JP2006017743A - Surface inspection device - Google Patents

Surface inspection device Download PDF

Info

Publication number
JP2006017743A
JP2006017743A JP2005263954A JP2005263954A JP2006017743A JP 2006017743 A JP2006017743 A JP 2006017743A JP 2005263954 A JP2005263954 A JP 2005263954A JP 2005263954 A JP2005263954 A JP 2005263954A JP 2006017743 A JP2006017743 A JP 2006017743A
Authority
JP
Japan
Prior art keywords
irradiation
optical axis
light
substrate
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005263954A
Other languages
Japanese (ja)
Inventor
Hisashi Isozaki
久 磯崎
Yoshiyuki Enomoto
芳幸 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2005263954A priority Critical patent/JP2006017743A/en
Publication of JP2006017743A publication Critical patent/JP2006017743A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain sufficient irradiation light intensity and inspection precision, and to enhance a through-put, in a surface inspection device. <P>SOLUTION: In this surface inspection device for detecting scattered reflected lights due to laser beams 2 to detect a foreign matter, by irradiating a substrate 5 surface with the laser beams, a light source part 12 has a plurality of light emitting sources, one image focusing lens, and an optical member provided in each of the light emitting sources to make the laser beam from the each light emitting source get incident into the image focusing lens, and an irradiation optical system is provided to widen a scanning pitch by inclining an optical axis for incidence from the light emitting source into the image focusing lens with respect to an optical axis of the image focusing lens, and by irradiating the substrate surface with the beams shifted along a direction to cross each other irradiation points of the laser beams emitted from the respective light emitting sources with respect to a scanning direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体ウェーハ等の基板の表面の微細な異物、或は結晶欠陥等の微細な傷を検査する表面検査装置に関するものである。   The present invention relates to a surface inspection apparatus for inspecting fine foreign matters on a surface of a substrate such as a semiconductor wafer or fine flaws such as crystal defects.

表面検査装置は、レーザ光線を基板表面に照射し、異物、傷によって生じる散乱反射光を検出して異物、傷の検出を行うものである。尚、表面検査装置での発光源としては、ガスレーザ(He、Ar等)等が用いられてきたが、最近では取扱いが容易、安全、長寿命等の理由からレーザダイオード(LD)が用いられている。   The surface inspection apparatus irradiates the surface of a substrate with a laser beam and detects scattered / reflected light caused by foreign matter and scratches to detect the foreign matter and scratches. In addition, gas lasers (He, Ar, etc.) have been used as light emission sources in surface inspection apparatuses, but recently, laser diodes (LDs) have been used for reasons of easy handling, safety, and long life. Yes.

図14は発光源としてレーザダイオードが使用された従来の照射光学系を示している。   FIG. 14 shows a conventional irradiation optical system in which a laser diode is used as a light source.

発光源1から発せられたレーザ光線2はコリメートレンズ3により、平行光束とされ、結像レンズ4によりウェーハ等の基板5の表面(前記結像レンズ4による集光位置fの照射点18)に集光される。該照射点18での照射光強度分布は図15に示される。   The laser beam 2 emitted from the light source 1 is converted into a parallel light beam by the collimating lens 3 and is formed on the surface of the substrate 5 such as a wafer (irradiation point 18 at the condensing position f by the imaging lens 4) by the imaging lens 4. Focused. The irradiation light intensity distribution at the irradiation point 18 is shown in FIG.

前記基板5の全表面を検査する場合は、該基板5を回転させつつ前記照射点18を中心から外縁迄、半径方向に所定速度で移動させる。図15は照射点18でのレーザ光線2の照射光強度分布を示し、又走査位置uから前記基板5が一回転して走査位置u+1の位置に移動した状態を示している。この場合の半径方向の速度は、前記基板5の一回転につき半径方向にp移動する速度である。   When the entire surface of the substrate 5 is inspected, the irradiation point 18 is moved from the center to the outer edge at a predetermined speed in the radial direction while rotating the substrate 5. FIG. 15 shows the irradiation light intensity distribution of the laser beam 2 at the irradiation point 18, and shows a state in which the substrate 5 is rotated from the scanning position u to the scanning position u + 1. The speed in the radial direction in this case is a speed that moves p in the radial direction per one rotation of the substrate 5.

異物、傷によって生じる散乱反射光の光量は、照射するレーザ光線の照射光強度により、又異物、傷の検出精度もレーザ光線の照射光強度に影響される。従って、所定の検出精度を維持するには所定の照射光強度I以上を必要とする。図15で示される一回転あたりの移動量pは必要な照射光強度Iが保たれる様に決定される。   The amount of scattered reflected light generated by a foreign object or scratch is affected by the intensity of the irradiated laser beam, and the detection accuracy of the foreign object or scratch is also affected by the intensity of the irradiated laser beam. Therefore, a predetermined irradiation light intensity I or higher is required to maintain a predetermined detection accuracy. The amount of movement p per rotation shown in FIG. 15 is determined so that the necessary irradiation light intensity I is maintained.

製品に品質管理の為、基板5の表面検査は必要であるが、該基板5の表面検査工程が製造工程に組込まれた場合、表面検査に要される検査時間はスループットに影響する。   The surface inspection of the substrate 5 is necessary for quality control of the product, but when the surface inspection process of the substrate 5 is incorporated in the manufacturing process, the inspection time required for the surface inspection affects the throughput.

上記した従来例に於いて、レーザ光線の照射光強度を増大させると照射光強度分布のピーク値も増大する。検査精度の増大を要求されない場合は、必要な照射光強度を変えないとすると1回での移動量、即ち走査ピッチpが大きくなり、前記基板5全面を走査するに必要な回転数が少なくなるので、表面検査時間が短縮する。   In the conventional example described above, when the irradiation light intensity of the laser beam is increased, the peak value of the irradiation light intensity distribution is also increased. When it is not required to increase the inspection accuracy, if the necessary irradiation light intensity is not changed, the amount of movement at one time, that is, the scanning pitch p increases, and the number of rotations required for scanning the entire surface of the substrate 5 decreases. Therefore, the surface inspection time is shortened.

然し乍ら、レーザダイオードを発光源とした場合、レーザダイオードは容易、安全、長寿命等種々の利点を有する一方、ガスレーザ等に比べて発光光量が少ないという問題があり、照射光強度を増大させることには限度があった。又、照射するレーザ光線は波長が短い方が検出精度が向上するので、波長の短い青色レーザ光線を発するレーザダイオードの使用が望まれている。ところが青色レーザダイオードは赤色レーザダイオード等に比べ更に発光光量が少なく、表面検査装置で必要とされる充分な光量が得られないという問題を持っている。又、検査時間の短縮の為、基板表面上での照射範囲が広い方が望ましいが、照射範囲を広げると照射光線の強度が減少する為検出感度、検出精度共に低下するという問題があった。   However, when a laser diode is used as the light source, the laser diode has various advantages such as easy, safe, and long life, but there is a problem that the amount of emitted light is smaller than that of a gas laser, etc. There was a limit. Further, since the detection accuracy is improved when the wavelength of the laser beam to be irradiated is shorter, it is desired to use a laser diode that emits a blue laser beam having a shorter wavelength. However, the blue laser diode has a problem that the amount of emitted light is smaller than that of a red laser diode and the like, and a sufficient amount of light required for the surface inspection apparatus cannot be obtained. In order to shorten the inspection time, it is desirable that the irradiation range on the substrate surface is wide. However, if the irradiation range is widened, there is a problem that both the detection sensitivity and the detection accuracy are lowered because the intensity of the irradiation light beam is reduced.

特開平7−243988号公報Japanese Patent Application Laid-Open No. 7-243988

特開平5−273142号公報JP-A-5-273142

特開平9−161304号公報JP-A-9-161304

本発明は斯かる実情に鑑み、表面検査装置に於いて充分な照射光強度、検査精度を維持し、更にスループットの向上を図るものである。   In view of such circumstances, the present invention maintains sufficient irradiation light intensity and inspection accuracy in a surface inspection apparatus, and further improves the throughput.

本発明は、基板表面にレーザ光線を照射し、該レーザ光線による散乱反射光を検出して異物を検出する表面検査装置に於いて、光源部が複数の発光源を有し、1つの結像レンズを有すると共に各発光源に対応して設けられ該発光源からのレーザ光線を前記結像レンズに入射する光学部材を有し、前記発光源から結像レンズに入射する光軸を前記結像レンズの光軸に対して傾斜する様にし、前記各発光源からのレーザ光線の照射点を互いに走査方向に対して交差する方向にずらす様な光束として基板表面に照射し、走査ピッチを大きくした照射光学系を具備した表面検査装置に係り、又前記発光源から結像レンズに入射する光軸上に、少なくとも1つの光軸を傾斜させる光軸傾斜手段を設けた表面検査装置に係り、更に又前記発光源がマトリックス状に配設された表面検査装置に係るものである。   The present invention relates to a surface inspection apparatus that detects a foreign object by irradiating a laser beam onto a substrate surface and detecting scattered light reflected by the laser beam. And an optical member that is provided corresponding to each light source and that makes a laser beam from the light source incident on the imaging lens. The optical axis that is incident on the imaging lens from the light source Increasing the scanning pitch by inclining the optical axis of the lens and irradiating the surface of the substrate as a light beam that shifts the irradiation point of the laser beam from each light source in a direction crossing the scanning direction. The present invention relates to a surface inspection apparatus provided with an irradiation optical system, and more particularly to a surface inspection apparatus provided with an optical axis tilting unit that tilts at least one optical axis on an optical axis incident on an imaging lens from the light emitting source. Also, the light source is a matrix. Those of the scan shape disposed surface inspection apparatus.

本発明によれば、基板表面にレーザ光線を照射し、該レーザ光線による散乱反射光を検出して異物を検出する表面検査装置に於いて、光源部が複数の発光源を有し、1つの結像レンズを有すると共に各発光源に対応して設けられ該発光源からのレーザ光線を前記結像レンズに入射する光学部材を有し、前記発光源から結像レンズに入射する光軸を前記結像レンズの光軸に対して傾斜する様にし、前記各発光源からのレーザ光線の照射点を互いに走査方向に対して交差する方向にずらす様な光束として基板表面に照射し、走査ピッチを大きくした照射光学系を具備したので、所定の照射光強度を保った状態で所定の光強度を有する照射範囲が広くなり、走査ピッチを大きくとれ、表面検査時間を短縮できる等の優れた効果を発揮する。   According to the present invention, in a surface inspection apparatus that detects a foreign object by irradiating a laser beam onto a substrate surface and detecting scattered light reflected by the laser beam, the light source unit includes a plurality of light sources. And an optical member that is provided corresponding to each light source and that makes a laser beam from the light source incident on the imaging lens, and an optical axis that is incident on the imaging lens from the light source. Inclining with respect to the optical axis of the imaging lens, irradiating the surface of the substrate as a light beam that shifts the irradiation point of the laser beam from each light source in a direction intersecting the scanning direction, and setting the scanning pitch Since it has a large irradiation optical system, it has excellent effects such as widening the irradiation range with the predetermined light intensity while maintaining the predetermined irradiation light intensity, increasing the scanning pitch, and shortening the surface inspection time. Demonstrate.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1により表面検査装置の概略について説明する。   The outline of the surface inspection apparatus will be described with reference to FIG.

図中、5はウェーハ等の被検査物である基板であり、表面検査装置は走査駆動機構部6、照射光学系7、検出系8から主に構成されている。   In the figure, reference numeral 5 denotes a substrate which is an object to be inspected such as a wafer, and the surface inspection apparatus mainly includes a scanning drive mechanism unit 6, an irradiation optical system 7, and a detection system 8.

又、前記走査駆動機構部6は前記基板5を保持する基板保持部9を具備し、該基板保持部9は回転駆動部10により回転可能に支持され、該回転駆動部10は直線駆動機構部11により前記基板5の回転面と平行な半径方向に直線移動される様になっている。   The scanning drive mechanism unit 6 includes a substrate holding unit 9 that holds the substrate 5. The substrate holding unit 9 is rotatably supported by a rotation driving unit 10, and the rotation driving unit 10 is a linear driving mechanism unit. 11 is linearly moved in a radial direction parallel to the rotation surface of the substrate 5.

前記照射光学系7は検査光であるレーザ光線2を発する光源部12、該光源部12からのレーザ光線2を前記基板5上に向けるミラー等の偏向光学部材13,14、前記レーザ光線2を前記基板5の表面に集光させるレンズ群15等から構成されている。前記検出系8は前記基板5表面に照射されるレーザ光線2の光軸に交差する検出光軸を有する受光検出器16,17を具備している。   The irradiation optical system 7 includes a light source unit 12 that emits a laser beam 2 as inspection light, deflecting optical members 13 and 14 such as mirrors that direct the laser beam 2 from the light source unit 12 onto the substrate 5, and the laser beam 2 The lens group 15 and the like are focused on the surface of the substrate 5. The detection system 8 includes light receiving detectors 16 and 17 having detection optical axes that intersect the optical axis of the laser beam 2 irradiated on the surface of the substrate 5.

前記基板5の表面検査は、前記回転駆動部10により前記基板5が回転された状態で、前記照射光学系7より前記基板5の表面に前記レーザ光線2が照射され、更に前記直線駆動機構部11により前記回転駆動部10が半径方向に移動される。   In the surface inspection of the substrate 5, the laser beam 2 is irradiated onto the surface of the substrate 5 from the irradiation optical system 7 in a state where the substrate 5 is rotated by the rotation driving unit 10, and the linear drive mechanism unit 11, the rotational drive unit 10 is moved in the radial direction.

而して、前記基板5の一回転毎に所要ピッチでステップ送りすることにより、或は所定速度で前記回転駆動部10を連続送りすることにより、前記レーザ光線2の照射点18が同心円、或は螺旋円の軌跡を描きながら、前記基板5の中心から外縁迄移動し、該基板5の全面が前記レーザ光線2によって走査されることとなる。   Thus, the irradiation point 18 of the laser beam 2 is concentric, by step-feeding at a required pitch for each rotation of the substrate 5, or by continuously feeding the rotary drive unit 10 at a predetermined speed. Moves from the center of the substrate 5 to the outer edge while drawing the locus of the spiral circle, and the entire surface of the substrate 5 is scanned by the laser beam 2.

該レーザ光線2が前記基板5の表面を走査する過程で、異物、傷があると前記レーザ光線2が散乱反射する。この散乱反射光は所定の位置に配置された前記検出系8の受光検出器16,17によって検出され、該受光検出器16,17からの信号を図示しない演算処理部により信号処理することで、異物、傷が検出される。   In the process where the laser beam 2 scans the surface of the substrate 5, the laser beam 2 is scattered and reflected if there is a foreign object or a flaw. The scattered reflected light is detected by the light receiving detectors 16 and 17 of the detection system 8 arranged at a predetermined position, and the signals from the light receiving detectors 16 and 17 are signal processed by an arithmetic processing unit (not shown). Foreign matter and scratches are detected.

図2は本発明の表面検査装置の照射光学系7の概略を示し、図中、偏向光学部材13,14等は省略している。   FIG. 2 shows an outline of the irradiation optical system 7 of the surface inspection apparatus of the present invention, in which the deflection optical members 13 and 14 are omitted.

前記光源部12は2組の発光源1a,1bを有し、該発光源1a,1bからのレーザ光線2a,2bはそれぞれ個別にコリメートレンズ3a,3bにより平行光束とされ、1つの結像レンズ4により前記基板5の表面に集光される様になっている。又、前記コリメートレンズ3a,3bと結像レンズ4の光軸は基本構成としては、それぞれ平行となっており、前記発光源1a及び発光源1bから発せられるレーザ光線2a,2bは前記結像レンズ4により同一照射点18に集光される様になっている。   The light source section 12 has two sets of light emitting sources 1a and 1b, and laser beams 2a and 2b from the light emitting sources 1a and 1b are individually converted into parallel light beams by collimating lenses 3a and 3b, respectively, and one imaging lens. 4 is focused on the surface of the substrate 5. The optical axes of the collimating lenses 3a and 3b and the imaging lens 4 are basically parallel to each other, and the laser beams 2a and 2b emitted from the light emitting source 1a and the light emitting source 1b are used as the imaging lens. 4, the light is condensed at the same irradiation point 18.

尚、前記発光源1a,1bは独立して制御可能であり、該発光源1a,1bから発せられるレーザ光線2a,2bの照射光強度を変更可能である。又、該レーザ光線2a,2bは同一波長でもよく、波長を異ならせてもよい。透過膜等では表面の反射率は波長に応じて変化する為検出感度が影響を受ける。波長を異ならることで前記基板5表面での反射状態の波長に対する影響が少なくなる。   The light emission sources 1a and 1b can be controlled independently, and the intensity of irradiation light of the laser beams 2a and 2b emitted from the light emission sources 1a and 1b can be changed. Further, the laser beams 2a and 2b may have the same wavelength or different wavelengths. In a transmissive film or the like, the detection sensitivity is affected because the reflectance of the surface changes depending on the wavelength. By changing the wavelength, the influence on the wavelength of the reflection state on the surface of the substrate 5 is reduced.

次に、図3は、コリメートレンズ3の光軸を結像レンズ4の光軸に対して傾斜させた場合を示している。   Next, FIG. 3 shows a case where the optical axis of the collimating lens 3 is tilted with respect to the optical axis of the imaging lens 4.

前記コリメートレンズ3の光軸を前記結像レンズ4の光軸に対して傾斜させると、前記照射点18が移動する。従って、図4の様にコリメートレンズ3a,3bそれぞれの光軸を傾斜させると、各発光源1a,1bによる照射点18a,18bがずれる。   When the optical axis of the collimating lens 3 is tilted with respect to the optical axis of the imaging lens 4, the irradiation point 18 moves. Therefore, when the optical axes of the collimating lenses 3a and 3b are inclined as shown in FIG. 4, the irradiation points 18a and 18b by the light emitting sources 1a and 1b are shifted.

図4で示される光学条件での照射点18での照射光強度分布は、図5中、レーザ光線2a,2bの合成照射光強度分布となり、図中の実線の様に略台形形状となる。この場合で必要な照射光強度をIとして走査ピッチを求めると図5中、p′となる。参考として、単一のレーザ光線を照射した場合の走査ピッチを図中pで示している。   The irradiation light intensity distribution at the irradiation point 18 under the optical conditions shown in FIG. 4 is the combined irradiation light intensity distribution of the laser beams 2a and 2b in FIG. 5, and has a substantially trapezoidal shape as indicated by the solid line in the drawing. In this case, when the necessary irradiation light intensity is I and the scanning pitch is obtained, it becomes p 'in FIG. As a reference, the scanning pitch when a single laser beam is irradiated is indicated by p in the figure.

尚、レーザ光線を合成する方向は走査方向に対して交差する方向、好ましくは直角の方向、即ち図5中の横軸は基板5の半径方向となっている。   The direction in which the laser beams are combined is a direction intersecting the scanning direction, preferably a direction perpendicular to the scanning direction, that is, the horizontal axis in FIG.

而して、前記照射点18での所定の照射光強度を有する範囲(幅)が広くなるので、走査する場合の一回転毎の半径方向の移動量を大きくでき、全面走査する場合の前記基板5の回転数を少なくでき、検出感度を安定させた状態で表面検査時間を短縮することができる。   Thus, since the range (width) having the predetermined irradiation light intensity at the irradiation point 18 is widened, the amount of movement in the radial direction for each rotation when scanning can be increased, and the substrate when scanning the entire surface. The number of rotations of 5 can be reduced, and the surface inspection time can be shortened with the detection sensitivity stabilized.

前記コリメートレンズ3の光軸を前記結像レンズ4の光軸に対して傾斜させることについては、前記コリメートレンズ3の光軸そのものが前記結像レンズ4の光軸に対して傾斜する様構成してもよいが、前記コリメートレンズ3に関し、光軸傾斜手段を設け、該光軸傾斜手段により前記コリメートレンズ3の光軸を前記結像レンズ4の光軸に対して傾斜させてもよい。   The optical axis of the collimating lens 3 is inclined with respect to the optical axis of the imaging lens 4 so that the optical axis of the collimating lens 3 itself is inclined with respect to the optical axis of the imaging lens 4. However, the collimating lens 3 may be provided with an optical axis tilting means, and the optical axis tilting means may tilt the optical axis of the collimating lens 3 with respect to the optical axis of the imaging lens 4.

前記コリメートレンズ3の光軸を傾斜させる光軸傾斜手段としては、図6に示す様に前記コリメートレンズ3の光軸上に楔プリズム19を挿入し、該楔プリズム19を適宜回転する等がある。更に、前記発光源1から発せられるレーザ光線2をミラー等の偏向手段を用いて前記結像レンズ4に導く様にし、斯かる偏向手段を光軸傾斜手段として機能させてもよい。   As an optical axis tilting means for tilting the optical axis of the collimating lens 3, a wedge prism 19 is inserted on the optical axis of the collimating lens 3 as shown in FIG. . Further, the laser beam 2 emitted from the light source 1 may be guided to the imaging lens 4 by using a deflecting unit such as a mirror, and the deflecting unit may function as an optical axis tilting unit.

図7は第2の実施の形態を示し、複数の発光源1a,1b、コリメートレンズ3a,3bを結像レンズ4の光軸を中心とする放射線上に配設し、反射鏡21a,21bにより、レーザ光線2a,2bを前記結像レンズ4に入射する様に偏向したものである。図7で示される照射光学系の構成であると、前記反射鏡21a,21bを傾斜させることで、前記レーザ光線2a,2bの光軸を前記結像レンズ4の光軸に対して傾斜させることができる。   FIG. 7 shows a second embodiment, in which a plurality of light emitting sources 1a and 1b and collimating lenses 3a and 3b are arranged on radiation centering on the optical axis of the imaging lens 4, and are reflected by reflecting mirrors 21a and 21b. The laser beams 2 a and 2 b are deflected so as to enter the imaging lens 4. In the configuration of the irradiation optical system shown in FIG. 7, the optical axes of the laser beams 2 a and 2 b are inclined with respect to the optical axis of the imaging lens 4 by inclining the reflecting mirrors 21 a and 21 b. Can do.

図8は第3の実施の形態を示し、多数の発光源1a…1nを直線上に配設し、各発光源に1a…1nに対して、それぞれコリメートレンズ3a…3nを設け、該コリメートレンズ3a…3nを介してレーザ光線2a…2nが1つの結像レンズ4に入射される様にしたものであり、基本構成として前記コリメートレンズ3a…3nの光軸を前記結像レンズ4の光軸と平行にし、図示していないが各光軸毎に図6で示した楔プリズム19を配設したものである。   FIG. 8 shows a third embodiment, in which a large number of light emitting sources 1a... 1n are arranged on a straight line, and each light emitting source is provided with a collimating lens 3a. The laser beams 2a... 2n are incident on one imaging lens 4 through 3a... 3n, and the optical axis of the collimating lenses 3a. The wedge prism 19 shown in FIG. 6 is provided for each optical axis, although not shown.

前記コリメートレンズ3a…3nの光軸を前記結像レンズ4の光軸から離れるに従い漸次傾斜させると、照射点18では前記各発光源1a…1nからのレーザ光線2a…2nの照射点18a…18nが基板5の半径方向(走査方向に直交する方向)にずれて合成され、図9に示される様な扁平な台形形状の照射光強度分布が得られる。従って、走査ピッチを更に大きくとれ全面走査に必要な前記基板5の回転数が更に減少する。   When the optical axes of the collimating lenses 3a... 3n are gradually tilted away from the optical axis of the imaging lens 4, the irradiation points 18 are irradiated with the laser beams 2a. Are shifted in the radial direction of the substrate 5 (direction orthogonal to the scanning direction), and a flat trapezoidal irradiation light intensity distribution as shown in FIG. 9 is obtained. Accordingly, the scanning pitch can be further increased and the number of rotations of the substrate 5 required for the entire surface scanning is further reduced.

上記実施の形態では、レーザ光線2a,2bを同一の結像レンズ4に入射させたが、図10で示す第4の実施の形態では、発光源1a,1bから発せられたレーザ光線2a,2bをコリメートレンズ3a,3bにより平行光束とし、反射鏡21a,21bによりそれぞれ前記レーザ光線2a,2bを偏向し、個々に結像レンズ4a,4bを介して同一点の照射点18に集光させる様にしたものである。   In the above embodiment, the laser beams 2a and 2b are made incident on the same imaging lens 4, but in the fourth embodiment shown in FIG. 10, the laser beams 2a and 2b emitted from the light emitting sources 1a and 1b are used. Are collimated into parallel light beams by the collimating lenses 3a and 3b, and the laser beams 2a and 2b are deflected by the reflecting mirrors 21a and 21b, respectively, and are individually focused on the irradiation point 18 through the imaging lenses 4a and 4b. It is a thing.

斯かる照射光学系でも、前記反射鏡21a,21bにより前記レーザ光線2a,2bの集光位置18a,18bを基板5の半径方向にずらせることができ、図5で示した照射光強度分布を得ることができる。   Even in such an irradiation optical system, the reflecting positions 21a and 18b of the laser beams 2a and 2b can be shifted in the radial direction of the substrate 5 by the reflecting mirrors 21a and 21b, and the irradiation light intensity distribution shown in FIG. Obtainable.

次に、図2の照射光学系の構成に於いて、レーザ光線2a,2bの光束を結像レンズ4の光軸と平行とした場合は、図11で示す様に、同一の照射点18に集光し、照射光強度分布は図11中の実線で示す様に、照射光強度が略2倍となる。又、図8の照射光学系の構成に於いて、レーザ光線2a…2nの光軸を全て結像レンズ4の光軸と平行とすると、全てのレーザ光線2a…2nは同一の照射点18に集光し、該照射点18での照射光強度分布は図12で示す様にレーザ光線2a…2nの照射光強度を加算したものとなる。   Next, in the configuration of the irradiation optical system in FIG. 2, when the light beams of the laser beams 2a and 2b are made parallel to the optical axis of the imaging lens 4, as shown in FIG. As shown by the solid line in FIG. 11, the irradiation light intensity is approximately doubled. In the configuration of the irradiation optical system of FIG. 8, if all the optical axes of the laser beams 2a... 2n are parallel to the optical axis of the imaging lens 4, all the laser beams 2a. As shown in FIG. 12, the distribution of the irradiation light intensity at the irradiation point 18 is obtained by adding the irradiation light intensities of the laser beams 2a... 2n.

更に、図8では発光源1a…1nを直線上に一列配設した場合を説明したが、更に所要列配設し、発光源1の配置をマトリックス状としてもよい。   Furthermore, although the case where the light emitting sources 1a... 1n are arranged in a line on the straight line has been described with reference to FIG.

マトリックス状とした場合、特に図示しないが以下の如く照射点18の照射光強度分布を調整できる。   In the case of the matrix shape, although not shown in particular, the irradiation light intensity distribution at the irradiation point 18 can be adjusted as follows.

即ち、各列についてはコリメートレンズ3a…3nの光軸を漸次傾斜させ、各行についてはコリメートレンズ3b…3mの光軸を平行とすると、各列毎に図9で示す扁平な台形形状の照射光強度分布が得られ、更に全ての列の光量が同一位置に集光されるので、図9で示す照射光強度分布が行数分だけ重合され、図13に示される様な照射光強度分布が得られ、所望の照射光強度を有し、而も照射範囲の広いレーザ光線2を得ることができる。   That is, when the optical axis of the collimating lens 3a... 3n is gradually inclined for each column and the optical axis of the collimating lens 3b... 3m is parallel for each row, the flat trapezoidal irradiation light shown in FIG. Since the intensity distribution is obtained and the light amounts of all the columns are collected at the same position, the irradiation light intensity distribution shown in FIG. 9 is polymerized by the number of rows, and the irradiation light intensity distribution as shown in FIG. Thus, a laser beam 2 having a desired irradiation light intensity and a wide irradiation range can be obtained.

照射光強度の増大は、検査精度を向上させることができるので、本実施の形態の場合、検査精度を向上させ、更にスループットの向上も同時に達成することができる。   Since the increase in irradiation light intensity can improve the inspection accuracy, in the case of the present embodiment, the inspection accuracy can be improved, and the throughput can be improved at the same time.

尚、複数の発光源1を用い、光軸傾斜手段でレーザ光線2の光軸を偏向することで、任意の照射光強度分布、或は照射点での光束の形状を得ることができる。   In addition, by using a plurality of light emitting sources 1 and deflecting the optical axis of the laser beam 2 by the optical axis tilting means, it is possible to obtain an arbitrary irradiation light intensity distribution or the shape of the light beam at the irradiation point.

而して、スループットを優先するか、或は精度向上を優先するか等、表面検査状況に応じた照射条件を得ることができる。   Thus, it is possible to obtain irradiation conditions according to the surface inspection situation, such as whether to give priority to throughput or to improve accuracy.

本発明の実施の形態に係る表面検査装置の基本構成を示す骨子図である。1 is a skeleton diagram showing a basic configuration of a surface inspection apparatus according to an embodiment of the present invention. 該表面検査装置の照射光学系の説明図である。It is explanatory drawing of the irradiation optical system of this surface inspection apparatus. 本発明の実施の形態での照射光学系について光軸を傾斜させた場合の説明図である。It is explanatory drawing at the time of inclining an optical axis about the irradiation optical system in embodiment of this invention. 本発明の実施の形態での照射光学系について光軸を傾斜させた場合の説明図である。It is explanatory drawing at the time of inclining an optical axis about the irradiation optical system in embodiment of this invention. 該照射光学系に於ける照射点での照射光強度分布を示す線図である。It is a diagram which shows the irradiation light intensity distribution in the irradiation point in this irradiation optical system. 該照射光学系に於ける光軸傾斜手段の説明図である。It is explanatory drawing of the optical axis inclination means in this irradiation optical system. 本発明の第2の実施の形態の照射光学系の説明図である。It is explanatory drawing of the irradiation optical system of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の照射光学系の説明図である。It is explanatory drawing of the irradiation optical system of the 3rd Embodiment of this invention. 該第3の実施の形態の照射光学系の照射点での照射光強度分布を示す線図である。It is a diagram which shows the irradiation light intensity distribution in the irradiation point of the irradiation optical system of this 3rd Embodiment. 本発明の第4の実施の形態の照射光学系の説明図である。It is explanatory drawing of the irradiation optical system of the 4th Embodiment of this invention. 図2で示す照射光学系について光軸を平行とした場合の照射点での照射光強度分布を示す線図である。It is a diagram which shows the irradiation light intensity distribution in the irradiation point at the time of making an optical axis parallel about the irradiation optical system shown in FIG. 図8で示す照射光学系について光軸を平行とした場合の照射点での照射光強度分布を示す線図である。It is a diagram which shows the irradiation light intensity distribution in the irradiation point at the time of making an optical axis parallel about the irradiation optical system shown in FIG. 発光源をマトリックス状に配設して得られる照射点での照射光強度分布を示す線図である。It is a diagram which shows the irradiation light intensity distribution in the irradiation point obtained by arrange | positioning a light emission source in matrix form. 従来の表面検査装置の照射光学系を示す説明図である。It is explanatory drawing which shows the irradiation optical system of the conventional surface inspection apparatus. 従来例の表面検査装置に於ける照射光強度と走査ピッチとの関係を示す図である。It is a figure which shows the relationship between the irradiation light intensity and the scanning pitch in the surface inspection apparatus of a prior art example.

符号の説明Explanation of symbols

1 発光源
2 レーザ光線
5 基板
6 走査駆動機構部
7 照射光学系
8 検出系
12 光源部
15 レンズ群
18 照射点
19 楔プリズム
21 反射鏡
DESCRIPTION OF SYMBOLS 1 Light source 2 Laser beam 5 Substrate 6 Scanning drive mechanism part 7 Irradiation optical system 8 Detection system 12 Light source part 15 Lens group 18 Irradiation point 19 Wedge prism 21 Reflection mirror

Claims (3)

基板表面にレーザ光線を照射し、該レーザ光線による散乱反射光を検出して異物を検出する表面検査装置に於いて、光源部が複数の発光源を有し、1つの結像レンズを有すると共に各発光源に対応して設けられ該発光源からのレーザ光線を前記結像レンズに入射する光学部材を有し、前記発光源から結像レンズに入射する光軸を前記結像レンズの光軸に対して傾斜する様にし、前記各発光源からのレーザ光線の照射点を互いに走査方向に対して交差する方向にずらす様な光束として基板表面に照射し、走査ピッチを大きくした照射光学系を具備したことを特徴とする表面検査装置。   In a surface inspection apparatus that detects a foreign object by irradiating a laser beam onto a substrate surface and detecting scattered light reflected by the laser beam, the light source section includes a plurality of light sources and a single imaging lens. An optical member that is provided corresponding to each light source and that makes a laser beam from the light source incident on the imaging lens; and an optical axis that is incident on the imaging lens from the light source is an optical axis of the imaging lens An irradiation optical system that irradiates the surface of the substrate as a light beam that shifts the irradiation point of the laser beam from each of the light emitting sources in a direction crossing the scanning direction, and increases the scanning pitch. A surface inspection apparatus characterized by comprising. 前記発光源から結像レンズに入射する光軸上に、少なくとも1つの光軸を傾斜させる光軸傾斜手段を設けた請求項1の表面検査装置。   The surface inspection apparatus according to claim 1, further comprising an optical axis tilting unit configured to tilt at least one optical axis on an optical axis incident on the imaging lens from the light emitting source. 前記発光源がマトリックス状に配設された請求項1の表面検査装置。   The surface inspection apparatus according to claim 1, wherein the light emitting sources are arranged in a matrix.
JP2005263954A 2005-09-12 2005-09-12 Surface inspection device Pending JP2006017743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263954A JP2006017743A (en) 2005-09-12 2005-09-12 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263954A JP2006017743A (en) 2005-09-12 2005-09-12 Surface inspection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001370640A Division JP2003166948A (en) 2001-12-04 2001-12-04 Surface inspection apparatus

Publications (1)

Publication Number Publication Date
JP2006017743A true JP2006017743A (en) 2006-01-19

Family

ID=35792123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263954A Pending JP2006017743A (en) 2005-09-12 2005-09-12 Surface inspection device

Country Status (1)

Country Link
JP (1) JP2006017743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191066A (en) * 2007-02-07 2008-08-21 Topcon Corp Surface inspection method and surface inspection device
JP2018054303A (en) * 2016-09-26 2018-04-05 株式会社日立ハイテクノロジーズ Defect detection device and defect observation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191066A (en) * 2007-02-07 2008-08-21 Topcon Corp Surface inspection method and surface inspection device
JP2018054303A (en) * 2016-09-26 2018-04-05 株式会社日立ハイテクノロジーズ Defect detection device and defect observation device
US10642164B2 (en) 2016-09-26 2020-05-05 Hitachi High-Technologies Corporation Defect detection device and defect observation device

Similar Documents

Publication Publication Date Title
TW571090B (en) Surface inspection system
US8755044B2 (en) Large particle detection for multi-spot surface scanning inspection systems
JP2011197575A (en) Optical scanner and distance measuring device
JP2001516874A (en) Improved sample inspection system
JP5268061B2 (en) Board inspection equipment
US9746430B2 (en) Optical inspecting apparatus
US20130329222A1 (en) Inspecting apparatus and method for manufacturing semiconductor device
JP5111721B2 (en) Multi-detector microscopy system
JP3783848B2 (en) Surface inspection device
JP4391082B2 (en) Surface inspection method and apparatus
JP2005517217A6 (en) Multi-detector microscopy system
EP1424537B1 (en) Recording device of information recording medium original disk
JP2006017743A (en) Surface inspection device
JP5178281B2 (en) Substrate inspection apparatus and substrate inspection method
JP2003166948A (en) Surface inspection apparatus
US20020180959A1 (en) Optical system for detecting surface defects and disk tester and disk testing method utilizing the same optical system
JP2009244616A (en) Laser direct drawing method and laser direct drawing device
JP2003166946A (en) Surface inspection apparatus
KR20210151160A (en) Surface detection device and method
US20040169853A1 (en) Surface inspection apparatus
JPH10148514A (en) Electronic component inspection apparatus
JP4808162B2 (en) Substrate inspection apparatus and substrate inspection method
JPH06308419A (en) Plane tilt compensating optical device for polygon mirror
JP2023091293A (en) Optical scanner, photoelectronic sensor, and ranging device
JPH06186168A (en) Method and apparatus for inspecting defect

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A02 Decision of refusal

Effective date: 20061024

Free format text: JAPANESE INTERMEDIATE CODE: A02