JP2003166947A - Surface inspection apparatus - Google Patents

Surface inspection apparatus

Info

Publication number
JP2003166947A
JP2003166947A JP2001370639A JP2001370639A JP2003166947A JP 2003166947 A JP2003166947 A JP 2003166947A JP 2001370639 A JP2001370639 A JP 2001370639A JP 2001370639 A JP2001370639 A JP 2001370639A JP 2003166947 A JP2003166947 A JP 2003166947A
Authority
JP
Japan
Prior art keywords
laser beam
light emitting
light
substrate
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001370639A
Other languages
Japanese (ja)
Other versions
JP3783848B2 (en
Inventor
Hisashi Isozaki
久 磯崎
Yoshiyuki Enomoto
芳幸 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2001370639A priority Critical patent/JP3783848B2/en
Priority to US10/252,763 priority patent/US7046353B2/en
Priority to IL151898A priority patent/IL151898A/en
Priority to TW091122190A priority patent/TW571090B/en
Priority to KR10-2002-0058389A priority patent/KR100495710B1/en
Priority to EP02257196A priority patent/EP1318392A1/en
Priority to CNB021543801A priority patent/CN1191470C/en
Publication of JP2003166947A publication Critical patent/JP2003166947A/en
Application granted granted Critical
Publication of JP3783848B2 publication Critical patent/JP3783848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface inspection apparatus by which an inspection of high accuracy can be performed stably without being influenced by the film kind and the film thickness on the surface of a substrate. <P>SOLUTION: In the surface inspection apparatus, the surface of the substrate 5 is irradiated with a laser beam 2, scattering reflected light due to the laser beam is detected, and a foreign substance is detected. The inspection apparatus is provided with an irradiation optical system 7 whose light source part 12 comprises a plurality of light emitting sources and by which the surface of the substrate is irradiated with laser beams 2a, 2b from the respective light emitting sources in a state that reflection characteristics on the surface of the substrate are different. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体ウェーハ等の
基板の表面の微細な異物、或は結晶欠陥等の微細な傷を
検査する表面検査装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection apparatus for inspecting fine foreign matters on the surface of a substrate such as a semiconductor wafer or fine scratches such as crystal defects.

【0002】[0002]

【従来の技術】表面検査装置は、レーザ光線を基板表面
に照射し、異物、傷によって生じる散乱反射光を検出し
て異物、傷の検出を行うものである。尚、表面検査装置
での発光源としては、ガスレーザ(He、Ar等)等が
一般的に用いられてきたが、最近では取扱いが容易、安
全、長寿命等の理由からレーザダイオード(LD)が用
いられている。
2. Description of the Related Art A surface inspection apparatus irradiates a laser beam on the surface of a substrate and detects scattered reflection light generated by a foreign substance or a scratch to detect the foreign substance or the scratch. Although a gas laser (He, Ar, etc.) has been generally used as a light emission source in the surface inspection apparatus, recently, a laser diode (LD) has been used for reasons such as easy handling, safety, and long life. It is used.

【0003】図11は発光源としてレーザダイオードが
使用された従来の照射光学系を示している。
FIG. 11 shows a conventional irradiation optical system using a laser diode as a light emitting source.

【0004】発光源1から発せられたレーザ光線2はコ
リメートレンズ3により、平行光束とされ、結像レンズ
4によりウェーハ等の基板5の表面(前記結像レンズ4
による集光位置fの点)に集光する様に照射される。
又、前記レーザ光線2は前記基板5に対してθの角度で
入射される。散乱反射光検出器(図示せず)は前記レー
ザ光線2の反射光軸から外れた位置、例えば紙面に対し
て略垂直な方向から散乱反射光を検出する様になってい
る。
A laser beam 2 emitted from a light emitting source 1 is collimated by a collimator lens 3 into a parallel light beam, and an image forming lens 4 forms a surface of a substrate 5 such as a wafer (the image forming lens 4).
It is irradiated so that it may be focused on a point (focus point f).
The laser beam 2 is incident on the substrate 5 at an angle of θ. A scattered / reflected light detector (not shown) detects scattered / reflected light from a position deviated from the reflected light axis of the laser beam 2, for example, a direction substantially perpendicular to the paper surface.

【0005】検出感度、検出精度は、基板表面に照射す
るレーザ光線2の波長及び強度が関係する。波長を短く
するか、強度を上げることで、検出感度を向上すること
ができる。又強度を均質に保った状態で照射範囲を広げ
ることで、検出感度を保ったまま検出精度を向上するこ
とができる。
The detection sensitivity and detection accuracy are related to the wavelength and intensity of the laser beam 2 with which the surface of the substrate is irradiated. The detection sensitivity can be improved by shortening the wavelength or increasing the intensity. Further, by expanding the irradiation range while keeping the intensity uniform, it is possible to improve the detection accuracy while maintaining the detection sensitivity.

【0006】近年、表面検査装置には一層の検出感度及
び検出精度の向上が要求され、例えば半導体素子の高密
度化に伴い、表面検査装置にはウェーハ表面の更に微細
な異物、傷の検出を行うことが要求されている。
In recent years, the surface inspection apparatus is required to have further improved detection sensitivity and detection accuracy. For example, with the increase in density of semiconductor elements, the surface inspection apparatus is required to detect finer foreign matters and scratches on the wafer surface. You are required to do so.

【0007】上記した様に表面検査装置では異物、傷の
検出を散乱反射光の検出に基づいて行っているが、散乱
反射光は基板表面の性状、即ち膜種、膜厚によって微妙
に変化する。例えば、シリコンウェーハ表面に形成され
たシリコン酸化膜(SiO2)の場合、膜厚に応じ反射
率が変ることが分っており、又反射率の変化は膜厚によ
り周期的に変動し、反射率の変化は波長によっても異な
ることも分っている。
As described above, the surface inspection apparatus detects foreign matters and scratches based on the detection of scattered reflected light. The scattered reflected light slightly changes depending on the properties of the substrate surface, that is, the film type and film thickness. . For example, in the case of a silicon oxide film (SiO2) formed on the surface of a silicon wafer, it is known that the reflectivity changes depending on the film thickness, and the change in the reflectivity changes periodically depending on the film thickness. It is also known that the change of is different depending on the wavelength.

【0008】図12は、基板表面にシリコン酸化膜(S
iO2 )が形成されている場合の、膜厚に対応した反射
率変動曲線を3波長のレーザ光線(488nm、680
nm、780nm)について示したものである。
FIG. 12 shows a silicon oxide film (S
In the case where iO2) is formed, the reflectance variation curve corresponding to the film thickness is shown by a laser beam of three wavelengths (488 nm, 680 nm).
nm, 780 nm).

【0009】異物、傷の検出感度は基板表面の反射率と
略相関があり、反射率が低下し散乱反射光の光量が減少
すると検出精度が低下する。従って、所定の検出精度を
安定に維持するには、膜種、膜厚に対応して照射するレ
ーザ光線の波長を選択する必要があった。
The detection sensitivity of foreign matters and scratches has a substantial correlation with the reflectance of the substrate surface, and if the reflectance decreases and the amount of scattered reflected light decreases, the detection accuracy decreases. Therefore, in order to stably maintain the predetermined detection accuracy, it is necessary to select the wavelength of the laser beam to be applied according to the film type and the film thickness.

【0010】[0010]

【発明が解決しようとする課題】上記した従来の表面検
査装置では、膜種、膜厚に応じたレーザ光線の波長を設
定する必要があり、作業性が悪い。更に、膜厚について
は基板全面で完全には均一ではなく、基板表面の部位に
より反射率が変動する可能性があり、反射率の変動に伴
い、検出精度が変動する可能性があった。
In the above-mentioned conventional surface inspection apparatus, it is necessary to set the wavelength of the laser beam according to the film type and the film thickness, and the workability is poor. Further, the film thickness is not completely uniform over the entire surface of the substrate, and the reflectance may fluctuate depending on the site on the surface of the substrate, and the detection accuracy may fluctuate as the reflectance fluctuates.

【0011】本発明は斯かる実情に鑑み、基板表面の膜
種、膜厚に影響されない安定した高精度の検査を可能と
する表面検査装置を提供するものである。
In view of the above situation, the present invention provides a surface inspection apparatus that enables stable and highly accurate inspection without being affected by the film type and film thickness of the substrate surface.

【0012】[0012]

【課題を解決するための手段】本発明は、基板表面にレ
ーザ光線を照射し、該レーザ光線の散乱反射光を検出し
て異物を検出する表面検査装置に於いて、光源部が複数
の発光源を有し、それぞれの発光源からのレーザ光線を
基板表面に、基板表面での反射特性が異なる状態で照射
する照射光学系を具備する表面検査装置に係り、又前記
複数の発光源の少なくとも1つが異なる波長で発光する
表面検査装置に係り、又前記複数の発光源の少なくとも
1つのレーザ光線の偏光状態を変更する偏光部材を設け
た表面検査装置に係り、又前記照射光学系が1つの結像
レンズを有すると共に各発光源に対応して設けられ該発
光源からのレーザ光線を前記結像レンズに入射させる光
学部材を有する表面検査装置に係り、更に又前記発光源
がマトリックス状に配設された表面検査装置に係るもの
である。
SUMMARY OF THE INVENTION The present invention is a surface inspection apparatus for irradiating a substrate surface with a laser beam and detecting scattered reflected light of the laser beam to detect foreign matter. The present invention relates to a surface inspection apparatus having a light source, and irradiating a laser beam from each light emitting source onto a substrate surface in a state where reflection characteristics on the substrate surface are different, and at least one of the plurality of light emitting sources. The present invention relates to a surface inspection device, one of which emits light at different wavelengths, and a surface inspection device provided with a polarizing member for changing the polarization state of at least one laser beam of the plurality of light emission sources, and one irradiation optical system. The present invention relates to a surface inspection apparatus having an image forming lens and an optical member which is provided corresponding to each light emitting source and makes a laser beam from the light emitting source enter the image forming lens. Those of the disposed surface inspection apparatus.

【0013】[0013]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1により表面検査装置の概略について説
明する。
An outline of the surface inspection apparatus will be described with reference to FIG.

【0015】図中、5はウェーハ等の被検査物である基
板であり、表面検査装置は走査駆動機構部6、照射光学
系7、検出系8から主に構成されている。
In the figure, 5 is a substrate which is an object to be inspected, such as a wafer, and the surface inspection apparatus is mainly composed of a scanning drive mechanism section 6, an irradiation optical system 7 and a detection system 8.

【0016】又、前記走査駆動機構部6は前記基板5を
保持する基板保持部9を具備し、該基板保持部9は回転
駆動部10により回転可能に支持され、該回転駆動部1
0は直線駆動機構部11により前記基板5の回転面と平
行な半径方向に直線移動される様になっている。
Further, the scanning drive mechanism section 6 comprises a substrate holding section 9 for holding the substrate 5, the substrate holding section 9 is rotatably supported by a rotation driving section 10, and the rotation driving section 1
0 is adapted to be linearly moved in the radial direction parallel to the rotating surface of the substrate 5 by the linear drive mechanism section 11.

【0017】前記照射光学系7は検査光であるレーザ光
線2を発する光源部12、該光源部12からのレーザ光
線2を前記基板5上に向けるミラー等の偏向光学部材1
3,14、前記レーザ光線2を前記基板5の表面に集光
させるレンズ群15等から構成されている。前記検出系
8は前記基板5表面に照射されるレーザ光線2の光軸に
交差する検出光軸を有する受光検出器16,17を具備
している。
The irradiation optical system 7 is a deflection optical member 1 such as a light source section 12 for emitting a laser beam 2 as an inspection light, and a mirror for directing the laser beam 2 from the light source section 12 onto the substrate 5.
3, 14 and a lens group 15 for focusing the laser beam 2 on the surface of the substrate 5 and the like. The detection system 8 includes light receiving detectors 16 and 17 having a detection optical axis that intersects the optical axis of the laser beam 2 with which the surface of the substrate 5 is irradiated.

【0018】前記基板5の表面検査は、前記回転駆動部
10により前記基板5が回転された状態で、前記照射光
学系7より前記基板5の表面に前記レーザ光線2が照射
され、更に前記直線駆動機構部11により前記回転駆動
部10が半径方向に移動される。
The surface inspection of the substrate 5 is performed by irradiating the laser beam 2 on the surface of the substrate 5 from the irradiation optical system 7 while the substrate 5 is rotated by the rotation driving unit 10, and further by the straight line. The rotation drive unit 10 is moved in the radial direction by the drive mechanism unit 11.

【0019】而して、前記基板5の一回転毎に所要ピッ
チでステップ送りすることにより、或は所定速度で前記
回転駆動部10を連続送りすることにより、前記レーザ
光線2の照射点が同心円、或は螺旋円の軌跡を描きなが
ら、前記基板5の中心から外縁迄移動し、該基板5の全
面が前記レーザ光線2によって走査されることとなる。
Thus, the irradiation point of the laser beam 2 is concentric circles by stepwise feeding at a required pitch for each revolution of the substrate 5 or by continuously feeding the rotary drive unit 10 at a predetermined speed. , Or while drawing a locus of a spiral circle, the substrate 5 moves from the center to the outer edge, and the entire surface of the substrate 5 is scanned by the laser beam 2.

【0020】該レーザ光線2が前記基板5の表面を走査
する過程で、異物、傷があると前記レーザ光線2が散乱
反射する。この散乱反射光は所定の位置に配置された前
記検出系8の受光検出器16,17によって検出され、
該受光検出器16,17からの信号を図示しない演算処
理部により信号処理することで、異物、傷が検出され
る。
During the process of scanning the surface of the substrate 5 by the laser beam 2, the laser beam 2 is scattered and reflected if there is a foreign substance or a scratch. The scattered reflected light is detected by the light receiving detectors 16 and 17 of the detection system 8 arranged at a predetermined position,
By processing the signals from the light receiving detectors 16 and 17 by an arithmetic processing unit (not shown), foreign matter and scratches are detected.

【0021】図2は本発明の表面検査装置の照射光学系
7の概略を示し、図中、偏向光学部材13,14等は省
略している。
FIG. 2 shows the outline of the irradiation optical system 7 of the surface inspection apparatus of the present invention, and the deflecting optical members 13, 14 and the like are omitted in the figure.

【0022】前記光源部12は2組の発光源1a,1b
を有し、該発光源1a,1bは個別に発光状態を制御可
能となっていると共に異なる波長λ1 ,λ2 のレーザ光
線2a,2bを発する様になっている。
The light source unit 12 includes two sets of light emitting sources 1a and 1b.
The light emitting sources 1a and 1b are capable of individually controlling the light emitting state and emit laser beams 2a and 2b having different wavelengths λ1 and λ2.

【0023】前記発光源1a,1bからのレーザ光線2
a,2bはそれぞれ個別にコリメートレンズ3a,3b
により平行光束とされ、1つの結像レンズ4により前記
基板5の表面に集光される様になっている。又、前記コ
リメートレンズ3a,3bと結像レンズ4の光軸はそれ
ぞれ平行となっており、前記発光源1a及び発光源1b
から発せられるレーザ光線2a,2bは前記結像レンズ
4により同一照射点18に集光される様になっている。
Laser beam 2 from the light emitting sources 1a and 1b
a and 2b are collimating lenses 3a and 3b, respectively.
Is formed into a parallel light beam by means of one imaging lens 4 and is condensed on the surface of the substrate 5. The optical axes of the collimator lenses 3a and 3b and the imaging lens 4 are parallel to each other, and the light emitting sources 1a and 1b are provided.
The laser beams 2a and 2b emitted from are focused on the same irradiation point 18 by the imaging lens 4.

【0024】前記発光源1a及び発光源1bからの波長
の異なるレーザ光線2a,2bが前記結像レンズ4によ
り同一照射点18に集光照射される。
Laser beams 2a and 2b having different wavelengths from the light emitting source 1a and the light emitting source 1b are focused and irradiated onto the same irradiation point 18 by the imaging lens 4.

【0025】前記発光源1a、発光源1b単独のレーザ
光線が前記照射点18に照射された場合、例えば前記発
光源1aから単独に波長λ1 のレーザ光線2aが前記照
射点18に照射された場合の散乱反射光の反射率は、上
述した様に膜種がシリコン酸化膜(SiO2 )であった
場合、図12に於ける所定の1波長の様に膜厚の変化に
対して周期的に変動する。又、図示していないが、前記
発光源1bからの波長λ2 のレーザ光線2bが単独に前
記照射点18に照射された場合、図12に於ける波長が
異なる線の様に前記発光源1aの場合とは異なった位相
で膜厚の変化に対応して周期的に変動する。
When the laser beam of the light emitting source 1a and the light emitting source 1b alone is applied to the irradiation point 18, for example, the laser beam 2a of the wavelength λ1 is applied to the irradiation point 18 independently from the light emitting source 1a. When the film type is the silicon oxide film (SiO2) as described above, the reflectance of the scattered reflection light of the No. fluctuates periodically with respect to the change of the film thickness such as one predetermined wavelength in FIG. To do. Further, although not shown, when the laser beam 2b having the wavelength λ2 from the light emitting source 1b is applied to the irradiation point 18 alone, the light emitting source 1a emits light as shown by lines having different wavelengths in FIG. It changes periodically in response to the change in film thickness in a phase different from the case.

【0026】次に、前記発光源1a、発光源1bから前
記レーザ光線2a,2bを同時に照射した場合の反射率
は、図12で示した様に位相がずれるので、膜厚の変化
に対する合成反射率は該各レーザ光線2a,2bの反射
率を合成したものとなる。即ち、該レーザ光線2a,2
bの反射率が合成されることで、反射率のピークの部分
が略平らとなり、反射率変動曲線は台形形状となる。
Next, when the laser beams 2a and 2b are simultaneously irradiated from the light emitting source 1a and the light emitting source 1b, the reflectances are out of phase with each other as shown in FIG. The rate is a combination of the reflectances of the laser beams 2a and 2b. That is, the laser beams 2a, 2
By combining the reflectances of b, the peak portions of the reflectances become substantially flat, and the reflectance fluctuation curve has a trapezoidal shape.

【0027】斯かる2種の波長λ1 ,λ2 のレーザ光線
2a,2bを同一照射点18に同時に照射することで、
例えば図12での所定の2波長に於ける反射率の落込み
部分を少なくすることができるので、膜厚が変動した場
合でも異物、傷に基づく散乱反射光は安定し、検出精度
は安定して変化しない。
By simultaneously irradiating the same irradiation point 18 with the two kinds of laser beams 2a and 2b having wavelengths λ1 and λ2,
For example, since it is possible to reduce the drop-in portion of the reflectance at the predetermined two wavelengths in FIG. 12, the scattered reflection light due to foreign matter and scratches is stable and the detection accuracy is stable even when the film thickness changes. Does not change.

【0028】尚、3種以上の波長のレーザ光線を混合し
て同一照射点に照射する様にしてもよい。この場合、反
射率の変動曲線は各レーザ光線の反射率を合成したもの
となり、各レーザ光線の反射率変動曲線の位相が適宜量
ずつずれる様な波長を選択し、照射光強度を調整すれ
ば、反射率変動曲線のピークの平坦部分が更に大きくな
り、膜厚の変動に対して更に安定する。
The laser beams of three or more wavelengths may be mixed and irradiated at the same irradiation point. In this case, the reflectance variation curve is a combination of the reflectances of the respective laser beams, and if the wavelength of the reflectance variation curve of each laser beam is shifted by an appropriate amount, the irradiation light intensity can be adjusted. , The flat part of the peak of the reflectance fluctuation curve becomes larger, and it becomes more stable against fluctuations in film thickness.

【0029】3種以上の波長のレーザ光線を混合する照
射光学系の一例を図5に示す。
FIG. 5 shows an example of an irradiation optical system for mixing laser beams of three or more wavelengths.

【0030】図5は第2の実施の形態を示し、該第2の
実施の形態では、多数の発光源1a…1nを用いた場合
を示している。該発光源1a…1nからはそれぞれ異な
った波長のレーザ光線2a…2nが発せられている。
FIG. 5 shows a second embodiment, and in the second embodiment, a case where a large number of light emitting sources 1a ... 1n are used is shown. .. 2n of different wavelengths are emitted from the light emitting sources 1a.

【0031】前記各発光源1a…1nを直線的に配設
し、該各発光源1a…1nに対してそれぞれコリメート
レンズ3a…3nを設け、該コリメートレンズ3a…3
nを介してレーザ光線2a…2nが1つの結像レンズ4
に入射される様にしたものであり、前記コリメートレン
ズ3a…3nの光軸を前記結像レンズ4の光軸と平行に
したものである。
1n are linearly arranged, and collimating lenses 3a ... 3n are provided for the respective light emitting sources 1a ... 1n, and the collimating lenses 3a ... 3n are provided.
2n is a single imaging lens 4
3n, and the optical axes of the collimating lenses 3a ... 3n are parallel to the optical axis of the imaging lens 4.

【0032】本実施の形態では、波長の異なる全てのレ
ーザ光線2a…2nが照射点18の一点に集光され、各
レーザ光線2a…2nの反射率が合成され、扁平な台形
形状をした反射率変動曲線が得られる。
In the present embodiment, all the laser beams 2a ... 2n having different wavelengths are condensed at one point of the irradiation point 18, the reflectances of the respective laser beams 2a ... 2n are combined, and the flat trapezoidal reflection is performed. A rate variation curve is obtained.

【0033】上記実施の形態では、波長が異なることで
膜厚に対して反射率が変動することを説明したが、図2
で示す様に、レーザ光線2の基板5に入射する角度θが
大きくなると前記レーザ光線2の偏光状態が反射率に影
響することが分っている。
In the above embodiment, it has been described that the reflectance varies with the film thickness due to the different wavelengths.
It has been found that the polarization state of the laser beam 2 influences the reflectance as the angle θ of the laser beam 2 incident on the substrate 5 increases, as shown in FIG.

【0034】図6に於いて、第3の実施の形態について
説明する。
A third embodiment will be described with reference to FIG.

【0035】図6は第3の実施の形態の照射光学系7の
概略を示し、図中、図2中で示したものと同等のものに
は同符号を付し、説明の詳細は省略する。
FIG. 6 shows an outline of the irradiation optical system 7 of the third embodiment. In the figure, the same parts as those shown in FIG. 2 are designated by the same reference numerals, and the detailed description thereof will be omitted. .

【0036】発光源1a,1bは個別に発光状態を制御
可能となっており、該発光源1a,1bからのレーザ光
線2a,2bはそれぞれ個別にコリメートレンズ3a,
3bにより平行光束とされ、1つの結像レンズ4により
基板5の表面に集光照射される様になっている。又、前
記コリメートレンズ3a,3bと結像レンズ4の光軸は
それぞれ平行となっており、前記発光源1a及び発光源
1bから発せられるレーザ光線2a,2bは前記結像レ
ンズ4により同一照射点18に集光される様になってい
る。
The light emission sources 1a and 1b can individually control the light emission state, and the laser beams 2a and 2b from the light emission sources 1a and 1b are individually collimated lenses 3a and 3b.
A parallel light beam is formed by 3b, and the surface of the substrate 5 is condensed and irradiated by one imaging lens 4. The optical axes of the collimating lenses 3a and 3b and the imaging lens 4 are parallel to each other, and the laser beams 2a and 2b emitted from the light emitting sources 1a and 1b are irradiated by the imaging lens 4 at the same irradiation point. It is designed to be focused on 18.

【0037】前記レーザ光線2a,2bのそれぞれの光
軸に対して偏光部材19a、偏光部材19bが挿脱可能
に設けられている。尚、前記発光源1a,1bから発せ
られるレーザ光線2a,2bの波長は、同一又は異なっ
ていてもよいが、以下は同一として説明する。又、前記
基板5に対するレーザ光線2の入射角θは前記レーザ光
線2の偏光状態が反射率に反映される角度とする。
Polarizing members 19a and 19b are provided so that they can be inserted and removed with respect to the respective optical axes of the laser beams 2a and 2b. The wavelengths of the laser beams 2a and 2b emitted from the light emitting sources 1a and 1b may be the same or different, but the following description will be made as the same. The incident angle θ of the laser beam 2 with respect to the substrate 5 is an angle at which the polarization state of the laser beam 2 is reflected in the reflectance.

【0038】尚、偏光部材としては偏光板、1/2λ
板、1/4λ板、偏光解消板(偏光をランダム偏光とす
る)等が挙げられる。
As the polarizing member, a polarizing plate, 1 / 2λ
Examples include a plate, a 1 / 4λ plate, a depolarizing plate (where polarized light is random polarized light), and the like.

【0039】図6に於いて、例えば前記レーザ光線2a
の光軸に対してのみ前記偏光部材19aを挿入すると、
前記レーザ光線2aとレーザ光線2bとの偏光状態が変
る。この為、図3の様に該レーザ光線2aとレーザ光線
2bとで膜厚の変動に対する反射率変動曲線に差が生じ
るが、該レーザ光線2a,2bの合成反射率変動曲線は
図4で示す様に膜厚が0.6μm〜0.7μmの間に於
いて、ピーク値が平らとなる。
In FIG. 6, for example, the laser beam 2a is used.
When the polarizing member 19a is inserted only with respect to the optical axis of
The polarization states of the laser beam 2a and the laser beam 2b change. Therefore, as shown in FIG. 3, there is a difference between the laser beam 2a and the laser beam 2b in the reflectance variation curve with respect to the variation of the film thickness, but the combined reflectance variation curve of the laser beams 2a and 2b is shown in FIG. Similarly, the peak value becomes flat when the film thickness is between 0.6 μm and 0.7 μm.

【0040】而して、第3の実施の形態に於いても、膜
厚が変動した場合でも、異物、傷に基づく散乱反射光は
安定し、検出精度は安定して変化しない。
Thus, also in the third embodiment, even when the film thickness is changed, the scattered reflected light due to the foreign matter and the scratch is stable, and the detection accuracy is not stable.

【0041】尚、偏光板、1/2λ板、1/4λ板、偏
光解消板を選択することで、レーザ光線の偏光状態が変
更でき、反射率変動曲線も変化する。従って、前記レー
ザ光線2aの光軸、レーザ光線2bの光軸に挿入する偏
光部材19a,19bを適宜選択することで、前記レー
ザ光線2a,2bの反射率変動曲線を調整することが可
能となる。
By selecting a polarizing plate, a 1 / 2λ plate, a 1 / 4λ plate, and a depolarizing plate, the polarization state of the laser beam can be changed, and the reflectance fluctuation curve also changes. Therefore, by appropriately selecting the polarization members 19a and 19b to be inserted into the optical axes of the laser beam 2a and the laser beam 2b, it becomes possible to adjust the reflectance fluctuation curve of the laser beams 2a and 2b. .

【0042】更に、該レーザ光線2a,2bの波長を変
えることで該レーザ光線2a,2bの反射率変動曲線が
変化することは言う迄もなく、反射率変動曲線を変化さ
せる要因であるレーザ光線の波長、偏光状態を適宜選択
することで反射率変動曲線の調整範囲が大きくなり、一
層最適な反射率変動曲線を実現することができる。
Further, it goes without saying that the reflectance fluctuation curves of the laser beams 2a and 2b change by changing the wavelengths of the laser beams 2a and 2b. By appropriately selecting the wavelength and the polarization state, the adjustment range of the reflectance variation curve becomes large, and a more optimal reflectance variation curve can be realized.

【0043】図7は第4の実施の形態を示し、該第4の
実施の形態では発光源1a,1bが分離した位置に設け
られた場合で、レーザ光線を混交する場合である。
FIG. 7 shows a fourth embodiment. In the fourth embodiment, the light emitting sources 1a and 1b are provided at separate positions, and the laser beams are mixed.

【0044】発光源1a及び該発光源1aに対応して設
けられるコリメートレンズ3aは結像レンズ4の光軸に
対して交差した位置、例えば直交する光軸上に設けら
れ、前記発光源1aから発せられたレーザ光線2aは反
射鏡21aにより前記結像レンズ4の光軸と平行に反射
され、前記結像レンズ4に導かれる。
The light emitting source 1a and the collimating lens 3a provided corresponding to the light emitting source 1a are provided at a position intersecting with the optical axis of the imaging lens 4, for example, on an optical axis orthogonal to each other, and from the light emitting source 1a. The emitted laser beam 2a is reflected by the reflecting mirror 21a in parallel with the optical axis of the imaging lens 4 and guided to the imaging lens 4.

【0045】発光源1b、コリメートレンズ3bも同様
に配設され、前記発光源1bから発せられたレーザ光線
2bは反射鏡21bにより反射され、前記結像レンズ4
の光軸と平行に該結像レンズ4に入射される。
The light emitting source 1b and the collimating lens 3b are also arranged in the same manner, and the laser beam 2b emitted from the light emitting source 1b is reflected by the reflecting mirror 21b, and the imaging lens 4 is formed.
The light is incident on the imaging lens 4 in parallel with the optical axis of.

【0046】該結像レンズ4により前記発光源1a,1
bから発せられたレーザ光線2a,2bは照射点18に
集光される。
By the image forming lens 4, the light emitting sources 1a, 1
The laser beams 2a and 2b emitted from b are focused on the irradiation point 18.

【0047】上記第4の実施の形態で、発光源1が3以
上の場合は、前記結像レンズ4の光軸を中心とした放射
線上に光源1、コリメートレンズ3を配設すればよい。
In the fourth embodiment, when the number of light emitting sources 1 is three or more, the light source 1 and the collimating lens 3 may be arranged on the radiation centered on the optical axis of the image forming lens 4.

【0048】該第4の実施の形態で、前記発光源1a,
1bが発する波長を変え、或は該レーザ光線2a,2b
の光軸上に偏光部材19a,19bを挿脱することで、
上記した実施の形態と同様の反射率変動曲線ができ、最
適な反射率変動曲線を実現することができる。
In the fourth embodiment, the light emitting source 1a,
1b changes the wavelength emitted, or the laser beams 2a, 2b
By inserting and removing the polarizing members 19a and 19b on the optical axis of
A reflectance fluctuation curve similar to that of the above-described embodiment can be obtained, and an optimum reflectance fluctuation curve can be realized.

【0049】図8は第5の実施の形態を示しており、該
第5の実施の形態では第4の実施の形態と同様、発光源
1a,1bが分離した位置に設けられた場合で、レーザ
光線2a,2bを混合する場合である。
FIG. 8 shows a fifth embodiment. In the fifth embodiment, as in the fourth embodiment, the light emitting sources 1a and 1b are provided at separate positions. This is a case where the laser beams 2a and 2b are mixed.

【0050】光源部12は離反して設けられた2組の発
光源1a,1bを有し、該発光源1a,1bは個別に発
光状態を制御可能となっていると共に異なる波長λ1 、
λ2のレーザ光線2a,2bを発する様になっている。
The light source section 12 has two sets of light emitting sources 1a and 1b provided apart from each other. The light emitting sources 1a and 1b are capable of individually controlling their light emitting states and have different wavelengths λ1,
The laser beams 2a and 2b of λ2 are emitted.

【0051】前記発光源1a,1bからのレーザ光線2
a,2bはそれぞれ個別にコリメートレンズ3a,3b
により平行光束とされる。前記レーザ光線2aの光軸上
に反射鏡22が配設され、該反射鏡22の反射光軸と前
記コリメートレンズ3bの光軸との交点にハーフミラー
23が配設されている。
Laser beam 2 from the light emitting sources 1a and 1b
a and 2b are collimating lenses 3a and 3b, respectively.
To form a parallel light beam. A reflecting mirror 22 is arranged on the optical axis of the laser beam 2a, and a half mirror 23 is arranged at the intersection of the reflecting optical axis of the reflecting mirror 22 and the optical axis of the collimating lens 3b.

【0052】前記レーザ光線2aは前記反射鏡22及び
ハーフミラー23によって反射され、該ハーフミラー2
3を透過するレーザ光線2bに合致し、結像レンズ4の
光軸上の基板5の照射点18に集光照射される。
The laser beam 2a is reflected by the reflecting mirror 22 and the half mirror 23, and the half mirror 2
The laser beam 2b that passes through the laser beam 3 is focused on the irradiation point 18 of the substrate 5 on the optical axis of the imaging lens 4 and focused.

【0053】上記第5の実施の形態に於いても、前記発
光源1a,1bが発する波長を変え、或は前記レーザ光
線2a,2bの光軸上に偏光部材19a,19bを挿脱
することで、上記した実施の形態と同様の反射率変動曲
線ができ、最適な反射率変動曲線を実現することができ
る。
Also in the fifth embodiment, the wavelengths emitted by the light emitting sources 1a and 1b are changed, or the polarization members 19a and 19b are inserted and removed on the optical axes of the laser beams 2a and 2b. Then, a reflectance variation curve similar to that of the above-described embodiment can be formed, and an optimal reflectance variation curve can be realized.

【0054】尚、第5の実施の形態に於いて、前記反射
鏡22、ハーフミラー23を省略し、前記発光源1aか
らのレーザ光線2aを偏向光学部材14′、結像レンズ
4′により直接照射点18に集光照射させ、該照射点1
8でレーザ光線2a,2bの混合を行ってもよい。この
場合、該レーザ光線2aとレーザ光線2bとは前記基板
5に対して入射角が異なり、反射特性は入射角にも影響
されるので、前記レーザ光線2a,2bの光路を切替え
ることで、異なった反射特性を得ることができる。
In the fifth embodiment, the reflecting mirror 22 and the half mirror 23 are omitted, and the laser beam 2a from the light emitting source 1a is directly reflected by the deflection optical member 14 'and the imaging lens 4'. The irradiation point 18 is focused and irradiated, and the irradiation point 1
The laser beams 2a and 2b may be mixed at 8. In this case, the laser beam 2a and the laser beam 2b have different incident angles with respect to the substrate 5, and the reflection characteristics are also affected by the incident angle. Therefore, by switching the optical paths of the laser beams 2a and 2b, they differ. It is possible to obtain excellent reflection characteristics.

【0055】図9は光路切替え手段の一例を示すもので
ある。
FIG. 9 shows an example of the optical path switching means.

【0056】前記レーザ光線2aの光軸上に反射鏡24
a、25aに、又前記レーザ光線2bの光軸上に反射鏡
24b,25bを一体に挿脱可能とし、反射鏡24a、
25a及び反射鏡24b,25bを挿入した状態では、
レーザ光線2aは反射鏡24a,25bに反射されて変
更前のレーザ光線2bの光軸に、又レーザ光線2bは反
射鏡24b,25aに反射されて変更前のレーザ光線2
aの光軸にそれぞれ光路が変更される。
A reflecting mirror 24 is provided on the optical axis of the laser beam 2a.
a and 25a, and the reflecting mirrors 24b and 25b can be integrally inserted into and removed from the optical axis of the laser beam 2b.
With 25a and the reflecting mirrors 24b and 25b inserted,
The laser beam 2a is reflected by the reflecting mirrors 24a, 25b to the optical axis of the laser beam 2b before the change, and the laser beam 2b is reflected by the reflecting mirrors 24b, 25a and the laser beam 2 before the change.
The optical path is changed to the optical axis of a.

【0057】図10(A)(B)は光路切替え手段の他
の一例を示すものである。
FIGS. 10A and 10B show another example of the optical path switching means.

【0058】該他の光路切替え手段では、発光源1a,
1bを一体に回転可能とし、該発光源1a,1bを18
0°回転することで、光路の切替えを行うものである。
In the other optical path switching means, the light emitting sources 1a,
1b is rotatable integrally, and the light emitting sources 1a and 1b are
The optical path is switched by rotating 0 °.

【0059】図5で示した実施の形態では、複数の発光
源1を直線上に配設したが、更に所要列配設し、複数の
発光源1の配置をマトリックス状としてもよい。
In the embodiment shown in FIG. 5, the plurality of light emitting sources 1 are arranged in a straight line, but the plurality of light emitting sources 1 may be arranged in a required row and arranged in a matrix.

【0060】マトリックス状とした場合、特に図示しな
いが以下の如く照射点の光強度調整ができる。図5を参
照して説明する。
In the case of a matrix, the light intensity of the irradiation point can be adjusted as follows, although not particularly shown. This will be described with reference to FIG.

【0061】即ち、各列について、発光源1については
波長を変え、更に適宜偏光部材19を挿脱し、第1列目
について各レーザ光線の反射率が合成され、扁平な台形
形状をした反射率変動曲線が得られる状態とする。次に
第2列目以降第1列目と同様な反射率変動曲線が得られ
る状態としておく。各発光源に対応しても設けられたコ
リメートレンズ3の光軸を結像レンズ4の光軸と平行と
する。
That is, for each row, the wavelength of the light emitting source 1 is changed, the polarizing member 19 is further inserted / removed as appropriate, and the reflectance of each laser beam is combined for the first row to obtain a flat trapezoidal reflectance. The condition is that a fluctuation curve can be obtained. Next, the second and subsequent columns are set in a state in which the same reflectance fluctuation curves as those in the first column can be obtained. The optical axis of the collimator lens 3 provided corresponding to each light emitting source is parallel to the optical axis of the imaging lens 4.

【0062】この状態では、全てのレーザ光線2が照射
点18に集光照射されることとなり、各列に関しては扁
平な台形形状をした反射率変動曲線が得られ、更に光強
度は各列の光強度が列数分だけ加算されることとなり、
得られる散乱反射光量が増大する。
In this state, all the laser beams 2 are focused and irradiated on the irradiation point 18, and a flat trapezoidal reflectance fluctuation curve is obtained for each row, and the light intensity of each row is different. Light intensity will be added for the number of rows,
The amount of scattered reflection light obtained increases.

【0063】検出精度は、照射光強度を増大させること
で向上するので、複数の発光源1をマトリックス状に配
設した場合、表面検査装置の検査精度の膜厚変動に対す
る安定性が向上すると共に検査精度の向上も得られる。
Since the detection accuracy is improved by increasing the irradiation light intensity, when the plurality of light emitting sources 1 are arranged in a matrix, the stability of the inspection accuracy of the surface inspection apparatus against the film thickness variation is improved. Improvement of inspection accuracy can also be obtained.

【0064】更に、レーザ光線2が青色レーザダイオー
ドの様に、単体では充分な光量が得られない場合に対し
ても有効である。
Further, it is effective even when the laser beam 2 cannot obtain a sufficient amount of light by itself, such as a blue laser diode.

【0065】尚、複数あるレーザ光線2の配列はマトリ
ックス状に限らず、円状であっても、その他の配列であ
ってもよい。要は扁平な反射率変動曲線が得られる様
に、各発光源の波長、偏光状態、光強度を調整すればよ
い。
The array of the plurality of laser beams 2 is not limited to the matrix, and may be circular or any other array. In short, the wavelength, polarization state, and light intensity of each light emitting source may be adjusted so that a flat reflectance variation curve can be obtained.

【0066】[0066]

【発明の効果】以上述べた如く本発明によれば、基板表
面にレーザ光線を照射し、該レーザ光線の散乱反射光を
検出して異物を検出する表面検査装置に於いて、光源部
が複数の発光源を有し、それぞれの発光源からのレーザ
光線を基板表面に、基板表面での反射特性が異なる状態
で照射する照射光学系を具備するので、散乱反射光が基
板表面の膜種、膜厚に影響を受け難くなり、安定した高
精度の検査が可能となる等の優れた効果を発揮する。
As described above, according to the present invention, in the surface inspection apparatus for irradiating the surface of the substrate with the laser beam and detecting the scattered reflected light of the laser beam to detect the foreign matter, a plurality of light source units are provided. Of the light source, the laser beam from each light source is provided on the substrate surface, the irradiation optical system for irradiating the substrate surface in a state where the reflection characteristics on the substrate surface are different. It is less affected by the film thickness and exhibits excellent effects such as stable and highly accurate inspection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る表面検査装置の基本
構成を示す骨子図である。
FIG. 1 is a skeleton view showing a basic configuration of a surface inspection device according to an embodiment of the present invention.

【図2】該表面検査装置の照射光学系の説明図である。FIG. 2 is an explanatory diagram of an irradiation optical system of the surface inspection device.

【図3】単一波長のレーザ光線を基板表面に照射した場
合の膜厚の変化と反射率との関係を示す線図である。
FIG. 3 is a diagram showing a relationship between a change in film thickness and reflectance when a substrate surface is irradiated with a laser beam having a single wavelength.

【図4】偏光の異なる単一波長のレーザ光線を基板表面
に照射した場合の膜厚の変化と反射率との関係を示す線
図である。
FIG. 4 is a diagram showing the relationship between the change in film thickness and the reflectance when a single-wavelength laser beam with different polarization is applied to the substrate surface.

【図5】第2の実施の形態の表面検査装置の照射光学系
の説明図である。
FIG. 5 is an explanatory diagram of an irradiation optical system of the surface inspection apparatus according to the second embodiment.

【図6】第3の実施の形態の表面検査装置の照射光学系
の説明図である。
FIG. 6 is an explanatory diagram of an irradiation optical system of a surface inspection device according to a third embodiment.

【図7】第4の実施の形態の表面検査装置の照射光学系
の説明図である。
FIG. 7 is an explanatory diagram of an irradiation optical system of a surface inspection device according to a fourth embodiment.

【図8】第5の実施の形態の表面検査装置の照射光学系
の説明図である。
FIG. 8 is an explanatory diagram of an irradiation optical system of a surface inspection device according to a fifth embodiment.

【図9】第5の実施の形態に於ける光路切替え手段の一
例を示す説明図である。
FIG. 9 is an explanatory diagram showing an example of an optical path switching unit according to a fifth embodiment.

【図10】(A)(B)は第5の実施の形態に於ける光
路切替え手段の他の一例を示す説明図である。
FIGS. 10A and 10B are explanatory views showing another example of the optical path switching means in the fifth embodiment.

【図11】従来の表面検査装置の照射光学系を示す説明
図である。
FIG. 11 is an explanatory diagram showing an irradiation optical system of a conventional surface inspection device.

【図12】基板表面に形成された膜厚の変化と波長の異
なるレーザ光線の反射率との関係を示す線図である。
FIG. 12 is a diagram showing the relationship between the change in film thickness formed on the substrate surface and the reflectance of laser beams having different wavelengths.

【符号の説明】[Explanation of symbols]

1 発光源 2 レーザ光線 5 基板 6 走査駆動機構部 7 照射光学系 8 検出系 12 光源部 15 レンズ群 18 照射点 19 偏光部材 1 light source 2 laser beam 5 substrates 6 Scan drive mechanism 7 Irradiation optical system 8 detection system 12 Light source 15 lens groups 18 irradiation points 19 Polarizing member

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G051 AA51 AB01 AB02 BA01 BA08 BA10 BA11 BB01 BB09 BB20 CA01 CB01 CB05 4M106 AA01 BA05 CA41 CA46 DB08 DB14    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G051 AA51 AB01 AB02 BA01 BA08                       BA10 BA11 BB01 BB09 BB20                       CA01 CB01 CB05                 4M106 AA01 BA05 CA41 CA46 DB08                       DB14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板表面にレーザ光線を照射し、該レー
ザ光線の散乱反射光を検出して異物を検出する表面検査
装置に於いて、光源部が複数の発光源を有し、それぞれ
の発光源からのレーザ光線を基板表面に、基板表面での
反射特性が異なる状態で照射する照射光学系を具備する
ことを特徴とする表面検査装置。
1. A surface inspection apparatus for irradiating a laser beam on a substrate surface and detecting scattered reflected light of the laser beam to detect foreign matter, wherein a light source section has a plurality of light emission sources, and each light emission is performed. A surface inspection apparatus, comprising: an irradiation optical system that irradiates a laser beam from a source onto a substrate surface in a state where the substrate surface has different reflection characteristics.
【請求項2】 前記複数の発光源の少なくとも1つが異
なる波長で発光する請求項1の表面検査装置。
2. The surface inspection apparatus according to claim 1, wherein at least one of the plurality of light emitting sources emits light at different wavelengths.
【請求項3】 前記複数の発光源の少なくとも1つのレ
ーザ光線の偏光状態を変更する偏光部材を設けた請求項
1の表面検査装置。
3. The surface inspection apparatus according to claim 1, further comprising a polarizing member that changes a polarization state of at least one laser beam of the plurality of light emitting sources.
【請求項4】 前記照射光学系が1つの結像レンズを有
すると共に各発光源に対応して設けられ該発光源からの
レーザ光線を前記結像レンズに入射させる光学部材を有
する請求項1の表面検査装置。
4. The irradiation optical system has one image forming lens, and an optical member provided corresponding to each light emitting source to make a laser beam from the light emitting source incident on the image forming lens. Surface inspection device.
【請求項5】 前記発光源がマトリックス状に配設され
た請求項1〜請求項3のいずれかの表面検査装置。
5. The surface inspection apparatus according to claim 1, wherein the light emission sources are arranged in a matrix.
JP2001370639A 2001-12-04 2001-12-04 Surface inspection device Expired - Fee Related JP3783848B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001370639A JP3783848B2 (en) 2001-12-04 2001-12-04 Surface inspection device
US10/252,763 US7046353B2 (en) 2001-12-04 2002-09-23 Surface inspection system
IL151898A IL151898A (en) 2001-12-04 2002-09-24 Surface inspection system
KR10-2002-0058389A KR100495710B1 (en) 2001-12-04 2002-09-26 Surface inspection system
TW091122190A TW571090B (en) 2001-12-04 2002-09-26 Surface inspection system
EP02257196A EP1318392A1 (en) 2001-12-04 2002-10-17 Surface inspection system
CNB021543801A CN1191470C (en) 2001-12-04 2002-12-04 Surface testers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370639A JP3783848B2 (en) 2001-12-04 2001-12-04 Surface inspection device

Publications (2)

Publication Number Publication Date
JP2003166947A true JP2003166947A (en) 2003-06-13
JP3783848B2 JP3783848B2 (en) 2006-06-07

Family

ID=19179830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370639A Expired - Fee Related JP3783848B2 (en) 2001-12-04 2001-12-04 Surface inspection device

Country Status (1)

Country Link
JP (1) JP3783848B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043371A (en) * 2003-07-23 2005-02-17 Kla-Tencor Technologies Corp Method and apparatus for determining surface layer thickness using continuous multi-wavelength surface scanning
JP2007303904A (en) * 2006-05-10 2007-11-22 Nikon Corp Surface inspection device
JP2009222689A (en) * 2008-03-19 2009-10-01 Nuflare Technology Inc Inspection apparatus
US7643139B2 (en) 2004-09-29 2010-01-05 Hitachi High-Technologies Corporation Method and apparatus for detecting defects
JP2010249843A (en) * 2010-07-30 2010-11-04 Hitachi High-Technologies Corp Method and apparatus for defect inspection
JP2012225938A (en) * 2012-08-07 2012-11-15 Hitachi High-Technologies Corp Defect inspection method and defect inspection device
US8351683B2 (en) 2007-12-25 2013-01-08 Hitachi High-Technologies Corporation Inspection apparatus and inspection method
US9194826B2 (en) 2007-04-16 2015-11-24 Ebara Corporation Electron beam apparatus and sample observation method using the same
JP2020204579A (en) * 2019-06-18 2020-12-24 住友電工デバイス・イノベーション株式会社 Wafer surface inspection method, surface inspection device, and method for manufacturing electronic component
CN112864034A (en) * 2019-11-27 2021-05-28 上海先进半导体制造有限公司 Aluminum corrosion treatment method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181712A (en) * 2015-07-29 2015-12-23 李天华 Brittle coating layer mapping structure surface crack flat-plate scanning detection system and detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273142A (en) * 1992-03-25 1993-10-22 Ricoh Co Ltd Defect inspecting device for information recording medium
JPH07243988A (en) * 1994-03-04 1995-09-19 Toshiba Corp Surface inspecting device
JPH09161304A (en) * 1995-12-04 1997-06-20 Pioneer Electron Corp Optical recording medium reproducing device
JP2001281162A (en) * 2000-04-03 2001-10-10 Topcon Corp Surface inspecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273142A (en) * 1992-03-25 1993-10-22 Ricoh Co Ltd Defect inspecting device for information recording medium
JPH07243988A (en) * 1994-03-04 1995-09-19 Toshiba Corp Surface inspecting device
JPH09161304A (en) * 1995-12-04 1997-06-20 Pioneer Electron Corp Optical recording medium reproducing device
JP2001281162A (en) * 2000-04-03 2001-10-10 Topcon Corp Surface inspecting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043371A (en) * 2003-07-23 2005-02-17 Kla-Tencor Technologies Corp Method and apparatus for determining surface layer thickness using continuous multi-wavelength surface scanning
JP2014074727A (en) * 2003-07-23 2014-04-24 Kla-Encor Corp Method and apparatus for determining surface layer thickness using continuous multi-wavelength surface scanning
US7643139B2 (en) 2004-09-29 2010-01-05 Hitachi High-Technologies Corporation Method and apparatus for detecting defects
JP4605089B2 (en) * 2006-05-10 2011-01-05 株式会社ニコン Surface inspection device
JP2007303904A (en) * 2006-05-10 2007-11-22 Nikon Corp Surface inspection device
US9194826B2 (en) 2007-04-16 2015-11-24 Ebara Corporation Electron beam apparatus and sample observation method using the same
US8351683B2 (en) 2007-12-25 2013-01-08 Hitachi High-Technologies Corporation Inspection apparatus and inspection method
US8611640B2 (en) 2007-12-25 2013-12-17 Hitachi High-Technologies Corporation Inspection apparatus and inspection method
JP2009222689A (en) * 2008-03-19 2009-10-01 Nuflare Technology Inc Inspection apparatus
JP2010249843A (en) * 2010-07-30 2010-11-04 Hitachi High-Technologies Corp Method and apparatus for defect inspection
JP2012225938A (en) * 2012-08-07 2012-11-15 Hitachi High-Technologies Corp Defect inspection method and defect inspection device
JP2020204579A (en) * 2019-06-18 2020-12-24 住友電工デバイス・イノベーション株式会社 Wafer surface inspection method, surface inspection device, and method for manufacturing electronic component
US11561186B2 (en) 2019-06-18 2023-01-24 Sumitomo Electric Device Innovations, Inc. Method for inspecting surface of wafer, device for inspecting surface of wafer, and manufacturing method of electronic component
CN112864034A (en) * 2019-11-27 2021-05-28 上海先进半导体制造有限公司 Aluminum corrosion treatment method and system
CN112864034B (en) * 2019-11-27 2023-09-01 上海先进半导体制造有限公司 Aluminum corrosion treatment method and system

Also Published As

Publication number Publication date
JP3783848B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
KR100495710B1 (en) Surface inspection system
US6858859B2 (en) Optically scanning apparatus and defect inspection system
US8755044B2 (en) Large particle detection for multi-spot surface scanning inspection systems
US5999245A (en) Proximity exposure device with distance adjustment device
US5220450A (en) Scanning optical system capable of automatic focusing
JP2001516874A (en) Improved sample inspection system
JPH08505952A (en) Inspection interferometer with scanning function
JP2005214966A (en) System and method for double-sided optical inspecting thin-film disc or wafer
JP3783848B2 (en) Surface inspection device
JPH095660A (en) Means to control power output of laser diode in ros system
JP4391082B2 (en) Surface inspection method and apparatus
US9746430B2 (en) Optical inspecting apparatus
JP5111721B2 (en) Multi-detector microscopy system
JP4777995B2 (en) Method and apparatus for measuring a focused beam
JP2005517217A6 (en) Multi-detector microscopy system
EP1424537B1 (en) Recording device of information recording medium original disk
JP2004515750A (en) Multiple beam inspection apparatus and method
JP2006017743A (en) Surface inspection device
JP2003166948A (en) Surface inspection apparatus
KR20210151160A (en) Surface detection device and method
JP2003166946A (en) Surface inspection apparatus
JP2003050209A (en) Defect detection optical system, and effect inspection method and device using it
US20240011922A1 (en) High-performance euv microscope with free form illumination system
JPH06242015A (en) Microparticle detection system
JPH09145313A (en) Optical lever-type displacement detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees