ5によって増幅され、左右のスピーカ6a,6bから放音される。
次に、10は装置各部を制御するCPUであり、メモリ11およびフラッシュメモリ12に記憶されたプログラムに従って動作する。この実施形態の場合、フラッシュメモリ12にはファームウエア、CPU10が参照するデータ、OS(オペレーティングシステム)、アプリケーションプログラムなどが記憶されており、メモリ11はCPU10のワークエリアなどに使用される。また、CPU10には、DIR2からワードクロックLRCLKとデータ信号RDATAが供給されるようになっている。
ここで、CPU10はデータ信号RDATAに対して次のような読み取りを行うようになっている。すなわち、図3に示すように、ワードクロックLRCLKの立ち下がり、および立ち上がりから、時間τ1遅延したタイミングでデータ信号RDATAを読み取り、その後、時間τ2遅延したタイミングでデータ信号RDATAを3回読み取る。この例の場合、時間τ1は1フレームの約1/8の時間に設定され、時間τ2は1フレームの1/4に設定されている。この結果、図3に示すように、CPU10はデータ信号RDATAをL−ch、R−chについて4回ずつ、すなわち、1フレームで8回読み取ることになる。すなわち、本来1フレームあたり32ビットのレートで転送されるデータを、4分周した速さで読み取る。言い換えれば、4ビットずつ区切られた各区間に対して1回ずつ読み取りを行うようになっている。なお、図3においては、L−chの場合を示したが、R−chの場合も同様の読み取りが行われる。
上記読み取り処理における時間τ1,τ2は、CPU10のソフトウエア処理によって作っても良く、また、図4に示すようにハードウエアで遅延時間を設定してもよい。図4に示す20はワードクロックLRCLKの立ち下がり、もしくは立ち上がりにおいてパルスを発生するパルス発生器であり、21は遅延時間がτ1に設定されたディレイ、22〜24はそれぞれ遅延時間がτ2に設定されたディレイである。図4に示す回路からは、ワードクロックLRCLKの立ち下がり(または立ち上がり)から時間τ1後にパルスが出力され、その後は時間τ2が経過する毎に3回にわたってパルスが出力される。これらのパルスをデータ信号RDATAの読み取りパルスとして用いる。
ここで、CPU10の読み取りタイミング(サンプリングポイント)について他の例を説明する。本実施形態のように有効ビット長(図3の場合は、16ビット)を4つに区切った場合は、各区間の中において設定されればどのようなタイミングでもよい。例えば、図3に示すタイミングT1のようにビットとビットの間のタイミングでもよい。これは各区間においては、「0」データの連続、あるいは「1」データの連続が配置されるため、ビットの区切りの影響を受けないからであるが、データの配置についての詳細は後述する。
また、図4に示す回路のように各区間における読み取りタイミングが、正確な4分周に設定されなくてもよい。例えば、図3に示すタイミングT1〜T4のようにその間隔がバラバラであってもよい。したがって、読み取りタイミングの作り方としては、例えば、ビットクロックBCLKを使って、各区間内に入るタイミングを作っても良い。すなわち、フレームの開始から2ビットクロックBCLK目で読み取り、その後は4ビットクロックBCLKの間隔で読み取るようにしてもよいし、間隔はバラバラでも読み取りタイミングが各区間の中に設定されるようにビットクロックBCLKを用いて読み取りタイミングを設定してもよい。勿論、ビットクロックBCLKを用いずに、各区間内に読み取りタイミングを設定するように構成することもできる。
(実施形態の動作)
次に、上記構成によるこの実施形態の動作について説明する。まず、音楽データが収録されたコンパクトディスク35を再生する場合には、ユーザはCDプレーヤにコンパクトディスク35をセットして再生指示を与える。この結果、CDプレーヤ30からはデジタルオーディオ信号が出力され、このデジタルオーディオ信号が端子1を介してDIR2に供給され、DIR2においてI2Sバスの信号に変換される。そして、I2Sバスのデータ信号RDATAは、DSP3で各種処理が行われた後、DAC4でアナログ信号に変換され、アンプ5を介してスピーカ6a,6bから出力される。
一方、CPU10は図3に示すタイミングでデータ信号RDATAの読み取りを行うが、このようにして読み取られ抽出されたデータが、所定のコマンドでない場合は、CPU10はデータ信号RDATAから抽出したデータに対する処理は一切行わず、プログラムに従ってDSP3やその他の装置各部の制御を行う。
次に、フラッシュメモリ12に記憶されているファームウエアを書き換える処理について説明する。まず、ユーザは、新しいファームウエアが記録されているコンパクトディスク35をCDプレーヤ30にセットする。この場合、ファームウエアは、通常のコンパクトディスクの規格に従って記録され、そのサンプリングレートもコンパクトディスクの規格に従っている。コンパクトディスク35から読み取られたファームウエアのデータは、音楽データの場合と同様にして、DIR2によってI2Sバスに出力される。
ここで、コンパクトディスク35に記録されるデータは、1フレームを4ビットずつ8区間に分けた場合に、各区間については同じ値になるように設定されている。例えば、転送したい元のデータが2進表示で(1001)の場合は、図5に示すように、データ信号DAの最初の4ビットは(1111)となり、以下同様にして(0000)、(0000)、(1111)となる。
図6に示す表1は本実施形態におけるL−ch(またはR−ch)の16ビットのデータが取り得る値を示している。この表1においては、各行が1回に転送される16ビットデータを示している。表1から分かるように、4ビットずつに区切られた各区間内においては、1もしくは0の同じ値が書き込まれている。
図6の右側に示す表2は表1に対応するものであり、表2の第1列はL−ch(またはR−ch)の16ビットデータの値を16進表示で示している。表2の第2列は10進表示を示し、第3列は最上位ビットを符号ビットしたときの符号付きの10進表示を示し、第4列はCPU10が読み取るデータを示している。ここで、第3列の符号付きの10進表示は、デジタルオーディオデータの符号付きの振幅に対応している。また、第4列は、言い換えれば、16ビットデータに埋め込まれたデータを示していることになる。
以上のように、CPU10は連続する4ビットの区間内の適宜なタイミングにおいて1ビットずつデータを抽出することにより、L−chの16ビットから4ビットのデータ(0000)〜(1111)を認識する。したがって、L−ch、R−chからなる1フレームの32ビットのデータからは、8ビットのデータを抽出して認識することになる。そして、このようにして抽出したデータを解析することにより、コマンドとして認識したり、書き換え用のファームウエアのデータとして認識したりする。
ここで、ファームウエアの書き換え処理の一例を説明する。本実施形態においては、例えば、図13に示すようなフォーマットで一連の書き換えを指示する。この図に示す例においては、まず、(1)「0x00」を10サンプル以上続ける。(2)その後に「0x55」をスタート識別子として配置し、(3)続けて英数文字を示す6バイトのデータを配置する。各1バイトの文字列のデータは、例えば「S」、「T」、「A」、「R」、「T」、「!」という文字列にする。次に、(4)送信データ数を2バイトで示すデータ、(5)予め決めた2バイトのコマンドを配置し、その後に(6)書き換え用のデータを続ける。最後に、(7)2バイトのチェックサムを付ける。
以上のようなフォーマットによれば、(1)〜(3)をデータとして羅列すると、00、00、00、00、00、00、00、00、00、00、55、「S」、「T」、「A」、「R」、「T」、「!」となる。00というデータは曲の初めと終わりに発生し得るが、55、「S」、「T」、「A」、「R」、「T」、「!」という56ビットのデータに完全に一致するデータが現れるのは、1ビットに付き1/2の確率であるから、256分の一の確率となり、約1/72000兆でしか発生しない。すなわち、書き換えコマンドを誤認識することはまずあり得ない。
また、(4)〜(7)においては、受信データのチェックサムの確認も行えるから、これも含めて全てが一致する確率は、まずあり得ない。
以上のようにして、書き換えが指示されると、書き換え用のデータ(6)がフラッシュメモリ12に対して書き換えられる。なお、ファームウエアの書き換え時には、書換用のソフトウエアがフラッシュメモリ12からメモリ11に移されて実行される。
次に、本実施形態においては発生するノイズについて考察する。上述したファームウエアの書き換え処理の最中においても、DSP3にはデータ信号RDATAが供給されるから、DAC4,アンプ5,スピーカ6a,6bによる発音処理が並行して行われる。この処理の対象になるのは、上述のようにファームウエア書換データであって音楽データではないから、発音される音はノイズとなる。しかしながら、本実施形態においては発生されるノイズは以下のように小さいものである。
図6に示すように、符号付き10進数(オーディオ信号の振幅に対応)の最大値と最小値との差は、「8191」であり、16進表示をすれば「1FFF」となる。この差を示すのに必要なビット数は13ビットとなる。一方、L−ch、またはR−chのデータはそれぞれ16ビットで構成されているから、ノイズとなる成分の振幅は、全ビット数(16)に較べ3ビット少ないことが分かる。
そして、音楽データの最大振幅に対するノイズレベル(以下、単にノイズレベルという)は、1区間のビット数(以下、分周ビット数という)をxとすると、
20*log(0.5(x-1))dB
になるから、本実施形態の場合は、
20*log(0.53)dB
となり、すなわち、−18dBとなる。このように、比較的小さな音であり、ファームウエアを書き換えている最中に、急に大きな信号がスピーカに供給されるという心配がない。また、ユーザが書き換えデータの記録されたコンパクトディスク35を、間違って他の再生機器で再生させた場合も、上記と同様にスピーカに大きな信号が供給される心配がない。
上述した実施形態においては、データ信号RDATAを分周して読み取っているので、CPU10の動作が遅くても、充分に読み取り可能である。一般にDSPに比してCPUの動作クロックは遅いが、そのような場合であっても本実施形態は適用可能である。また、逆に動作クロックの早いCPU、DSPでは、勿論より容易に実施することができる。
(その他の実施態様)
本発明は種々の態様で実施することができる。以下にその一例を示す。
1.分周ビット数の変更
上述した実施形態においては、分周ビット数は4であったが、1区間を8ビットとする8ビット分周としてもよく、また、L−ch、R−chの16ビットデータを全て同じ値にする16ビット分周を行っても良い。
図7に示す表3、表4は、8ビット分周の場合を示しており、各々図6に示す表1、表2に対応している。表4に示すように、符号付き10進数(オーディオ信号の振幅に対応)の最大値と最小値との差は、「511」であり、16進表示をすれば「1FF」となる。この差を示すのに必要なビット数は9ビットとなる。一方、L−ch、またはR−chのデータはそれぞれ16ビットで構成されているから、ノイズとなる成分の振幅は、オーディオ信号に較べ7ビット少ない。したがって、この例の場合のノイズレベルは、
20*log(0.57)dB
となり、すなわち、−42dBとなる。このように、非常に小さな音である。
次に、図8に示す表5、表6は、16ビット分周の場合を示しており、各々図6に示す表1、表2に対応している。表6に示すように、符号付き10進数の最大値と最小値との差 は、わずか「1」であり、この差を示すのに必要なビット数は1ビットで済む。この例の場合のノイズレベルは、
20*log(0.515)dB
となり、すなわち、−90dBとなる。このように、ほとんど聞こえないほどに小さな音である。
また、図7、図8に示す例においては、上述した実施形態に較べて分周の効果が大きいので、さらに、速度の遅い CPUを用いる場合に好適である。また、本発明の適用は、1フレームの片側チャネルのビット数は実施形態で示したものに限らない。16ビット、24ビット、32ビット、64ビットなど種々のビット数に適用できる。また、片側チャネルの全ビット数における有効ビット長も任意のビットに適用可能であり、すなわち、片側チャネルの全ビットが有効ビットであってもよいし、任意のビット数が有効ビットであってもよい。
次に、上位ビットのビット数を増やすと、ノイズレベルが下がる効果があるので、この点について説明する。ここでは、片側チャネルが24ビットの場合を例にとって説明する。
図9に示す表7、表8は、チャネルのビット数が24ビットで分周ビット数が4ビットの場合を示しており、各々図6に示す表1、表2に対応している。表8に示すように、符号付き10進数の最大値と最小値との差は、「2097151」であり、この差を示すのに必要なビット数は21ビットとなる。この例の場合のノイズレベルは、−18dBである。
一方、図10に示す表9、表10は、図9の表7、表8に対応するものであるが、片側チャネルの24ビットから4ビット分だけ抽出して読み取るようにしている。そして、データ信号RDATAの下位側は、4ビットの区間で区切り、上位側は12ビットの区間としている。このようにすると、表10に示すように、符号付き10進数の最大値と最小値との差は、わずか「8191」となり、この差を示すのに必要なビット数は13ビットで済む。この例の場合のノイズレベルは、−66dBとなり、図9に示す場合に比較して著しく低減されることが分かる。
また、ノイズ低減をさせるには、データ信号RDATAの上位側のビットを使用しない(初めから0にしておく)という手法も効果的である。上位より1ビット使わなくすると、音圧は元の最大振幅に対して1/2ずつ小さくなってゆくが、これはノイズに対しても同じだからである。図11に上位から1ビットずつ不使用にした場合のノイズの音圧レベルの減少度合い示す。
2.音楽同時再生
上述した実施形態およびその他の態様においては、ファームウエアもしくは参照用データ書換用のCDを用いて書き換えを行ったが、音楽等(音楽や案内音声など)を再生しながら、書き換えを行うこともできる。例えば、片側のチャネルが16ビットの場合に、下位8ビットを書き換え用のデータとして用い、上位8ビットは音楽再生用として用いる。楽音を示す16ビットのデータのうち、振幅に大きな影響を与えるのは上位側であるから、下位ビットをデータ書き換え用として用いても、若干の音質劣化はあるものの、人間の耳には音質劣化が感じないようにすることもできる。書き換え用に用いる下位ビットのビット数によるが、適宜なビット数であれば問題はない。この場合、再生される音楽が、なるべく最大振幅となるような楽曲であれば、その効果は大きい。
この場合のノイズについて考察すると、図12の表11に示すように、下位8ビットがノイズ成分となる。ここで、図12に示す表11、表12は、図6の表1、表2に対応するものである。この場合の符号付き10進数の最大値と最小値との差は、「255」となり、この差を示すのに必要なビット数は8ビットとなる。したがって、8ビット分のノイズが出ることになり、ファームウエア書き換えに使用した8ビットと同じで、ノイズ低減効果はない。なお、ノイズレベルは−48dBである。
3.書換指示コマンドの態様
上述した実施形態における書換指示の方法は一例であり、他にも種々の方法がある。例えば、図14に示すコマンドまたはコマンド認識パターンは、音楽データではあり得ない、最大値と最小値が 交互に繰り返されるパターンを書換開始のコマンドとする例である。図15は、最大値が一定時間以上継続するパターンを書換開始のコマンドとする例である。また、ミュート(0データ)を所定のパターンで配置し、ある決まった間隔のミュートパターンが認識できたら書換認識パターンと判定してもよい。
4.その他
(イ)上述した実施形態においては、オーディオアンプについて本発明を適用したが、これに限らず、CDプレーヤ、DVDプレーヤ、MDプレーヤ、HDD(ハードディスク)プレーヤ、メモリプレーヤなど種々のオーディオ機器(電子機器)、あるいはオーディオ機器以外でもCPUを搭載する種々の電子機器に用いることができる。勿論、パーソナルコンピュータにも本発明を適用することができる。
(ロ)上述した実施形態は、SPDIF規格のデジタルオーディオ信号に対する処理を行うものを対象にしたが、本発明の適用においては、これ以外のフォーマットのデジタル信号であっても構わない。要するに、所定のフォーマットの1フレーム内の所定タイミング位置にあるデータを抽出して書き換え処理を行うようにすればよい。また、ワードクロックLRCLKの周波数が違っても良い。例えば、44.1kHzや48kHzでもよい。
(ハ)また、CDやDVDなどの記録媒体から読み取ったデータに限らず、例えば、所定のケーブルやインターネットを介して供給されるデータでも本発明は適用可能である。
(ニ)図6〜図8に示すように、多様な分周形態が可能であるが、例えば、CDに複数の分周形態のデータを記録しておき、CPUの処理速度に応じたデータを選択して書き換え処理を行うように構成してもよい。この場合においては、書換指示コマンドとして、分周態様を示すデータを含ませておけば、CPUは自己の速度に合致するコマンドを検出したときに書き換えを開始することができる。デジタル信号がインターネットなどを介して供給される場合も上記と同様である。
(ホ)上述した実施形態においては、DSPとCPUの二つが設けられ、DSPがデジタルオーディオ信号(所定フォーマットのデジタル信号)の処理を行う処理手段として機能し、CPUが装置各部を制御するとともに、デジタルオーディオ信号のフレームから所定タイミング位置にあるデータを抽出する抽出手段と、抽出データを解析して書き換えを行う書換手段として機能したが、CPUが処理手段の機能を併せ持っても良く(DSPを別途設けない態様でもよく)、また、抽出手段と書換手段とを別の回路等によって実現してもよい。
(ヘ)DIR2とCPU10との接続は、図1に破線で示すようにスイッチSWを介して接続してもよい。この場合には、ファームウエアの書き換えを行うときだけ、スイッチSWをオンにする。スイッチSWのオンについては、操作者がスイッチ等を操作したときにオンとしてもよく、プログラムに基づくソフトウエア処理によりオンとしてもよい。
(ト)上述した各実施の形態においては、1フレームmビットで構成される所定フォーマットのデジタル信号について、ビットクロックBCLKに基づいてmビットのフォーマットのまま読み取ることもでき、また、n分周された信号として読み取ることもできる。したがって、デジタル信号をmビットのフォーマットのまま読み取って処理することと、n分周された信号としてデータを抽出してプログラムの書き換えを行うことを混在させることができる。混在の態様によっては、時分割処理も可能であり、また、同時処理も可能である。この場合、DSPによってビットクロックBCLKに基づいてmビットのフォーマットのまま読取を行い、かつ、読み取ったデータのうち所定のビット位置にあるものだけを抽出すれば、mビットの読み取りと分周した読み取りの双方の処理をDSPだけで行うことができる。
(チ)図1に示す実施形態においては、CPU10が書き換えデータの抽出を行い、また、書き換え制御もCPU10が行ったが、CPU10が抽出データを解析することにより、DSP3に対して書き換えコマンドを送り、書き換え処理についてはDSP3が行うように構成してもよい。さらに、CPU10が抽出した抽出データをDSP3に全て転送するようにし、抽出データの解析とファームウエア(あるいはデータ)の書き換えをDSP3で行うようにしてもよい。この場合においては、図1に破線で示すように、DSP3に接続されたフラッシュメモリ12に対して、DSP3が書き換え 処理を行う。また、図1に破線で示すように、CPU10が抽出した抽出データをそのまま出力するように構成し、出力された抽出データを他のCPU40が解析し、他のCPU40においてフラッシュメモリ41などに記憶されたファームウエアやデータを書き換えるように構成してもよい。
(リ)図1に示すCPU10に代えて、フラッシュメモリやRAMなどが内蔵されたCPUチップを用い、フラッシュメモリやRAM内のファームウエアやデータを書き換えるように構成してもよい。
(ヌ)図1に示す実施形態においては、I2S規格を用いたが、本発明においてはこの規格に限らず、その他の種々のフォーマットを適用することができる。
(ル)CPUの読み取りタイミングについては、実施形態で示した態様には限らない。例えば、図16(イ)に示すように、片側チャネルを4区間に区切った場合(より正確に表現すれば、片側チャネルの有効ビットを4区間に区切った場合)、各区間内で1回の読み取りタイミングが設定されればよいが、図16(ロ)に示すように4区間における区間3,4(下位側2ビットに相当)についてだけ読み取りタイミングを設定してもよい。この場合の区間3,4は「0」または「1」のデータの連続が書き込まれるが、区間1,2は任意のデータを書き込むことができる。また、図16(ハ)に示すように、各区間について読み取りタイミングを設定しても、区間1,2で抽出したデータは採用せずに無視し、区間3,4において読み取ったデータだけを抽出データとして採用してもよい。この場合においては、図16(ロ)の場合と同様に区間1,2は任意のデータを書き込むことができる。
ここで、読み取りタイミングについて総括的にまとめると以下のとおりである。まず、読み取りタイミングは、1フレーム内の有効データ長をN個の区間に分けた場合の各区間内に設定されるサンプリングポイントである(図16(イ)の場合)。あるいは、図16(ロ)のように、読み取りタイミングは、1フレーム内の有効データ長をN個の区間に分けた場合のM個(MはN未満)の区間内に設定されるサンプリングポイントである。また、図16(ハ)に示すように、読み取った抽出データのうち、特定のタイミングにあるものを無視してコマンドなどの解析や書き換え処理を行ってもよい。
1…入力端子、2…DIR、3…DSP(処理手段)、10…CPU(抽出手段、書換手段)、11…メモリ、12…フラッシュメモリ(記憶手段、メモリ)、35…コンパクトディスク(記録媒体)。

Claims (2)

  1. 装置各部を制御するCPUを有した電子機器において、
    前記CPUで使用されるファームウエアまたはデータの少なくともいずれか一方が記憶される記憶手段と、
    所定のフォーマットのデジタル信号が入力される入力端子と、
    前記入力端子から入力される前記デジタル信号に対して所定の処理を行う処理手段と、
    前記デジタル信号の1フレームを規定するクロック信号に応じてパルスを発生するパルス発生手段と、
    前記パルス発生手段が発生したパルスが入力され、入力されたパルスを遅延させて出力する遅延手段と、
    前記入力端子から入力される前記デジタル信号の1フレーム中の所定タイミング位置にあるデータを、前記遅延手段から出力されるパルスを契機に抽出して抽出データとして出力する抽出手段と、
    前記抽出データを解析し、この解析結果と前記抽出データに基づいて前記記憶手段内のファームウエアまたはデータの少なくともいずれか一方を書き換える書換手段と
    を具備し、前記CPUは少なくとも前記抽出手段として機能すること
    を特徴とする電子機器。
  2. 前記遅延手段は、前記1フレームの時間内において、遅延されたパルスを遅延させる処理を複数回行い、パルスの遅延が行われる毎に遅延されたパルスを出力し、
    前記抽出手段は、前記遅延手段から出力されるパルス毎に該パルスを契機に前記データを抽出して抽出データとして出力すること
    を特徴とする請求項1に記載の電子機器。
JP2010101076A 2010-04-26 2010-04-26 電子機器 Expired - Fee Related JP4609599B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101076A JP4609599B2 (ja) 2010-04-26 2010-04-26 電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101076A JP4609599B2 (ja) 2010-04-26 2010-04-26 電子機器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004268248A Division JP4529605B2 (ja) 2004-09-15 2004-09-15 電子機器

Publications (2)

Publication Number Publication Date
JP2010218567A JP2010218567A (ja) 2010-09-30
JP4609599B2 true JP4609599B2 (ja) 2011-01-12

Family

ID=42977265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101076A Expired - Fee Related JP4609599B2 (ja) 2010-04-26 2010-04-26 電子機器

Country Status (1)

Country Link
JP (1) JP4609599B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149428A (ja) * 2000-11-13 2002-05-24 Yamaha Corp オーディオ信号処理装置およびオーディオ信号処理装置の内部データ書き換え方法
JP2003091428A (ja) * 2001-09-14 2003-03-28 Accuphase Laboratory Inc プログラム更新機能を備えた電子機器、及び同電子機器のプログラム更新方式

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149428A (ja) * 2000-11-13 2002-05-24 Yamaha Corp オーディオ信号処理装置およびオーディオ信号処理装置の内部データ書き換え方法
JP2003091428A (ja) * 2001-09-14 2003-03-28 Accuphase Laboratory Inc プログラム更新機能を備えた電子機器、及び同電子機器のプログラム更新方式

Also Published As

Publication number Publication date
JP2010218567A (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
JP4839605B2 (ja) 電子機器
JP2003115169A (ja) ディジタルオーディオ信号再生装置
JP4529605B2 (ja) 電子機器
JP4655164B2 (ja) 電子機器
JP4609599B2 (ja) 電子機器
JP4697346B2 (ja) 再生装置
US8121713B2 (en) Electronic apparatus, method for generating digital signal, digital signal recording medium, and signal processing apparatus
JP2006085339A (ja) デジタル信号生成方法、デジタル信号記録媒体
JP2007257771A (ja) 再生装置、再生方法、プログラム及び記録媒体
KR100447371B1 (ko) 녹음 비교 기능을 갖는 어학 학습 장치 및 이를 이용한어학학습 방법
JP2009223929A (ja) デジタルデータ再生装置
TWI392983B (zh) 利用音調的自動控制方法及其裝置
EP3092643B1 (en) Selective sound storage device
JP6089651B2 (ja) 音処理装置、音処理装置の制御方法、プログラム
US8095696B2 (en) Control method for rewriting firmware on an electronic device
JP2009251044A (ja) 電子楽器および音量制御方法
EP2149881A1 (en) Signal processing device
JP2009266310A (ja) 記録装置及び記録方法
KR20140131735A (ko) 미니 오디오 기기에서의 고품질 음원을 재생하는 방법
JP2014127925A (ja) デジタルオーディオ信号処理装置、及び、ミュート制御方法
KR20140131734A (ko) Pc에서의 고품질 음원 재생 방법
JPH10307591A (ja) 音響装置
JP2009266287A (ja) データ読み出し装置及びこれを用いた音楽再生装置、データ読み出し方法、並びに、プログラム
KR20040009801A (ko) 기능 추가 및 업그레이드가 용이한 디스크 재생장치
JP2012043481A (ja) オーディオ記憶媒体、オーディオ装置、および、オーディオ装置のプログラム更新方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees