JP4607148B2 - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition Download PDF

Info

Publication number
JP4607148B2
JP4607148B2 JP2007167878A JP2007167878A JP4607148B2 JP 4607148 B2 JP4607148 B2 JP 4607148B2 JP 2007167878 A JP2007167878 A JP 2007167878A JP 2007167878 A JP2007167878 A JP 2007167878A JP 4607148 B2 JP4607148 B2 JP 4607148B2
Authority
JP
Japan
Prior art keywords
cement
parts
cement admixture
reaction product
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007167878A
Other languages
Japanese (ja)
Other versions
JP2009007188A (en
Inventor
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007167878A priority Critical patent/JP4607148B2/en
Publication of JP2009007188A publication Critical patent/JP2009007188A/en
Application granted granted Critical
Publication of JP4607148B2 publication Critical patent/JP4607148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、主に、土木・建築業界等において使用されるセメント混和材及びセメント組成物に関する。   The present invention mainly relates to a cement admixture and a cement composition used in the civil engineering and construction industries.

近年、土木・建築分野において、コンクリート構造物の耐久性向上に対する要望が高まっている。
コンクリート構造物の劣化要因の1つとして、ひび割れがある。ひび割れはコンクリートの信頼性を損なうものである。
ひび割れの発生原因は多様であり、乾燥収縮や自己収縮によるひび割れや、マッシブなコンクリートや富配合のコンクリートに特有の温度ひび割れなどが挙げられる。
マッシブなコンクリートや富配合のコンクリートに特有の温度ひび割れは、水和発熱に起因する。
In recent years, in the field of civil engineering and architecture, there has been an increasing demand for improving the durability of concrete structures.
One of the deterioration factors of concrete structures is cracking. Cracks impair the reliability of concrete.
There are various causes of cracks, such as cracks caused by drying shrinkage or self-shrinkage, and temperature cracks peculiar to massive concrete or rich concrete.
The temperature cracks typical of massive concrete and rich concrete are due to hydration exotherm.

マッシブなコンクリート、いわゆる、マスコンの温度ひび割れを抑制する技術としては、水和熱抑制剤を適用する方法が提案されている(特許文献1〜特許文献4参照)。
しかしながら、いまだに充分な性能を実現できていないのが実状である。温度ひび割れを効果的に抑制できるセメント混和材の開発が強く望まれている。
As a technique for suppressing thermal cracking of massive concrete, so-called mascon, a method of applying a hydration heat inhibitor has been proposed (see Patent Documents 1 to 4).
However, the reality is that sufficient performance has not yet been realized. Development of a cement admixture that can effectively suppress temperature cracking is strongly desired.

また、近年、コンクリート構造物の高耐久化技術の確立が望まれている。それを達成する上で重要な技術のひとつとして、収縮低減剤が注目されている。
これは、収縮低減剤の使用により、乾燥収縮や自己収縮に起因するひび割れを低減でき、コンクリート構造物の高寿命化に一定の役割を果たすものであり、収縮低減剤としては、古くより数多くの提案がなされている(特許文献5〜特許文献10参照)。
In recent years, establishment of high durability technology for concrete structures has been desired. As one of the important technologies for achieving this, a shrinkage reducing agent has attracted attention.
This is because the use of shrinkage reducing agents can reduce cracks caused by drying shrinkage and self-shrinkage and play a role in extending the life of concrete structures. Proposals have been made (see Patent Documents 5 to 10).

しかしながら、収縮低減剤を用いると、コンクリートの空気量が極度に多くなるという現象が生じるため、消泡剤によって空気量を制御する操作が不可欠となっている現状にある。コンクリートの空気量を制御することは、高度な技術が必要であり、また、手間がかかる。このため、収縮低減剤を用いても空気量を増加させない技術の開発が強く求められている。   However, when a shrinkage reducing agent is used, there is a phenomenon that the amount of air in the concrete becomes extremely large. Therefore, an operation of controlling the amount of air with an antifoaming agent is indispensable. Controlling the amount of air in the concrete requires advanced techniques and is time consuming. For this reason, there is a strong demand for the development of a technique that does not increase the amount of air even when a shrinkage reducing agent is used.

一方、フミン酸やニトロフミン酸は、根の活性化と地力の維持・向上を目的として、土壌改良剤等農業分野で広範に利用されている。
ニトロフミン酸は、例えば、亜炭、草炭等の腐食性物質を含有する若年炭の粉砕物と硝酸を反応させて得られるものである。
土壌改良剤としては、このニトロフミン酸や、これに、ドロマイト、マグネサイト、マグネシア、蛇紋岩、ケイ酸マグネシウム、及び水酸化マグネシウムなどの一種又は二種以上を加え反応させたニトロフミン酸マグネシウムが提案されている(特許文献11参照)。
しかしながら、これをセメント混和材として利用した際に、どのような効果を生むかについては全く知られていない。
On the other hand, humic acid and nitrohumic acid are widely used in the agricultural field such as soil conditioners for the purpose of root activation and maintenance / improvement of geopower.
Nitrohumic acid is obtained, for example, by reacting a pulverized product of young charcoal containing a corrosive substance such as lignite and grass charcoal with nitric acid.
As a soil conditioner, this nitrohumic acid, or magnesium nitrohumate that is reacted with one or more of dolomite, magnesite, magnesia, serpentine, magnesium silicate, magnesium hydroxide, etc., are proposed. (See Patent Document 11).
However, what effect is produced when this is used as a cement admixture is not known at all.

このニトロフミン酸やニトロフミン酸マグネシウムはフミン酸を主成分とするが、単に、フミン酸やフミン酸塩をセメントに混和したのでは、本発明の効果は得られない。   The nitrohumic acid and magnesium nitrohumate are mainly composed of humic acid, but the effect of the present invention cannot be obtained simply by mixing humic acid or humic acid salt with cement.

そこで、本発明者は、前記課題を解決すべく、種々の努力を重ねた結果、特定のセメント混和材を使用することにより、建築構造物のような薄いコンクリート構造物でも、また、土木分野で用いられるマッシブなコンクリートにおいても優れたひび割れ低減効果を発揮すること、粉塵の発生を抑止できること、さらに、収縮低減剤の課題であった空気量の増加現象を起こさないことを知見し、本発明を完成するに至った。   Therefore, the present inventor has made various efforts to solve the above problems, and as a result, by using a specific cement admixture, even in a thin concrete structure such as a building structure or in the civil engineering field. It was discovered that even the massive concrete used has an excellent crack reduction effect, can suppress the generation of dust, and does not cause the phenomenon of air volume increase, which was a problem with shrinkage reducing agents. It came to be completed.

特開平06−305799号公報Japanese Patent Laid-Open No. 06-305799 特開2002−137951号公報JP 2002-137951 A 特開2002−241167号公報JP 2002-241167 A 特開2003−034564号公報JP 2003-034564 A 特開昭56−037259号公報Japanese Patent Laid-Open No. 56-037259 特公昭59−003430号公報Japanese Patent Publication No.59-003430 特開昭59−021557号公報JP 59-021557 特開昭59−152253号公報JP 59-152253 A 特開昭59−184753号公報JP 59-184753 A 特開昭60−016846号公報Japanese Patent Laid-Open No. 60-016846 特公昭40−014122号公報Japanese Patent Publication No. 40-014122

本発明は、土木用途や建築用途において使用されるセメント混和材及びセメント組成物を提供する。   The present invention provides a cement admixture and a cement composition used in civil engineering and building applications.

本発明は、亜炭と硝酸から生成したフミン酸、軽質マグネシア、及び珪酸質物質から得られる、化学成分が、フミン酸45〜58%、く溶性MgO2〜13%、SiO 2 4〜12%、Fe 2 O 3 2〜9%、Al 2 O 3 2〜8%、及び水分0〜20%である反応生成物と、収縮低減剤とを含有してなり、セメント混和材100部中、反応生成物20〜80部、収縮低減剤20〜80部であるセメント混和材であり、珪酸質物質が砂岩である該セメント混和材であり、反応生成物の粒度が、600μm以下である該セメント混和材であり、収縮低減剤が液体である該セメント混和材であり、収縮低減剤が、反応生成物と収縮低減剤からなるセメント混和材100部中、20〜80部である該セメント混和材であり、セメントと該セメント混和材とを含有してなり、セメント組成物100部中、セメント混和材が1〜10部であるセメント組成物である。 The present invention is obtained from humic acid produced from lignite and nitric acid, light magnesia, and siliceous material . The chemical components are 45 to 58% humic acid, 2 to 13% soluble MgO, 4 to 12% SiO 2 , Fe 2 O 3 2~9%, Al 2 O 3 2~8%, and the reaction product is 0-20% moisture, Ri Na contain a shrinkage reducing agent, a cement admixture in 100 parts of the reaction product 20-80 parts of a material, 20-80 parts of a shrinkage reducing agent, the cement admixture in which the siliceous material is sandstone, and the particle size of the reaction product is 600 μm or less The cement admixture is a cement admixture in which the shrinkage reducing agent is a liquid, and the shrinkage reducing agent is 20 to 80 parts in 100 parts of the cement admixture comprising the reaction product and the shrinkage reducing agent. , Ri Na contains cement and the cement admixture, in 100 parts of cement composition, cement admixture is 1 to 1 0 parts of cement composition.

本発明のセメント混和材を使用することにより、建築構造物のような薄いコンクリート構造物でも、また、土木分野で用いられるマッシブなコンクリートにおいても、優れたひび割れ低減効果を発揮する、粉塵の発生を抑止できる、さらに、収縮低減剤の課題であった空気量の増加現象を起こさないセメント組成物が得られる。   By using the cement admixture of the present invention, even in a thin concrete structure such as a building structure, or in a massive concrete used in the civil engineering field, dust generation that exhibits an excellent crack reduction effect can be achieved. Further, a cement composition that can be suppressed and does not cause an increase in the amount of air, which has been a problem with shrinkage reducing agents, can be obtained.

本発明における部や%は特に規定しない限り質量基準で示す。   Unless otherwise specified, parts and% in the present invention are shown on a mass basis.

本発明では、亜炭と硝酸から生成したフミン酸、軽質マグネシア、及び珪酸質物質から得られる反応生成物と、収縮低減剤とを含有してなるセメント混和材を使用するものである。   In the present invention, a cement admixture containing a reaction product obtained from humic acid generated from lignite and nitric acid, light magnesia, and a siliceous substance, and a shrinkage reducing agent is used.

本発明は、亜炭を使用するが、その他、硝酸との反応によりフミン酸が得られる草炭、褐炭、及び泥炭等の若年炭も使用可能である。
また、硝酸としては、通常、濃度20〜50%のものを使用する。
軽質マグネシアは、生成したフミン酸を中和するもので、本発明では、その他、ドロマイト、マグネサイト、及び水酸化マグネシウムなども使用可能である。
珪酸質物質としては、珪石や砂岩等が挙げられるが、通常、砂岩を使用する。
Although the present invention uses lignite, young coals such as grass coal, lignite, and peat from which humic acid can be obtained by reaction with nitric acid can also be used.
Further, as nitric acid, one having a concentration of 20 to 50% is usually used.
Light magnesia neutralizes the produced humic acid. In the present invention, dolomite, magnesite, magnesium hydroxide, and the like can also be used.
Examples of siliceous substances include silica and sandstone, but sandstone is usually used.

まず、亜炭を硝酸で酸化分解してフミン酸を生成し、それに、軽質マグネシアと珪酸質物質を加えて中和して中和生成物を製造する。
亜炭や硝酸の使用割合は特に限定されるものではないが、通常、乾物換算の亜炭100部に対して、無水換算の硝酸40〜70部が好ましい。
軽質マグネシアと珪酸質物質の使用割合は特に限定されるものではないが、珪酸質物質として砂岩を使用する場合、通常、乾物換算の亜炭100部に対して、軽質マグネシア5〜30部であり、砂岩10〜25部が好ましい。
中和生成物を、水等を使用し、造粒後、乾燥し、比重1.1〜1.3程度の反応生成物とする。
First, lignite is oxidized and decomposed with nitric acid to produce humic acid, and light magnesia and siliceous substances are added to neutralize it to produce a neutralized product.
The use ratio of lignite and nitric acid is not particularly limited, but usually 40 to 70 parts of nitric acid in terms of anhydrous matter is preferable to 100 parts of lignite in terms of dry matter.
The use ratio of light magnesia and siliceous material is not particularly limited, but when using sandstone as siliceous material, it is usually 5 to 30 parts of light magnesia against 100 parts of lignite in terms of dry matter, 10-25 parts of sandstone are preferred.
The neutralized product is granulated and then dried using water or the like to obtain a reaction product having a specific gravity of about 1.1 to 1.3.

本発明では、この亜炭と硝酸から生成したフミン酸、軽質マグネシア、及び珪酸質物質から得られる反応生成物(以下、単に反応生成物という)を分級・粉砕処理等によって粒度調整して使用することが可能である。なかでも、600μm以下の細粒分を用いることが好ましい。また、同様に製造される腐植酸苦土肥料をそのまま、あるいは、篩い分けや分級、粉砕処理等によって粒度調整したものを使用することが可能である。   In the present invention, the reaction product obtained from humic acid, light magnesia, and siliceous substance produced from lignite and nitric acid (hereinafter simply referred to as reaction product) is used after adjusting the particle size by classification and grinding treatment, etc. Is possible. Among these, it is preferable to use a fine particle portion of 600 μm or less. Further, it is possible to use a humic acid bitter fertilizer produced in the same manner as it is or after adjusting the particle size by sieving, classification, pulverization or the like.

本発明の反応生成物の化学成分は、フミン酸が45〜58%、く溶性MgOが2〜13%、SiO2が4〜12%、Fe2O3が2〜9%、Al2O3が2〜8%、及び水分が0〜20%である。なお、く溶性MgOのうち、水溶性MgOは1〜5%である。
ここで、く溶性MgOとは、2%のクエン酸水溶液に溶解するMgOを意味し、水溶性MgOは、く溶性MgOのなかにはいる。
Chemical composition of the reaction products of the present invention, the humic acid from 45 to 58%, Ku-soluble MgO is 2 to 13% SiO 2 is 4 to 12% Fe 2 O 3 is 2 to 9% Al 2 O 3 Is 2 to 8%, and the water content is 0 to 20%. In addition, water-soluble MgO is 1 to 5% among soluble MgO.
Here, the highly soluble MgO means MgO dissolved in a 2% aqueous citric acid solution, and the water-soluble MgO is included in the soluble MgO.

本発明の反応生成物は、化学成分の上では、フミン酸を主成分とするが、単に、フミン酸やその塩を用いたのでは、本発明の効果は得られない。
これは、数々の実験を通して見いだしたものである。その原因は定かではないが、反応生成物を製造する工程で加えられる軽質マグネシアや砂岩等の珪酸質物質との相互作用により、独自の複合材料が形成されているためと推察される。
また、これらの軽質マグネシアや砂岩等の珪酸質物質との複合化によって、化学成分の溶解性が異なることも考えられる。
The reaction product of the present invention is mainly composed of humic acid on the chemical component, but the effect of the present invention cannot be obtained by simply using humic acid or a salt thereof.
This has been found through numerous experiments. The cause is not clear, but it is presumed that a unique composite material is formed by the interaction with light silicic substances such as light magnesia and sandstone added in the process of producing the reaction product.
It is also possible that the solubility of chemical components varies depending on the combination with these silicic substances such as light magnesia and sandstone.

反応生成物に含まれるMgO成分には、水に可溶性のものと、難溶性のものが混在しており、このことも、本発明の効果を生んでいるひとつの要因と考えられる。   The MgO component contained in the reaction product contains a mixture that is soluble in water and a component that is sparingly soluble. This is also considered to be one factor that produces the effects of the present invention.

反応生成物の粒度は特に限定されるものではないが、通常、600μm以下の細粒分を使用することが好ましい。粗粒が含まれると、充分な水和熱抑制効果が得られにくくなるおそれがあり、また、強度発現性が悪くなるおそれがある。   The particle size of the reaction product is not particularly limited, but it is usually preferable to use a fine particle having a particle size of 600 μm or less. When coarse particles are contained, there is a possibility that a sufficient effect of suppressing heat of hydration may not be obtained, and strength development may be deteriorated.

本発明で使用する収縮低減剤とは特に限定されるものではなく、収縮低減できるものであれば、いかなるものでも使用可能である。主成分で大別すると、低級アルコールアルキレンオキシド付加物系、アルコール系、グリコールエーテル・アミノアルコール誘導体系、ポリエーテル系、及び低分子量アルキレンオキシド共重合体系等が挙げられる。
収縮低減剤は各社より市販されており、その代表例としては、例えば、電気化学工業社製「エスケーガード」、エフ・ピー・ケー社製「ヒビガード」、竹本油脂社製「ヒビダン」、太平洋セメント社製「テトラガード」、及び日本油脂社製「シュドックス」などが挙げられる。
収縮低減剤には液状のもの、粉末状のものが存在する。本発明ではいずれも利用可能であるが、反応生成物の飛散防止を図るうえで、液状のものを選択することが、その効果が大きいことから好ましい。反応生成物を液状の収縮低減剤に混ぜ合わせることにより、反応生成物の飛散防止をほぼ完全に達成することが可能である。また、反応生成物の水和熱抑制効果がより助長される面からも好ましい。なお、粉末の収縮低減剤と混ぜ合わせても、一定の反応生成物の飛散防止効果を得ることができる。
The shrinkage reducing agent used in the present invention is not particularly limited, and any one can be used as long as shrinkage can be reduced. The main components are roughly classified into lower alcohol alkylene oxide adduct systems, alcohol systems, glycol ether / amino alcohol derivative systems, polyether systems, and low molecular weight alkylene oxide copolymer systems.
Shrinkage reducing agents are commercially available from various companies, and representative examples thereof include, for example, “ESK GUARD” manufactured by Denki Kagaku Kogyo Co., Ltd. “HIBIGUARD” manufactured by FPK Co., Ltd. "Tetragard" manufactured by the company, "Sudokkusu" manufactured by Nippon Oil & Fats, and the like.
There are liquid and powder shrinkage reducing agents. Any of them can be used in the present invention. However, in order to prevent scattering of the reaction product, it is preferable to select a liquid one because its effect is great. By mixing the reaction product with a liquid shrinkage reducing agent, it is possible to achieve almost complete prevention of scattering of the reaction product. Moreover, it is also preferable from the aspect of further promoting the effect of suppressing the heat of hydration of the reaction product. Even if mixed with a powder shrinkage reducing agent, a certain reaction product scattering prevention effect can be obtained.

セメント混和材中の反応生成物と収縮低減剤の割合は、特に限定されるものではないが、通常、反応生成物と収縮低減剤からなるセメント混和材100部中、反応生成物は20〜80部が好ましく、30〜70部がより好ましい。また、収縮低減剤は20〜80部が好ましく、30〜70部がより好ましい。反応生成物と収縮低減剤の配合割合が前記の範囲にないと、本発明の効果が充分に発揮されないおそれがある。   The ratio of the reaction product and the shrinkage reducing agent in the cement admixture is not particularly limited. Usually, the reaction product is 20 to 80 in 100 parts of the cement admixture composed of the reaction product and the shrinkage reducing agent. Part is preferred, and 30 to 70 parts are more preferred. Further, the shrinkage reducing agent is preferably 20 to 80 parts, more preferably 30 to 70 parts. If the mixing ratio of the reaction product and the shrinkage reducing agent is not within the above range, the effects of the present invention may not be sufficiently exhibited.

本発明のセメント混和材の使用量は特に限定されるものではないが、通常、セメントとセメント混和材からなるセメント組成物100部中、1〜10部が好ましく、3〜7部がより好ましい。セメント混和材の使用量が少ないと充分なひび割れ抑制効果が得られなくなるおそれがあり、過剰に使用すると強度発現性が悪くなるおそれがある。   Although the usage-amount of the cement admixture of this invention is not specifically limited, Usually, 1-10 parts are preferable in a cement composition which consists of a cement and a cement admixture, and 3-7 parts are more preferable. If the amount of the cement admixture used is small, there is a possibility that a sufficient crack-inhibiting effect cannot be obtained, and if it is used excessively, strength development may be deteriorated.

セメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末等を混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造した環境調和型セメント(エコセメント)などが挙げられ、これらのうちの一種又は二種以上が使用可能である。   As the cement, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements in which blast furnace slag, fly ash, or silica is mixed with these portland cements, limestone powder and blast furnace slow Filler cement mixed with fine powder of cold slag, etc., and environmentally friendly cement (eco-cement) made from municipal waste incineration ash or sewage sludge incineration ash, etc. It can be used.

本発明のセメント混和材やセメント組成物はそれぞれの材料を施工時に混合しても良いし、あらかじめ一部あるいは全部を混合しておいても差し支えない。     The cement admixture and cement composition of the present invention may be mixed at the time of construction, or may be partially or wholly mixed in advance.

本発明では、砂等の細骨材や、砂利等の粗骨材や、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、凝結調整剤、ベントナイトなどの粘土鉱物、及びハイドロタルサイトなどのアニオン交換体等の各種添加剤や、高炉水砕スラグ微粉末、高炉徐冷スラグ微粉末、石灰石微粉末、フライアッシュ、及びシリカフュームなどの混和材料等からなる群より選ばれた一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。   In the present invention, fine aggregates such as sand, coarse aggregates such as gravel, expanded materials, quick hard materials, water reducing agents, AE water reducing agents, high performance water reducing agents, high performance AE water reducing agents, antifoaming agents, Various additives such as sticky agent, rust preventive agent, antifreeze agent, shrinkage reducing agent, polymer emulsion, setting modifier, clay mineral such as bentonite, anion exchanger such as hydrotalcite, etc., ground granulated blast furnace slag , One or more selected from the group consisting of admixed materials such as blast furnace slow-cooled slag fine powder, limestone fine powder, fly ash, and silica fume, etc. are used in a range that does not substantially impair the object of the present invention. It is possible.

以下、実験例に基づいて、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on experimental examples, but the present invention is not limited thereto.

実験例1
表1に示す収縮低減剤と反応生成物aを配合してセメント混和材を調製した。
調製したセメント混和材を、セメントとセメント混和材からなるセメント組成物100部中、5部使用し、単位セメント組成物量315kg/m3、単位水量180kg/m3、s/a=41%、スランプ18±2.5cmのコンクリートを調製した。
コンクリートの空気量を測定するとともに、建築構造物としてのスラブや、土木構造物としてのマッシブな壁のひび割れ発生状況や、粉塵の飛散の状況を観察した。結果を表1に併記する。
なお、セメント混和材を使用しないプレーンコンクリートの空気量が4.5%となるようにAE剤を使用し、セメント混和材を用いた際にも同量のAE剤を添加して実験した。
Experimental example 1
A cement admixture was prepared by blending the shrinkage reducing agent shown in Table 1 and the reaction product a.
Using 5 parts of the prepared cement admixture in 100 parts of cement composition consisting of cement and cement admixture, unit cement composition amount 315kg / m 3 , unit water amount 180kg / m 3 , s / a = 41%, slump 18 ± 2.5 cm concrete was prepared.
In addition to measuring the amount of air in the concrete, we observed slabs as building structures, cracks in massive walls as civil engineering structures, and dust scattering. The results are also shown in Table 1.
In addition, it experimented by using AE agent so that the air content of plain concrete which does not use a cement admixture may be 4.5%, and also adding the same amount of AE agent when using a cement admixture.

<使用材料>
セメントα:市販の普通ポルトランドセメント、比重3.15
反応生成物a:最大粒径600μm、フミン酸が50%、く溶性MgOが11%、水溶性MgOが4%、SiO2が9%、Fe2O3が5%、Al2O3が5%、及び水分が20%
収縮低減剤A:低分子量アルキレンオキシド共重合体系収縮低減剤、市販品
収縮低減剤B:グリコールエーテル・アミノアルコール誘導体系収縮低減剤、市販品
収縮低減剤C:低級アルコールのアルキレンオキシド付加物系収縮低減剤、市販品
収縮低減剤D:ポリエーテル誘導体系収縮低減剤、市販品
細骨材 :新潟県姫川産、比重2.62
粗骨材 :新潟県姫川産、比重2.64
水 :水道水
<Materials used>
Cement α: Commercially available ordinary Portland cement, specific gravity 3.15
Reaction product a: maximum particle size 600 μm, humic acid 50%, soluble MgO 11%, water-soluble MgO 4%, SiO 2 9%, Fe 2 O 3 5%, Al 2 O 3 5 % And moisture 20%
Shrinkage reducing agent A: Low molecular weight alkylene oxide copolymer shrinkage reducing agent, commercially available shrinkage reducing agent B: glycol ether / amino alcohol derivative shrinkage reducing agent, commercially available shrinkage reducing agent C: alkylene oxide adduct shrinkage of lower alcohol Reducing agent, commercially available shrinkage reducing agent D: polyether derivative shrinkage reducing agent, commercially available fine aggregate: produced in Himekawa, Niigata Prefecture, specific gravity 2.62
Coarse aggregate: Himekawa, Niigata Prefecture, specific gravity 2.64
Water: Tap water

<測定方法>
ひび割れ発生状況:建築構造物として、縦5m×横5m×厚さ10cmのスラブコンクリートを打設し、6ヵ月後にひび割れの発生状況を観察した。また、マスコンクリートとして、高さ2m×長さ10m×厚さ60cmの壁を構築し、1ヵ月後にひび割れの発生状況を観察した。ひび割れが複数発生した場合は不可、ひび割れが1本発生した場合は可、ひび割れが認められない場合は良とした。
<Measurement method>
Cracking condition: As the building structure, slab concrete with a length of 5m x width 5m x thickness 10cm was placed, and after 6 months, the condition of cracking was observed. In addition, as mass concrete, a wall with a height of 2 m, a length of 10 m and a thickness of 60 cm was constructed, and the occurrence of cracks was observed after one month. Not acceptable when multiple cracks occurred, acceptable when one crack occurred, and good when no cracks were observed.

Figure 0004607148
Figure 0004607148

実験例2
表2に示す収縮低減剤Aと反応生成物を使用したこと以外は実験例1と同様に行った。結果を表2に併記する。
なお、比較のため、反応生成物の代わりに市販のフミン酸を用いた場合についても同様に行った。
Experimental example 2
The experiment was performed in the same manner as in Experimental Example 1 except that the shrinkage reducing agent A and the reaction product shown in Table 2 were used. The results are also shown in Table 2.
In addition, it carried out similarly about the case where a commercially available humic acid is used instead of the reaction product for the comparison.

<使用材料>
反応生成物b:最大粒径600μm、フミン酸が45%、く溶性MgOが12%、水溶性MgOが3%、SiO2が10%、Fe2O3が8%、Al2O3が7%、及び水分が18%
反応生成物c:最大粒径600μm、フミン酸が55%、く溶性MgOが10%、水溶性MgOが4%、SiO2が4%、Fe2O3が6%、Al2O3が6%、及び水分が19%
反応生成物d:最大粒径600μm、フミン酸が50%、く溶性MgOが11%、水溶性MgOが4%、SiO2が10%、Fe2O3が2%、Al2O3が7%、及び水分が20%
反応生成物e:最大粒径600μm、フミン酸が55%、く溶性MgOが12%、水溶性MgOが4%、SiO2が10%、Fe2O3が8%、Al2O3が7%、及び水分が8%
反応生成物f:最大粒径600μm、フミン酸が52%、く溶性MgOが11%、水溶性MgOが3%、SiO2が9%、Fe2O3が6%、Al2O3が2%、及び水分が20%
反応生成物g:最大粒径600μm、フミン酸が58%、く溶性MgOが13%、水溶性MgOが5%、SiO2が12%、Fe2O3が9%、Al2O3が8%、及び水分が0%
市販のフミン酸:試薬、フミン酸
<Materials used>
Reaction product b: maximum particle size 600 μm, humic acid 45%, soluble MgO 12%, water-soluble MgO 3%, SiO 2 10%, Fe 2 O 3 8%, Al 2 O 3 7 % And moisture 18%
Reaction product c: maximum particle size 600 μm, humic acid 55%, soluble MgO 10%, water-soluble MgO 4%, SiO 2 4%, Fe 2 O 3 6%, Al 2 O 3 6 % And moisture 19%
Reaction product d: maximum particle size 600 μm, humic acid 50%, soluble MgO 11%, water-soluble MgO 4%, SiO 2 10%, Fe 2 O 3 2%, Al 2 O 3 7 % And moisture 20%
Reaction product e: maximum particle size 600 μm, humic acid 55%, soluble MgO 12%, water-soluble MgO 4%, SiO 2 10%, Fe 2 O 3 8%, Al 2 O 3 7 % And moisture 8%
Reaction product f: maximum particle size 600 μm, humic acid 52%, soluble MgO 11%, water-soluble MgO 3%, SiO 2 9%, Fe 2 O 3 6%, Al 2 O 3 2 % And moisture 20%
Reaction product g: maximum particle size 600 μm, humic acid 58%, soluble MgO 13%, water-soluble MgO 5%, SiO 2 12%, Fe 2 O 3 9%, Al 2 O 3 8 % And moisture is 0%
Commercial humic acid: Reagent, Humic acid

Figure 0004607148
Figure 0004607148

実験例3
反応生成物aの化学成分を持ち、表3に示す最大粒径の反応生成物40部と、収縮低減剤A60部からなるセメント混和材を使用したこと以外は実験例1と同様に行った。結果を表3に併記する。
Experimental example 3
The test was conducted in the same manner as in Experimental Example 1 except that a cement admixture having a chemical component of the reaction product a and having a maximum particle size of 40 parts shown in Table 3 and a shrinkage reducing agent A60 parts was used. The results are also shown in Table 3.

Figure 0004607148
Figure 0004607148

実験例4
反応生成物a40部と収縮低減剤A60部からなり、表4に示す量のセメント混和材を使用したこと以外は実験例1と同様に行った。結果を表4に併記する。
Experimental Example 4
The test was conducted in the same manner as in Experimental Example 1 except that it consisted of 40 parts of the reaction product a and 60 parts of the shrinkage reducing agent A, and used the cement admixture in the amount shown in Table 4. The results are also shown in Table 4.

Figure 0004607148
Figure 0004607148

実験例5
反応生成物a40部と収縮低減剤A60部からなるセメント混和材を使用し、セメントの種類を表5に示すように変えたこと以外は実験例1と同様に行った。結果を表5に併記する。
Experimental Example 5
The test was conducted in the same manner as in Experimental Example 1 except that a cement admixture consisting of 40 parts of the reaction product a and 60 parts of the shrinkage reducing agent A was used and the type of cement was changed as shown in Table 5. The results are also shown in Table 5.

<使用材料>
セメントβ:市販の高炉セメントB種、比重3.06
<Materials used>
Cement β: Commercial blast furnace cement type B, specific gravity 3.06

Figure 0004607148
Figure 0004607148

本発明のセメント混和材を使用することにより、建築構造物のような薄いコンクリート構造物でも、また、土木分野で用いられるマッシブなコンクリートにおいても優れたひび割れ低減効果を発揮すること、粉塵の飛散防止を図れること、さらに、収縮低減剤の課題であった空気量の増加現象を起こさないため、土木および建築用途に広範に利用できる。   By using the cement admixture of the present invention, it exhibits excellent crack reduction effect even in thin concrete structures such as building structures and massive concrete used in the civil engineering field, and prevention of dust scattering Furthermore, since it does not cause an increase in the amount of air, which has been a problem of shrinkage reducing agents, it can be widely used for civil engineering and construction applications.

Claims (6)

亜炭と硝酸から生成したフミン酸、軽質マグネシア、及び珪酸質物質から得られる、化学成分が、フミン酸45〜58質量%、く溶性MgO2〜13質量%、SiO 2 4〜12質量%、Fe 2 O 3 2〜9質量%、Al 2 O 3 2〜8質量%、及び水分0〜20質量%である反応生成物と、収縮低減剤とを含有してなり、セメント混和材100質量部中、反応生成物20〜80質量部、収縮低減剤20〜80質量部であるセメント混和材。 Humic acid produced from lignite and nitric acid, light magnesia, and obtained from the siliceous materials, chemical composition, 45-58 wt% humic acid, Ku-soluble MgO2~13 wt%, SiO 2 4 to 12 wt%, Fe 2 O 3 2 to 9 wt%, Al 2 O 3 2 to 8 wt%, and the reaction product is 0 to 20 wt% moisture, Ri Na contain a shrinkage reducing agent, a cement admixture in 100 parts by weight The cement admixture is 20 to 80 parts by mass of the reaction product and 20 to 80 parts by mass of the shrinkage reducing agent . 珪酸質物質が砂岩である請求項1に記載のセメント混和材。   The cement admixture according to claim 1, wherein the siliceous substance is sandstone. 反応生成物の粒度が、600μm以下である請求項1又は請求項2に記載のセメント混和材。   The cement admixture according to claim 1 or 2, wherein the particle size of the reaction product is 600 µm or less. 収縮低減剤が、液体である請求項1〜請求項3のうちのいずれか一項に記載のセメント混和材。   The cement admixture according to any one of claims 1 to 3, wherein the shrinkage reducing agent is a liquid. 収縮低減剤が、反応生成物と収縮低減剤からなるセメント混和材100質量部中、20〜80質量部である請求項1〜請求項4のうちのいずれか一項に記載のセメント混和材。 The cement admixture according to any one of claims 1 to 4, wherein the shrinkage reducing agent is 20 to 80 parts by mass in 100 parts by mass of the cement admixture comprising the reaction product and the shrinkage reducing agent. セメントと、請求項1〜請求項5のうちのいずれか一項に記載のセメント混和材とを含有してなり、セメント組成物100質量部中、セメント混和材が1〜10質量部であるセメント組成物。 Cement, Ri name contains the cement admixture according to any one of claims 1 to 5, the cement composition 100 parts by weight, the cement admixture is 1-10 parts by weight Cement composition.
JP2007167878A 2007-06-26 2007-06-26 Cement admixture and cement composition Active JP4607148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167878A JP4607148B2 (en) 2007-06-26 2007-06-26 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167878A JP4607148B2 (en) 2007-06-26 2007-06-26 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JP2009007188A JP2009007188A (en) 2009-01-15
JP4607148B2 true JP4607148B2 (en) 2011-01-05

Family

ID=40322654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167878A Active JP4607148B2 (en) 2007-06-26 2007-06-26 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JP4607148B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432953B (en) * 2022-08-08 2023-09-22 中交二航武汉港湾新材料有限公司 Polycarboxylate superplasticizer for micro-expansion type ultra-high performance concrete, and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285380A (en) * 2007-05-21 2008-11-27 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285380A (en) * 2007-05-21 2008-11-27 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Also Published As

Publication number Publication date
JP2009007188A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4607149B2 (en) Cement admixture and cement composition
JP4607150B2 (en) Cement admixture and cement composition
JP2012076009A (en) Method of producing granulated and solidified body from biomass incineration ash
JP4762953B2 (en) Low heat generation type high strength concrete and hardened concrete using the same
JP4837622B2 (en) Cement admixture and cement composition
JP4905977B2 (en) Cement admixture and cement composition
JP4607148B2 (en) Cement admixture and cement composition
JP4908072B2 (en) Cement additive and cement composition
JP6338819B2 (en) Concrete composition and method for producing the same
JP3765690B2 (en) Low environmental load cement admixture and cement composition
JP7287577B2 (en) Method for producing cured geopolymer and method for producing geopolymer composition
KR102377413B1 (en) Composite of Eco Friendly Ground Hardening Materials Having High Strength and Constructing Methods Using Thereof
JP2003095717A (en) Cement admixture, cement composition, and cement concrete obtained by using the same
KR101188498B1 (en) Composition for non-cement concrete using bottom ash and manufacturing method thereof
JP2008105909A (en) Cement admixture and cement composition
JP2540422B2 (en) Rolling compact concrete paving material
JP2010163320A (en) Cement additive and cement composition
JP4057970B2 (en) Cement concrete admixture
JP5102502B2 (en) Cement additive and cement composition
JP2009185159A (en) Soil-improving material and soil-improving method
JP6479461B2 (en) Cement additive and cement composition
JP6235798B2 (en) Aggregate and manufacturing method thereof
JP6003900B2 (en) Cement admixture manufacturing method
JP2006233576A (en) Paving material using converter slag dust
WO2018025431A1 (en) Cement additive and cement composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

R150 Certificate of patent or registration of utility model

Ref document number: 4607148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250