JP4696607B2 - Surface inspection device - Google Patents

Surface inspection device Download PDF

Info

Publication number
JP4696607B2
JP4696607B2 JP2005070454A JP2005070454A JP4696607B2 JP 4696607 B2 JP4696607 B2 JP 4696607B2 JP 2005070454 A JP2005070454 A JP 2005070454A JP 2005070454 A JP2005070454 A JP 2005070454A JP 4696607 B2 JP4696607 B2 JP 4696607B2
Authority
JP
Japan
Prior art keywords
polarizing plate
image
light
substrate
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005070454A
Other languages
Japanese (ja)
Other versions
JP2006250843A (en
Inventor
立美 佐藤
謙三 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005070454A priority Critical patent/JP4696607B2/en
Publication of JP2006250843A publication Critical patent/JP2006250843A/en
Application granted granted Critical
Publication of JP4696607B2 publication Critical patent/JP4696607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体素子等の基板表面の検査を行う表面検査装置に関する。   The present invention relates to a surface inspection apparatus for inspecting the surface of a substrate such as a semiconductor element.

半導体回路素子等の製造工程におけるウエハの表面に形成された繰り返しパターンの欠陥の検査装置として、従来から、回折を利用したものが知られている。回折を利用した装置では、パターンのピッチによりステージのチルト角の調整が必要になる。また、より微細なパターンへの対応のためには照明光の波長の短波長化が必要である。
特開平10−232122号公報
2. Description of the Related Art Conventionally, a device using diffraction is known as an inspection device for a defect of a repeated pattern formed on the surface of a wafer in a manufacturing process of a semiconductor circuit element or the like. In an apparatus using diffraction, it is necessary to adjust the tilt angle of the stage according to the pattern pitch. In order to cope with finer patterns, it is necessary to shorten the wavelength of illumination light.
Japanese Patent Laid-Open No. 10-232122

しかしながら、繰り返しピッチの微細化(すなわち配線パターンなどのライン・アンド・スペースの微細化)に対応するために、照明光の短波長化を行おうとすると、光源の種類が限定され、高価で大掛かりな光源となってしまう。また、更に照明系や受光系を構成する光学素子の材料も高価なものに限定され、好ましくない。   However, in order to cope with repetitive pitch miniaturization (that is, line and space miniaturization of wiring patterns, etc.), when trying to shorten the wavelength of illumination light, the types of light sources are limited, which is expensive and large. It becomes a light source. Further, the material of the optical element constituting the illumination system and the light receiving system is also limited to an expensive material, which is not preferable.

本発明の目的は、照明光を短波長化しなくても、確実に繰り返しピッチの微細化に対応できる表面検査装置を提供することにある。   An object of the present invention is to provide a surface inspection apparatus that can reliably cope with repetitive miniaturization of the pitch without shortening the wavelength of illumination light.

上記課題の解決のため請求項1の発明は、
被検査基板を照明するための発散光束を射出する光源手段と、
前記発散光束を、その光束の主光線が所定の入射角を有するように入射して、前記被検査基板に導く照射部材と、
前記被検査基板からの光を集光し、前記被検査基板の像を結像する結像手段と、
前記結像された像を撮像する撮像手段と、
前記光源手段から前記照射部材に至る光路中に設けられた第1の偏光板と、
前記結像手段から前記撮像手段に至る光路中に設けられた第2の偏光板と、
前記第1の偏光板と前記第2の偏光板との少なくとも一方を光軸と垂直な面内で回動させる回動手段と、
前記照明部材と前記撮像手段の偏光の乱れを補正する、前記第1の偏光板と前記第2の偏光板との少なくとも一方の複数の回動位置を記憶する記憶部と、
前記回動手段により前記第1の偏光板と前記第2の偏光板との少なくとも一方を前記記憶部に記憶された前記複数の前記回動位置に位置させた状態で、前記撮像手段により前記撮像される複数の像から合成された前記偏光の乱れが補正された合成像により前記被検査基板の表面の欠陥を検出する検出手段と
を備えたことを特徴とする。
In order to solve the above problems, the invention of claim 1
Light source means for emitting a divergent light beam for illuminating the substrate to be inspected;
An irradiating member that guides the divergent light beam so that a principal ray of the light beam has a predetermined incident angle and guides it to the substrate to be inspected ;
Imaging means for condensing light from the substrate to be inspected and forming an image of the substrate to be inspected ;
An image pickup means for picking up the formed image;
A first polarizing plate provided in an optical path from the light source means to the irradiation member;
A second polarizing plate provided in an optical path from the imaging means to the imaging means;
Rotating means for rotating at least one of the first polarizing plate and the second polarizing plate in a plane perpendicular to the optical axis;
A storage unit for storing a plurality of rotational positions of at least one of the first polarizing plate and the second polarizing plate, which corrects a disturbance in polarization of the illumination member and the imaging unit;
In the state where at least one of the first polarizing plate and the second polarizing plate is positioned at the plurality of rotating positions stored in the storage unit by the rotating unit, the imaging unit performs the imaging. And detecting means for detecting defects on the surface of the substrate to be inspected based on the combined image corrected from the polarization disturbance combined from the plurality of images.

また、請求項2の発明は、
請求項1に記載の表面検査装置において、
前記回動手段は、前記第1の偏光板と前記第2の偏光板とがクロスニコルの状態になる位置に回動可能であることを特徴とする。
また、請求項3の発明は、
請求項2に記載の表面検査装置において、
前記回動位置は、前記被検査基板として入射した直線偏光を楕円偏光化しない基板を配置し、該基板の複数の位置で前記像の対応するそれぞれの部分が暗くなる回動位置であること特徴とする。
The invention of claim 2
The surface inspection apparatus according to claim 1,
The rotating means can be rotated to a position where the first polarizing plate and the second polarizing plate are in a crossed Nicols state.
The invention of claim 3
In the surface inspection apparatus according to claim 2,
The rotation position is a rotation position where a substrate that does not elliptically polarize incident linearly polarized light is disposed as the substrate to be inspected , and corresponding portions of the image are darkened at a plurality of positions on the substrate. And

本発明によれば、照明光を短波長化しなくても、繰り返しピッチが微細化された基板の検査に対応できる。   According to the present invention, it is possible to cope with inspection of a substrate having a repetitive fine pitch without shortening the wavelength of illumination light.

図1は、本発明の実施形態の表面検査装置の構成を示す図である。図1において、表面検査装置は、被検基板である半導体ウエハ20を支持するステージ11と、アライメント系12と、照明光学系13と、受光光学系14と、画像処理装置15とで構成されている。表面検査装置は、半導体回路素子の製造工程において、半導体ウエハ20の表面の検査を自動的に行う装置である。半導体ウエハ20は、最上層のレジスト膜への露光・現像後、不図示の搬送系により、不図示のウエハカセットまたは現像装置から運ばれ、ステージ11に吸着される。   FIG. 1 is a diagram showing a configuration of a surface inspection apparatus according to an embodiment of the present invention. In FIG. 1, the surface inspection apparatus includes a stage 11 that supports a semiconductor wafer 20 that is a substrate to be tested, an alignment system 12, an illumination optical system 13, a light receiving optical system 14, and an image processing apparatus 15. Yes. The surface inspection apparatus is an apparatus that automatically inspects the surface of the semiconductor wafer 20 in the manufacturing process of the semiconductor circuit element. After exposure / development of the uppermost resist film, the semiconductor wafer 20 is carried from a wafer cassette (not shown) or a developing device by a conveyance system (not shown) and is attracted to the stage 11.

図1において、ランプハウスLSの内部には、不図示のハロゲンランプやメタルハライドランプ、水銀ランプなどの光源と、波長選択フィルタ、光量調整用のNDフィルタ等が内蔵されており、一部の波長の光のみが照明光L1として抽出され、ライトガイドファイバ33に入射している。照明光学系13はライトガイドファイバ33と偏光板34と凹面反射鏡35とで構成されている。ライトガイドファイバ33から射出された発散光束である照明光L1は球面形状の凹面反射鏡35によりほぼ平行な光に変換され、ステージ11上に載置されたウエハ20を照明する。   In FIG. 1, a lamp house LS includes a light source such as a halogen lamp, a metal halide lamp, and a mercury lamp (not shown), a wavelength selection filter, an ND filter for adjusting the amount of light, and the like. Only the light is extracted as illumination light L 1 and is incident on the light guide fiber 33. The illumination optical system 13 includes a light guide fiber 33, a polarizing plate 34, and a concave reflecting mirror 35. The illumination light L1 that is a divergent light beam emitted from the light guide fiber 33 is converted into substantially parallel light by the spherical concave reflecting mirror 35, and illuminates the wafer 20 placed on the stage 11.

ライトガイドファイバ33の射出部付近には偏光板34が配置されていて、ライトガイドファイバ33から射出された照明光L1を直線偏光にする。偏光板34によって直線偏光となった光は、凹面反射鏡35によってコリメートされ、直線偏光のコリメート光がウエハ20を照明する。   A polarizing plate 34 is disposed in the vicinity of the emission portion of the light guide fiber 33, and the illumination light L1 emitted from the light guide fiber 33 is linearly polarized. The light that has been linearly polarized by the polarizing plate 34 is collimated by the concave reflecting mirror 35, and the linearly polarized collimated light illuminates the wafer 20.

スループットを向上させるためには、ウエハ面全面の画像を一括で取ることが極めて有利であるので、本実施形態では、上述のように、光源からの光束を拡大して、凹面反射鏡35によりコリメートし、ウエハ全面を照明できる構成となっている。   In order to improve the throughput, it is extremely advantageous to collect images of the entire wafer surface in a lump. Therefore, in the present embodiment, as described above, the luminous flux from the light source is expanded and collimated by the concave reflecting mirror 35. The entire surface of the wafer can be illuminated.

ウエハ20に入射した直線偏光のコリメート光L1はウエハ表面で反射されて、受光光学系14に入射する。受光光学系14は、凹面反射鏡36と偏光板38と集光レンズ37とで構成されている。ウエハ20で反射された光束L2は、凹面反射鏡36に入射して集光作用を受ける。凹面反射鏡36で反射した集光光束は、偏光板34とはクロスニコルの関係に配置された偏光板38を経て、結像レンズ37によりウエハ20の表面と共役な位置に配置された撮像素子39の撮像面上にウエハ20表面の像を形成する。   The linearly polarized collimated light L 1 incident on the wafer 20 is reflected by the wafer surface and enters the light receiving optical system 14. The light receiving optical system 14 includes a concave reflecting mirror 36, a polarizing plate 38, and a condenser lens 37. The light beam L2 reflected by the wafer 20 enters the concave reflecting mirror 36 and receives a condensing action. The condensed light beam reflected by the concave reflecting mirror 36 passes through a polarizing plate 38 disposed in a crossed Nicols relationship with the polarizing plate 34, and is imaged by the imaging lens 37 at a position conjugate with the surface of the wafer 20. An image of the surface of the wafer 20 is formed on the imaging surface 39.

半導体ウエハ20の表面には、図2に示すように、複数のチップ領域21がXY方向に配列され、各チップ領域21の中に繰り返しパターン22が形成されている。繰り返しパターン22のライン部の配列方向(X方向)を「繰り返しパターン22の繰り返し方向」という。   As shown in FIG. 2, a plurality of chip areas 21 are arranged in the XY direction on the surface of the semiconductor wafer 20, and a repeated pattern 22 is formed in each chip area 21. The arrangement direction (X direction) of the line portions of the repetitive pattern 22 is referred to as “repetitive direction of the repetitive pattern 22”.

また、本実施形態では、繰り返しパターン22に対する照明光の波長と比較して繰り返しパターン22のピッチPが十分小さいとする。このため、繰り返しパターン22から回折光が発生することはない。本実施形態における欠陥検査の原理は、本出願人がすでに出願した特願2003-366255号に記載されているので、ここでは原理に関しては詳しく説明しない。   In the present embodiment, it is assumed that the pitch P of the repeating pattern 22 is sufficiently small as compared with the wavelength of illumination light with respect to the repeating pattern 22. For this reason, diffracted light is not generated from the repeated pattern 22. The principle of defect inspection in the present embodiment is described in Japanese Patent Application No. 2003-366255 already filed by the present applicant, so the principle will not be described in detail here.

ステージ11の表面には、上述のパターンが形成されたウエハ20が載置され、真空吸着等により固定保持される。さらに、ステージ11はステージ回転機構16によってステージ面に直交する所定の回転軸周りに回転可能に構成されている。このステージ回転機構16により、ウエハ20を照明する光束L1の直線偏光の振動面に対するウエハ20表面の形成された繰り返しパターンの長手方向とのなす角度を任意の角度に設定することができる。   On the surface of the stage 11, the wafer 20 on which the above-mentioned pattern is formed is placed and fixed and held by vacuum suction or the like. Further, the stage 11 is configured to be rotatable around a predetermined rotation axis orthogonal to the stage surface by a stage rotation mechanism 16. With this stage rotation mechanism 16, the angle formed by the longitudinal direction of the repeated pattern formed on the surface of the wafer 20 with respect to the linearly polarized vibrating surface of the light beam L1 that illuminates the wafer 20 can be set to an arbitrary angle.

また、図1の表面検査装置において、凹面反射鏡35と凹面反射鏡36との間には、ステージ11に載置されたウエハ20の表面に形成されたパターンの向きを検知するためのアライメント系12が配設され、予め設定された光束L1の直線偏光の振動面と繰り返しパターン22の長手方向Yとのなす角度を検知して、ステージ回転機構16により照明光学系13及び受光光学系14に対する繰り返しパターンの長手方向Yの向きを調整することができる。   In the surface inspection apparatus of FIG. 1, an alignment system for detecting the orientation of the pattern formed on the surface of the wafer 20 placed on the stage 11 between the concave reflecting mirror 35 and the concave reflecting mirror 36. 12 is arranged, and an angle formed by a preset linearly polarized vibrating surface of the light beam L1 and the longitudinal direction Y of the repeated pattern 22 is detected, and the stage rotating mechanism 16 is used to detect the illumination optical system 13 and the light receiving optical system 14. The direction of the longitudinal direction Y of the repeated pattern can be adjusted.

アライメント系12は、ステージ11が回転しているときに、半導体ウエハ20の外縁部を照明し、外縁部に設けられた外形基準(例えばノッチ)の回転方向の位置を検出し、所定位置でステージ11を停止させる。その結果、半導体ウエハ20の繰り返しパターン22の繰り返し方向(図2のX方向)を、後述の照明光の入射面3A(図3参照)に対して、45度の角度に傾けて設定することができる。   The alignment system 12 illuminates the outer edge of the semiconductor wafer 20 when the stage 11 is rotating, detects the position in the rotation direction of an external reference (for example, a notch) provided on the outer edge, and moves the stage at a predetermined position. 11 is stopped. As a result, the repetitive direction (X direction in FIG. 2) of the repetitive pattern 22 of the semiconductor wafer 20 can be set to be inclined at an angle of 45 degrees with respect to the illumination light incident surface 3A (see FIG. 3) described later. it can.

本実施形態では、直線偏光の光束L1がP偏光である。つまり、図4(a)に示すように、直線偏光L1の進行方向とベクトルの振動方向とを含む平面(直線偏光L1の振動面)が、直線偏光L1の入射面(3A)内に含まれる。直線偏光L1の振動面は、凹面反射鏡35の前段に配置された偏光板34の透過軸により規定される。   In the present embodiment, the linearly polarized light beam L1 is P-polarized light. That is, as shown in FIG. 4A, a plane including the traveling direction of the linearly polarized light L1 and the vibration direction of the vector (the vibrating surface of the linearly polarized light L1) is included in the incident surface (3A) of the linearly polarized light L1. . The vibration plane of the linearly polarized light L <b> 1 is defined by the transmission axis of the polarizing plate 34 disposed in front of the concave reflecting mirror 35.

本実施形態では、半導体ウエハ20に入射する直線偏光L1がP偏光(図4(a))であるため、図5に示す通り、半導体ウエハ20の繰り返しパターン22の繰り返し方向(X方向)が直線偏光L1の入射面(3A)に対して45度の角度に設定された場合、半導体ウエハ20の表面における直線偏光L1の振動面の方向(図5のV方向)と、繰り返しパターン22の繰り返し方向(X方向)との成す角度も、45度に設定される。   In this embodiment, since the linearly polarized light L1 incident on the semiconductor wafer 20 is P-polarized light (FIG. 4A), the repeat direction (X direction) of the repeat pattern 22 of the semiconductor wafer 20 is a straight line as shown in FIG. When the angle is set to 45 degrees with respect to the incident surface (3A) of the polarized light L1, the direction of the vibration surface of the linearly polarized light L1 on the surface of the semiconductor wafer 20 (the V direction in FIG. 5) and the repeated direction of the repeated pattern 22 The angle formed with the (X direction) is also set to 45 degrees.

換言すると、直線偏光L1は、半導体ウエハ20の表面における振動面の方向(図5のV方向)が繰り返しパターン22の繰り返し方向(X方向)に対して45度に傾いた状態で、繰り返しパターン22を斜めに横切るような状態で、繰り返しパターン22に入射する。   In other words, the linearly polarized light L1 has the repeating pattern 22 in a state where the direction of the vibration surface (the V direction in FIG. 5) on the surface of the semiconductor wafer 20 is inclined 45 degrees with respect to the repeating direction (X direction) of the repeating pattern 22. Is incident on the repetitive pattern 22 in a state of crossing diagonally.

このような直線偏光L1と繰り返しパターン22との角度状態は、半導体ウエハ20の表面全体において均一である。なお、45度を135度,225度,315度の何れかに言い換えても、直線偏光L1と繰り返しパターン22との角度状態は同じである。また、図5の振動面の方向(V方向)と繰り返し方向(X方向)との成す角度を45度に設定するのは、繰り返しパターン22の欠陥検査の感度を最も高くするためである。   Such an angle state between the linearly polarized light L1 and the repeated pattern 22 is uniform over the entire surface of the semiconductor wafer 20. Note that the angle state between the linearly polarized light L1 and the repetitive pattern 22 is the same even if 45 degrees is replaced with any of 135 degrees, 225 degrees, and 315 degrees. The reason why the angle formed by the vibration plane direction (V direction) and the repeat direction (X direction) in FIG. 5 is set to 45 degrees is to maximize the sensitivity of the defect inspection of the repeat pattern 22.

そして、上記の直線偏光L1を用いて繰り返しパターン22を照明すると、繰り返しパターン22から正反射方向に楕円偏光L2が発生する(図1,図4(b))。この場合、楕円偏光L2の進行方向が正反射方向に一致する。正反射方向とは、直線偏光L1の入射面(3A)内に含まれ、ステージ11の法線1Aに対して直線偏光L1の入射角度等しい角度だけ傾いた方向である。なお、上記の通り、繰り返しパターン22のピッチPが照明波長と比較して十分小さいため、繰り返しパターン22から回折光が発生することはない。   When the repeating pattern 22 is illuminated using the linearly polarized light L1, the elliptically polarized light L2 is generated from the repeating pattern 22 in the regular reflection direction (FIGS. 1 and 4B). In this case, the traveling direction of the elliptically polarized light L2 coincides with the regular reflection direction. The regular reflection direction is a direction that is included in the incident surface (3A) of the linearly polarized light L1 and is inclined with respect to the normal line 1A of the stage 11 by an angle equal to the incident angle of the linearly polarized light L1. As described above, since the pitch P of the repeated pattern 22 is sufficiently smaller than the illumination wavelength, no diffracted light is generated from the repeated pattern 22.

次に、受光光学系14の説明を行う。受光系14は、図1に示すように、凹面反射鏡36と結像レンズ37と偏光板38と撮像素子39とで構成されている。
凹面反射鏡36は、上記した照明光学系13の凹面反射鏡35と同様の反射鏡であり、楕円偏光L2を反射して結像レンズ37の方に導き、結像レンズ37と協働して撮像素子39の撮像面に集光する。
Next, the light receiving optical system 14 will be described. As shown in FIG. 1, the light receiving system 14 includes a concave reflecting mirror 36, an imaging lens 37, a polarizing plate 38, and an image sensor 39.
The concave reflecting mirror 36 is a reflecting mirror similar to the concave reflecting mirror 35 of the illumination optical system 13 described above. The concave reflecting mirror 36 reflects the elliptically polarized light L2 toward the imaging lens 37 and cooperates with the imaging lens 37. The light is condensed on the imaging surface of the image sensor 39.

ただし、結像レンズ37と凹面反射鏡36との間には、偏光板38が配置されている。偏光板38の透過軸の方位は、上記した照明光学系13の偏光板34の透過軸に対して直交するように設定されている(クロスニコル(直交ニコル)の状態)。したがって、偏光板38により、楕円偏光L2の図4(c)の偏光成分L3に相当する偏光成分のみを抽出して、撮像素子39に導くことができる。その結果、撮像素子39の撮像面には、図4(c)の偏光成分L3に相当する偏光成分による半導体ウエハ20の反射像が形成される。   However, a polarizing plate 38 is disposed between the imaging lens 37 and the concave reflecting mirror 36. The direction of the transmission axis of the polarizing plate 38 is set so as to be orthogonal to the transmission axis of the polarizing plate 34 of the illumination optical system 13 described above (crossed Nicol state). Therefore, the polarizing plate 38 can extract only the polarization component corresponding to the polarization component L3 of the elliptically polarized light L2 in FIG. As a result, a reflection image of the semiconductor wafer 20 is formed on the imaging surface of the imaging element 39 by the polarization component corresponding to the polarization component L3 in FIG.

撮像素子39は、例えばCCD撮像素子などであり、撮像面に形成された半導体ウエハ20の反射像を光電変換して、画像信号を画像処理装置15に出力する。半導体ウエハ20の反射像の明暗は、図4(c)の偏光成分L3の大きさに略比例し、半導体ウエハ20の反射像が最も明るくなるのは、繰り返しパターン22が理想的な形状の場合である。なお、半導体ウエハ20の反射像の明暗は、ショット領域ごとに現れる。   The image sensor 39 is, for example, a CCD image sensor or the like, photoelectrically converts a reflected image of the semiconductor wafer 20 formed on the imaging surface, and outputs an image signal to the image processing device 15. The brightness of the reflected image of the semiconductor wafer 20 is substantially proportional to the magnitude of the polarization component L3 in FIG. 4C, and the reflected image of the semiconductor wafer 20 is brightest when the repetitive pattern 22 has an ideal shape. It is. Note that the brightness of the reflected image of the semiconductor wafer 20 appears for each shot area.

画像処理装置15は、撮像素子39から出力される画像信号に基づいて、半導体ウエハ20の反射画像を取り込む。なお、画像処理装置15は、比較のため、良品ウエハの反射画像を予め記憶している。良品ウエハとは、繰り返しパターン22が理想的な形状で表面全体に形成されたものである。良品ウエハの反射画像の輝度情報は、最も高い輝度値を示すと考えられる。   The image processing device 15 captures a reflected image of the semiconductor wafer 20 based on the image signal output from the image sensor 39. Note that the image processing apparatus 15 stores in advance a reflection image of a non-defective wafer for comparison. A non-defective wafer is one in which the repeated pattern 22 is formed on the entire surface in an ideal shape. It is considered that the luminance information of the reflected image of the non-defective wafer shows the highest luminance value.

したがって、画像処理装置15は、被検基板である半導体ウエハ20の反射画像を取り込むと、その輝度情報を良品ウエハの反射画像の輝度情報と比較する。そして、半導体ウエハ20の反射画像の暗い箇所の輝度値の低下量に基づいて、繰り返しパターン22の欠陥を検出する。例えば、輝度値の低下量が予め定めた閾値(許容値)より大きければ「欠陥」と判定し、閾値より小さければ「正常」と判断すればよい。   Therefore, when the image processing apparatus 15 takes in the reflection image of the semiconductor wafer 20 as the test substrate, the image processing apparatus 15 compares the luminance information with the luminance information of the reflection image of the non-defective wafer. Then, the defect of the repetitive pattern 22 is detected based on the amount of decrease in the luminance value in the dark part of the reflected image of the semiconductor wafer 20. For example, if the amount of decrease in luminance value is larger than a predetermined threshold (allowable value), it is determined as “defect”, and if it is smaller than the threshold, it is determined as “normal”.

上記したように、本実施形態の表面検査装置によれば、直線偏光L1を用い、図5の振動面の方向(V方向)が繰り返しパターン22の繰り返し方向(X方向)に対して傾いた状態で、繰り返しパターン22を照明すると共に、正反射方向に発生した楕円偏光L2のうち、図4(c)の偏光成分L3の大きさに基づいて、繰り返しパターン22の欠陥を検出するため、照明波長と比較して繰り返しパターン22のピッチPが十分小さくても、確実に欠陥検査を行うことができる。つまり、照明光である直線偏光L1を短波長化しなくても、確実に繰り返しピッチの微細化に対応できる。   As described above, according to the surface inspection apparatus of the present embodiment, the linearly polarized light L1 is used, and the vibration surface direction (V direction) in FIG. 5 is inclined with respect to the repeating direction (X direction) of the repeating pattern 22. In order to illuminate the repetitive pattern 22 and detect defects in the repetitive pattern 22 based on the magnitude of the polarization component L3 in FIG. 4C among the elliptically polarized light L2 generated in the regular reflection direction, the illumination wavelength Even if the pitch P of the repeated pattern 22 is sufficiently small as compared with the above, the defect inspection can be surely performed. That is, even if the linearly polarized light L1 that is illumination light is not shortened in wavelength, it is possible to reliably cope with repetitive miniaturization of the pitch.

次に、凹面反射鏡35に入射し、反射した光束の偏光状態について説明する。
図1において、凹面反射鏡35に関して、凹面反射鏡に入射する直線偏光L1の主光線AX1を含み凹面反射鏡の光軸O35に平行な平面が、凹面反射鏡に入射する直線偏光L1の入射面である。一方、ライトガイドファイバ33の開口数に応じて発散された照明光L1は上述のように偏光板34で所定の直線偏光に変換され、発散光束の主光線AX1は凹面反射鏡35の光軸O35に対してずれた部位に入射する所謂軸外しの光学系となっている。
Next, the polarization state of the light beam incident on and reflected by the concave reflecting mirror 35 will be described.
In FIG. 1, with respect to the concave reflecting mirror 35, a plane including the principal ray AX1 of the linearly polarized light L1 incident on the concave reflecting mirror and parallel to the optical axis O35 of the concave reflecting mirror is incident on the incident surface of the linearly polarized light L1 incident on the concave reflecting mirror. It is. On the other hand, the illumination light L1 diverged in accordance with the numerical aperture of the light guide fiber 33 is converted into predetermined linearly polarized light by the polarizing plate 34 as described above, and the principal ray AX1 of the divergent light beam is the optical axis O35 of the concave reflecting mirror 35. In other words, it is a so-called off-axis optical system that is incident on a portion that is deviated from the above.

従って、凹面反射鏡35に入射する光線は、凹面反射鏡35に対して垂直ではない。このためFrenelの反射の式に従って、偏光のP成分とS成分との間に透過率の差が発生し、その結果偏光面の回転が発生する。   Therefore, the light beam incident on the concave reflecting mirror 35 is not perpendicular to the concave reflecting mirror 35. Therefore, according to Frenel's reflection formula, a difference in transmittance occurs between the P component and S component of the polarized light, and as a result, the polarization plane rotates.

例えば、偏光板34により、この入射面に対して平行な振動面(P偏光)を有する直線偏光が生成されるとする。この場合、主光線AX1と光軸O35とで形成される入射面を基準入射面とすると、光軸O35を含み前記入射面に対して垂直な面と凹面反射鏡35との交点付近においては、偏光面の回転は起こらないが、凹面反射鏡35の他の部位では回転が起こる。偏光の振動面は、凹面反射鏡35の面内のうち基準入射面を挟んで線対称に回転する。この回転量は凹面反射鏡の光軸O35から離れた部位ほど大きい。これは、凹面反射鏡35に入射する発散光束が、凹面反射鏡35の光軸O35からずれた位置から入射するため、図1において、凹面反射鏡35に入射する光束の最も左側の光は最も入射角度が小さく、最も右側の光は最も入射角度が大きくなるような傾斜を有するからである(入射角度は入射光と、凹面反射鏡面の法線との角度である)。   For example, it is assumed that the polarization plate 34 generates linearly polarized light having a vibration surface (P-polarized light) parallel to the incident surface. In this case, assuming that the incident surface formed by the principal ray AX1 and the optical axis O35 is a reference incident surface, in the vicinity of the intersection of the concave reflecting mirror 35 including the optical axis O35 and a surface perpendicular to the incident surface, Although the polarization plane does not rotate, rotation occurs in other parts of the concave reflecting mirror 35. The plane of vibration of the polarized light rotates symmetrically with respect to the reference incidence plane in the plane of the concave reflecting mirror 35. The amount of this rotation is larger as the position is away from the optical axis O35 of the concave reflecting mirror. This is because the divergent light beam incident on the concave reflecting mirror 35 enters from a position deviated from the optical axis O35 of the concave reflecting mirror 35, and therefore the leftmost light of the light beam incident on the concave reflecting mirror 35 in FIG. This is because the incident angle is small and the rightmost light has an inclination that makes the incident angle largest (the incident angle is an angle between the incident light and the normal of the concave reflecting mirror surface).

このように凹面反射鏡に対する光の入射角度が面内で異なる(傾斜を有する)ため、面内で偏光面の回転にわずかの差が生じ、クロスニコルでの消光比のムラが発生する。
さらに、受光光学系14で発生する消光比のムラについて説明する。図1において、凹面反射鏡36に関して、凹面反射鏡36から射出する直線偏光L2の主光線AX2を含み凹面反射鏡の光軸O36に平行な平面が、凹面反射鏡36から射出する直線偏光L2の入射面を基準入射面である。一方、ウエハ20を反射した平行光束L2は、凹面反射鏡36のうち光軸O36から外れた部位に入射して収束作用を受けるので、受光光学系14は、所謂軸外しの光学系となっている。
As described above, since the incident angle of light with respect to the concave reflecting mirror is different (inclined) in the plane, a slight difference occurs in the rotation of the polarization plane in the plane, and unevenness of the extinction ratio in crossed Nicols occurs.
Further, the non-uniformity of the extinction ratio that occurs in the light receiving optical system 14 will be described. In FIG. 1, regarding the concave reflecting mirror 36, a plane including the principal ray AX <b> 2 of the linearly polarized light L <b> 2 emitted from the concave reflecting mirror 36 and parallel to the optical axis O <b> 36 of the concave reflecting mirror is the linearly polarized light L <b> 2 emitted from the concave reflecting mirror 36. The incident surface is a reference incident surface. On the other hand, the parallel light beam L2 reflected from the wafer 20 is incident on a portion of the concave reflecting mirror 36 that is off the optical axis O36 and receives a converging action, so that the light receiving optical system 14 is a so-called off-axis optical system. Yes.

凹面反射鏡36から射出する収束光束の偏光面の回転は、前述の照明光学系13の場合と同様である。凹面反射鏡36において、凹面反射鏡36の面内のうち、前記基準入射面を挟んで線対称に、偏光の振動面が回転する。この回転量は凹面反射鏡の光軸O36から離れた部位ほど大きい。これは、凹面反射鏡36を射出する収束光束L2が、凹面反射鏡36の光軸O36からずれた位置から射出するため、図1において、凹面反射鏡36から射出する光束の最も右側の光は最も入射角度が小さく、最も左側の光は最も射出角度が大きくなるような傾斜を有するからである(入射角度は入射光と、凹面反射鏡面の法線との角度である)。このように凹面反射鏡に対する光の射出角度が面内で異なる(傾斜を有する)ため、面内で偏光面の回転にわずかの差が生じ、クロスニコルでの消光比のムラが発生する。   The rotation of the polarization plane of the convergent light beam emitted from the concave reflecting mirror 36 is the same as in the case of the illumination optical system 13 described above. In the concave reflecting mirror 36, the polarization vibration plane rotates in line symmetry with respect to the reference incident surface in the plane of the concave reflecting mirror 36. The amount of this rotation is larger as the distance from the optical axis O36 of the concave reflecting mirror increases. This is because the convergent light beam L2 emitted from the concave reflecting mirror 36 is emitted from a position shifted from the optical axis O36 of the concave reflecting mirror 36, and therefore the rightmost light of the light beam emitted from the concave reflecting mirror 36 in FIG. This is because the light having the smallest incident angle and the light on the leftmost side has an inclination that gives the largest emission angle (the incident angle is an angle between the incident light and the normal line of the concave reflecting mirror surface). As described above, since the light emission angle with respect to the concave reflecting mirror is different in the plane (has an inclination), a slight difference occurs in the rotation of the polarization plane in the plane, resulting in uneven extinction ratio in crossed Nicols.

本実施形態のように、クロスニコルに配置した2枚の偏光板34、38によって、構造複屈折による偏光の変化を検出する場合は、このような、装置に起因する僅かの偏光の乱れがノイズとなり検出精度を劣化させる。   When a change in polarization due to structural birefringence is detected by the two polarizing plates 34 and 38 arranged in crossed Nicols as in the present embodiment, such slight polarization disturbance due to the device is noise. As a result, the detection accuracy is degraded.

このような、傾斜を有して分布する微小な偏光面の回転による、照明光の面内での偏光面の回転ムラを解消するために、本実施形態では、偏光板34あるいは偏光板38を回動させることによって、クロスニコル領域を移動させる構成とした。   In order to eliminate such uneven rotation of the polarization plane in the plane of the illumination light due to the rotation of the minute polarization plane distributed with an inclination, in this embodiment, the polarizing plate 34 or the polarizing plate 38 is provided. It was set as the structure which moves a cross Nicol area | region by rotating.

図6は、偏光板34あるいは38の支持部材の構成を示す図である。偏光板34あるいは38は、環状の支持部材40、42によって固定されている。支持部材40、42は、重ね合わされているが、その結合部には、環状の回転要素部材41が設けられ、この回転要素部材41を介して支持部材40、42は結合されている。偏光板34あるいは38は、支持部材40に固着されており、支持部材40は、回転要素部材41に沿って、支持部材42に対して回動可能である。モータ43の回転軸43aに取付けられた歯車44は、支持部材40の外周部に設けられた歯車の歯と噛み合うように設置されている。モータ43を駆動することにより、歯車44を回動させると、それに伴って支持部材40も回動する。このような構成により、モータ43を駆動制御することによって、偏光板34あるいは38を回動させることができる。回動量は、エンコーダなどによりモニタできるようになっており、所望の回動量に設定することができる。このような偏光板を回動させる構成は、偏光板34、偏光板38の少なくとも一方に設ければよいが、両方の偏光板に設けてもよい。   FIG. 6 is a diagram showing a configuration of a support member for the polarizing plate 34 or 38. The polarizing plate 34 or 38 is fixed by annular support members 40 and 42. The support members 40 and 42 are overlapped with each other, and an annular rotary element member 41 is provided at the coupling portion, and the support members 40 and 42 are joined via the rotary element member 41. The polarizing plate 34 or 38 is fixed to the support member 40, and the support member 40 can rotate with respect to the support member 42 along the rotation element member 41. The gear 44 attached to the rotating shaft 43 a of the motor 43 is installed so as to mesh with the gear teeth provided on the outer peripheral portion of the support member 40. When the gear 43 is rotated by driving the motor 43, the support member 40 is also rotated accordingly. With such a configuration, the polarizing plate 34 or 38 can be rotated by driving and controlling the motor 43. The amount of rotation can be monitored by an encoder or the like, and can be set to a desired amount of rotation. Such a structure for rotating the polarizing plate may be provided in at least one of the polarizing plate 34 and the polarizing plate 38, but may be provided in both polarizing plates.

偏光板34あるいは38を回動させて、2つの偏光板のクロスニコル領域を移動させることによって、前述のような偏光面の回転の位置に変化が生じ、消光比のムラが発生する位置も変化する。本実施形態においては、偏光板34あるいは38を回動させて、消光比のムラを変化させた状態で画像を複数回取得し、それらを合成することによって、ムラを低減した画像を得る。   By rotating the polarizing plate 34 or 38 and moving the crossed Nicols region of the two polarizing plates, a change occurs in the rotation position of the polarization plane as described above, and the position where the extinction ratio unevenness also changes. To do. In the present embodiment, the polarizing plate 34 or 38 is rotated to acquire an image a plurality of times in a state where the unevenness of the extinction ratio is changed, and by combining them, an image with reduced unevenness is obtained.

図7は、偏光板34あるいは38を回動させることによる、消光比のムラの変化を示す図である。図7(a)は、偏光板34と偏光板38とがクロスニコルの関係に配置されている状態で、ベアウエハ(表面に何も処理が施されていないウエハ)をステージ11上に載置した場合に撮像素子39で撮像される像を示している。このベアウエハは、表面にパターンが形成されていないので、直線偏光L1はベアウエハに照射されても楕円偏光成分が発生しない。したがって、理論的には、直線偏光L1と偏光方向が同一の光束が偏光板38に入射することになり、偏光板38を透過する偏光成分はなく、撮像素子39には光が入射しないことになる。しかしながら、前述のように、凹面反射鏡35,36で偏光面が回転することにより、撮像素子39にはその偏光面が回転した部分の偏光成分が入射して、その部分が明るく見えることになる。図7(a)において、黒い帯状領域51aと、領域51aより明るく見える領域51b、51cがある。領域51b、51cは、偏光面が回転した部分である。このように明るさにムラ(消光比のムラ)ができている。   FIG. 7 is a diagram showing the variation in the extinction ratio unevenness caused by rotating the polarizing plate 34 or 38. In FIG. 7A, a bare wafer (a wafer whose surface is not subjected to any processing) is placed on the stage 11 in a state where the polarizing plate 34 and the polarizing plate 38 are arranged in a crossed Nicols relationship. In this case, an image captured by the image sensor 39 is shown. Since this bare wafer has no pattern formed on its surface, the linearly polarized light L1 does not generate an elliptically polarized component even if it is irradiated onto the bare wafer. Therefore, theoretically, a light beam having the same polarization direction as that of the linearly polarized light L1 is incident on the polarizing plate 38, there is no polarization component transmitted through the polarizing plate 38, and no light is incident on the image pickup device 39. Become. However, as described above, when the plane of polarization is rotated by the concave reflecting mirrors 35 and 36, the polarized light component of the portion where the plane of polarization is rotated is incident on the image sensor 39, and the portion looks bright. . In FIG. 7A, there are a black belt-like region 51a and regions 51b and 51c that appear brighter than the region 51a. The regions 51b and 51c are portions where the polarization plane is rotated. In this way, the brightness is uneven (extinction ratio is uneven).

図7(b)は、偏光板34(あるいは偏光板38)を一方向に角度θ1だけ回動させた場合の、撮像素子39で撮像される像を示している。図7(a)と比べて、偏光板34(あるいは偏光板38)を回動させることにより、黒い帯状領域51aの位置が移動する。このとき、図7(a)の領域51cの部分に、黒い帯状領域51aが移動する角度θ1を探せばよい。図7(b)で示す状態が、その状態である。   FIG. 7B shows an image captured by the image sensor 39 when the polarizing plate 34 (or the polarizing plate 38) is rotated by an angle θ1 in one direction. Compared with FIG. 7A, the position of the black belt-like region 51a is moved by rotating the polarizing plate 34 (or the polarizing plate 38). At this time, an angle θ1 at which the black belt-like region 51a moves may be searched for in the region 51c in FIG. The state shown in FIG. 7B is that state.

図7(c)は、偏光板34(あるいは偏光板38)を図7(b)の場合とは逆の方向にθ2だけ回動させた場合の、撮像素子39で撮像される像を示している。図7(a)と比べて、偏光板34あるいは偏光板38を回動させることにより、黒い帯状領域51aの位置が図7(b)とは逆方向に移動する。このとき、図7(a)の領域51bの部分に、黒い帯状領域51aが移動する角度θ2を探せばよい。図7(c)で示す状態が、その状態である。   FIG. 7C shows an image picked up by the image pickup device 39 when the polarizing plate 34 (or the polarizing plate 38) is rotated by θ2 in the direction opposite to the case of FIG. 7B. Yes. Compared with FIG. 7A, by rotating the polarizing plate 34 or the polarizing plate 38, the position of the black belt-like region 51a moves in the direction opposite to that in FIG. 7B. At this time, an angle θ2 at which the black band-like region 51a moves may be searched for in the region 51b in FIG. The state shown in FIG. 7C is that state.

以上で得られた3つの画像を合成することにより、黒い帯状領域51aが全面に分布した画像を得ることができる。したがって、図7(d)に示すように、消光比のムラが低減された画像を得ることができる・
画像処理装置15は、以上のようにして得られた角度θ1、θ2を記憶しておく。そして、検査対象のウエハ20を検査する場合、まず、図7(a)と同様に、偏光板34と偏光板38とがクロスニコルの関係に配置されている状態で撮像して画像を得る。次に、図7(b)と同様に、偏光板34(あるいは偏光板38)を角度θ1だけ回動させた状態で撮像して画像を得る。次に、図7(c)と同様に、偏光板34(あるいは偏光板38)を角度θ2だけ図7(b)の場合とは逆方向に回動させた状態で撮像して画像を得る。そして、得られた3つの画像を合成することにより、消光比のムラが低減された画像を得る。
By synthesizing the three images obtained as described above, an image in which the black belt-like regions 51a are distributed over the entire surface can be obtained. Therefore, as shown in FIG. 7D, an image with reduced non-uniform extinction ratio can be obtained.
The image processing device 15 stores the angles θ1 and θ2 obtained as described above. When inspecting the wafer 20 to be inspected, first, as in FIG. 7A, an image is obtained by imaging in a state where the polarizing plate 34 and the polarizing plate 38 are arranged in a crossed Nicols relationship. Next, as in FIG. 7B, an image is obtained by capturing an image with the polarizing plate 34 (or the polarizing plate 38) rotated by an angle θ1. Next, as in FIG. 7C, the polarizing plate 34 (or the polarizing plate 38) is imaged by rotating the polarizing plate 34 (or the polarizing plate 38) in the direction opposite to that in the case of FIG. Then, by synthesizing the three obtained images, an image with reduced unevenness in the extinction ratio is obtained.

以上のように、本実施形態によれば、偏光板34(あるいは偏光板38)を回動させて、複数回ウエハ20を撮像してそれらの画像を合成することにより、凹面反射鏡35,36による光束の断面方向での偏光面の回転量の傾斜による画像の明るさのムラを補正することができる。そのため、ウエハの欠陥検出の検出精度を劣化させることがない。   As described above, according to the present embodiment, the concave reflecting mirrors 35 and 36 are obtained by rotating the polarizing plate 34 (or the polarizing plate 38), imaging the wafer 20 a plurality of times, and synthesizing those images. It is possible to correct unevenness in image brightness due to the inclination of the rotation amount of the polarization plane in the cross-sectional direction of the light beam. Therefore, the detection accuracy of defect detection on the wafer is not deteriorated.

次に、本発明の別の実施形態による表面検査装置について説明する。本実施形態の表面検査装置の構成は、図1と同様であるが、偏光板34あるいは偏光板38には前述の実施形態のように、回転させるための支持部材はなく、偏光板34と偏光板38とがクロスニコルの関係に配置されている状態で固定されている。ステージ11は、ウエハ20をウエハ20の表面に対して平行な方向に移動可能な構成となっている。これは、いわゆるXY方向に移動可能なX−Yステージであり、公知のステージで実現可能である。   Next, a surface inspection apparatus according to another embodiment of the present invention will be described. The configuration of the surface inspection apparatus of the present embodiment is the same as that of FIG. 1, but the polarizing plate 34 or the polarizing plate 38 does not have a support member for rotation as in the above-described embodiment, and the polarizing plate 34 and the polarizing plate The plate 38 is fixed in a state of being arranged in a crossed Nicols relationship. The stage 11 is configured to be able to move the wafer 20 in a direction parallel to the surface of the wafer 20. This is an XY stage movable in a so-called XY direction, and can be realized by a known stage.

図8は、ステージ11を移動させてウエハ20をウエハ20表面に対して平行な方向に移動させた場合の、ウエハ20面と消光比のムラとの関係を示す図である。
図8(a)は、照明光学系13による照明領域の中心と、ステージ11の中心とをほぼ一致させた状態で、ベアウエハをステージ11上に載置した場合に撮像素子39で撮像される像を示している。この状態は、図7(a)と同様の状態である。図7(a)と同様の理由で、黒い帯状領域51aと、領域51aより明るく見える領域51b、51cがある。領域51b、51cは、偏光面が回転した部分である。このように明るさにムラ(消光比のムラ)ができている。
FIG. 8 is a diagram showing the relationship between the wafer 20 surface and the extinction ratio unevenness when the stage 11 is moved and the wafer 20 is moved in a direction parallel to the surface of the wafer 20.
FIG. 8A shows an image picked up by the image pickup device 39 when the bare wafer is placed on the stage 11 with the center of the illumination area by the illumination optical system 13 and the center of the stage 11 substantially matched. Is shown. This state is the same as that in FIG. For the same reason as in FIG. 7A, there are a black belt-like region 51a and regions 51b and 51c that appear brighter than the region 51a. The regions 51b and 51c are portions where the polarization plane is rotated. In this way, the brightness is uneven (extinction ratio is uneven).

図8(b)は、ステージ11を移動させることにより、ウエハの像を右下方向に移動させた状態を示している。照明光学系13、受光光学系14は固定されているので、黒い帯状領域51aの位置は変化しない。ウエハが移動したため、ウエハ面と黒い帯状領域51aとの位置関係が変化し、ウエハ上では、図8(a)での領域51bの部分に、黒い帯状領域51aが来ることになる。   FIG. 8B shows a state in which the image of the wafer is moved in the lower right direction by moving the stage 11. Since the illumination optical system 13 and the light receiving optical system 14 are fixed, the position of the black belt-like region 51a does not change. Since the wafer has moved, the positional relationship between the wafer surface and the black belt-like region 51a changes, and the black belt-like region 51a comes to the region 51b in FIG. 8A on the wafer.

図8(c)は、ステージ11を図7(b)の場合とは反対方向に移動させることにより、ウエハの像を左上方向に移動させた状態を示している。照明光学系13、受光光学系14は固定されているので、黒い帯状領域51aの位置は変化しない。ウエハが移動したため、ウエハ面と黒い帯状領域51aとの位置関係が変化し、ウエハ上では、図8(a)での領域51cの部分に、黒い帯状領域51aが来ることになる。   FIG. 8C shows a state in which the image of the wafer is moved in the upper left direction by moving the stage 11 in the direction opposite to that in the case of FIG. 7B. Since the illumination optical system 13 and the light receiving optical system 14 are fixed, the position of the black belt-like region 51a does not change. Since the wafer has moved, the positional relationship between the wafer surface and the black belt-like region 51a changes, and the black belt-like region 51a comes to the region 51c in FIG. 8A on the wafer.

以上で得られた3つの画像を合成することにより、黒い帯状領域51aが全面に分布した画像を得ることができる。したがって、図8(d)に示すように、消光比のムラが低減された画像を得ることができる・
画像処理装置15は、図8(b)、図8(c)のときのステージの移動量をそれぞれ記憶しておく。検査対象のウエハ20を検査する場合、まず、図8(a)と同様のステージ11の位置で撮像して画像を得る。次に、ステージ11を移動させ、図8(b)と同様の位置で撮像して画像を得る。次に、ステージ11を移動させ、図8(c)と同様の位置で撮像して画像を得る。そして、得られた3つの画像を合成することにより、消光比のムラが低減された画像を得る。
By synthesizing the three images obtained as described above, an image in which the black belt-like regions 51a are distributed over the entire surface can be obtained. Therefore, as shown in FIG. 8D, an image with reduced non-uniform extinction ratio can be obtained.
The image processing apparatus 15 stores the amount of movement of the stage as shown in FIGS. 8B and 8C. When inspecting the wafer 20 to be inspected, first, an image is obtained by imaging at the same position of the stage 11 as in FIG. Next, the stage 11 is moved, and an image is obtained by taking an image at the same position as in FIG. Next, the stage 11 is moved, and an image is obtained by taking an image at the same position as in FIG. Then, by synthesizing the three obtained images, an image with reduced unevenness in the extinction ratio is obtained.

以上のように、本実施形態によれば、ステージ11を移動させて、複数回ウエハ20を撮像してそれらの画像を合成することにより、凹面反射鏡35,36による光束の断面方向での偏光面の回転量の傾斜による画像の明るさのムラを補正することができる。そのため、ウエハの欠陥検出の検出精度を劣化させることがない。   As described above, according to this embodiment, the stage 11 is moved, the wafer 20 is imaged a plurality of times, and these images are combined, whereby the polarization in the cross-sectional direction of the light flux by the concave reflecting mirrors 35 and 36 is performed. It is possible to correct unevenness in the brightness of the image due to the inclination of the rotation amount of the surface. Therefore, the detection accuracy of defect detection on the wafer is not deteriorated.

なお、上記の実施形態では、図7、図8に示すように、3回の撮像により得た画像を合成することとしたが、何回撮像すればよいかは、黒い帯状領域51aの大きさによって決めればよい。黒い帯状領域51aが大きい場合は、2回の撮像による画像を合成してもよいし、黒い帯状領域51aが小さい場合は、4回以上の撮像による画像を合成してもよい。   In the above embodiment, as shown in FIGS. 7 and 8, the images obtained by three times of imaging are combined. However, the number of times of imaging is determined by the size of the black belt-like region 51 a. You can decide by. When the black belt-like region 51a is large, an image obtained by two times of imaging may be synthesized. When the black belt-like region 51a is small, an image obtained by four or more times of imaging may be synthesized.

本発明の実施形態による表面検査装置の全体構成を示す図である。It is a figure which shows the whole structure of the surface inspection apparatus by embodiment of this invention. 半導体ウエハ20の表面の外観図である。2 is an external view of the surface of a semiconductor wafer 20. FIG. 直線偏光L1の入射面(3A)と、繰り返しパターン22の繰り返し方向(X方向)との傾き状態を説明する図である。It is a figure explaining the inclination state of the incident surface (3A) of the linearly polarized light L1 and the repeating direction (X direction) of the repeating pattern 22. FIG. 直線偏光L1と楕円偏光L2の振動方向を説明する図である。It is a figure explaining the vibration direction of linearly polarized light L1 and elliptically polarized light L2. 直線偏光L1の振動面の方向(V方向)と、繰り返しパターン22の繰り返し方向(X方向)との傾き状態を説明する図である。It is a figure explaining the inclination state of the direction (V direction) of the vibration surface of the linearly polarized light L1, and the repeating direction (X direction) of the repeating pattern 22. FIG. 偏光板34あるいは38の支持部材の構成を示す図である。It is a figure which shows the structure of the supporting member of the polarizing plate 34 or 38. FIG. 偏光板34あるいは38を回動させることによる、消光比のムラの変化を示す図である。It is a figure which shows the change of the nonuniformity of an extinction ratio by rotating the polarizing plate 34 or 38. FIG. ステージ20を移動させてウエハ20を移動させた場合の、ウエハ20面と消光比のムラとの関係を示す図である。It is a figure which shows the relationship between the wafer 20 surface and the nonuniformity of an extinction ratio when the stage 20 is moved and the wafer 20 is moved.

符号の説明Explanation of symbols

11:ステージ、12:アライメント系、13:照明光学系、14:受光光学系、15:画像処理装置、16:ステージ回転機構、20:半導体ウエハ、21:チップ領域、22,25,26:繰り返しパターン、33:ライトガイドファイバ、34,38:偏光板、35,36:凹面反射鏡、37:結像レンズ、39:撮像素子、40、42:支持部材、41:回転要素部材、43:モータ、44:歯車、L1:照明光、L2:反射光、LS:ランプハウス。 11: Stage, 12: Alignment system, 13: Illumination optical system, 14: Light receiving optical system, 15: Image processing device, 16: Stage rotation mechanism, 20: Semiconductor wafer, 21: Chip area, 22, 25, 26: Repetition Pattern, 33: light guide fiber, 34, 38: polarizing plate, 35, 36: concave reflecting mirror, 37: imaging lens, 39: imaging element, 40, 42: support member, 41: rotating element member, 43: motor 44: gear, L1: illumination light, L2: reflected light, LS: lamp house.

Claims (3)

被検査基板を照明するための発散光束を射出する光源手段と、
前記発散光束を、その光束の主光線が所定の入射角を有するように入射して、前記被検査基板に導く照射部材と、
前記被検査基板からの光を集光し、前記被検査基板の像を結像する結像手段と、
前記結像された像を撮像する撮像手段と、
前記光源手段から前記照射部材に至る光路中に設けられた第1の偏光板と、
前記結像手段から前記撮像手段に至る光路中に設けられた第2の偏光板と、
前記第1の偏光板と前記第2の偏光板との少なくとも一方を光軸と垂直な面内で回動させる回動手段と、
前記照明部材と前記撮像手段の偏光の乱れを補正する、前記第1の偏光板と前記第2の偏光板との少なくとも一方の複数の回動位置を記憶する記憶部と、
前記回動手段により前記第1の偏光板と前記第2の偏光板との少なくとも一方を前記記憶部に記憶された前記複数の回動位置に位置させた状態で、前記撮像手段により前記撮像される複数の像から合成された前記偏光の乱れが補正された合成像により前記被検査基板の表面の欠陥を検出する検出手段と
を備えたことを特徴とする表面検査装置。
Light source means for emitting a divergent light beam for illuminating the substrate to be inspected;
An irradiating member that guides the divergent light beam so that a principal ray of the light beam has a predetermined incident angle and guides it to the substrate to be inspected ;
Imaging means for condensing light from the substrate to be inspected and forming an image of the substrate to be inspected ;
An image pickup means for picking up the formed image;
A first polarizing plate provided in an optical path from the light source means to the irradiation member;
A second polarizing plate provided in an optical path from the imaging means to the imaging means;
Rotating means for rotating at least one of the first polarizing plate and the second polarizing plate in a plane perpendicular to the optical axis;
A storage unit for storing a plurality of rotational positions of at least one of the first polarizing plate and the second polarizing plate, which corrects a disturbance in polarization of the illumination member and the imaging unit;
The imaging means captures the image in a state where at least one of the first polarizing plate and the second polarizing plate is positioned at the plurality of rotational positions stored in the storage unit. And a detecting means for detecting defects on the surface of the substrate to be inspected based on the combined image corrected from the polarization disturbance combined from the plurality of images.
請求項1に記載の表面検査装置において、
前記回動手段は、前記第1の偏光板と前記第2の偏光板とがクロスニコルの状態になる位置に回動可能であることを特徴とする表面検査装置。
The surface inspection apparatus according to claim 1,
The surface inspection apparatus characterized in that the rotating means can be rotated to a position where the first polarizing plate and the second polarizing plate are in a crossed Nicols state.
請求項2に記載の表面検査装置において、
前記回動位置は、前記被検査基板として入射した直線偏光を楕円偏光化しない基板を配置し、該基板の複数の位置で前記像の対応するそれぞれの部分が暗くなる回動位置である
ことを特徴とする表面検査装置。
In the surface inspection apparatus according to claim 2,
The rotation position is a rotation position where a substrate that does not elliptically polarize incident linearly polarized light is disposed as the substrate to be inspected , and corresponding portions of the image become dark at a plurality of positions on the substrate. A featured surface inspection device.
JP2005070454A 2005-03-14 2005-03-14 Surface inspection device Expired - Fee Related JP4696607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070454A JP4696607B2 (en) 2005-03-14 2005-03-14 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070454A JP4696607B2 (en) 2005-03-14 2005-03-14 Surface inspection device

Publications (2)

Publication Number Publication Date
JP2006250843A JP2006250843A (en) 2006-09-21
JP4696607B2 true JP4696607B2 (en) 2011-06-08

Family

ID=37091505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070454A Expired - Fee Related JP4696607B2 (en) 2005-03-14 2005-03-14 Surface inspection device

Country Status (1)

Country Link
JP (1) JP4696607B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281502A (en) * 2007-05-14 2008-11-20 Nikon Corp Surface inspection apparatus
DE112008002816B4 (en) * 2007-10-23 2014-07-31 Shibaura Mechatronics Corp. Test method based on captured images and test device
KR101787765B1 (en) 2008-11-10 2017-11-15 가부시키가이샤 니콘 Evaluation device and evaluation method
JP5875040B2 (en) * 2011-10-18 2016-03-02 国立大学法人 新潟大学 Method for detecting cut surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175199A (en) * 1992-12-04 1994-06-24 Kirin Techno Syst:Kk Lighting and image pickup device
JPH10232122A (en) * 1997-02-19 1998-09-02 Nikon Corp Defect-inspecting device
JP2001324453A (en) * 2000-03-08 2001-11-22 Fuji Photo Film Co Ltd Apparatus, system and method for inspecting defect of film
JP2002116011A (en) * 2000-10-05 2002-04-19 Toshiba Corp Apparatus and method for pattern evaluation
JP2003004655A (en) * 2001-06-22 2003-01-08 Nikon Corp Inspection apparatus
JP2004294194A (en) * 2003-03-26 2004-10-21 Nikon Corp Device and method for inspecting defect, and method for inspecting hole pattern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175199A (en) * 1992-12-04 1994-06-24 Kirin Techno Syst:Kk Lighting and image pickup device
JPH10232122A (en) * 1997-02-19 1998-09-02 Nikon Corp Defect-inspecting device
JP2001324453A (en) * 2000-03-08 2001-11-22 Fuji Photo Film Co Ltd Apparatus, system and method for inspecting defect of film
JP2002116011A (en) * 2000-10-05 2002-04-19 Toshiba Corp Apparatus and method for pattern evaluation
JP2003004655A (en) * 2001-06-22 2003-01-08 Nikon Corp Inspection apparatus
JP2004294194A (en) * 2003-03-26 2004-10-21 Nikon Corp Device and method for inspecting defect, and method for inspecting hole pattern

Also Published As

Publication number Publication date
JP2006250843A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4552859B2 (en) Surface inspection apparatus and surface inspection method
JP5201350B2 (en) Surface inspection device
US7697139B2 (en) Surface inspection apparatus
TWI449898B (en) Observation device, inspection device and inspection method
JP5585615B2 (en) Inspection apparatus and inspection method
JP4692892B2 (en) Surface inspection device
JP5434353B2 (en) Surface inspection apparatus and surface inspection method
JP4853758B2 (en) Surface inspection apparatus and surface inspection method
JP4696607B2 (en) Surface inspection device
JP4462232B2 (en) Surface inspection device
JP4605089B2 (en) Surface inspection device
JP5500427B2 (en) Surface inspection apparatus and surface inspection method
JP4552202B2 (en) Surface inspection device
JP2007309874A (en) Surface inspection device
JP2006258472A (en) Defect inspection device
JP2006266817A (en) Surface inspection apparatus
JP2006250839A (en) Surface inspection apparatus
JP4462222B2 (en) Surface inspection device
JP2014215059A (en) Evaluation device, evaluation method, and semiconductor device
JP2011149951A (en) Device and method for surface inspection
JP5201443B2 (en) Surface inspection apparatus and surface inspection method
JP2004184322A (en) Flaw inspection device and flaw inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080620

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees