JP4605089B2 - Surface inspection device - Google Patents

Surface inspection device Download PDF

Info

Publication number
JP4605089B2
JP4605089B2 JP2006131119A JP2006131119A JP4605089B2 JP 4605089 B2 JP4605089 B2 JP 4605089B2 JP 2006131119 A JP2006131119 A JP 2006131119A JP 2006131119 A JP2006131119 A JP 2006131119A JP 4605089 B2 JP4605089 B2 JP 4605089B2
Authority
JP
Japan
Prior art keywords
defect
light
repetitive pattern
pattern
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006131119A
Other languages
Japanese (ja)
Other versions
JP2007303904A (en
Inventor
和彦 深澤
健雄 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006131119A priority Critical patent/JP4605089B2/en
Publication of JP2007303904A publication Critical patent/JP2007303904A/en
Application granted granted Critical
Publication of JP4605089B2 publication Critical patent/JP4605089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、被検物体の表面に形成された繰り返しパターンの欠陥検査を行う表面検査装置に関する。   The present invention relates to a surface inspection apparatus for inspecting a defect of a repeated pattern formed on the surface of an object to be inspected.

被検物体(例えば半導体ウエハや液晶基板など)の表面に形成された繰り返しパターンに検査用の照明光を照射し、このとき繰り返しパターンから発生する光に基づいて、繰り返しパターンの欠陥検査を行う装置が知られている。この検査装置には、繰り返しパターンから発生する光の種類(例えば回折光や散乱光や正反射光など)に応じて、種々の方式がある。さらに、検査用の照明光についても、非偏光を用いる装置や、直線偏光を用いる装置(例えば特許文献1を参照)などが知られている。これらの検査装置は、何れも、被検物体の表面の比較的広い領域(例えば全域など)で、一括して繰り返しパターンの欠陥を検出可能であり、高スループットでの欠陥検査を可能とするものである。
国際公開2005/040776号パンフレット
An apparatus that irradiates a repetitive pattern formed on the surface of an object to be inspected (for example, a semiconductor wafer or a liquid crystal substrate) with inspection illumination light, and then inspects the defect of the repetitive pattern based on light generated from the repetitive pattern It has been known. There are various methods for this inspection apparatus depending on the type of light generated from the repetitive pattern (for example, diffracted light, scattered light, specularly reflected light, etc.). Further, for illumination light for inspection, a device using non-polarized light, a device using linearly polarized light (see, for example, Patent Document 1), and the like are known. All of these inspection devices can detect defects in repeated patterns at once in a relatively wide area (for example, the entire area) of the surface of the object to be tested, enabling defect inspection with high throughput. It is.
International Publication No. 2005/040776 Pamphlet

しかし、繰り返しパターンの欠陥には様々な種類がある。例えば被検物体に対する露光時の欠陥としてはデフォーカス欠陥とドーズ欠陥が代表的である。上記の装置では、これら各種の欠陥を区別して検出することが難しく、複数種類の欠陥を一括して検出しているのが現状であった。ところが、本発明者らが研究を重ねた結果、欠陥の検出感度は欠陥の種類と検出方式との組み合わせに大きく依存し、ある特定の検出方式では欠陥の種類によって十分な検出感度を得られないことが分かってきた。また、ある検出方式では十分な検出感度が得られない欠陥でも、別の検出方式を用いれば高感度に検出可能なことも分かってきた。   However, there are various types of repetitive pattern defects. For example, a defocus defect and a dose defect are typical as defects at the time of exposure of an object to be inspected. In the above-described apparatus, it is difficult to distinguish and detect these various types of defects, and it is the current situation that a plurality of types of defects are detected at once. However, as a result of repeated researches by the present inventors, the detection sensitivity of defects greatly depends on the combination of the type of defect and the detection method, and a specific detection method cannot obtain a sufficient detection sensitivity depending on the type of defect. I understand that. It has also been found that even a defect for which sufficient detection sensitivity cannot be obtained by a certain detection method can be detected with high sensitivity if another detection method is used.

本発明の目的は、繰り返しパターンの複数種類の欠陥に対して十分な検出感度を確保できる表面検査装置を提供することにある。   An object of the present invention is to provide a surface inspection apparatus capable of ensuring sufficient detection sensitivity for a plurality of types of defects in a repetitive pattern.

本発明の表面検査装置は、被検物体の表面に形成された繰り返しパターンを、非偏光状態の照明光により照明し、該繰り返しパターンで正反射光した前記照明光の強度に基づいて、前記繰り返しパターンの形状変化による前記強度の変化を測定する第1測定手段と、前記繰り返しパターンを、直線偏光状態の照明光により照明し、該繰り返しパターンの繰り返し方向と前記照明光の振動面の前記表面における方向との成す角度を斜めの角度に設定し、前記繰り返しパターンで正反射した前記照明光の偏光状態に基づいて、前記繰り返しパターンの形状変化による前記偏光状態の変化を測定する第2測定手段と、前記第1測定手段と前記第2測定手段との各々が前記繰り返しパターンを照明する際に用いる照明光の波長を異なる波長に設定する設定手段とを備えたものである。 The surface inspection apparatus of the present invention illuminates a repetitive pattern formed on the surface of an object to be examined with illumination light in a non- polarized state, and repeats the repetitive pattern based on the intensity of the illumination light specularly reflected by the repetitive pattern. First measuring means for measuring a change in intensity due to a change in pattern shape, and illuminating the repetitive pattern with illumination light in a linearly polarized state, the repetitive direction of the repetitive pattern and the vibration surface of the illumination light on the surface A second measuring unit that sets an angle formed with the direction to an oblique angle and measures a change in the polarization state due to a shape change of the repetitive pattern based on a polarization state of the illumination light regularly reflected by the repetitive pattern; The wavelength of illumination light used when each of the first measurement unit and the second measurement unit illuminates the repetitive pattern is set to a different wavelength. Those having a constant section.

また、前記設定手段は、前記第2測定手段が前記繰り返しパターンを照明する際の波長よりも前記第1測定手段が前記繰り返しパターンを照明する際の波長を短波長に設定することが好ましい。
また、前記設定手段は、前記第1測定手段が前記繰り返しパターンを照明する際の波長を前記繰り返しパターンでの反射率が該繰り返しパターンの下方の層での反射率よりも高くなる波長に設定することが好ましい。
Moreover, it is preferable that the setting means sets a wavelength when the first measuring means illuminates the repetitive pattern to be shorter than a wavelength when the second measuring means illuminates the repetitive pattern.
The setting means sets the wavelength when the first measuring means illuminates the repetitive pattern to a wavelength at which the reflectance at the repetitive pattern is higher than the reflectance at a layer below the repetitive pattern. It is preferable.

また、前記第1測定手段が測定した前記強度の変化と、前記第2測定手段が測定した前記偏光状態の変化とに基づいて、前記繰り返しパターンの欠陥を検出する検出手段を備えることが好ましい。
また、前記検出手段は、前記強度の変化に基づいて前記繰り返しパターンの第1種類の欠陥を検出し、前記偏光状態の変化に基づいて前記繰り返しパターンの第2種類の欠陥を検出し、前記表面のうち前記第1種類の欠陥と前記第2種類の欠陥との少なくとも一方が検出された箇所を前記繰り返しパターンの最終的な欠陥とすることが好ましい。
In addition, it is preferable to include a detecting unit that detects a defect in the repetitive pattern based on the change in the intensity measured by the first measuring unit and the change in the polarization state measured by the second measuring unit.
Further, the detecting means detects a first type of defect of the repetitive pattern based on the change in intensity, detects a second type of defect of the repetitive pattern based on the change in polarization state, and Among these, it is preferable that a place where at least one of the first type defect and the second type defect is detected is a final defect of the repetitive pattern.

また、前記第1種類の欠陥は、前記被検物体に対する露光時のドーズ欠陥であり、前記第2種類の欠陥は、前記被検物体に対する露光時のデフォーカス欠陥であることが好ましい。   Further, it is preferable that the first type of defect is a dose defect at the time of exposure of the object to be inspected, and the second type of defect is a defocus defect at the time of exposure of the object to be inspected.

本発明の表面検査装置によれば、繰り返しパターンの複数種類の欠陥に対して十分な検出感度を確保することができる。   According to the surface inspection apparatus of the present invention, sufficient detection sensitivity can be ensured for a plurality of types of defects in a repetitive pattern.

以下、図面を用いて本発明の実施形態を詳細に説明する。
本実施形態の表面検査装置10は、図1に示す通り、被検物体20を支持するステージ11と、アライメント系12と、照明系13と、受光系14と、画像処理部15と、制御部16とで構成される。
被検物体20は、例えば半導体ウエハや液晶ガラス基板などである。被検物体20の表面(レジスト層)には、図2に示すように、複数のチップ領域21が配列され、各チップ領域21の中に検査すべき繰り返しパターン22が形成されている。繰り返しパターン22は、配線パターンなどのライン・アンド・スペースのパターンである。繰り返しパターン22のライン部の配列方向(X方向)を「繰り返しパターン22の繰り返し方向」という。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the surface inspection apparatus 10 according to the present embodiment includes a stage 11 that supports a test object 20, an alignment system 12, an illumination system 13, a light receiving system 14, an image processing unit 15, and a control unit. 16.
The test object 20 is, for example, a semiconductor wafer or a liquid crystal glass substrate. As shown in FIG. 2, a plurality of chip regions 21 are arranged on the surface (resist layer) of the test object 20, and a repeated pattern 22 to be inspected is formed in each chip region 21. The repetitive pattern 22 is a line and space pattern such as a wiring pattern. The arrangement direction (X direction) of the line portions of the repetitive pattern 22 is referred to as “repetitive direction of the repetitive pattern 22”.

本実施形態の表面検査装置10は、半導体回路素子や液晶表示素子の製造工程において、被検物体20の表面に形成された繰り返しパターン22の欠陥検査を自動で行う装置である。この表面検査装置10には、表面(レジスト層)への露光・現像が終わった後の被検物体20が、不図示の搬送系によってカセットまたは現像装置から運ばれ、ステージ11に吸着される。   The surface inspection apparatus 10 according to this embodiment is an apparatus that automatically performs a defect inspection of a repeated pattern 22 formed on the surface of an object to be tested 20 in a manufacturing process of a semiconductor circuit element or a liquid crystal display element. In this surface inspection apparatus 10, the test object 20 after the exposure and development on the surface (resist layer) is carried from the cassette or the development apparatus by a conveyance system (not shown) and is attracted to the stage 11.

ステージ11は、被検物体20を上面に載置して例えば真空吸着により固定保持する。また、ステージ11には回転機構1Aが設けられる。ステージ11の回転軸は、被検物体20を載置する上面に垂直である。回転機構1Aは、制御部16からの指示にしたがってステージ11を回転させ、その上面に載置された被検物体20を回転させる。このため、被検物体20の繰り返しパターン22の繰り返し方向(図2のX方向)を、被検物体20の表面内で回転させることができる。   The stage 11 places the test object 20 on the upper surface and fixes and holds it, for example, by vacuum suction. The stage 11 is provided with a rotation mechanism 1A. The rotation axis of the stage 11 is perpendicular to the upper surface on which the test object 20 is placed. The rotating mechanism 1A rotates the stage 11 according to an instruction from the control unit 16, and rotates the object 20 placed on the upper surface thereof. For this reason, the repeating direction (X direction in FIG. 2) of the repeating pattern 22 of the test object 20 can be rotated within the surface of the test object 20.

アライメント系12は、ステージ11が回転しているときに、被検物体20の外縁部を照明し、外縁部に設けられた外形基準(例えばノッチ)の回転方向の位置に基づいて、被検物体20上の繰り返しパターン22の向きを検出する。アライメント系12による検出結果は制御部16に入力され、繰り返しパターン22の繰り返し方向(X方向)が所望の方向になると、ステージ11の回転が停止される。   The alignment system 12 illuminates the outer edge portion of the test object 20 when the stage 11 is rotating, and the test object is based on the position in the rotation direction of an external reference (for example, a notch) provided at the outer edge portion. The direction of the repeated pattern 22 on 20 is detected. The detection result by the alignment system 12 is input to the control unit 16, and the rotation of the stage 11 is stopped when the repeat direction (X direction) of the repeat pattern 22 becomes a desired direction.

繰り返しパターン22の所望の方向は、例えば、照明系13から繰り返しパターン22に照射される照明光L1の入射面3A(図3)を基準とし、この入射面3Aの方向と繰り返しパターン22の繰り返し方向(X方向)との成す角度φによって定められる。本実施形態では、角度φを斜めの角度に設定する(0度<φ<90度)。角度φは例えば45度である。なお、入射面3Aとは、照明光L1の照射方向と被検物体20の表面の法線とを含む平面である。   The desired direction of the repetitive pattern 22 is, for example, based on the incident surface 3A (FIG. 3) of the illumination light L1 emitted from the illumination system 13 to the repetitive pattern 22, and the direction of the incident surface 3A and the repetitive direction of the repetitive pattern 22 It is determined by an angle φ formed with (X direction). In the present embodiment, the angle φ is set to an oblique angle (0 degree <φ <90 degrees). The angle φ is 45 degrees, for example. The incident surface 3A is a plane including the irradiation direction of the illumination light L1 and the normal line of the surface of the test object 20.

照明系13は、被検物体20の表面に形成された繰り返しパターン22(図2,図3)に対して検査用の照明光L1を照射する手段であって、ランプハウス31と、ライトガイドファイバ33と、偏光板34と、凹面反射鏡35とで構成される。この照明系13は、被検物体20側に対してテレセントリックな光学系である。
ランプハウス31には、光源41と、レンズ42,43と、波長選択部(44〜46)と、不図示の光量調整部などが内蔵される。
The illumination system 13 is a means for irradiating the illumination light L1 for inspection to the repetitive pattern 22 (FIGS. 2 and 3) formed on the surface of the object 20 to be examined, and includes a lamp house 31 and a light guide fiber. 33, a polarizing plate 34, and a concave reflecting mirror 35. This illumination system 13 is an optical system that is telecentric with respect to the object 20 to be examined.
The lamp house 31 includes a light source 41, lenses 42 and 43, a wavelength selection unit (44 to 46), a light amount adjustment unit (not shown), and the like.

光源41は、ハロゲンランプやメタルハライドランプや水銀ランプなどの安価な放電光源であり、例えば180nm〜500nm程度の波長域の光を射出する。光源41からの光は、一方のレンズ42を介して平行光束に変換され、波長選択部(44〜46)と光量調整部(不図示)とを介した後、他方のレンズ43に入射する。
波長選択部(44〜46)は、透過波長域が異なる4種類のフィルタ44と、これらのフィルタ44を切り換える機構(ターレット45およびモータ46)とで構成され、レンズ42,43の間に挿入された1つのフィルタ44の透過波長域に応じて、レンズ42からの光の波長選択(つまり照明光L1の波長選択)を行う。
The light source 41 is an inexpensive discharge light source such as a halogen lamp, a metal halide lamp, or a mercury lamp, and emits light having a wavelength range of about 180 nm to 500 nm, for example. The light from the light source 41 is converted into a parallel light flux through one lens 42, enters the other lens 43 after passing through a wavelength selection unit (44 to 46) and a light amount adjustment unit (not shown).
The wavelength selection unit (44 to 46) includes four types of filters 44 having different transmission wavelength ranges, and a mechanism (turret 45 and motor 46) for switching these filters 44, and is inserted between the lenses 42 and 43. The wavelength selection of the light from the lens 42 (that is, the wavelength selection of the illumination light L1) is performed according to the transmission wavelength range of the single filter 44.

本実施形態では、4種類のフィルタ44の透過波長域を、光源41の輝線スペクトルの波長域、例えば436nm(g線),365nm(i線),248nm(KrFレーザの発振波長に相当),193nm(ArFレーザの発振波長に相当)とする。
波長選択部(44〜46)におけるフィルタ44の切り換え(つまり照明光L1の波長の設定)は、制御部16からの指示にしたがってモータ46が行う。
In this embodiment, the transmission wavelength ranges of the four types of filters 44 are the wavelength ranges of the emission line spectrum of the light source 41, for example, 436 nm (g line), 365 nm (i line), 248 nm (corresponding to the oscillation wavelength of the KrF laser), 193 nm. (Corresponding to the oscillation wavelength of ArF laser).
The motor 46 performs switching of the filter 44 (that is, setting of the wavelength of the illumination light L1) in the wavelength selection unit (44 to 46) in accordance with an instruction from the control unit 16.

この波長選択部(44〜46)を介して波長選択が成され、光量調整部(不図示)を介して光量調整が成された後の光は、レンズ43を介して、ライトガイドファイバ33の入射端に集光される。
ライトガイドファイバ33は、ランプハウス31のレンズ43から出射された光を伝送し、発散光束の照明光(非偏光)を射出する。
The light after the wavelength is selected via the wavelength selector (44 to 46) and the light amount is adjusted via the light amount adjuster (not shown) is transmitted through the lens 43 to the light guide fiber 33. It is condensed at the incident end.
The light guide fiber 33 transmits light emitted from the lens 43 of the lamp house 31 and emits illumination light (non-polarized light) as a divergent light beam.

偏光板34は、ライトガイドファイバ33の射出端近傍に配置され、その透過軸が所定の方位に設定される。そして、ライトガイドファイバ33からの発散光束の照明光(非偏光)を、透過軸の方位に応じた偏光状態(つまり直線偏光)に変換する。偏光板34の透過軸の方位は、繰り返しパターン22(図3)に対する照明光L1の入射面3Aと平行である。   The polarizing plate 34 is disposed in the vicinity of the exit end of the light guide fiber 33, and its transmission axis is set to a predetermined direction. Then, the illumination light (non-polarized light) of the divergent light beam from the light guide fiber 33 is converted into a polarization state (that is, linearly polarized light) according to the direction of the transmission axis. The direction of the transmission axis of the polarizing plate 34 is parallel to the incident surface 3A of the illumination light L1 with respect to the repeated pattern 22 (FIG. 3).

凹面反射鏡35は、球面の内側を反射面とした反射鏡であり、前側焦点がライトガイドファイバ33の射出端と略一致、後側焦点が被検物体20の表面と略一致するように配置される。このため、偏光板34からの発散光束の照明光(直線偏光)は、凹面反射鏡35によってコリメートされ、検査用の照明光L1として被検物体20上の繰り返しパターン22に照射される。   The concave reflecting mirror 35 is a reflecting mirror whose inner surface is a reflecting surface, and is arranged so that the front focal point substantially coincides with the exit end of the light guide fiber 33 and the rear focal point substantially coincides with the surface of the object 20 to be examined. Is done. For this reason, the illumination light (linearly polarized light) of the divergent light beam from the polarizing plate 34 is collimated by the concave reflecting mirror 35 and irradiated to the repetitive pattern 22 on the test object 20 as the illumination light L1 for inspection.

また、上記の偏光板34は、ライトガイドファイバ33と凹面反射鏡35との間の光路中(つまり発散光束の照明光の光路中)に出し入れ可能に構成され、図1に実線で示した光路中の位置から点線の位置へ退避可能となっている。これを実現するため、偏光板34には、駆動モータ4Aの回転軸が連結される。偏光板34は、駆動モータ4Aの回転軸を中心として回転可能である。偏光板34の回転(出し入れ)は、制御部16からの指示にしたがって駆動モータ4Aが行う。   Further, the polarizing plate 34 is configured to be able to enter and exit in the optical path between the light guide fiber 33 and the concave reflecting mirror 35 (that is, in the optical path of the diverging light beam), and the optical path indicated by the solid line in FIG. It is possible to retreat from the middle position to the dotted line position. In order to realize this, the rotating shaft of the drive motor 4 </ b> A is connected to the polarizing plate 34. The polarizing plate 34 can rotate around the rotation axis of the drive motor 4A. The drive motor 4 </ b> A rotates (in / out) the polarizing plate 34 in accordance with an instruction from the control unit 16.

偏光板34を光路中から退避させたときには、ライトガイドファイバ33からの発散光束の照明光(非偏光)がそのまま凹面反射鏡35に入射する。そして、凹面反射鏡35によってコリメートされ、検査用の照明光L1として被検物体20上の繰り返しパターン22に照射される。
このように、上記の照明系13では、ライトガイドファイバ33と凹面反射鏡35との間の光路中に偏光板34を配置したときに、直線偏光の照明光L1によって繰り返しパターン22を照明することができ、また、その光路中から偏光板34を退避させたときに、非偏光の照明光L1によって繰り返しパターン22を照明することができる。
When the polarizing plate 34 is retracted from the optical path, the illumination light (non-polarized light) of the divergent light beam from the light guide fiber 33 is incident on the concave reflecting mirror 35 as it is. Then, the light is collimated by the concave reflecting mirror 35 and irradiated on the repetitive pattern 22 on the object 20 as the illumination light L1 for inspection.
As described above, in the illumination system 13, when the polarizing plate 34 is arranged in the optical path between the light guide fiber 33 and the concave reflecting mirror 35, the pattern 22 is repeatedly illuminated with the linearly polarized illumination light L1. In addition, when the polarizing plate 34 is retracted from the optical path, the pattern 22 can be repeatedly illuminated with the non-polarized illumination light L1.

さらに、上記の照明系13では、ランプハウス31の波長選択部(44〜46)のフィルタ44を切り換えることで、直線偏光の照明光L1の波長と、非偏光の照明光L1の波長とを、異なる波長に設定することもできる。例えば、本実施形態では、直線偏光の照明光L1の波長を365nmとし、非偏光の照明光L1の波長を248nmとして、直線偏光の照明光L1の波長よりも非偏光の照明光L1の波長を短波長に設定する。   Furthermore, in said illumination system 13, by switching the filter 44 of the wavelength selection part (44-46) of the lamp house 31, the wavelength of the linearly polarized illumination light L1 and the wavelength of the non-polarized illumination light L1 are obtained. Different wavelengths can also be set. For example, in this embodiment, the wavelength of the linearly polarized illumination light L1 is 365 nm, the wavelength of the nonpolarized illumination light L1 is 248 nm, and the wavelength of the nonpolarized illumination light L1 is greater than the wavelength of the linearly polarized illumination light L1. Set to short wavelength.

また、何れの場合でも、照明光L1は、被検物体20の表面の比較的広い領域(例えば全域など)の各点に対して、斜め上方から略一定の角度条件で入射する。これは、ランプハウス31からの光束を発散させた後、凹面反射鏡35でコリメートすることにより実現する。被検物体20の表面の全域を照明すれば、表面の全域で一括して繰り返しパターン22の欠陥を検出可能となり、高スループットでの欠陥検査が可能となる。   In any case, the illumination light L1 is incident on each point in a relatively wide area (for example, the entire area) of the surface of the test object 20 from above at an approximately constant angle condition. This is achieved by collimating with the concave reflecting mirror 35 after diverging the light beam from the lamp house 31. By illuminating the entire area of the surface of the object to be inspected 20, it becomes possible to detect the defects of the pattern 22 all at once over the entire area of the surface, and to perform defect inspection at a high throughput.

上記の直線偏光または非偏光の照明光L1を用いて繰り返しパターン22を照明すると、繰り返しパターン22からは正反射光L2が発生する。なお、本実施形態では、繰り返しパターン22のピッチ(例えば110nm)が照明光L1の波長(例えば365nm)と比較して十分小さいため、照明光L1が照射されたときに、繰り返しパターン22から回折光が発生することはない。   When the repeated pattern 22 is illuminated using the linearly polarized light or the non-polarized illumination light L <b> 1, regular reflected light L <b> 2 is generated from the repeated pattern 22. In this embodiment, since the pitch (for example, 110 nm) of the repeated pattern 22 is sufficiently smaller than the wavelength of the illumination light L1 (for example, 365 nm), the diffracted light from the repeated pattern 22 is emitted when the illumination light L1 is irradiated. Will not occur.

本実施形態の表面検査装置10は、直線偏光または非偏光の照明光L1によって被検物体20の表面の繰り返しパターン22を照明し、このとき繰り返しパターン22から発生する正反射光L2を受光系14に導き、正反射光L2の強度または偏光状態に基づいて、繰り返しパターン22の欠陥検査を行うものである。照明光L1の波長は、照明光L1が直線偏光の場合と非偏光の場合とで異なり、例えば、直線偏光では365nm、非偏光では248nmとする。   The surface inspection apparatus 10 according to the present embodiment illuminates the repetitive pattern 22 on the surface of the test object 20 with linearly polarized light or non-polarized illumination light L1, and at this time the regular reflection light L2 generated from the repetitive pattern 22 is received by the light receiving system 14. Then, the defect inspection of the repeated pattern 22 is performed based on the intensity or polarization state of the regular reflection light L2. The wavelength of the illumination light L1 differs depending on whether the illumination light L1 is linearly polarized light or non-polarized light. For example, the wavelength is 365 nm for linearly polarized light and 248 nm for nonpolarized light.

受光系14は、繰り返しパターン22から発生した正反射光L2に基づいて受光信号を出力する手段であって、凹面反射鏡36と、偏光板37と、集光レンズ38と、撮像素子39とで構成される。受光系14は、被検物体20側に対してテレセントリックな光学系である。
凹面反射鏡36は、照明系13の凹面反射鏡35と同様の構成であり、被検物体20の表面の繰り返しパターン22から発生した正反射光L2を反射して集光光束に変換し、偏光板37の方に導く。そして、凹面反射鏡36からの光(正反射光L2)は、偏光板37を透過した後、集光レンズ38を介して、撮像素子39に入射する。
The light receiving system 14 is a means for outputting a light reception signal based on the regular reflection light L2 generated from the repetitive pattern 22, and includes a concave reflecting mirror 36, a polarizing plate 37, a condensing lens 38, and an image sensor 39. Composed. The light receiving system 14 is an optical system telecentric with respect to the object 20 to be examined.
The concave reflecting mirror 36 has the same configuration as the concave reflecting mirror 35 of the illumination system 13, reflects the regular reflection light L 2 generated from the repetitive pattern 22 on the surface of the object 20 to be converted into a condensed light beam, Guide to the plate 37. Then, the light from the concave reflecting mirror 36 (regular reflection light L2) passes through the polarizing plate 37 and then enters the image sensor 39 through the condenser lens 38.

ただし、偏光板37は、凹面反射鏡36と集光レンズ38との間の光路中(つまり集光光束の正反射光L2の光路中)に出し入れ可能に構成され、図1に実線で示した光路中の位置から点線の位置へ退避可能である。これを実現するため、偏光板37には、駆動モータ7Aの回転軸が連結される。偏光板37は、駆動モータ7Aの回転軸を中心として回転可能である。偏光板37の回転(出し入れ)は、制御部16からの指示にしたがって駆動モータ7Aが行う。   However, the polarizing plate 37 is configured to be able to enter and exit in the optical path between the concave reflecting mirror 36 and the condenser lens 38 (that is, in the optical path of the regular reflected light L2 of the condensed light flux), and is shown by a solid line in FIG. It is possible to retreat from the position in the optical path to the dotted line position. In order to realize this, the rotating shaft of the drive motor 7 </ b> A is connected to the polarizing plate 37. The polarizing plate 37 can rotate around the rotation axis of the drive motor 7A. The drive motor 7 </ b> A rotates (in / out) the polarizing plate 37 in accordance with an instruction from the control unit 16.

偏光板37を光路中から退避させたときには、繰り返しパターン22からの正反射光L2が、そのまま(偏光板37を介さずに)撮像素子39に入射する。また、偏光板37を光路中に配置したときには、繰り返しパターン22からの正反射光L2が、偏光板37を介して撮像素子39に入射する。
偏光板37は、光路中に配置されたとき、集光レンズ38の近傍に配置され、その透過軸が次のような所定の方位に設定される。つまり、偏光板37の透過軸の方位は、照明光L1の入射面3A(図3)に対して直交するように設定される。
When the polarizing plate 37 is retracted from the optical path, the regular reflection light L2 from the repetitive pattern 22 enters the image sensor 39 as it is (without passing through the polarizing plate 37). When the polarizing plate 37 is disposed in the optical path, the regular reflection light L2 from the repeated pattern 22 enters the image sensor 39 through the polarizing plate 37.
When the polarizing plate 37 is disposed in the optical path, it is disposed in the vicinity of the condensing lens 38, and its transmission axis is set to the following predetermined orientation. That is, the direction of the transmission axis of the polarizing plate 37 is set to be orthogonal to the incident surface 3A (FIG. 3) of the illumination light L1.

そして、偏光板37の出し入れの状態に拘わらず、撮像素子39の撮像面には、被検物体20の表面の各点(繰り返しパターン22)からの正反射光L2に応じて、被検物体20の表面の反射像が形成される。
撮像素子39は、被検物体20の表面と共役な位置に配置される。撮像素子39は、例えばCCD撮像素子などであり、撮像面に形成された被検物体20の反射像を光電変換して、画像信号(正反射光L2に関わる情報)を画像処理部15に出力する。
Regardless of the state in which the polarizing plate 37 is put in and out, the object to be detected 20 is applied to the image pickup surface of the image pickup device 39 in accordance with the regular reflection light L2 from each point (repetitive pattern 22) on the surface of the object to be detected 20. A reflection image of the surface is formed.
The image sensor 39 is disposed at a position conjugate with the surface of the test object 20. The image sensor 39 is a CCD image sensor, for example, and photoelectrically converts a reflected image of the test object 20 formed on the imaging surface and outputs an image signal (information related to the regular reflection light L2) to the image processing unit 15. To do.

画像処理部15は、撮像素子39から出力される画像信号に基づいて、被検物体20の反射画像を取り込む。そして、繰り返しパターン22の欠陥を検出する処理を行う。
次に、本実施形態の表面検査装置10における繰り返しパターン22の欠陥検査の手順を説明する。ここでは、繰り返しパターン22の欠陥のうち、被検物体20に対する露光時の欠陥(つまりデフォーカス欠陥とドーズ欠陥)の検出について説明する。ちなみに、露光時の欠陥は、被検物体20のショット領域ごとに現れる。
The image processing unit 15 captures a reflected image of the test object 20 based on the image signal output from the image sensor 39. And the process which detects the defect of the repeating pattern 22 is performed.
Next, a procedure for defect inspection of the repeated pattern 22 in the surface inspection apparatus 10 of the present embodiment will be described. Here, detection of a defect (that is, a defocus defect and a dose defect) at the time of exposure of the object 20 among the defects of the repeated pattern 22 will be described. Incidentally, the defect at the time of exposure appears for each shot area of the test object 20.

デフォーカス欠陥とは、被検物体20に対する露光時のデフォーカス量(露光機による露光時のフォーカス位置のずれ量)が許容レベルを超えて大きくなったときに発生する欠陥であり、図4に示すような繰り返しパターン22の形状変化(つまりライン部のエッジE1,E2の傾き角θの変化)として現れる。露光時のフォーカスが適正値の場合(図4(a))、繰り返しパターン22のエッジE1,E2は垂直になる。そして、露光時のフォーカスが適正値から外れると(図4(b),(c))、エッジE1,E2が傾くことになる(θ≠90度)。ただし、デフォーカス量によって繰り返しパターン22のピッチPやライン部の線幅Dが変化することはない。 The defocus defect is a defect that occurs when the defocus amount at the time of exposure of the object 20 to be inspected (the amount of shift of the focus position at the time of exposure by the exposure machine) exceeds an allowable level, and is shown in FIG. It appears as a shape change of the repeated pattern 22 as shown (that is, a change in the inclination angle θ of the edges E 1 and E 2 of the line portion). When the focus during exposure is an appropriate value (FIG. 4A), the edges E 1 and E 2 of the repetitive pattern 22 are vertical. When the focus during exposure deviates from an appropriate value (FIGS. 4B and 4C), the edges E 1 and E 2 are inclined (θ ≠ 90 degrees). However, the pitch P of the repeated pattern 22 and the line width D of the line portion do not change depending on the defocus amount.

ドーズ欠陥とは、被検物体20に対する露光時のドーズ量(露光機による露光時の露光量)が許容レベルを超えて大きくなったり小さくなったりしたときに発生する欠陥であり、図5に示すような繰り返しパターン22の形状変化(つまりライン部の線幅Dの変化)として現れる。露光時のドーズ量が適正値の場合(図5(a))、繰り返しパターン22の線幅Dは設計値の通りになる。そして、露光時のドーズ量が適正値から外れると(図5(b),(c))、その線幅Dが設計値とは異なってくる。ただし、ドーズ量によって繰り返しパターン22のピッチPやライン部のエッジE1,E2の傾き角θが変化することはない。 The dose defect is a defect that occurs when the dose amount (exposure amount at the time of exposure by the exposure machine) of the object 20 to be inspected increases or decreases beyond an allowable level, and is shown in FIG. Such a change in the shape of the repeated pattern 22 (that is, a change in the line width D of the line portion) appears. When the dose amount at the time of exposure is an appropriate value (FIG. 5A), the line width D of the repetitive pattern 22 is as designed. When the dose amount at the time of exposure deviates from an appropriate value (FIGS. 5B and 5C), the line width D becomes different from the design value. However, the pitch P of the repeated pattern 22 and the inclination angle θ of the edges E 1 and E 2 of the line portion do not change depending on the dose amount.

このような2種類の欠陥(デフォーカス欠陥とドーズ欠陥)の検出に関し、本発明者らが研究を重ねた結果、次のような2つの検出方式を用いれば、デフォーカス欠陥とドーズ欠陥とを区別して検出可能なことが分かってきた。
第1の検出方式は、デフォーカス欠陥に対して十分な検出感度を確保できるが、ドーズ欠陥には十分な検出感度を得られない。このため、第1の検出方式を用いれば、繰り返しパターン22のデフォーカス欠陥を選択的に検出することができる。
Regarding the detection of these two types of defects (defocus defect and dose defect), as a result of repeated researches by the present inventors, if the following two detection methods are used, defocus defects and dose defects are detected. It has been found that it can be distinguished and detected.
The first detection method can ensure sufficient detection sensitivity for defocus defects, but cannot provide sufficient detection sensitivity for dose defects. For this reason, if the 1st detection system is used, the defocus defect of the repeating pattern 22 can be detected selectively.

逆に、第2の検出方式は、ドーズ欠陥に対して十分な検出感度を確保できるが、デフォーカス欠陥には十分な検出感度を得られない。このため、第2の検出方式を用いれば、繰り返しパターン22のドーズ欠陥を選択的に検出することができる。
本実施形態の表面検査装置10は、照明系13の偏光板34を光路中に出し入れ可能とし、受光系14の偏光板37を光路中に出し入れ可能としたことにより、第1の検出方式と第2の検出方式との双方を実現できるようになっている。また、偏光板34,37の出し入れに合わせて波長選択部(44〜46)のフィルタ44の切り換えを行い、照明光L1の波長を変更可能になっている。
Conversely, the second detection method can secure sufficient detection sensitivity for dose defects, but cannot provide sufficient detection sensitivity for defocus defects. For this reason, if the 2nd detection system is used, the dose defect of the repeating pattern 22 can be selectively detected.
The surface inspection apparatus 10 of the present embodiment allows the polarizing plate 34 of the illumination system 13 to be taken in and out of the optical path and the polarizing plate 37 of the light receiving system 14 to be taken in and out of the optical path. Both of the two detection methods can be realized. Further, the wavelength of the illumination light L1 can be changed by switching the filter 44 of the wavelength selection unit (44 to 46) in accordance with the insertion and removal of the polarizing plates 34 and 37.

繰り返しパターン22の欠陥検査の際、制御部16は、照明系13の駆動モータ4Aと受光系14の駆動モータ7Aとを制御して、2枚の偏光板34,37の回転(出し入れ)を連動して行うように指示を出す。つまり、偏光板34,37のうち一方を光路中に配置するときは他方も光路中に配置し、一方を光路中から退避させるときは他方も光路中から退避させる。そして、偏光板34,37の双方を配置または退避させた各状態で、次のような 処理を行う。   At the time of defect inspection of the repeated pattern 22, the control unit 16 controls the drive motor 4 </ b> A of the illumination system 13 and the drive motor 7 </ b> A of the light receiving system 14 to interlock the rotation (in and out) of the two polarizing plates 34 and 37. And give instructions to do. That is, when one of the polarizing plates 34 and 37 is disposed in the optical path, the other is also disposed in the optical path, and when one is retracted from the optical path, the other is also retracted from the optical path. Then, the following processing is performed in each state where both the polarizing plates 34 and 37 are disposed or retracted.

まず、第1の検出方式を用いて、繰り返しパターン22のデフォーカス欠陥を選択的に検出するため、偏光板34,37の双方を光路中に配置する。また、照明光L1の波長は、偏光板34,37の光学特性に応じて設定され、偏光板34,37として繰り返しパターン22のデフォーカス欠陥の検出に適した光学特性のものを使用するために、例えば365nmに設定される。   First, in order to selectively detect the defocus defect of the repetitive pattern 22 using the first detection method, both the polarizing plates 34 and 37 are arranged in the optical path. In addition, the wavelength of the illumination light L1 is set according to the optical characteristics of the polarizing plates 34 and 37, and the polarizing plates 34 and 37 have optical characteristics suitable for detecting defocus defects of the repeated pattern 22. For example, it is set to 365 nm.

このとき、照明系13の偏光板34の透過軸の方位は、上記の通り、照明光L1の入射面3A(図3)と平行である。また、受光系14の偏光板37の透過軸の方位は、照明光L1の入射面3Aに対して垂直である。すなわち、2枚の偏光板34,37は、それぞれの透過軸が互いに直交するように配置される(クロスニコルの配置)。
そして、照明系13の偏光板34を介して得られる直線偏光の照明光L1によって繰り返しパターン22が照明され(波長:365nm)、このとき繰り返しパターン22から発生する正反射光L2が受光系14の偏光板37を介して撮像素子39に入射する。
At this time, the orientation of the transmission axis of the polarizing plate 34 of the illumination system 13 is parallel to the incident surface 3A (FIG. 3) of the illumination light L1 as described above. The orientation of the transmission axis of the polarizing plate 37 of the light receiving system 14 is perpendicular to the incident surface 3A of the illumination light L1. That is, the two polarizing plates 34 and 37 are arranged so that their transmission axes are orthogonal to each other (crossed Nicol arrangement).
Then, the repetitive pattern 22 is illuminated by the linearly polarized illumination light L1 obtained through the polarizing plate 34 of the illumination system 13 (wavelength: 365 nm). At this time, the regular reflection light L2 generated from the repetitive pattern 22 is transmitted from the light receiving system 14. The light enters the image sensor 39 through the polarizing plate 37.

ここで、本実施形態において、直線偏光の照明L1はp偏光である。つまり、図6(a)に示す通り、照明光L1の進行方向と電気(または磁気)ベクトルの振動方向とを含む平面(照明光L1の振動面)は、照明光L1の入射面(3A)内に含まれる。
したがって、照明光L1の入射面3A(図3)の方向と、繰り返しパターン22の繰り返し方向(X方向)との成す角度φを、斜めの角度(0度<φ<90度)に設定する場合には、図7に示す通り、被検物体20の表面における照明光L1の振動面の方向(V方向)と、繰り返しパターン22の繰り返し方向(X方向)との成す角度φも、斜めの角度(0度<φ<90度)に設定することができる。角度φは例えば45度である。
Here, in the present embodiment, the linearly polarized illumination L1 is p-polarized light. That is, as shown in FIG. 6A, the plane (vibration plane of the illumination light L1) including the traveling direction of the illumination light L1 and the vibration direction of the electric (or magnetic) vector is the incident surface (3A) of the illumination light L1. Contained within.
Therefore, the angle φ formed by the direction of the incident surface 3A (FIG. 3) of the illumination light L1 and the repeating direction (X direction) of the repeating pattern 22 is set to an oblique angle (0 ° <φ <90 °). As shown in FIG. 7, the angle φ formed by the direction of the vibration surface (V direction) of the illumination light L1 on the surface of the test object 20 and the repeating direction (X direction) of the repeating pattern 22 is also an oblique angle. (0 degree <φ <90 degree) can be set. The angle φ is 45 degrees, for example.

換言すると、直線偏光の照明光L1は、被検物体20の表面における振動面の方向(図7のV方向)が、繰り返しパターン22の繰り返し方向(X方向)に対して角度φ(例えば45度)だけ傾いた状態で、つまり繰り返しパターン22を斜めに横切るような状態で、繰り返しパターン22に入射する。
このような照明光L1と繰り返しパターン22との角度状態は、被検物体20の表面の全域において均一である。なお、45度を135度,225度,315度の何れかに言い換えても、照明光L1と繰り返しパターン22との角度状態は同じである。
In other words, in the linearly polarized illumination light L1, the direction of the vibration surface (the V direction in FIG. 7) on the surface of the test object 20 has an angle φ (for example, 45 degrees) with respect to the repeat direction (X direction) of the repeat pattern 22. ) Is inclined, that is, is incident on the repetitive pattern 22 in a state of crossing the repetitive pattern 22 diagonally.
Such an angle state between the illumination light L1 and the repetitive pattern 22 is uniform over the entire surface of the test object 20. It should be noted that the angle state between the illumination light L1 and the repetitive pattern 22 is the same even if 45 degrees is replaced with any one of 135 degrees, 225 degrees, and 315 degrees.

そして、上記の照明光L1(直線偏光)を用いて繰り返しパターン22を照明すると、繰り返しパターン22の異方性に起因する構造性複屈折(form birefringence)によって直線偏光(照明光L1)が楕円化し、繰り返しパターン22から楕円偏光の正反射光L2(図6(b))が発生する。
繰り返しパターン22による直線偏光の楕円化とは、繰り返しパターン22に入射する直線偏光の振動面(ここでは照明光L1の入射面と一致)に対し、この振動面に直交する新たな偏光成分L3(図6(c))が生じることを意味する。
When the repeated pattern 22 is illuminated using the illumination light L1 (linearly polarized light), the linearly polarized light (illuminated light L1) is ellipticalized by structural birefringence caused by the anisotropy of the repeated pattern 22. The elliptically polarized specularly reflected light L2 (FIG. 6B) is generated from the repeated pattern 22.
The ellipticalization of linearly polarized light by the repetitive pattern 22 is a new polarization component L3 (perpendicular to the vibration surface of the linearly polarized light incident on the repetitive pattern 22 (here, coincides with the incident surface of the illumination light L1)). This means that FIG. 6 (c)) occurs.

また、直線偏光の楕円化の程度は、新たな偏光成分L3(図6(c))の大きさによって表すことができ、図4に示す繰り返しパターン22のライン部のエッジE1,E2の傾き角θの変化(デフォーカス欠陥)に依存して大きく変化することが、本発明者らの研究により分かった。さらに、図5に示すライン部の線幅Dの変化(ドーズ欠陥)に対する依存性は非常に小さいことも分かった。 Further, the degree of ovalization of linearly polarized light can be expressed by the size of a new polarization component L3 (FIG. 6C), and the edges E 1 and E 2 of the line portions of the repetitive pattern 22 shown in FIG. It has been found by the present inventors that the change greatly depends on the change of the tilt angle θ (defocus defect). Further, it was found that the dependence on the change (dose defect) in the line width D of the line portion shown in FIG. 5 is very small.

つまり、被検物体20の表面の各点(繰り返しパターン22)において、被検物体20に対する露光時のデフォーカス量やドーズ量の変化によって繰り返しパターン22の形状変化(図4,図5)が発生しても、直線偏光の楕円化の程度(図6(c)の偏光成分L3の 大きさ)を変化させ得るのは、図4に示すエッジE1,E2の傾き角θの変化(デフォーカス欠陥)のみであることが分かった。 That is, at each point (repeated pattern 22) on the surface of the test object 20, a change in the shape of the repetitive pattern 22 (FIGS. 4 and 5) occurs due to a change in the defocus amount and dose amount during exposure of the test object 20. Even so, the degree of ellipticalization of linearly polarized light (the magnitude of the polarization component L3 in FIG. 6C) can be changed by changing the inclination angle θ of the edges E 1 and E 2 shown in FIG. It was found that this was only a focus defect.

さらに、傾向として、直線偏光の楕円化の程度(図6(c)の偏光成分L3の 大きさ)は、図4(a)に示すようにライン部のエッジE1,E2が垂直な場合(露光時のフォーカスが適正値の場合)に最も大きくなり、図4(b),(c)のようにエッジE1,E2の傾き角θが90度から外れる(露光時のフォーカスが適正値から外れる)ほど小さくなることも分かった。 Furthermore, as a trend, the degree of ellipticalization of linearly polarized light (the magnitude of the polarization component L3 in FIG. 6C) is the case where the edges E 1 and E 2 of the line part are vertical as shown in FIG. (When the focus at the time of exposure is an appropriate value), the inclination angle θ of the edges E 1 and E 2 deviates from 90 degrees as shown in FIGS. 4B and 4C (the focus at the time of exposure is appropriate). It was also found that the smaller the value, the smaller.

このような直線偏光の楕円化の結果、繰り返しパターン22からは楕円偏光の正反射光L2(図6(b))が発生する。なお、楕円化の詳細な説明は、本出願人が既に出願した国際公開2005/040776号パンフレットに記載されているので、ここでは詳しい説明を省略する。また、上記の通り、繰り返しパターン22のピッチ(110nm)が照明光L1の波長(365nm)と比較して十分小さいため、繰り返しパターン22から回折光が発生することはない。   As a result of the ovalization of the linearly polarized light, elliptically polarized specularly reflected light L2 (FIG. 6B) is generated from the repeated pattern 22. The detailed explanation of the ovalization is described in the pamphlet of International Publication No. 2005/040776 filed by the applicant of the present application. Further, as described above, since the pitch (110 nm) of the repeated pattern 22 is sufficiently smaller than the wavelength (365 nm) of the illumination light L1, diffracted light is not generated from the repeated pattern 22.

直線偏光の照明光L1を照射したときに繰り返しパターン22から発生する楕円偏光の正反射光L2(図6(b))は、上記の直線偏光の楕円化により生じた新たな偏光成分L3(図6(c))を含み、この偏光成分L3の大きさが、正反射光L2の偏光状態を表している。なお、上記の説明から分かるように、正反射光L2の偏光状態(図6(c)の偏光成分L3の大きさ)は、図4に示す繰り返しパターン22のエッジE1,E2の傾き角θの変化(デフォーカス欠陥)に依存して大きく変化する。 The elliptically polarized specularly reflected light L2 (FIG. 6B) generated from the repetitive pattern 22 when irradiated with the linearly polarized illumination light L1 is a new polarization component L3 (FIG. 6B) generated by the above ellipticalization of the linearly polarized light. 6 (c)), and the magnitude of the polarization component L3 represents the polarization state of the regular reflection light L2. As can be seen from the above description, the polarization state of the regular reflection light L2 (the magnitude of the polarization component L3 in FIG. 6C) is the inclination angle of the edges E 1 and E 2 of the repetitive pattern 22 shown in FIG. It varies greatly depending on the change of θ (defocus defect).

したがって、第1の検出方式では、繰り返しパターン22から発生した正反射光L2を受光系14(図1)に導いて、受光系14の光路中の偏光板37を透過する際に、正反射光L2の偏光成分L3(図6(c))を抽出する。そして、この偏光成分L3のみを撮像素子39に入射させ、撮像素子39からの出力に基づいて、被検物体20の反射画像を画像処理部15に取り込む。   Therefore, in the first detection method, the specularly reflected light L2 generated from the repetitive pattern 22 is guided to the light receiving system 14 (FIG. 1) and transmitted through the polarizing plate 37 in the optical path of the light receiving system 14, so that the specularly reflected light is reflected. A polarization component L3 (FIG. 6C) of L2 is extracted. Then, only the polarization component L3 is made incident on the image sensor 39, and the reflected image of the object 20 to be examined is taken into the image processor 15 based on the output from the image sensor 39.

被検物体20の反射画像には、被検物体20の表面の各点(繰り返しパターン22)から発生した正反射光L2の偏光成分L3(図6(c))の大きさに応じた明暗、つまり、正反射光L2の偏光状態に応じた明暗が現れる。なお、反射画像の明暗は、被検物体20の表面のショット領域ごとに変化し、偏光成分L3の大きさに略比例する。
さらに、上記の説明から分かるように、被検物体20の反射画像の明暗は、図4に示す繰り返しパターン22のエッジE1,E2の傾き角θの変化(デフォーカス欠陥)に依存して大きく変化する。傾向としては、エッジE1,E2が垂直に近い理想的な形状(図4(a))ほど明るく、垂直から外れるほど暗くなる(図4(b),(c)参照)。
In the reflected image of the test object 20, brightness and darkness corresponding to the magnitude of the polarization component L 3 (FIG. 6C) of the regular reflection light L 2 generated from each point (repetitive pattern 22) on the surface of the test object 20, That is, light and dark appear according to the polarization state of the regular reflection light L2. Note that the brightness of the reflected image changes for each shot region on the surface of the test object 20, and is approximately proportional to the magnitude of the polarization component L3.
Further, as can be seen from the above description, the brightness of the reflected image of the test object 20 depends on the change in the inclination angle θ (defocus defect) of the edges E 1 and E 2 of the repetitive pattern 22 shown in FIG. It changes a lot. As the tendency, the edges E 1 and E 2 are brighter in an ideal shape (FIG. 4A) that is nearly vertical, and darker as they deviate from the vertical (see FIGS. 4B and 4C).

したがって、画像処理部15は、被検物体20の反射画像を取り込むと、その輝度情報と例えば良品サンプルの反射画像の輝度情報とを比較する。良品サンプルとは、露光時のフォーカスを適正値に保って、理想的な形状(図4(a))の繰り返しパターン22を表面全域に形成したものである。また、良品サンプルの反射画像の輝度情報は、最も高い輝度値を示すと考えられる。   Therefore, when the image processing unit 15 captures the reflection image of the test object 20, the image processing unit 15 compares the luminance information with the luminance information of the reflection image of the non-defective sample, for example. A non-defective sample is a sample in which a repetitive pattern 22 having an ideal shape (FIG. 4A) is formed over the entire surface while maintaining an appropriate focus during exposure. Further, it is considered that the luminance information of the reflected image of the non-defective sample shows the highest luminance value.

画像処理部15は、良品サンプルの反射画像の輝度値を基準とし、被検物体20の反射画像の輝度値の変化量(つまり低下量)を測定する。得られた輝度値の変化量(低下量)は、繰り返しパターン22のエッジE1,E2の傾き角θの変化(図4)による正反射光L2の偏光状態の変化を表している。
そして、画像処理部15は、被検物体20の反射画像における輝度値の変化量(つまり正反射光L2の偏光状態の変化)に基づいて、繰り返しパターン22のデフォーカス欠陥を検出する。例えば、輝度値の変化量が予め定めた閾値(許容値)より大きければ「欠陥」と判定し、閾値より小さければ「正常」と判定すればよい。また、良品サンプルを使わずに、被検物体20の反射画像の中での輝度値の変化量を所定の閾値と比較してもよい。
The image processing unit 15 measures the amount of change (that is, the amount of decrease) in the luminance value of the reflected image of the test object 20 based on the luminance value of the reflected image of the non-defective sample. The obtained change amount (decrease amount) of the luminance value represents a change in the polarization state of the regular reflection light L2 due to the change in the inclination angle θ of the edges E 1 and E 2 of the repetitive pattern 22 (FIG. 4).
Then, the image processing unit 15 detects a defocus defect of the repetitive pattern 22 based on the change amount of the luminance value in the reflected image of the test object 20 (that is, the change in the polarization state of the regular reflection light L2). For example, if the amount of change in luminance value is larger than a predetermined threshold (allowable value), it is determined as “defect”, and if it is smaller than the threshold, it is determined as “normal”. Further, the amount of change in the luminance value in the reflected image of the test object 20 may be compared with a predetermined threshold value without using a non-defective sample.

このように、第1の検出方式では、直線偏光の照明光L1により繰り返しパターン22を照明し(波長:365nm)、繰り返しパターン22から発生した正反射光L2の偏光状態(図6(c)の偏光成分L3の大きさ)に応じて被検物体20の反射画像を取り込み、この反射画像の明暗に基づいて、繰り返しパターン22のエッジE1,E2の傾き角θの変化(図4)による正反射光L2の偏光状態の変化を測定する。 Thus, in the first detection method, the repetitive pattern 22 is illuminated with the linearly polarized illumination light L1 (wavelength: 365 nm), and the polarization state of the regular reflection light L2 generated from the repetitive pattern 22 (in FIG. 6C). Depending on the magnitude of the polarization component L3), a reflection image of the test object 20 is taken in, and based on the brightness of the reflection image, the inclination angle θ of the edges E 1 and E 2 of the repetitive pattern 22 is changed (FIG. 4). A change in the polarization state of the regular reflection light L2 is measured.

したがって、第1の検出方式によれば、繰り返しパターン22のドーズ欠陥(図5)には十分な検出感度を得られないが、デフォーカス欠陥(図4)に対して十分な検出感度を確保でき、このデフォーカス欠陥を選択的に検出することができる。なお、図7の振動面の方向(V方向)と繰り返し方向(X方向)との成す角度φを45度に設定すれば、繰り返しパターン22のデフォーカス欠陥の検出感度を最も高くすることができる。   Therefore, according to the first detection method, sufficient detection sensitivity cannot be obtained for the dose defect (FIG. 5) of the repeated pattern 22, but sufficient detection sensitivity can be secured for the defocus defect (FIG. 4). This defocus defect can be selectively detected. If the angle φ formed by the direction of the vibration plane (V direction) and the repeat direction (X direction) in FIG. 7 is set to 45 degrees, the defocus defect detection sensitivity of the repeat pattern 22 can be maximized. .

次に、第2の検出方式を用いて、繰り返しパターン22のドーズ欠陥(図5)を選択的に検出するため、偏光板34,37の双方を光路中から退避させる。また、照明光L1の波長は、偏光板34,37の光学特性ではなく、被検物体20の光学特性に応じて設定され、繰り返しパターン22のドーズ欠陥の検出を良好に行える波長(例えば248nm)に設定される。   Next, in order to selectively detect the dose defect (FIG. 5) of the repetitive pattern 22 using the second detection method, both the polarizing plates 34 and 37 are retracted from the optical path. In addition, the wavelength of the illumination light L1 is set according to the optical characteristics of the object 20 to be detected, not the optical characteristics of the polarizing plates 34 and 37, and the wavelength (for example, 248 nm) that can detect the dose defect of the repeated pattern 22 satisfactorily. Set to

このとき、繰り返しパターン22は非偏光の照明光L1によって照明され(波長:248nm)、繰り返しパターン22から発生する非偏光の正反射光L2が、そのまま(偏光板37を介さずに)撮像素子39に入射する。そして、撮像素子39からの出力に基づいて、被検物体20の反射画像が画像処理部15に取り込まれる。
なお、非偏光の照明光L1を用いる場合でも、その入射面3A(図3)の方向と、繰り返しパターン22の繰り返し方向(X方向)との成す角度φは、第1の検出方式の場合と同様に、斜めの角度(0度<φ<90度)に設定すればよい。つまり、第1の検出方式から第2の検出方式に移行する際、繰り返しパターン22の向きを変える必要はない。第2の検出方式では、角度φを斜めの角度に設定することで、繰り返しパターン22からのノイズ光(例えば回折光など)を受光系14に導かれないようにすることができる。ただし、第2の検出方式では、角度φを0度に設定しても構わない。
At this time, the repetitive pattern 22 is illuminated by the non-polarized illumination light L1 (wavelength: 248 nm), and the non-polarized specularly reflected light L2 generated from the repetitive pattern 22 remains as it is (without passing through the polarizing plate 37). Is incident on. Based on the output from the image sensor 39, the reflected image of the test object 20 is taken into the image processing unit 15.
Even when the non-polarized illumination light L1 is used, the angle φ formed by the direction of the incident surface 3A (FIG. 3) and the repeat direction (X direction) of the repeat pattern 22 is the same as that in the first detection method. Similarly, an oblique angle (0 degrees <φ <90 degrees) may be set. That is, when moving from the first detection method to the second detection method, there is no need to change the direction of the repeated pattern 22. In the second detection method, by setting the angle φ to an oblique angle, noise light (for example, diffracted light) from the repeated pattern 22 can be prevented from being guided to the light receiving system 14. However, in the second detection method, the angle φ may be set to 0 degrees.

画像処理部15に取り込まれた被検物体20の反射画像には、被検物体20の表面の各点(繰り返しパターン22)から発生した正反射光L2(非偏光)の強度に応じた明暗が現れる。なお、反射画像の明暗は、被検物体20の表面のショット領域ごとに変化し、正反射光L2の強度に略比例する。
さらに、被検物体20の反射画像の明暗(∝正反射光L2の強度)は、図5に示す繰り返しパターン22のライン部の線幅Dの変化(ドーズ欠陥)に依存して大きく変化することが、本発明者らの研究によって分かった。また、図4に示すライン部のエッジE1,E2の傾き角θの変化(デフォーカス欠陥)に対する依存性は非常に小さいことも分かった。
The reflected image of the test object 20 captured by the image processing unit 15 has light and dark according to the intensity of the specularly reflected light L2 (unpolarized light) generated from each point (repetitive pattern 22) on the surface of the test object 20. appear. The brightness of the reflected image changes for each shot area on the surface of the object to be examined 20 and is approximately proportional to the intensity of the regular reflection light L2.
Furthermore, the brightness of the reflected image of the test object 20 (intensity of the specular reflected light L2) greatly changes depending on the change in the line width D (dose defect) of the line portion of the repetitive pattern 22 shown in FIG. However, it was found by the inventors' research. It was also found that the dependence on the change in the inclination angle θ (defocus defect) of the edges E 1 and E 2 of the line portion shown in FIG. 4 is very small.

つまり、被検物体20の表面の各点(繰り返しパターン22)において、被検物体20に対する露光時のデフォーカス量やドーズ量の変化によって繰り返しパターン22の形状変化(図4,図5)が発生しても、被検物体20の反射画像の明暗(∝正反射光L2の強度)を変化させ得るのは、図5に示すライン部の線幅Dの変化(ドーズ欠陥)のみであることが分かった。   That is, at each point (repeated pattern 22) on the surface of the test object 20, a change in the shape of the repetitive pattern 22 (FIGS. 4 and 5) occurs due to a change in the defocus amount and dose amount during exposure of the test object 20. Even so, it is only the change in the line width D (dose defect) of the line portion shown in FIG. 5 that can change the brightness of the reflected image of the test object 20 (the intensity of the regular reflected light L2). I understood.

ただし、これは、繰り返しパターン22のライン部の線幅D(例えば55nm)が使用波長(例えば248nm)よりも短い場合に有効である。この場合、上記の正反射光L2は、繰り返しパターン22のライン部(レジスト)での光の干渉により発生する。そして、露光時のドーズ量の変化によって繰り返しパターン22のライン部の線幅Dが変化すると、単位面積あたりのライン部の量(つまり上記した光の干渉が起こる部分の量)が変化し、ライン部での反射率が変化するため、正反射光L2の強度が変化すると考えられる。   However, this is effective when the line width D (for example, 55 nm) of the line portion of the repetitive pattern 22 is shorter than the use wavelength (for example, 248 nm). In this case, the regular reflection light L <b> 2 is generated by light interference at the line portion (resist) of the repetitive pattern 22. Then, when the line width D of the line portion of the repetitive pattern 22 changes due to the change of the dose amount at the time of exposure, the amount of the line portion per unit area (that is, the amount of the portion where the above-described light interference occurs) changes. It is considered that the intensity of the regular reflection light L2 changes because the reflectance at the portion changes.

したがって、画像処理部15は、被検物体20の反射画像を取り込むと、その輝度情報と例えば良品サンプルの反射画像の輝度情報とを比較する。良品サンプルとは、露光時のドーズ量を適正値に保って、理想的な形状(例えば図5(a))の繰り返しパターン22を表面全域に形成したものである。
画像処理部15は、良品サンプルの反射画像の輝度値を基準とし、被検物体20の反射画像の輝度値の変化量を測定する。得られた輝度値の変化量は、繰り返しパターン22のライン部の線幅Dの変化(図5)による正反射光L2の強度の変化を表している。
Therefore, when the image processing unit 15 captures the reflection image of the test object 20, the image processing unit 15 compares the luminance information with the luminance information of the reflection image of the non-defective sample, for example. A non-defective sample is a sample in which a repetitive pattern 22 having an ideal shape (for example, FIG. 5A) is formed over the entire surface while maintaining a dose amount during exposure at an appropriate value.
The image processing unit 15 measures the amount of change in the luminance value of the reflected image of the test object 20 based on the luminance value of the reflected image of the non-defective sample. The obtained change amount of the luminance value represents a change in intensity of the regular reflection light L2 due to a change in the line width D (FIG. 5) of the line portion of the repetitive pattern 22.

そして、画像処理部15は、被検物体20の反射画像における輝度値の変化量(つまり正反射光L2の強度の変化)に基づいて、繰り返しパターン22のドーズ欠陥を検出する。例えば、輝度値の変化量が予め定めた閾値(許容値)より大きければ「欠陥」と判定し、閾値より小さければ「正常」と判定すればよい。また、良品サンプルを使わずに、被検物体20の反射画像の中での輝度値の変化量を所定の閾値と比較してもよい。   Then, the image processing unit 15 detects a dose defect of the repetitive pattern 22 based on the change amount of the luminance value in the reflected image of the test object 20 (that is, the change in the intensity of the regular reflection light L2). For example, if the amount of change in luminance value is larger than a predetermined threshold (allowable value), it is determined as “defect”, and if it is smaller than the threshold, it is determined as “normal”. Further, the amount of change in the luminance value in the reflected image of the test object 20 may be compared with a predetermined threshold value without using a non-defective sample.

このように、第2の検出方式では、非偏光の照明光L1により繰り返しパターン22を照明し(波長:248nm)、繰り返しパターン22から発生した非偏光の正反射光L2の強度に応じて被検物体20の反射画像を取り込み、この反射画像の明暗に基づいて、繰り返しパターン22のライン部の線幅Dの変化(図5)による正反射光L2の強度の変化を測定する。   As described above, in the second detection method, the repetitive pattern 22 is illuminated with the non-polarized illumination light L1 (wavelength: 248 nm), and the test is performed according to the intensity of the non-polarized regular reflection light L2 generated from the repetitive pattern 22. A reflected image of the object 20 is captured, and the change in the intensity of the regular reflection light L2 due to the change in the line width D (FIG. 5) of the line portion of the repeated pattern 22 is measured based on the brightness of the reflected image.

したがって、第2の検出方式によれば、繰り返しパターン22のデフォーカス欠陥(図4)には十分な検出感度を得られないが、ドーズ欠陥(図5)に対して十分な検出感度を確保でき、このドーズ欠陥を選択的に検出することができる。
このようにして、第1の検出方式によるデフォーカス欠陥(図4)の検出と、第2の検出方式によるドーズ欠陥(図5)の検出とが終了すると、本実施形態の表面検査装置10では、次に、これら2つの結果に基づいて、繰り返しパターン22の最終的な欠陥の検出を行う。
Therefore, according to the second detection method, sufficient detection sensitivity cannot be obtained for the defocus defect (FIG. 4) of the repetitive pattern 22, but sufficient detection sensitivity can be secured for the dose defect (FIG. 5). This dose defect can be selectively detected.
Thus, when the detection of the defocus defect (FIG. 4) by the first detection method and the detection of the dose defect (FIG. 5) by the second detection method are completed, the surface inspection apparatus 10 of the present embodiment Then, based on these two results, the final defect of the repeated pattern 22 is detected.

例えば、被検物体20の表面のうちデフォーカス欠陥(図4)とドーズ欠陥(図5)との少なくとも一方が検出された箇所を、繰り返しパターン22の最終的な欠陥として検出する。つまり、第1の検出方式による結果と第2の検出方式による結果との論理和を求め、これを最終的な検出結果とする。
上記のように、本実施形態の表面検査装置10では、繰り返しパターン22の形状変化(図4,図5)による正反射光L2の強度または偏光状態の変化を測定すると共に、正反射光L2の強度の変化を測定する際の照明光L1の波長λaと、正反射光L2の偏光状態の変化を測定する際の照明光L1の波長λbとを、異なる波長に設定する。
For example, a portion where at least one of a defocus defect (FIG. 4) and a dose defect (FIG. 5) is detected on the surface of the test object 20 is detected as a final defect of the repeated pattern 22. That is, a logical sum of the result of the first detection method and the result of the second detection method is obtained, and this is used as the final detection result.
As described above, in the surface inspection apparatus 10 of the present embodiment, the change in the intensity or polarization state of the regular reflection light L2 due to the shape change of the repeated pattern 22 (FIGS. 4 and 5) is measured, and the regular reflection light L2 The wavelength λa of the illumination light L1 when measuring the change in intensity and the wavelength λb of the illumination light L1 when measuring the change in the polarization state of the regular reflection light L2 are set to different wavelengths.

すなわち、前者(強度測定時)の波長λaは、被検物体20の光学特性に応じてドーズ欠陥の検出を良好に行える波長(例えば248nm)に設定され、後者(偏光測定時)の波長λbは、偏光板34,37としてデフォーカス欠陥の検出に適した光学特性のものを使用可能な波長(例えば365nm)に設定される。そして、このような波長選択の基準の相違に応じて、各測定時の波長λa,λbは互いに異なる波長に設定される。   In other words, the wavelength (λa) of the former (when measuring intensity) is set to a wavelength (eg, 248 nm) at which a dose defect can be satisfactorily detected according to the optical characteristics of the test object 20, and the wavelength λb of the latter (when measuring polarization) is The polarizing plates 34 and 37 are set to a wavelength (for example, 365 nm) that can use optical characteristics suitable for detecting a defocus defect. The wavelengths λa and λb at the time of each measurement are set to different wavelengths according to the difference in the wavelength selection criteria.

その結果、正反射光L2の強度の変化の測定により検出可能なドーズ欠陥に対し、十分な検出感度を確保することができ、正反射光L2の偏光状態の変化の測定により検出可能なデフォーカス欠陥に対しても、十分な検出感度を確保することができる。
したがって、本実施形態の表面検査装置10のように、正反射光L2の強度の変化を測定する際の波長λaと、正反射光L2の偏光状態の変化を測定する際の波長λbとを、異なる波長に設定することで、繰り返しパターン22の複数種類の欠陥(デフォーカス欠陥とドーズ欠陥)に対して、十分な検出感度を確保することができる。
As a result, sufficient detection sensitivity can be ensured for a dose defect that can be detected by measuring the change in intensity of the specularly reflected light L2, and defocus that can be detected by measuring the change in the polarization state of the specularly reflected light L2. Sufficient detection sensitivity can be ensured even for defects.
Therefore, as in the surface inspection apparatus 10 of the present embodiment, the wavelength λa when measuring the change in the intensity of the regular reflection light L2, and the wavelength λb when measuring the change in the polarization state of the regular reflection light L2, By setting different wavelengths, sufficient detection sensitivity can be ensured for a plurality of types of defects (defocus defect and dose defect) of the repeated pattern 22.

また、本実施形態の表面検査装置10では、偏光測定時の波長λbを例えば365nmとし、強度測定時の波長λaを例えば248nmとして、前者の波長λbよりも後者の波長λaを短波長に設定する。このため、繰り返しパターン22の下方の層による影響を低減して、ドーズ欠陥の検出感度を高めることができる。なお、ドーズ欠陥と比較して、デフォーカス欠陥の検出では、繰り返しパターン22の下方の層による影響を受けにくいことが分かっている。   In the surface inspection apparatus 10 of the present embodiment, the wavelength λb at the time of polarization measurement is set to, for example, 365 nm, the wavelength λa at the time of intensity measurement is set to, for example, 248 nm, and the latter wavelength λa is set shorter than the former wavelength λb. . For this reason, the influence by the layer below the repeating pattern 22 can be reduced, and the detection sensitivity of a dose defect can be improved. It has been found that detection of defocus defects is less affected by the layer below the repetitive pattern 22 as compared with dose defects.

また、本実施形態の表面検査装置10では、強度測定時の波長λaを設定するに当たり、繰り返しパターン22での反射率が繰り返しパターン22の下方の層での反射率より高くなる波長(例えば248nm)に設定することが好ましい。例えば、繰り返しパターン22のライン部での干渉によって光が強め合うような条件の波長(繰り返しパターン22の反射率向上)や、下方の層(反射防止膜など)の吸収帯域に含まれる波長(下方の層での反射率低下)などが考えられる。このような設定を行うことで、繰り返しパターン22の下方の層からのノイズ光に対して、繰り返しパターン22からの信号光を効率良く捉えることができ、S/N比が向上するため、ドーズ欠陥の検出感度を高めることができる。   In the surface inspection apparatus 10 of this embodiment, when setting the wavelength λa at the time of intensity measurement, the wavelength at which the reflectance at the repeated pattern 22 is higher than the reflectance at the layer below the repeated pattern 22 (for example, 248 nm). It is preferable to set to. For example, a wavelength under a condition that light is intensified by interference at the line portion of the repetitive pattern 22 (increased reflectivity of the repetitive pattern 22) or a wavelength included in the absorption band of a lower layer (such as an antireflection film) (lower (Reflectance reduction in the layer) can be considered. By performing such setting, signal light from the repetitive pattern 22 can be efficiently captured with respect to noise light from the layer below the repetitive pattern 22, and the S / N ratio is improved. The detection sensitivity can be increased.

ランプハウス31に内蔵された波長選択部(44〜46)のフィルタ44の透過波長域が436nm,365nm,248nm,193nmの場合、強度測定時の波長λaとしては、上記した248nmの他に、193nmを用いても構わない。さらに、偏光測定時の波長λbとしては、上記した365nmの他に、436nmを用いても構わない。また、その他の波長を用いても構わない。また、強度測定時の波長λaを偏光測定時の波長λbより長くしてもよい。何れにしても、各波長λa,λbは、繰り返しパターン22のピッチP(例えば55nm)よりも長い波長に設定することが必要になる。   When the transmission wavelength range of the filter 44 of the wavelength selection unit (44 to 46) built in the lamp house 31 is 436 nm, 365 nm, 248 nm, and 193 nm, the wavelength λa at the time of intensity measurement is 193 nm in addition to the above-mentioned 248 nm May be used. Further, as the wavelength λb at the time of polarization measurement, 436 nm may be used in addition to the above-described 365 nm. Also, other wavelengths may be used. Further, the wavelength λa at the time of intensity measurement may be longer than the wavelength λb at the time of polarization measurement. In any case, the wavelengths λa and λb need to be set to wavelengths longer than the pitch P (for example, 55 nm) of the repetitive pattern 22.

さらに、本実施形態の表面検査装置10では、繰り返しパターン22の形状変化(図4,図5)による正反射光L2の強度または偏光状態の変化を測定して、これら両方の結果に基づいて繰り返しパターン22の最終的な欠陥の検出を行う。このため、繰り返しパターン22の複数種類の欠陥(デフォーカス欠陥とドーズ欠陥)に対して十分な感度を確保しつつ、その検出を行うことができる。   Furthermore, in the surface inspection apparatus 10 of the present embodiment, the change in the intensity or the polarization state of the regular reflection light L2 due to the shape change (FIGS. 4 and 5) of the repetitive pattern 22 is measured, and repetitive based on both results. The final defect of the pattern 22 is detected. For this reason, it is possible to detect the plurality of types of defects (defocus defect and dose defect) of the repetitive pattern 22 while ensuring sufficient sensitivity.

さらに、2つの検出方式のどちらで検出された欠陥かによって、欠陥の原因を判定することもできる。このため、繰り返しパターン22の最終的な欠陥の情報に、欠陥の種類の情報を付加して出力することもできる。最終的な欠陥の種類とは、第1の検出方式のみで検出された欠陥(デフォーカス)、第2の検出方式のみで検出された欠陥(ドーズ)、および、第1の検出方式と第2の検出方式との双方で検出された欠陥(デフォーカス/ドーズ)の3種類である。   Furthermore, the cause of the defect can be determined depending on which of the two detection methods is used to detect the defect. For this reason, information on the type of defect can be added to the information on the final defect of the repeated pattern 22 and output. The final defect types include defects detected only by the first detection method (defocus), defects detected only by the second detection method (dose), and the first detection method and the second detection method. There are three types of defects (defocus / dose) detected by both detection methods.

本実施形態の表面検査装置10では、繰り返しパターン22の複数種類の欠陥を区別して検出可能なため、最終的な欠陥の情報を欠陥の種類の情報と共に出力して、露光装置へフィードバックすることが有効である。このようなフィードバックを行うことによって、露光装置のリアルタイムの修正が可能となる。
また、本実施形態の表面検査装置10において、繰り返しパターン22の最終的な欠陥の情報(被検物体20の表面における位置)を1つの画像上に表示出力可能とすることが好ましい。このとき、欠陥の種類ごとに例えばマークの色や形状などを変えて容易に区別できるようにすることが好ましい。
In the surface inspection apparatus 10 of the present embodiment, a plurality of types of defects of the repeated pattern 22 can be distinguished and detected, so that the final defect information can be output together with the defect type information and fed back to the exposure apparatus. It is valid. By performing such feedback, the exposure apparatus can be corrected in real time.
Moreover, in the surface inspection apparatus 10 of this embodiment, it is preferable that the final defect information (position on the surface of the test object 20) of the repeated pattern 22 can be displayed and output on one image. At this time, it is preferable to make it possible to easily distinguish, for example, by changing the color or shape of the mark for each type of defect.

(変形例)
なお、上記した実施形態では、第1の検出方式を用いてデフォーカス欠陥を検出する際に2枚の偏光板34,37をクロスニコルの配置としたが、本発明はこれに限定されない。偏光板34,37の各透過軸を直交以外の角度に設定しても構わない。つまり、偏光板34,37の各透過軸を交差させれば、第1の検出方式によるデフォーカス欠陥の検出が可能となる。ただし、デフォーカス欠陥の検出感度が最も高くなるのは、偏光板34,37をクロスニコルの配置にした場合である。
(Modification)
In the above-described embodiment, the two polarizing plates 34 and 37 are arranged in a crossed Nicol arrangement when a defocus defect is detected using the first detection method, but the present invention is not limited to this. The transmission axes of the polarizing plates 34 and 37 may be set to angles other than orthogonal. That is, if the transmission axes of the polarizing plates 34 and 37 are crossed, the defocus defect can be detected by the first detection method. However, the detection sensitivity of the defocus defect is highest when the polarizing plates 34 and 37 are arranged in a crossed Nicol arrangement.

また、上記した実施形態では、第1の検出方式を用いてデフォーカス欠陥を検出する際に、照明系13の偏光板34の透過軸を照明光L1の入射面3Aと平行に配置した(すなわち照明光L1をp偏光にした)が、本発明はこれに限定されない。照明系13の偏光板34の透過軸を照明光L1の入射面3Aと垂直に配置して、照明光L1をs偏光にしてもよい。入射面3Aを斜めに横切るように偏光板34の透過軸を設定しても構わない。   In the above-described embodiment, when the defocus defect is detected using the first detection method, the transmission axis of the polarizing plate 34 of the illumination system 13 is arranged in parallel with the incident surface 3A of the illumination light L1 (that is, The illumination light L1 is p-polarized), but the present invention is not limited to this. The transmission axis of the polarizing plate 34 of the illumination system 13 may be arranged perpendicular to the incident surface 3A of the illumination light L1, and the illumination light L1 may be s-polarized light. The transmission axis of the polarizing plate 34 may be set so as to cross the incident surface 3A obliquely.

さらに、上記した実施形態では、第1の検出方式を用いてデフォーカス欠陥を検出する際に、受光系14の偏光板37の透過軸を照明光L1の入射面3Aと垂直に配置したが、本発明はこれに限定されない。受光系14の偏光板37の透過軸を照明光L1の入射面3Aと平行に配置しても構わない。入射面3Aを斜めに横切るように偏光板37の透過軸を設定しても構わない。   Furthermore, in the above-described embodiment, when the defocus defect is detected using the first detection method, the transmission axis of the polarizing plate 37 of the light receiving system 14 is arranged perpendicular to the incident surface 3A of the illumination light L1, The present invention is not limited to this. The transmission axis of the polarizing plate 37 of the light receiving system 14 may be arranged parallel to the incident surface 3A of the illumination light L1. The transmission axis of the polarizing plate 37 may be set so as to cross the incident surface 3A obliquely.

また、上記した実施形態では、第2の検出方式を用いてドーズ欠陥を検出する際に、2枚の偏光板34,37を共に光路中から退避させたが、本発明はこれに限定されない。偏光板34,37の何れか一方を光路中に配置する場合でも、繰り返しパターン22からの正反射光L2の強度の変化に基づいてドーズ欠陥を検出することができる。
この場合、偏光板34,37のうち、照明光L1の入射面3Aに対して透過軸が直交する偏光板(図1の例では偏光板37)を光路中に配置することが好ましい。このような配置とすることで、被検物体20の下地層からのノイズ光を低減することができ、ドーズ欠陥の検出感度をさらに高めることができる。
In the above-described embodiment, when detecting a dose defect using the second detection method, the two polarizing plates 34 and 37 are both retracted from the optical path, but the present invention is not limited to this. Even when one of the polarizing plates 34 and 37 is disposed in the optical path, a dose defect can be detected based on a change in the intensity of the regular reflection light L2 from the repeated pattern 22.
In this case, it is preferable to dispose a polarizing plate (polarizing plate 37 in the example of FIG. 1) whose transmission axis is orthogonal to the incident surface 3A of the illumination light L1 among the polarizing plates 34 and 37 in the optical path. With such an arrangement, it is possible to reduce noise light from the underlayer of the object 20 to be measured, and to further increase the dose defect detection sensitivity.

さらに、第2の検出方式を用いてドーズ欠陥を検出する際には、2枚の偏光板34,37を光路中に配置した状態で、偏光板34,37の各透過軸を平行に揃えても構わない。第1の検出方式から第2の検出方式に移行する際には、偏光板34,37の少なくとも一方を光軸中心で回転させればよい。この場合、偏光板34,37の挿脱機構(駆動モータ4A,7A)は不要となる。   Further, when detecting a dose defect using the second detection method, the transmission axes of the polarizing plates 34 and 37 are aligned in parallel with the two polarizing plates 34 and 37 being arranged in the optical path. It doesn't matter. When shifting from the first detection method to the second detection method, at least one of the polarizing plates 34 and 37 may be rotated about the optical axis. In this case, the insertion / removal mechanism (drive motors 4A and 7A) for the polarizing plates 34 and 37 is not necessary.

また、上記した実施形態では、第1の検出方式から第2の検出方式に移行したが、第2の検出方式から第1の検出方式に移行してもよい。
また、上記した実施形態では、撮像素子39としてCCDなどの2次元センサを用いたが、1次元センサを用いても良い。この場合、撮像素子である1次元センサと被検物体である半導体ウエハ(または液晶基板)を載せたステージとを相対移動させ、1次元センサが半導体ウエハ(または液晶基板)の表面の全域を走査するようにして、半導体ウエハ(または液晶基板)全面の画像を取り込むようにすればよい。
In the above-described embodiment, the first detection method is shifted to the second detection method, but the second detection method may be shifted to the first detection method.
In the above-described embodiment, a two-dimensional sensor such as a CCD is used as the image sensor 39, but a one-dimensional sensor may be used. In this case, the one-dimensional sensor that is the image sensor and the stage on which the semiconductor wafer (or liquid crystal substrate) that is the object to be tested is relatively moved, and the one-dimensional sensor scans the entire surface of the semiconductor wafer (or liquid crystal substrate). Thus, an image of the entire surface of the semiconductor wafer (or liquid crystal substrate) may be captured.

表面検査装置10の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a surface inspection apparatus 10. 被検物体20の表面の概略図である。2 is a schematic view of a surface of a test object 20. FIG. 照明光L1の入射面(3A)と繰り返しパターン22の繰り返し方向(X方向)との傾き状態を説明する図である。It is a figure explaining the inclination state of the incident surface (3A) of the illumination light L1, and the repeating direction (X direction) of the repeating pattern 22. FIG. 露光時のデフォーカス欠陥を説明する図である。It is a figure explaining the defocus defect at the time of exposure. 露光時のドーズ欠陥を説明する図である。It is a figure explaining the dose defect at the time of exposure. 照明光L1と正反射光L2の偏光状態を説明する図である。It is a figure explaining the polarization state of illumination light L1 and regular reflection light L2. 照明光L1の振動面の方向(V方向)と繰り返しパターン22の繰り返し方向(X方向)との傾き状態を説明する図である。It is a figure explaining the inclination state of the direction (V direction) of the vibration surface of the illumination light L1, and the repeating direction (X direction) of the repeating pattern 22. FIG.

符号の説明Explanation of symbols

10 表面検査装置 ; 11 ステージ ; 12 アライメント系 ; 13 照明系 ;
14 受光系 ; 15 画像処理部 ; 20 被検物体 ; 22 繰り返しパターン ;
31 ランプハウス ; 33 ライトガイドファイバ ; 34,37 偏光板 ;
35,36 凹面反射鏡 ; 38 集光レンズ ; 39 撮像素子 ; 16 制御部
1A 回転機構 ; 4A,7A 駆動モータ ; 41 光源 ; 43〜46 波長選択部
10 surface inspection apparatus; 11 stage; 12 alignment system; 13 illumination system;
14 light receiving system; 15 image processing unit; 20 test object; 22 repetitive pattern;
31 lamp house; 33 light guide fiber; 34, 37 polarizing plate;
35, 36 concave reflecting mirror; 38 condensing lens; 39 imaging device; 16 control unit 1A rotating mechanism; 4A, 7A drive motor; 41 light source; 43 to 46 wavelength selection unit

Claims (6)

被検物体の表面に形成された繰り返しパターンを、非偏光状態の照明光により照明し、該繰り返しパターンで正反射した前記照明光の強度に基づいて、前記繰り返しパターンの形状変化による前記強度の変化を測定する第1測定手段と、
前記繰り返しパターンを、直線偏光状態の照明光により照明し、該繰り返しパターンの繰り返し方向と前記照明光の振動面の前記表面における方向との成す角度を斜めの角度に設定し、前記繰り返しパターンで正反射した前記照明光の偏光状態に基づいて、前記繰り返しパターンの形状変化による前記偏光状態の変化を測定する第2測定手段と、
前記第1測定手段と前記第2測定手段との各々が前記繰り返しパターンを照明する際に用いる照明光の波長を異なる波長に設定する設定手段とを備えた
ことを特徴とする表面検査装置。
Based on the intensity of the illumination light, which is illuminated with non- polarized illumination light and is regularly reflected by the repeat pattern, the intensity change due to the shape change of the repeat pattern First measuring means for measuring
The repetitive pattern is illuminated with illumination light in a linearly polarized state, and an angle formed by the repetitive direction of the repetitive pattern and the direction of the vibration surface of the illumination light on the surface is set to an oblique angle. Second measuring means for measuring a change in the polarization state due to a shape change in the repetitive pattern based on the polarization state of the reflected illumination light;
A surface inspection apparatus comprising: setting means for setting the wavelength of illumination light used when each of the first measurement means and the second measurement means illuminates the repetitive pattern to a different wavelength.
請求項1に記載の表面検査装置において、
前記設定手段は、前記第2測定手段が前記繰り返しパターンを照明する際の波長よりも前記第1測定手段が前記繰り返しパターンを照明する際の波長を短波長に設定する
ことを特徴とする表面検査装置。
The surface inspection apparatus according to claim 1,
The surface inspection is characterized in that the setting means sets a wavelength when the first measuring means illuminates the repetitive pattern to be shorter than a wavelength when the second measuring means illuminates the repetitive pattern. apparatus.
請求項1に記載の表面検査装置において、
前記設定手段は、前記第1測定手段が前記繰り返しパターンを照明する際の波長を前記繰り返しパターンでの反射率が該繰り返しパターンの下方の層での反射率よりも高くなる波長に設定する
ことを特徴とする表面検査装置。
The surface inspection apparatus according to claim 1,
The setting means sets the wavelength when the first measuring means illuminates the repeating pattern to a wavelength at which the reflectance of the repeating pattern is higher than the reflectance of the layer below the repeating pattern. A featured surface inspection device.
請求項1から請求項3の何れか1項に記載の表面検査装置において、
前記第1測定手段が測定した前記強度の変化と、前記第2測定手段が測定した前記偏光状態の変化とに基づいて、前記繰り返しパターンの欠陥を検出する検出手段を備えた
ことを特徴とする表面検査装置。
In the surface inspection apparatus according to any one of claims 1 to 3,
And a detecting unit that detects a defect of the repetitive pattern based on the change in intensity measured by the first measuring unit and the change in polarization state measured by the second measuring unit. Surface inspection device.
請求項4に記載の表面検査装置において、
前記検出手段は、前記強度の変化に基づいて前記繰り返しパターンの第1種類の欠陥を検出し、前記偏光状態の変化に基づいて前記繰り返しパターンの第2種類の欠陥を検出し、前記表面のうち前記第1種類の欠陥と前記第2種類の欠陥との少なくとも一方が検出された箇所を前記繰り返しパターンの最終的な欠陥とする
ことを特徴とする表面検査装置。
The surface inspection apparatus according to claim 4,
The detecting means detects a first type of defect of the repetitive pattern based on the change in intensity, detects a second type of defect of the repetitive pattern based on the change in polarization state, A surface inspection apparatus, wherein a location where at least one of the first type defect and the second type defect is detected is defined as a final defect of the repetitive pattern.
請求項4または請求項5に記載の表面検査装置において、
前記第1種類の欠陥は、前記被検物体に対する露光時のドーズ欠陥であり、
前記第2種類の欠陥は、前記被検物体に対する露光時のデフォーカス欠陥である
ことを特徴とする表面検査装置。
In the surface inspection apparatus according to claim 4 or 5,
The first type of defect is a dose defect at the time of exposure to the test object,
The surface inspection apparatus according to claim 2, wherein the second type of defect is a defocus defect at the time of exposure on the object to be inspected.
JP2006131119A 2006-05-10 2006-05-10 Surface inspection device Active JP4605089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131119A JP4605089B2 (en) 2006-05-10 2006-05-10 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131119A JP4605089B2 (en) 2006-05-10 2006-05-10 Surface inspection device

Publications (2)

Publication Number Publication Date
JP2007303904A JP2007303904A (en) 2007-11-22
JP4605089B2 true JP4605089B2 (en) 2011-01-05

Family

ID=38837952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131119A Active JP4605089B2 (en) 2006-05-10 2006-05-10 Surface inspection device

Country Status (1)

Country Link
JP (1) JP4605089B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201443B2 (en) * 2007-12-12 2013-06-05 株式会社ニコン Surface inspection apparatus and surface inspection method
SG178412A1 (en) 2009-08-17 2012-04-27 Nanda Technologies Gmbh Method of inspecting and processing semiconductor wafers
JP2011099822A (en) * 2009-11-09 2011-05-19 Nikon Corp Surface inspection method and surface inspection device
JP6245533B2 (en) * 2016-04-07 2017-12-13 株式会社ニコン Inspection apparatus and imaging device manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116011A (en) * 2000-10-05 2002-04-19 Toshiba Corp Apparatus and method for pattern evaluation
JP2003166947A (en) * 2001-12-04 2003-06-13 Topcon Corp Surface inspection apparatus
WO2005040776A1 (en) * 2003-10-27 2005-05-06 Nikon Corporation Surface inspection device and surface inspection method
WO2005064322A1 (en) * 2003-12-26 2005-07-14 Nikon Corporation Defect inspection device and defect inspection method
JP2006135211A (en) * 2004-11-09 2006-05-25 Nikon Corp Surface inspection apparatus, surface inspection method, and exposure system
JP2007271311A (en) * 2006-03-30 2007-10-18 Nikon Corp Surface inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116011A (en) * 2000-10-05 2002-04-19 Toshiba Corp Apparatus and method for pattern evaluation
JP2003166947A (en) * 2001-12-04 2003-06-13 Topcon Corp Surface inspection apparatus
WO2005040776A1 (en) * 2003-10-27 2005-05-06 Nikon Corporation Surface inspection device and surface inspection method
WO2005064322A1 (en) * 2003-12-26 2005-07-14 Nikon Corporation Defect inspection device and defect inspection method
JP2006135211A (en) * 2004-11-09 2006-05-25 Nikon Corp Surface inspection apparatus, surface inspection method, and exposure system
JP2007271311A (en) * 2006-03-30 2007-10-18 Nikon Corp Surface inspection device

Also Published As

Publication number Publication date
JP2007303904A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP4548385B2 (en) Surface inspection device
JP5201350B2 (en) Surface inspection device
US7834993B2 (en) Surface inspection apparatus and surface inspection method
JP5585615B2 (en) Inspection apparatus and inspection method
KR20090127892A (en) Observation device, inspection device and inspection method
JPWO2007069457A1 (en) Surface inspection apparatus and surface inspection method
JP4605089B2 (en) Surface inspection device
JP5500427B2 (en) Surface inspection apparatus and surface inspection method
JP4462232B2 (en) Surface inspection device
JP4696607B2 (en) Surface inspection device
JP4506723B2 (en) Surface inspection device
JP2006258472A (en) Defect inspection device
JP4622933B2 (en) Surface inspection method and surface inspection apparatus
JP4462222B2 (en) Surface inspection device
JP5201443B2 (en) Surface inspection apparatus and surface inspection method
JP2007271312A (en) Surface inspection device
JP5354362B2 (en) Surface inspection device
JP2009300296A (en) Surface inspection device
JP2006250839A (en) Surface inspection apparatus
JP2010122121A (en) Surface inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Ref document number: 4605089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250