JP4607150B2 - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition Download PDF

Info

Publication number
JP4607150B2
JP4607150B2 JP2007170334A JP2007170334A JP4607150B2 JP 4607150 B2 JP4607150 B2 JP 4607150B2 JP 2007170334 A JP2007170334 A JP 2007170334A JP 2007170334 A JP2007170334 A JP 2007170334A JP 4607150 B2 JP4607150 B2 JP 4607150B2
Authority
JP
Japan
Prior art keywords
cement
cement admixture
parts
reaction product
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007170334A
Other languages
Japanese (ja)
Other versions
JP2009007202A (en
Inventor
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007170334A priority Critical patent/JP4607150B2/en
Publication of JP2009007202A publication Critical patent/JP2009007202A/en
Application granted granted Critical
Publication of JP4607150B2 publication Critical patent/JP4607150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、主に、土木・建築業界等において使用されるセメント混和材及びセメント組成物に関する。   The present invention mainly relates to a cement admixture and a cement composition used in the civil engineering and construction industries.

近年、土木・建築分野において、コンクリート構造物の耐久性向上に対する要望が高まっている。
コンクリート構造物の劣化要因の1つとして、ひび割れがある。ひび割れはコンクリートの信頼性を損なうものである。
ひび割れの発生原因は多様であり、乾燥収縮や自己収縮によるひび割れや、マッシブなコンクリートや富配合のコンクリートに特有の温度ひび割れなどが挙げられる。
マッシブなコンクリートや富配合のコンクリートに特有の温度ひび割れは、水和発熱に起因する。
In recent years, in the field of civil engineering and architecture, there has been an increasing demand for improving the durability of concrete structures.
One of the deterioration factors of concrete structures is cracking. Cracks impair the reliability of concrete.
There are various causes of cracks, such as cracks caused by drying shrinkage or self-shrinkage, and temperature cracks peculiar to massive concrete or rich concrete.
The temperature cracks typical of massive concrete and rich concrete are due to hydration exotherm.

ひび割れを抑制する上で重要な技術のひとつとして、膨張材が注目されている。
これは、膨張材の使用により、ひび割れを低減でき、コンクリート構造物の高寿命化に一定の役割を果たすためである。
As one of the important technologies for suppressing cracks, an expanded material has been attracting attention.
This is because cracks can be reduced by using the expandable material and play a certain role in extending the life of the concrete structure.

膨張材としては、古くより数多くの提案があり、最近になってからも新たな提案がなされている(特許文献1〜特許文献4参照)。
しかしながら、膨張材のみの使用でひび割れを完全に制御できるものではなかった。
There have been many proposals for the expansion material from the old days, and new proposals have been made even recently (see Patent Documents 1 to 4).
However, cracks could not be completely controlled by using only the expansion material.

マッシブなコンクリート、いわゆる、マスコンの温度ひび割れを抑制する技術としては、水和熱抑制剤を適用する方法が提案されている(特許文献5〜特許文献8参照)。
しかしながら、いまだに充分な性能を実現できていないのが実状であり、常温から高温領域にわたり幅広い温度環境下で温度ひび割れを効果的に抑制できるセメント混和材の開発が強く望まれている。
また、土間コンクリートやスラブコンクリートのように薄い厚みのコンクリートにおいても、また、マッシブなコンクリートにおいても、効果的にひび割れを抑制できるセメント混和材の開発が強く望まれている。
As a technique for suppressing thermal cracking of massive concrete, so-called mascon, a method of applying a hydration heat inhibitor has been proposed (see Patent Documents 5 to 8).
However, in reality, sufficient performance has not yet been realized, and there is a strong demand for the development of a cement admixture that can effectively suppress temperature cracking in a wide temperature environment from room temperature to high temperature.
In addition, there is a strong demand for the development of cement admixtures that can effectively suppress cracks in thin concrete, such as soil concrete and slab concrete, and also in massive concrete.

一方、フミン酸やニトロフミン酸は、根の活性化と地力の維持・向上を目的として、土壌改良剤等農業分野で広範に利用されている。
ニトロフミン酸は、例えば、亜炭、草炭等の腐食性物質を含有する若年炭の粉砕物と硝酸を反応させて得られるものである。
土壌改良剤としては、このニトロフミン酸や、これに、ドロマイト、マグネサイト、マグネシア、蛇紋岩、ケイ酸マグネシウム、及び水酸化マグネシウムなどの一種又は二種以上を加え反応させたニトロフミン酸マグネシウムが提案されている(特許文献9参照)。
しかしながら、これをセメント混和材として利用した際に、どのような効果を生むかについては全く知られていない。
On the other hand, humic acid and nitrohumic acid are widely used in the agricultural field such as soil conditioners for the purpose of root activation and maintenance / improvement of geopower.
Nitrohumic acid is obtained, for example, by reacting a pulverized product of young charcoal containing a corrosive substance such as lignite and grass charcoal with nitric acid.
As a soil conditioner, this nitrohumic acid, or magnesium nitrohumate that is reacted with one or more of dolomite, magnesite, magnesia, serpentinite, magnesium silicate, magnesium hydroxide and the like are proposed. (See Patent Document 9).
However, what effect is produced when this is used as a cement admixture is not known at all.

このニトロフミン酸やニトロフミン酸マグネシウムはフミン酸を主成分とするが、単に、フミン酸やフミン酸塩をセメントに混和したのでは、本発明の効果は得られない。   The nitrohumic acid and magnesium nitrohumate are mainly composed of humic acid, but the effect of the present invention cannot be obtained simply by mixing humic acid or humic acid salt with cement.

特公昭42−021840号公報Japanese Patent Publication No.42-021840 特公昭53−031170号公報Japanese Examined Patent Publication No. 53-031170 特開平07−232944号公報Japanese Patent Application Laid-Open No. 07-232944 特開2001−064054号公報JP 2001-064054 A 特開平06−305799号公報Japanese Patent Laid-Open No. 06-305799 特開2002−137951号公報JP 2002-137951 A 特開2002−241167号公報JP 2002-241167 A 特開2003−034564号公報JP 2003-034564 A 特公昭40−014122号公報Japanese Patent Publication No. 40-014122

本発明は、土木用途や建築用途において使用されるセメント混和材及びセメント組成物を提供する。   The present invention provides a cement admixture and a cement composition used in civil engineering and building applications.

本発明は、亜炭と硝酸から生成したフミン酸、軽質マグネシア、及び珪酸質物質から得られる反応生成物と、膨張物質とを含有してなり、反応生成物の化学成分が、フミン酸45〜58%、く溶性MgO2〜13%、SiO 2 4〜12%、Fe 2 O 3 2〜9%、Al 2 O 3 2〜8%、及び水分0〜20%であり、膨張物質が、遊離石灰と、水硬性化合物及び/又は無水セッコウとを含有し、水硬性化合物がアウイン、カルシウムシリケート、カルシウムアルミノフェライト、及びカルシウムフェライトからなる群より選ばれる一種又は二種以上であり、セメント混和材100部中、反応生成物1〜50部、膨張物質50〜99部であるセメント混和材であり、珪酸質物質が砂岩である該セメント混和材であり、反応生成物の粒度が、600μm以下である該セメント混和材であり、セメントと、該セメント混和材を含有してなり、セメント組成物100部中、セメント混和材が1〜12部であるセメント組成物である。 The present invention, humic acid produced from lignite and nitric acid, light magnesia, and a reaction product obtained from siliceous material, Ri Na contain an expansion agent, the chemical components of the reaction product, 45 humic acid 58%, Ku-soluble MgO2~13%, SiO 2 4~12%, Fe 2 O 3 2~9%, Al 2 O 3 2~8%, and 0 to 20% moisture, the expansion material, free lime And a hydraulic compound and / or anhydrous gypsum, and the hydraulic compound is one or more selected from the group consisting of Auin, calcium silicate, calcium aluminoferrite, and calcium ferrite, and 100 parts of cement admixture Among them, a cement admixture which is 1 to 50 parts of a reaction product and 50 to 99 parts of an expanded substance, and the cement admixture whose siliceous substance is sandstone, and the particle size of the reaction product is 600 μm or less a cement admixture, cement and Ri Na contain the cement admixture, in 100 parts of cement composition, cement admixture is a cement composition is 1-12 parts.

本発明のセメント混和材を使用することにより、優れたひび割れ抑制効果を付与でき、しかも、中期から長期の強度発現性が良好で、土間コンクリートやスラブコンクリートなどの厚さの薄いコンクリートにおいても、また、マッシブなコンクリートやプレストレストコンクリートに温度ひび割れが顕在化するようなコンクリートにおいても著しくひび割れを低減できるセメント組成物が得られる。   By using the cement admixture of the present invention, an excellent crack suppression effect can be imparted, and the medium to long-term strength development is good, even in thin concrete such as soil concrete and slab concrete. Further, a cement composition capable of remarkably reducing cracks can be obtained even in concrete in which temperature cracks are manifested in massive concrete or prestressed concrete.

本発明における部や%は特に規定しない限り質量基準で示す。
また、本発明におけるコンクリートとは、セメントペースト、セメントモルタル、及びコンクリートを総称するものである。
Unless otherwise specified, parts and% in the present invention are shown on a mass basis.
The concrete in the present invention is a general term for cement paste, cement mortar, and concrete.

本発明では、亜炭と硝酸から生成したフミン酸、軽質マグネシア、及び珪酸質物質から得られる反応生成物と、膨張物質とを含有してなるセメント混和材を使用するものである。   In the present invention, a cement admixture containing a reaction product obtained from humic acid generated from lignite and nitric acid, light magnesia, and a siliceous material, and an expansion material is used.

本発明は、亜炭を使用するが、その他、硝酸との反応によりフミン酸が得られる草炭、褐炭、及び泥炭等の若年炭も使用可能である。
また、硝酸としては、通常、濃度20〜50%のものを使用する。
軽質マグネシアは生成したフミン酸を中和するもので、本発明では、その他、ドロマイト、マグネサイト、及び水酸化マグネシウムなども使用可能である。
珪酸質物質としては、珪石や砂岩等が挙げられるが、通常、砂岩を使用する。
Although the present invention uses lignite, young coals such as grass coal, lignite, and peat from which humic acid can be obtained by reaction with nitric acid can also be used.
Further, as nitric acid, one having a concentration of 20 to 50% is usually used.
Light magnesia neutralizes the produced humic acid. In the present invention, dolomite, magnesite, magnesium hydroxide, and the like can also be used.
Examples of siliceous substances include silica and sandstone, but sandstone is usually used.

まず、亜炭を硝酸で酸化分解してフミン酸を生成し、それに、軽質マグネシアと珪酸質物質を加えて中和して中和生成物を製造する。
亜炭や硝酸の使用割合は特に限定されるものではないが、通常、乾物換算の亜炭100部に対して、無水換算の硝酸40〜70部が好ましい。
軽質マグネシアと珪酸質物質の使用割合は特に限定されるものではないが、珪酸質物質として砂岩を使用する場合、通常、乾物換算の亜炭100部に対して、軽質マグネシア5〜30部で、砂岩10〜25部が好ましい。
中和生成物を、水等を使用し、造粒後、乾燥し反応生成物とする。
First, lignite is oxidized and decomposed with nitric acid to produce humic acid, and light magnesia and siliceous substances are added to neutralize it to produce a neutralized product.
The use ratio of lignite and nitric acid is not particularly limited, but usually 40 to 70 parts of nitric acid in terms of anhydrous matter is preferable to 100 parts of lignite in terms of dry matter.
The use ratio of light magnesia and siliceous material is not particularly limited, but when sandstone is used as siliceous material, it is usually 5-30 parts of light magnesia against 100 parts of lignite in terms of dry matter. 10 to 25 parts are preferred.
The neutralized product is granulated and then dried to form a reaction product using water or the like.

本発明では、この亜炭と硝酸から生成したフミン酸、軽質マグネシア、及び珪酸質物質から得られる反応生成物(以下、単に反応生成物という)を分級・粉砕処理等によって粒度調整して使用することが可能である。なかでも、600μm以下の細粒分を用いることが好ましい。また、同様に製造される腐植酸苦土肥料をそのまま、あるいは、篩い分けや分級、粉砕処理等によって粒度調整したものを使用することが可能である。   In the present invention, the reaction product obtained from humic acid, light magnesia, and siliceous substance produced from lignite and nitric acid (hereinafter simply referred to as reaction product) is used after adjusting the particle size by classification and grinding treatment, etc. Is possible. Among these, it is preferable to use a fine particle portion of 600 μm or less. Further, it is possible to use a humic acid bitter fertilizer produced in the same manner as it is or after adjusting the particle size by sieving, classification, pulverization or the like.

本発明の反応生成物の化学成分は、通常、フミン酸が45〜58%、く溶性MgOが2〜13%、SiO2が4〜12%、Fe2O3が2〜9%、Al2O3が2〜8%、及び水分が0〜20%である。なお、く溶性MgOのうち、水溶性MgOは1〜5%である。
ここで、く溶性MgOとは、2%のクエン酸水溶液に溶解するMgOを意味し、水溶性MgOは、く溶性MgOのなかにはいる。
Chemical components of the reaction product of the present invention is usually humic acid 45-58%, Ku-soluble MgO is 2 to 13% SiO 2 is 4 to 12% Fe 2 O 3 is 2 to 9% Al 2 O 3 is 2 to 8% and moisture is 0 to 20%. In addition, water-soluble MgO is 1 to 5% among soluble MgO.
Here, the highly soluble MgO means MgO dissolved in a 2% aqueous citric acid solution, and the water-soluble MgO is included in the soluble MgO.

本発明の反応生成物は、化学成分の上では、フミン酸を主成分とするが、単に、フミン酸やその塩を用いたのでは、本発明の効果は得られない。
これは、数々の実験を通して見いだしたものである。その原因は定かではないが、反応生成物を製造する工程で加えられる軽質マグネシアや砂岩等の珪酸質物質との相互作用により、独自の複合材料が形成されているためと推察される。
また、これらの軽質マグネシアや砂岩等の珪酸質物質との複合化によって、化学成分の溶解性が異なることも考えられる。
The reaction product of the present invention is mainly composed of humic acid on the chemical component, but the effect of the present invention cannot be obtained by simply using humic acid or a salt thereof.
This has been found through numerous experiments. The cause is not clear, but it is presumed that a unique composite material is formed by the interaction with light silicic substances such as light magnesia and sandstone added in the process of producing the reaction product.
It is also possible that the solubility of chemical components varies depending on the combination with these silicic substances such as light magnesia and sandstone.

反応生成物に含まれるMgO成分には、水に可溶性のものと、難溶性のものが混在しており、このことも、本発明の効果を生んでいるひとつの要因と考えられる。   The MgO component contained in the reaction product contains a mixture that is soluble in water and a component that is sparingly soluble. This is also considered to be one factor that produces the effects of the present invention.

反応生成物の粒度は特に限定されるものではないが、通常、600μm以下の細粒分を使用することが好適である。粗粒が含まれると、充分な水和熱抑制効果が得られにくくなるおそれがあり、また、強度発現性が悪くなるおそれがある。   The particle size of the reaction product is not particularly limited, but it is usually preferable to use a fine particle having a particle size of 600 μm or less. When coarse particles are contained, there is a possibility that a sufficient effect of suppressing heat of hydration may not be obtained, and strength development may be deteriorated.

本発明の膨張物質は特に限定されるものではなく、大別すると、ガス発泡物質系膨張物質やセメント鉱物系膨張物質がある。その具体例としては、例えば、ガス発泡物質系膨張物質では、アルミ粉、鉄粉、過酸化物質、及び炭素物質等が挙げられる。また、セメント鉱物系膨張物質では、エトリンガイト系膨張物質、石灰系膨張物質、石灰−エトリンガイト複合系膨張物質、及びマグネシア系膨張物質等が挙げられる。
本発明では、効果的な膨張性が付与できる観点から、セメント鉱物系膨張物質を用いることが好ましい。
The expansion material of the present invention is not particularly limited, and is roughly classified into a gas foam material expansion material and a cement mineral expansion material. Specific examples thereof include, for example, aluminum powder, iron powder, a peroxide material, and a carbon material in the case of a gas foam material expansion material. Examples of the cement mineral expansion material include ettringite expansion material, lime expansion material, lime-ettringite composite expansion material, and magnesia expansion material.
In the present invention, it is preferable to use a cement mineral-based expansion material from the viewpoint of imparting effective expansibility.

セメント鉱物系膨張物質としては、エトリンガイト系膨張物質、石灰系膨張物質、及び石灰−エトリンガイト複合系膨張物質等の遊離石灰を含む膨張物質や、マグネシア系膨張物質等の遊離マグネシアを含む膨張物質が挙げられるが、長期安定性の観点から、遊離石灰を含む膨張物質が好ましい。   Examples of the cement mineral expansion material include expansion materials including free lime such as ettringite expansion material, lime expansion material, and lime-ettringite composite expansion material, and expansion materials including free magnesia such as magnesia expansion material. However, from the viewpoint of long-term stability, an expanded material containing free lime is preferable.

遊離石灰を含むを含む膨張物質としては、例えば、遊離石灰−無水セッコウ系を含む膨張物質、遊離石灰−水硬性化合物系を含む膨張物質、及び遊離石灰−水硬性化合物−無水セッコウ系を含む膨張物質等が挙げられる。
本発明では、膨張性能が良好なことから、遊離石灰−水硬性化合物−無水セッコウ系を含む膨張物質を用いることが好ましく、特に遊離石灰含有量が40%を超えるものが好ましい。
Examples of the expansion material containing free lime include an expansion material including a free lime-anhydrous gypsum system, an expansion material including a free lime-hydraulic compound system, and an expansion including a free lime-hydraulic compound-anhydrogypsum system. Substances and the like.
In the present invention, since the expansion performance is good, it is preferable to use an expansion material containing a free lime-hydraulic compound-anhydrous gypsum system, and in particular, a free lime content exceeding 40% is preferable.

ここで、水硬性化合物としては、例えば、アウイン、カルシウムフェライト、カルシウムアルミノフェライト、カルシウムシリケート、及びカルシウムアルミネートからなる群より選ばれる一種又は二種以上が挙げられる。   Here, examples of the hydraulic compound include one or more selected from the group consisting of Auin, calcium ferrite, calcium aluminoferrite, calcium silicate, and calcium aluminate.

このような膨張物質としては、市販の膨張材や静的破砕材が利用できる。
市販の膨張材や静的破砕材は各社より販売されており、その代表例としては、例えば、電気化学工業社製「デンカCSA」や「デンカパワーCSA」、住友大阪セメント社製「サクス」、太平洋マテリアル社製「太平洋ジプカル」、「エクスパン」、「N-EX」、及び「ブライスター」などが挙げられる。
As such an expanding material, a commercially available expanding material or a static crushing material can be used.
Commercially available expandable materials and statically crushed materials are sold by various companies, and representative examples thereof include, for example, “Denka CSA” and “Denka Power CSA” manufactured by Denki Kagaku Kogyo Co., Ltd. Examples include “Pacific Gypcal”, “Expan”, “N-EX”, and “Bleister” manufactured by Taiheiyo Materials.

本発明の膨張物質の粒度は特に限定されるものではないが、通常、ブレーン比表面積値(以下、ブレーン値という)で2,000〜6,000cm2/gが好ましく、2,500〜4,000cm2/g程度のものがより好ましい。2,000cm2/g未満では長期安定性が悪くなるおそれがあり、6,000cm2/gを超えるようなものは膨張性が充分に得られなくなるおそれがある。 Is not particularly limited particle size of the expansion material of the present invention, usually, the Blaine specific surface area value (hereinafter, referred to as Blaine value) is preferably 2,000~6,000cm 2 / g, the about 2,500~4,000cm 2 / g Those are more preferred. If it is less than 2,000 cm 2 / g, the long-term stability may be deteriorated, and if it exceeds 6,000 cm 2 / g, the expandability may not be sufficiently obtained.

本発明のセメント混和材は、反応生成物と膨張物質とを含有するものであるが、膨張物質を単独で使用した場合に比べ、反応生成物と併用すると、その相乗効果により、膨張性能が良好になる。   The cement admixture of the present invention contains a reaction product and an expansion material, but when used together with the reaction product, the expansion performance is good due to the synergistic effect compared to the case where the expansion material is used alone. become.

セメント混和材中の反応生成物と膨張物質の割合は特に限定されるものではないが、通常、反応生成物と膨張物質からなるセメント混和材100部中、反応生成物は1〜50部が好ましく、5〜40部がより好ましく、膨張物質は50〜99部が好ましく、60〜95部がより好ましい。反応生成物と膨張物質の配合割合が前記の範囲にないと、本発明の効果が充分に発揮されなくなるおそれがある。   The ratio of the reaction product and the expansion material in the cement admixture is not particularly limited, but usually 1 to 50 parts of the reaction product is preferable in 100 parts of the cement admixture composed of the reaction product and the expansion material. 5 to 40 parts, more preferably 50 to 99 parts, more preferably 60 to 95 parts. If the blending ratio of the reaction product and the expansion material is not within the above range, the effects of the present invention may not be sufficiently exhibited.

本発明のセメント混和材の使用量は特に限定されるものではないが、通常、セメントとセメント混和材からなるセメント組成物100部中、1〜12部が好ましく、3〜9部がより好ましい。セメント混和材の使用量が少ないと充分なひび割れ抑制効果が得られなくなるおそれがあり、過剰に使用すると強度発現性が悪くなるおそれがある。   Although the usage-amount of the cement admixture of this invention is not specifically limited, Usually, 1-12 parts are preferable in 100 parts of cement compositions which consist of a cement and a cement admixture, and 3-9 parts are more preferable. If the amount of the cement admixture used is small, there is a possibility that a sufficient crack-inhibiting effect cannot be obtained, and if it is used excessively, strength development may be deteriorated.

ここで、セメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、これらポルトランドセメントに、石灰石粉末や高炉徐冷スラグ微粉末等を混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造した環境調和型セメント(エコセメント)などが挙げられ、これらのうちの一種又は二種以上が使用可能である。   Here, as the cement, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements in which blast furnace slag, fly ash, or silica is mixed with these portland cements, these portland cements are used. Examples include filler cement mixed with limestone powder, blast furnace slow-cooled slag fine powder, etc., and environmentally friendly cement (eco-cement) manufactured using municipal waste incineration ash and sewage sludge incineration ash as raw materials. One or more of them can be used.

本発明のセメント混和材やセメント組成物はそれぞれの材料を施工時に混合しても良いし、あらかじめ一部あるいは全部を混合しておいても差し支えない。     The cement admixture and cement composition of the present invention may be mixed at the time of construction, or may be partially or wholly mixed in advance.

本発明では、砂等の細骨材や、砂利等の粗骨材や、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、凝結調整剤、ベントナイトなどの粘土鉱物、及びハイドロタルサイトなどのアニオン交換体等の各種添加剤や、高炉水砕スラグ微粉末、高炉徐冷スラグ微粉末、石灰石微粉末、フライアッシュ、及びシリカフュームなどの混和材料等からなる群より選ばれた一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。   In the present invention, fine aggregates such as sand, coarse aggregates such as gravel, expanded materials, quick hard materials, water reducing agents, AE water reducing agents, high performance water reducing agents, high performance AE water reducing agents, antifoaming agents, Various additives such as sticky agent, rust preventive agent, antifreeze agent, shrinkage reducing agent, polymer emulsion, setting modifier, clay mineral such as bentonite, anion exchanger such as hydrotalcite, etc., ground granulated blast furnace slag , One or more selected from the group consisting of admixed materials such as blast furnace slow-cooled slag fine powder, limestone fine powder, fly ash, and silica fume, etc. are used in a range that does not substantially impair the object of the present invention. It is possible.

以下、実験例に基づいて、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on experimental examples, but the present invention is not limited thereto.

実験例1
表1に示す反応生成物25部と膨張物質A75部を配合したセメント混和材を使用し、土間コンクリートやマスコンクリートのひび割れ抑制効果を調べた。
セメント混和材を、セメントαとセメント混和材からなるセメント組成物100部中、7部使用し、単位セメント組成物量300kg/m3、単位水量170kg/m3、s/a=47%、スランプ18cm、及び設計強度21N/mm2のコンクリートを調製し、圧縮強度と長さ変化率の測定を行った。
また、同じ配合のコンクリートを用いて、土間に打設した場合と、マスコンクリートの壁を作製した場合のひび割れ発生状況を確認した。結果を表1に併記する。
なお、比較のために、反応生成物の代わりに市販のフミン酸を使用した場合についても同様に行った。
Experimental example 1
Using a cement admixture containing 25 parts of the reaction product shown in Table 1 and 75 parts of the expansive substance A, the cracking suppression effect of soil concrete and mass concrete was investigated.
7 parts of 100 parts of cement composition consisting of cement α and cement admixture is used as cement admixture, unit cement composition amount 300kg / m 3 , unit water amount 170kg / m 3 , s / a = 47%, slump 18cm Concrete with a design strength of 21 N / mm 2 was prepared, and the compressive strength and the rate of change in length were measured.
We also confirmed the occurrence of cracks when using concrete with the same composition and placing it between soils and when creating mass concrete walls. The results are also shown in Table 1.
In addition, it carried out similarly about the case where a commercially available humic acid is used instead of the reaction product for the comparison.

<使用材料>
セメントα:市販の普通ポルトランドセメント、比重3.15
膨張物質A:遊離石灰−水硬性化合物−無水セッコウ系膨張物質、水硬性化合物はアウイン、遊離石灰含有量50%、アウイン含有量20%、及び無水セッコウ含有量30%、ブレーン値3,000cm2/g、比重3.15
細骨材 :新潟県姫川産、比重2.62、最大骨材寸法5mm
粗骨材 :新潟県姫川産、比重2.64、最大骨材寸法25mm
水 :水道水
市販のフミン酸:試薬、フミン酸
<Materials used>
Cement α: Commercially available ordinary Portland cement, specific gravity 3.15
Expansion material A: free lime-hydraulic compound-anhydrous gypsum-based expansion material, hydraulic compound is Auin, free lime content 50%, Auin content 20%, and anhydrous gypsum content 30%, Blaine value 3,000 cm 2 / g, specific gravity 3.15
Fine aggregate: Himekawa, Niigata prefecture, specific gravity 2.62, maximum aggregate size 5mm
Coarse aggregate: Himekawa, Niigata prefecture, specific gravity 2.64, maximum aggregate size 25mm
Water: Tap water Commercially available humic acid: Reagent, Humic acid

<測定方法>
圧縮強度 :JIS A 1108に準じて測定
長さ変化率:JIS A 6202(B)に準じて材齢7日の長さ変化率を測定
ひび割れ状況/土間:土間コンクリートのひび割れ発生状況、縦5m、横5m、厚さ10cmのコンクリートを打設し、6ヵ月後にひび割れの発生状況を観察した。ひび割れが3本以上発生した場合は不可、ひび割れが2本発生した場合は可、ひび割れが1本発生した場合は良、ひび割れが全く発生しない場合は優とした。
ひび割れ状況/マスコン:マスコンクリートのひび割れの発生状況、型枠の存置期間は材齢7日までとし、厚さ1m、高さ2.5m、長さ10mの壁を作製し、ひび割れ発生が2本以上か、もしくは、ひび割れ発生本数は1本だがひび割れ幅0.2mm以上の場合は不可、ひび割れ発生本数は1本だが、ひび割れ幅が0.1mm以上、0.2mm未満の場合は可、ひび割れ発生本数が1本で、かつ、ひび割れ幅も0.05mm未満の場合は良、目視で観察できるひび割れがない場合は優とした。
<Measurement method>
Compressive strength: Measured length change rate according to JIS A 1108: Measured length change rate at 7 days of age according to JIS A 6202 (B) Crack condition / Soil: Crack occurrence condition of soil concrete, length 5 m, Concrete with a width of 5 m and a thickness of 10 cm was placed, and the occurrence of cracks was observed after 6 months. Not acceptable when 3 or more cracks occurred, acceptable when 2 cracks occurred, good when 1 crack occurred, and excellent when no cracks occurred.
Cracks / Mascon: Cracking condition of mass concrete, formwork is kept up to 7 days of age, and a wall with a thickness of 1m, height of 2.5m, length of 10m is created, and two or more cracks are generated. Or, the number of cracks is one, but it is not possible if the crack width is 0.2mm or more, but the number of cracks is one, but if the crack width is 0.1mm or more and less than 0.2mm, it is possible, the number of cracks is one. In addition, when the crack width was less than 0.05 mm, it was good, and when there was no crack that could be visually observed, it was excellent.

Figure 0004607150
Figure 0004607150

実験例2
実験No.1- 1で使用した反応生成物を使用し、表2に示す膨張物質を使用したこと以外は実験例1と同様に行った。結果を表2に併記する。
Experimental example 2
The reaction product was used in the same manner as in Experimental Example 1 except that the reaction product used in Experiment No. 1-1 was used and the expanded material shown in Table 2 was used. The results are also shown in Table 2.

<使用材料>
膨張物質B:遊離石灰−無水セッコウ系膨張物質、遊離石灰含有量50%、無水セッコウ含有量50%、ブレーン値3,000cm2/g、比重3.10
膨張物質C :遊離石灰−水硬性化合物−無水セッコウ系、水硬性化合物はカルシウムフェライト(C2F)、遊離石灰含有量50%、C2F含有量20%、無水セッコウ含有量30%、ブレーン値3,000cm2/g、比重3.30
膨張物質D :遊離石灰−水硬性化合物−無水セッコウ系、水硬性化合物はカルシウムアルミノフェライト(C4AF)、遊離石灰含有量50%、C4AF含有量20%、無水セッコウ含有量30%、ブレーン値3,000cm2/g、比重3.20
膨張物質E :遊離石灰−水硬性化合物系、遊離石灰含有量60%、水硬性化合物はカルシウムシリケート(C3S)とカルシウムアルミノフェライト(C4AF)、C3S含有量30%、C4AF含有量10%、ブレーン値3,000cm2/g、比重3.18
膨張物質F :遊離石灰−水硬性化合物−無水セッコウ系、水硬性化合物はカルシウムシリケート(C3S)、カルシウムアルミノフェライト(C4AF)、及びカルシウムアルミネート(C3A)、遊離石灰含有量55%、C3S含有量25%、C4AF含有量5%、C3A含有量5%、無水セッコウ含有量10%、ブレーン値3,000cm2/g、比重3.17
<Materials used>
Expansion material B: free lime-anhydrous gypsum-based expansion material, free lime content 50%, anhydrous gypsum content 50%, brain value 3,000 cm 2 / g, specific gravity 3.10
Inflation material C: free lime - hydraulic compound - anhydrous gypsum-based, hydraulic compound calcium ferrite (C 2 F), free lime content 50% C 2 F content of 20% anhydrous gypsum content of 30% Blaine Value 3,000cm 2 / g, specific gravity 3.30
Expansion material D: free lime-hydraulic compound-anhydrous gypsum system, hydraulic compound is calcium aluminoferrite (C 4 AF), free lime content 50%, C 4 AF content 20%, anhydrous gypsum content 30%, Brain value 3,000cm 2 / g, specific gravity 3.20
Expansion material E: Free lime-hydraulic compound system, free lime content 60%, hydraulic compound is calcium silicate (C 3 S) and calcium aluminoferrite (C 4 AF), C 3 S content 30%, C 4 AF content 10%, Brain value 3,000cm 2 / g, Specific gravity 3.18
Expansion material F: free lime-hydraulic compound-anhydrous gypsum system, hydraulic compounds are calcium silicate (C 3 S), calcium aluminoferrite (C 4 AF), calcium aluminate (C 3 A), free lime content 55%, C 3 S content 25%, C 4 AF content 5%, C 3 A content 5%, anhydrous gypsum content 10%, brain value 3,000cm 2 / g, specific gravity 3.17

Figure 0004607150
Figure 0004607150

実験例3
表3に示す最大粒径で、化学成分が実験No.1- 1で使用したものと同じ反応生成物25部と膨張物質A75部を配合したセメント混和材を使用したこと以外は実験例1と同様に行った。結果を表3に併記する。
Experimental example 3
Experimental Example 1 except that the maximum particle size shown in Table 3 and the chemical composition used was a cement admixture containing 25 parts of the same reaction product and 75 parts of the expanded material A used in Experiment No. 1-1. The same was done. The results are also shown in Table 3.

Figure 0004607150
Figure 0004607150

実験例4
実験No.1- 1で使用した反応生成物25部と膨張物質A75部を配合したセメント混和材を表4に示す量使用したこと以外は実験例1と同様に行った。結果を表4に併記する。
Experimental Example 4
The experiment was conducted in the same manner as in Experimental Example 1 except that the cement admixture containing 25 parts of the reaction product and 75 parts of the expanded substance A used in Experiment No. 1-1 was used in the amounts shown in Table 4. The results are also shown in Table 4.

Figure 0004607150
Figure 0004607150

実験例5
実験No.1- 1で使用した反応生成物25部と膨張物質A75部を配合したセメント混和材を、セメントとセメント混和材からなるセメント組成物100部中、7部使用し、表5に示すセメントとセメント混和材を使用したこと以外は実験例1と同様に行った。結果を表5に併記する。
Experimental Example 5
Table 5 shows 7 parts of a cement admixture containing 25 parts of the reaction product and 75 parts of the expansion material A used in Experiment No. 1-1 in 100 parts of a cement composition composed of cement and a cement admixture. The same operation as in Experimental Example 1 was performed except that cement and a cement admixture were used. The results are also shown in Table 5.

<使用材料>
セメントβ:市販の高炉セメントB種、比重3.06
<Materials used>
Cement β: Commercial blast furnace cement type B, specific gravity 3.06

Figure 0004607150
Figure 0004607150

本発明のセメント混和材を使用することにより、優れたひび割れ抑制効果を付与でき、しかも、強度発現性におよぼす影響が小さく、中期から長期の強度発現性が良好で、土間コンクリートやスラブコンクリートなどの厚さの薄いコンクリートにおいても、あまた、マッシブなコンクリートやプレストレストコンクリートに温度ひび割れが顕在化するようなコンクリートにおいても著しくひび割れを低減できるセメント組成物が得られるなどの効果を奏する。   By using the cement admixture of the present invention, an excellent crack suppression effect can be imparted, and the influence on the strength development is small, the medium- to long-term strength development is good, such as soil concrete and slab concrete. Even in a thin concrete, there is an effect that a cement composition capable of remarkably reducing cracks can be obtained even in massive concrete or concrete in which temperature cracks are manifested in prestressed concrete.

Claims (4)

亜炭と硝酸から生成したフミン酸、軽質マグネシア、及び珪酸質物質から得られる反応生成物と、膨張物質とを含有してなり、反応生成物の化学成分が、フミン酸45〜58質量%、く溶性MgO2〜13質量%、SiO 2 4〜12質量%、Fe 2 O 3 2〜9質量%、Al 2 O 3 2〜8質量%、及び水分0〜20質量%であり、膨張物質が、遊離石灰と、水硬性化合物及び/又は無水セッコウとを含有し、水硬性化合物がアウイン、カルシウムシリケート、カルシウムアルミノフェライト、及びカルシウムフェライトからなる群より選ばれる一種又は二種以上であり、セメント混和材100質量部中、反応生成物1〜50質量部、膨張物質50〜99質量部であるセメント混和材。 Humic acid produced from lignite and nitric acid, light magnesia, and a reaction product obtained from siliceous material, Ri Na contain an expansion agent, the chemical components of the reaction product, 45-58% by weight humic acid, Ku-soluble MgO2~13 wt%, SiO 2 4 to 12 wt%, Fe 2 O 3 2 to 9 wt%, Al 2 O 3 2 to 8 wt%, and 0 to 20 wt% water, the expansion material, Cement admixture containing free lime, hydraulic compound and / or anhydrous gypsum, wherein the hydraulic compound is one or more selected from the group consisting of Auin, calcium silicate, calcium aluminoferrite, and calcium ferrite The cement admixture which is 1-50 mass parts of reaction products and 50-99 mass parts of expansion | swelling substances in 100 mass parts . 珪酸質物質が砂岩である請求項1に記載のセメント混和材。   The cement admixture according to claim 1, wherein the siliceous substance is sandstone. 反応生成物の粒度が、600μm以下である請求項1又は請求項2に記載のセメント混和材。   The cement admixture according to claim 1 or 2, wherein the particle size of the reaction product is 600 µm or less. セメントと、請求項1〜請求項のうちのいずれか一項に記載のセメント混和材を含有してなり、セメント組成物100質量部中、セメント混和材が1〜12質量部であるセメント組成物。 Cement, in 100 parts by mass-than, cement compositions containing the cement admixture according to any one of claims 1 to 3, cement cement admixture is 1-12 parts by weight Composition.
JP2007170334A 2007-06-28 2007-06-28 Cement admixture and cement composition Active JP4607150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007170334A JP4607150B2 (en) 2007-06-28 2007-06-28 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170334A JP4607150B2 (en) 2007-06-28 2007-06-28 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JP2009007202A JP2009007202A (en) 2009-01-15
JP4607150B2 true JP4607150B2 (en) 2011-01-05

Family

ID=40322667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170334A Active JP4607150B2 (en) 2007-06-28 2007-06-28 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JP4607150B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212093B2 (en) * 2011-06-30 2015-12-15 NTH Consultants, Ltd. Hybrid magnesium cement and method of manufacture
US10150700B2 (en) 2011-06-30 2018-12-11 Wayne State University Hybrid magnesium cement and method of manufacture
JP5930294B2 (en) * 2012-04-27 2016-06-08 太平洋セメント株式会社 Quantitative evaluation method of crack reduction effect by shrinkage reducing material and selection method of shrinkage reducing material
WO2017105961A1 (en) * 2015-12-14 2017-06-22 Wayne State University Hybrid magnesium cement and method of manufacture
CN114163191B (en) * 2021-12-11 2022-11-11 深圳市恒星建材有限公司 Early-strength self-compacting concrete and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285380A (en) * 2007-05-21 2008-11-27 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285380A (en) * 2007-05-21 2008-11-27 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Also Published As

Publication number Publication date
JP2009007202A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4607149B2 (en) Cement admixture and cement composition
KR101313015B1 (en) Cement additive and cement composition
JP4607150B2 (en) Cement admixture and cement composition
JP6137850B2 (en) Hydraulic composition
JP4762953B2 (en) Low heat generation type high strength concrete and hardened concrete using the same
JP2005104828A (en) Cement admixture and cement composition using it
JP4837622B2 (en) Cement admixture and cement composition
JP4908072B2 (en) Cement additive and cement composition
JP4905977B2 (en) Cement admixture and cement composition
JP3549644B2 (en) Cement composition
JP5414253B2 (en) Cement admixture and cement composition
JP4809278B2 (en) Intumescent material, cement composition, and hardened cement body using the same
JP7287577B2 (en) Method for producing cured geopolymer and method for producing geopolymer composition
JP4607148B2 (en) Cement admixture and cement composition
JP2010076999A (en) Cement admixture and cement composition
JP5102502B2 (en) Cement additive and cement composition
JP4057970B2 (en) Cement concrete admixture
JP7384230B2 (en) Method for producing cured geopolymer and method for producing geopolymer composition
JP7364074B2 (en) Method for producing cured geopolymer and method for producing geopolymer composition
JP6235798B2 (en) Aggregate and manufacturing method thereof
JP2004315800A (en) Solidification material
JP2001151547A (en) Cement admixture and cement composition
JP4918214B2 (en) Cement admixture and cement composition
JP6157148B2 (en) Concrete composition and method for producing the same
JP5089930B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

R150 Certificate of patent or registration of utility model

Ref document number: 4607150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250