JP5201443B2 - Surface inspection apparatus and surface inspection method - Google Patents

Surface inspection apparatus and surface inspection method Download PDF

Info

Publication number
JP5201443B2
JP5201443B2 JP2007321152A JP2007321152A JP5201443B2 JP 5201443 B2 JP5201443 B2 JP 5201443B2 JP 2007321152 A JP2007321152 A JP 2007321152A JP 2007321152 A JP2007321152 A JP 2007321152A JP 5201443 B2 JP5201443 B2 JP 5201443B2
Authority
JP
Japan
Prior art keywords
polarized light
linearly polarized
light
defect
polarization component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007321152A
Other languages
Japanese (ja)
Other versions
JP2009145129A (en
Inventor
大輔 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007321152A priority Critical patent/JP5201443B2/en
Publication of JP2009145129A publication Critical patent/JP2009145129A/en
Application granted granted Critical
Publication of JP5201443B2 publication Critical patent/JP5201443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、被検基板の繰り返しパターン(ライン・アンド・スペースパターン)に直線偏光を照射して生じる正反射光の偏光成分に基づいて、繰り返しパターンの欠陥を検出する表面検査装置および表面検査方法に関する。   The present invention relates to a surface inspection apparatus and a surface inspection method for detecting a defect in a repetitive pattern based on a polarization component of specularly reflected light generated by irradiating a repetitive pattern (line and space pattern) of a test substrate with linearly polarized light. About.

ウェハの表面に形成された繰り返しパターン(ライン・アンド・スペースパターン)の欠陥を検査する検査装置として、従来から、回折光を利用したものが知られている。回折光を利用した装置では、パターンのピッチが短くなると、ブラッグの条件を満足するために短波長の光を使用する必要がある。しかしながら、短波長の光を用いると、装置が高価になるばかりでなく、レジストパターンの検査を行う場合にレジストを感光させてしまうという問題がある。   2. Description of the Related Art Conventionally, an inspection apparatus that uses diffracted light is known as an inspection apparatus for inspecting a defect of a repetitive pattern (line and space pattern) formed on the surface of a wafer. In an apparatus using diffracted light, it is necessary to use light having a short wavelength in order to satisfy the Bragg condition when the pattern pitch is shortened. However, the use of short-wavelength light not only makes the apparatus expensive, but also causes a problem that the resist is exposed when a resist pattern is inspected.

これに対し、繰り返しパターンの構造性複屈折を利用した検査装置が提案されている。この装置は、繰り返しパターンへ直線偏光を照射し、その偏光成分と直交する成分の光を検出して検査を行うものである(例えば、特許文献1を参照)。このような装置によれば、レジストの繰り返しパターンに崩れ(すなわち欠陥)がある場合、検出される正反射光(偏光成分)の光量(光の強度)はパターンに崩れが無い場合と比較して低下するため、正反射光(偏光成分)の光量から繰り返しパターンの欠陥を検出することが可能になる。これにより、回折光が出ないような微細な繰り返しパターンの検査を、短波長の光を用いることなく実施できる。
米国特許出願公開第2005/0280806A1号明細書
On the other hand, an inspection apparatus using structural birefringence of a repetitive pattern has been proposed. This apparatus irradiates linearly polarized light onto a repetitive pattern and detects light having a component orthogonal to the polarization component for inspection (see, for example, Patent Document 1). According to such an apparatus, when there is a collapse (that is, a defect) in the resist repetitive pattern, the amount of light (light intensity) of the regularly reflected light (polarized light component) to be detected is compared with the case in which the pattern does not collapse. Therefore, it becomes possible to detect a defect in the pattern repeatedly from the amount of specularly reflected light (polarized light component). Thereby, the inspection of the fine repetitive pattern which does not emit diffracted light can be performed without using short wavelength light.
US Patent Application Publication No. 2005 / 0280806A1

しかしながら、このような従来の検査装置では、繰り返しパターンの欠陥(崩れ)を検出することはできたが、検出した欠陥の種類を特定することができなかった。   However, such a conventional inspection apparatus can detect a defect (disintegration) of a repeated pattern, but cannot identify the type of the detected defect.

本発明は、このような問題に鑑みてなされたものであり、欠陥の種類を特定可能な表面検査装置および表面検査方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a surface inspection apparatus and a surface inspection method capable of specifying the type of defect.

このような目的達成のため、本発明の第1形態では、所定の繰り返しパターンを有する被検基板の表面に直線偏光を照射する照明部と、前記直線偏光が照射された前記被検基板の表面からの正反射光のうち前記直線偏光と振動方向が略直角な偏光成分を検出する検出部と、前記検出部で検出された前記偏光成分に基づいて、前記繰り返しパターンにおける欠陥の有無を検査する検査部と、前記繰り返しパターンの繰り返し方向と前記被検基板の表面における前記直線偏光の振動方向とのなす角度を所定の設定角度に設定可能な角度設定部とを備え、前記角度設定部により設定された複数の前記設定角度において、前記照明部が前記被検基板の表面に前記直線偏光を照射するとともに、前記検出部が前記正反射光のうち前記直線偏光と振動方向が略直角な偏光成分を検出し、前記検出部により前記複数の前記設定角度毎に検出した前記偏光成分に基づいて前記検査部が前記欠陥の種類を特定するように構成されており、前記検査部は、前記検出部により検出した前記偏光成分の光量変化率を前記複数の前記設定角度毎に算出し、前記複数の前記設定角度毎に算出した前記光量変化率に基づいて前記欠陥の種類を特定することを特徴とする表面検査装置を提供する。 In order to achieve such an object, in the first embodiment of the present invention, an illumination unit that irradiates a surface of a test substrate having a predetermined repetitive pattern with linearly polarized light, and a surface of the test substrate that is irradiated with the linearly polarized light. Detecting the presence of defects in the repetitive pattern based on the polarization component detected by the detection unit; An inspection unit; and an angle setting unit capable of setting an angle formed by a repeating direction of the repeated pattern and a vibration direction of the linearly polarized light on the surface of the test substrate to be set to a predetermined setting angle, and set by the angle setting unit The illumination unit irradiates the surface of the test substrate with the linearly polarized light at the plurality of set angles, and the detection unit includes the linearly polarized light and the vibration direction of the regular reflected light. Substantially detects the perpendicular polarization component is configured so that the measurement part to identify the type of the defect on the basis of the polarization component detected for each of the plurality of the set angle by the detecting unit, the inspection unit Calculates the light quantity change rate of the polarization component detected by the detection unit for each of the plurality of set angles, and specifies the type of the defect based on the light quantity change rates calculated for the plurality of the set angles. A surface inspection apparatus is provided.

本発明の第2形態では、所定の繰り返しパターンを有する被検基板の表面に直線偏光を照射する照明工程と、前記直線偏光が照射された前記被検基板の表面からの正反射光のうち前記直線偏光と振動方向が略直角な偏光成分を検出する検出工程と、前記検出工程で検出された前記偏光成分に基づいて、前記繰り返しパターンにおける欠陥の有無を検査する検査工程と、前記繰り返しパターンの繰り返し方向と前記被検基板の表面における前記直線偏光の振動方向とのなす角度を所定の設定角度に設定する角度設定工程と、前記角度設定工程により設定された複数の前記設定角度において、前記被検基板の表面に前記直線偏光を照射するとともに、前記正反射光のうち前記直線偏光と振動方向が略直角な偏光成分を検出し、前記複数の前記設定角度毎に検出した前記偏光成分に基づいて前記欠陥の種類を特定する特定工程とを有し、前記特定工程では、前記検出工程により検出した前記偏光成分の光量変化率を前記複数の前記設定角度毎に算出し、前記複数の前記設定角度毎に算出した前記光量変化率に基づいて前記欠陥の種類を特定することを特徴とする表面検査方法を提供する。 In the second embodiment of the present invention, the illumination step of irradiating the surface of the test substrate having a predetermined repetitive pattern with linearly polarized light, and the specularly reflected light from the surface of the test substrate irradiated with the linearly polarized light, A detection step for detecting a polarization component whose vibration direction is substantially perpendicular to linearly polarized light, an inspection step for inspecting for the presence or absence of defects in the repetitive pattern based on the polarization component detected in the detection step, and An angle setting step for setting an angle formed by a repeating direction and a vibration direction of the linearly polarized light on the surface of the test substrate to a predetermined setting angle, and a plurality of the setting angles set by the angle setting step. Irradiating the surface of the test substrate with the linearly polarized light, and detecting a polarized light component whose vibration direction is substantially perpendicular to the linearly polarized light in the specularly reflected light. Said detected each time on the basis of the polarized light component and a specifying step of specifying a type of the defect, in the identification step, the plurality of the set angle the light amount change rate of the polarized light component detected by the detecting step The surface inspection method is characterized in that the defect type is specified on the basis of the light quantity change rate calculated for each of the plurality of set angles .

本発明によれば、欠陥の種類を特定することが可能になる。   According to the present invention, it is possible to specify the type of defect.

以下、図面を参照して本発明の実施形態について説明する。本実施形態の表面検査装置1は、図1に示すように、被検基板である半導体ウェハ10(以下、ウェハ10と称する)を支持するステージ20と、照明系30と、受光系40とを備えて構成されている。また、表面検査装置1は、受光系40で撮像された画像の画像処理を行う画像処理部50と、受光系40で撮像された画像や画像処理部50による画像処理結果を表示するモニタ55とを備えている。表面検査装置1は、半導体回路素子の製造工程において、ウェハ10の表面の検査を自動的に行う装置である。ウェハ10は、最上層のレジスト膜への露光・現像後、不図示の搬送系により、不図示のウェハカセットまたは現像装置から運ばれ、ステージ20に吸着保持される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the surface inspection apparatus 1 of the present embodiment includes a stage 20 that supports a semiconductor wafer 10 (hereinafter referred to as a wafer 10) that is a substrate to be tested, an illumination system 30, and a light receiving system 40. It is prepared for. In addition, the surface inspection apparatus 1 includes an image processing unit 50 that performs image processing of an image captured by the light receiving system 40, and a monitor 55 that displays an image captured by the light receiving system 40 and an image processing result by the image processing unit 50. It has. The surface inspection apparatus 1 is an apparatus that automatically inspects the surface of a wafer 10 in a manufacturing process of a semiconductor circuit element. After exposure / development of the uppermost resist film, the wafer 10 is carried from a wafer cassette (not shown) or a developing device by a conveyance system (not shown), and is sucked and held on the stage 20.

ウェハ10の表面には複数のチップ領域が配列され、各チップ領域の中には、図2に示すように、複数のライン部2Aと、隣り合うライン部2A同士の間に位置するスペース部2Bとからなる繰り返しパターン12(ライン・アンド・スペースパターン)が形成されている。繰り返しパターン12は、複数のライン部2Aがその短手方向に沿って一定の繰り返しピッチPで配列されたレジストパターン(例えば、配線パターン)である。なお、ライン部2Aの配列方向を「繰り返しパターン12の繰り返し方向」とする。   A plurality of chip regions are arranged on the surface of the wafer 10, and in each chip region, as shown in FIG. 2, a plurality of line portions 2A and a space portion 2B located between the adjacent line portions 2A. A repetitive pattern 12 (line and space pattern) is formed. The repetitive pattern 12 is a resist pattern (for example, a wiring pattern) in which a plurality of line portions 2A are arranged at a constant repetitive pitch P along the short direction. The arrangement direction of the line portions 2A is referred to as “repetitive direction of the repeated pattern 12”.

ここで、繰り返しパターン12におけるライン部2Aの線幅の設計値をピッチPの1/2とする。すなわち、繰り返しパターン12は、ライン部2Aとスペース部2Bとを繰り返し方向に沿って交互に配列した凹凸形状を有しており、適正な露光フォーカスで設計値の通りに形成された場合、ライン部2Aの線幅とスペース部2Bの線幅は等しくなり、ライン部2Aとスペース部2Bとの体積比は略1:1になる。このような形状を理想的な形状とも呼称する。   Here, the design value of the line width of the line portion 2A in the repetitive pattern 12 is set to ½ of the pitch P. That is, the repetitive pattern 12 has a concavo-convex shape in which the line portions 2A and the space portions 2B are alternately arranged along the repetitive direction, and when the repetitive pattern 12 is formed according to the design value with an appropriate exposure focus, The line width of 2A and the line width of the space portion 2B are equal, and the volume ratio between the line portion 2A and the space portion 2B is approximately 1: 1. Such a shape is also called an ideal shape.

また、本実施形態においては、繰り返しパターン12に対する照明光(後述する直線偏光)の波長と比較して繰り返しパターン12のピッチPが十分小さいものとする。このため、繰り返しパターン12から回折光が発生することはなく、繰り返しパターン12の欠陥検査を回折光により行うことはできない。   In the present embodiment, it is assumed that the pitch P of the repeating pattern 12 is sufficiently small compared to the wavelength of illumination light (linearly polarized light described later) with respect to the repeating pattern 12. For this reason, diffracted light is not generated from the repetitive pattern 12, and the defect inspection of the repetitive pattern 12 cannot be performed by diffracted light.

表面検査装置1のステージ20は、ウェハ10を上面で支持して、例えば真空吸着により固定保持する。さらに、ステージ20は、上面の中心における法線A1を中心軸として回転可能である。この回転機構によって、ウェハ10における繰り返しパターン12の繰り返し方向を、ウェハ10の表面内で回転させることができる。なお、ステージ20は、上面が水平面であり、ウェハ10を常に水平な状態に保つことができる。   The stage 20 of the surface inspection apparatus 1 supports the wafer 10 on the upper surface and fixes and holds the wafer 10 by, for example, vacuum suction. Further, the stage 20 is rotatable about the normal A1 at the center of the upper surface as a central axis. By this rotation mechanism, the repeating direction of the repeating pattern 12 on the wafer 10 can be rotated within the surface of the wafer 10. The stage 20 has a horizontal upper surface, and can always keep the wafer 10 in a horizontal state.

本実施形態においては、繰り返しパターン12の欠陥検査の感度を最も高くするため、ウェハ10における繰り返しパターン12の繰り返し方向を、図3に示すように、ウェハ10の表面における照明光(直線偏光L)の振動方向に対して、45度の角度に傾けて設定する。なお、角度は45度に限らず、22.5度や67.5度など任意角度方向に設定可能である。   In the present embodiment, in order to maximize the sensitivity of defect inspection of the repeated pattern 12, the repeating direction of the repeated pattern 12 on the wafer 10 is set to illumination light (linearly polarized light L) on the surface of the wafer 10 as shown in FIG. Inclination is set at an angle of 45 degrees with respect to the vibration direction. The angle is not limited to 45 degrees, and can be set in an arbitrary angle direction such as 22.5 degrees or 67.5 degrees.

照明系30は、図1に示すように、照明装置31と、第1の偏光板32と、第1の凹面反射鏡33とを有して構成される。照明装置31は、図示しない水銀ランプ等の光源および波長選択フィルタを有して構成され、特定の波長を有する光を射出することができるようになっている。第1の偏光板32は、照明装置31から射出された光を透過軸の向きに応じた直線偏光L(図3を参照)にする。第1の凹面反射鏡33は、第1の凹面反射鏡33で反射する第1の偏光板32からの光を平行光束にして、被検基板であるウェハ10へ照射する。すなわち照明系30は、ウェハ10側に対してテレセントリックな光学系である。   As shown in FIG. 1, the illumination system 30 includes an illumination device 31, a first polarizing plate 32, and a first concave reflecting mirror 33. The illumination device 31 includes a light source such as a mercury lamp (not shown) and a wavelength selection filter, and can emit light having a specific wavelength. The 1st polarizing plate 32 makes the light inject | emitted from the illuminating device 31 into the linearly polarized light L (refer FIG. 3) according to the direction of a transmission axis. The first concave reflecting mirror 33 converts the light from the first polarizing plate 32 reflected by the first concave reflecting mirror 33 into a parallel light beam and irradiates the wafer 10 as the test substrate. That is, the illumination system 30 is an optical system telecentric with respect to the wafer 10 side.

上記の照明系30において、照明装置31からの光は、第1の偏光板32および第1の凹面反射鏡33を介してp偏光の直線偏光Lとなり、ウェハ10の表面全体に入射する。このとき、ウェハ10の各点における直線偏光Lの入射角度は、平行光束のため互いに同じであり、光軸と法線A1とのなす角度θに相当する。   In the illumination system 30, the light from the illumination device 31 becomes p-polarized linearly polarized light L via the first polarizing plate 32 and the first concave reflecting mirror 33 and enters the entire surface of the wafer 10. At this time, the incident angle of the linearly polarized light L at each point of the wafer 10 is the same because of the parallel light flux, and corresponds to the angle θ formed by the optical axis and the normal line A1.

なお、本実施形態では、ウェハ10に入射する直線偏光Lがp偏光であるため、図3に示すように、繰り返しパターン12の繰り返し方向が直線偏光Lの入射面(ウェハ10の表面における直線偏光Lの進行方向)に対して45度の角度に設定された場合、ウェハ10の表面における直線偏光Lの振動方向と繰り返しパターン12の繰り返し方向とのなす角度も、45度に設定される。言い換えると、直線偏光Lは、ウェハ10の表面における直線偏光Lの振動方向が繰り返しパターン12の繰り返し方向に対して45度傾いた状態で、繰り返しパターン12を斜めに横切るようにして繰り返しパターン12に入射することになる。   In this embodiment, since the linearly polarized light L incident on the wafer 10 is p-polarized light, the repeating direction of the repeated pattern 12 is the incident surface of the linearly polarized light L (linearly polarized light on the surface of the wafer 10) as shown in FIG. When the angle is set to 45 degrees with respect to the L traveling direction), the angle formed by the vibration direction of the linearly polarized light L on the surface of the wafer 10 and the repeating direction of the repeating pattern 12 is also set to 45 degrees. In other words, the linearly polarized light L changes into the repeated pattern 12 so as to cross the repeated pattern 12 diagonally with the vibration direction of the linearly polarized light L on the surface of the wafer 10 inclined by 45 degrees with respect to the repeated direction of the repeated pattern 12. It will be incident.

受光系40は、図1に示すように、第2の凹面反射鏡41と、第2の偏光板42と、撮像装置43とを有して構成され、その光軸がステージ20の中心を通る法線A1に対して角度θだけ傾くように配設される。従って、繰り返しパターン12からの正反射光は、受光系40の光軸に沿って進行することになる。第2の凹面反射鏡41は、第1の凹面反射鏡33と同様の反射鏡であり、繰り返しパターン12からの正反射光を反射させて撮像装置43の撮像面上に集光する。   As shown in FIG. 1, the light receiving system 40 includes a second concave reflecting mirror 41, a second polarizing plate 42, and an imaging device 43, and the optical axis passes through the center of the stage 20. It arrange | positions so that only angle (theta) may incline with respect to normal line A1. Therefore, the specularly reflected light from the repeated pattern 12 travels along the optical axis of the light receiving system 40. The second concave reflecting mirror 41 is the same reflecting mirror as the first concave reflecting mirror 33, reflects regular reflection light from the repeated pattern 12 and condenses it on the imaging surface of the imaging device 43.

ただし、第2の凹面反射鏡41と撮像装置43との間には、第2の偏光板42が配設されている。第2の偏光板42の透過軸の方位は、上述した照明系30の第1の偏光板32の透過軸に対して直交するように設定されている(クロスニコルの状態)。したがって、第2の偏光板42により、繰り返しパターン12からの正反射光のうち直線偏光Lと振動方向が略直角な偏光成分(例えば、s偏光の成分)を抽出して、撮像装置43に導くことができる。その結果、撮像装置43の撮像面には、繰り返しパターン12からの正反射光のうち直線偏光Lと振動方向が略直角な偏光成分によるウェハ10の反射像が形成される。   However, a second polarizing plate 42 is disposed between the second concave reflecting mirror 41 and the imaging device 43. The direction of the transmission axis of the second polarizing plate 42 is set so as to be orthogonal to the transmission axis of the first polarizing plate 32 of the illumination system 30 described above (crossed Nicol state). Therefore, the second polarizing plate 42 extracts a polarization component (for example, an s-polarized component) whose vibration direction is substantially perpendicular to the linearly polarized light L from the regular reflection light from the repetitive pattern 12 and guides it to the imaging device 43. be able to. As a result, a reflected image of the wafer 10 is formed on the imaging surface of the imaging device 43 by the polarization component of the regular reflection light from the repetitive pattern 12 that is substantially perpendicular to the linearly polarized light L and the vibration direction.

撮像装置43は、例えばCCD撮像素子等から構成され、撮像面に形成されたウェハ10の反射像を光電変換して、画像信号を画像処理部50に出力する。ウェハ10の反射像の明暗は、撮像装置43で検出された偏光成分の光量(光強度)に略比例し、繰り返しパターン12の形状に応じて変化する。ウェハ10の反射像が最も明るくなるのは、繰り返しパターン12が理想的な形状の場合(パターンに崩れがない場合)である。なお、ウェハ10の反射像の明暗は、ショット領域ごとに現れる。   The imaging device 43 is configured by, for example, a CCD imaging device and the like, photoelectrically converts a reflected image of the wafer 10 formed on the imaging surface, and outputs an image signal to the image processing unit 50. The brightness of the reflected image of the wafer 10 is substantially proportional to the amount of light (light intensity) of the polarization component detected by the imaging device 43 and changes according to the shape of the repeated pattern 12. The reflected image of the wafer 10 becomes brightest when the repeated pattern 12 has an ideal shape (when the pattern does not collapse). The brightness of the reflected image of the wafer 10 appears for each shot area.

画像処理部50は、撮像装置43から出力される画像信号に基づいて、ウェハ10の反射画像を取り込む。なお、画像処理装置50は、比較のため、良品ウェハの反射画像を予め記憶している。良品ウェハとは、繰り返しパターン12が理想的な形状で表面全体に形成されたものである。そのため、良品ウェハの反射画像での信号強度として現れる光量(光の強度)は、最も高い値を示すと考えられる。   The image processing unit 50 captures a reflected image of the wafer 10 based on the image signal output from the imaging device 43. Note that the image processing apparatus 50 stores a reflection image of a non-defective wafer in advance for comparison. A non-defective wafer is one in which the repetitive pattern 12 is formed on the entire surface in an ideal shape. Therefore, it is considered that the amount of light (light intensity) appearing as the signal intensity in the reflected image of the non-defective wafer shows the highest value.

したがって、画像処理部50は、被検基板であるウェハ10の反射画像を取り込むと、その光量(信号強度)を良品ウェハの反射画像の光量(信号強度)と比較する。そして、ウェハ10の反射画像における暗い箇所の光量の低下量に基づいて、繰り返しパターン12の欠陥を検出する。例えば、光量変化が予め定められた閾値(許容値)より大きければ「欠陥」と判定し、閾値より小さければ「正常」と判断すればよい。そして、画像処理部50による光量の比較結果およびそのときのウェハ10の反射画像がモニタ55で出力表示される。   Therefore, when the image processing unit 50 captures the reflected image of the wafer 10 as the test substrate, the image processing unit 50 compares the light amount (signal intensity) with the light amount (signal intensity) of the reflected image of the non-defective wafer. Then, the defect of the repetitive pattern 12 is detected based on the amount of decrease in the amount of light in the dark portion in the reflected image of the wafer 10. For example, if the light amount change is larger than a predetermined threshold (allowable value), it is determined as “defect”, and if it is smaller than the threshold, it is determined as “normal”. Then, the light quantity comparison result by the image processing unit 50 and the reflected image of the wafer 10 at that time are output and displayed on the monitor 55.

なお、画像処理部50においては、上述のように、良品ウェハの反射画像を予め記憶しておく構成の他、ウェハ10のショット領域の配列データと光量の閾値を予め記憶しておく構成でもよい。この場合、ショット領域の配列データに基づいて、取り込まれたウェハ10の反射画像中における各ショット領域の位置が分かるので、各ショット領域の光量を求める。そして、その光量と記憶されている閾値とを比較することにより、パターンの欠陥を検出する。閾値より光量が小さいショット領域を「欠陥」と判断すればよい。   In addition, as described above, the image processing unit 50 may be configured to store the reflection data of the non-defective wafer in advance, or to previously store the array data of the shot area of the wafer 10 and the light amount threshold value. . In this case, since the position of each shot area in the captured reflection image of the wafer 10 is known based on the array data of the shot area, the light quantity of each shot area is obtained. Then, a pattern defect is detected by comparing the amount of light with a stored threshold value. A shot area whose light amount is smaller than the threshold value may be determined as a “defect”.

このような構成の表面検査装置1を用いた表面検査方法について、図4に示すフローチャートを参照しながら以下に説明する。まず、ステップS101において、被検基板であるウェハ10の表面に直線偏光Lを照射する。このとき、照明装置31から射出された光は、第1の偏光板32でp偏光の直線偏光Lに変換されるとともに、第1の凹面反射鏡33で平行光束となってウェハ10の表面に照射される。   A surface inspection method using the surface inspection apparatus 1 having such a configuration will be described below with reference to the flowchart shown in FIG. First, in step S101, the surface of the wafer 10 that is the substrate to be tested is irradiated with linearly polarized light L. At this time, the light emitted from the illumination device 31 is converted into p-polarized linearly polarized light L by the first polarizing plate 32 and becomes a parallel light beam by the first concave reflecting mirror 33 on the surface of the wafer 10. Irradiated.

ウェハ10の表面で反射した正反射光は、第2の凹面反射鏡41により集光され、第2の偏光板42で正反射光のうち直線偏光Lと振動方向が略直角な偏光成分(例えば、s偏光の成分)が抽出されて撮像装置43の撮像面上に導かれる。そこで、次のステップS102において、撮像装置43の撮像面上に導かれた偏光成分を、撮像装置43により検出する。このとき、撮像装置43は、撮像面上に形成された、正反射光のうち直線偏光Lと振動方向が略直角な偏光成分によるウェハ10の反射像を光電変換して、画像信号を画像処理部50に出力する。   The specularly reflected light reflected by the surface of the wafer 10 is collected by the second concave reflecting mirror 41 and is polarized by the second polarizing plate 42 with a polarization component (for example, substantially perpendicular to the linearly polarized light L of the specularly reflected light). , S-polarized components) are extracted and guided onto the imaging surface of the imaging device 43. Therefore, in the next step S <b> 102, the polarization component guided onto the imaging surface of the imaging device 43 is detected by the imaging device 43. At this time, the imaging device 43 photoelectrically converts the reflected image of the wafer 10 by the polarization component of the specularly reflected light that is substantially perpendicular to the linearly polarized light L formed on the imaging surface, and performs image processing on the image signal. To the unit 50.

そして、次のステップS103において、先のステップで検出した偏光成分に基づいて、繰り返しパターン12における欠陥の有無を検査する。このとき、画像処理部50は、撮像装置43から入力されたウェハ10の画像の光量(信号強度)を、良品ウェハの画像の光量(信号強度)と比較し、光量変化が予め設定した閾値を超えたとき、欠陥があると判定する。   Then, in the next step S103, the presence or absence of defects in the repetitive pattern 12 is inspected based on the polarization component detected in the previous step. At this time, the image processing unit 50 compares the light amount (signal intensity) of the image of the wafer 10 input from the imaging device 43 with the light amount (signal intensity) of the image of the non-defective wafer, and sets a preset threshold value for the change in light amount. When it exceeds, it is determined that there is a defect.

ところで、繰り返しパターン12に欠陥があると画像処理部50が判定すると、ステージ20を回転させ、繰り返しパターン12の繰り返し方向を、ウェハ10の表面における直線偏光Lの振動方向に対して、(45度から)67.5度の角度に傾ける設定を行う。次に、67.5度の設定角度において、ステップS101およびステップS102と同様に、ウェハ10の表面に直線偏光Lを照射するとともに、ウェハ10からの正反射光のうち直線偏光Lと振動方向が略直角な偏光成分を検出する。そして、45度および67.5度の設定角度で検出した偏光成分の光量に基づいて、或る欠陥の種類を特定する。   When the image processing unit 50 determines that the repeated pattern 12 is defective, the stage 20 is rotated so that the repeated direction of the repeated pattern 12 is (45 degrees) with respect to the vibration direction of the linearly polarized light L on the surface of the wafer 10. To) is set to tilt at an angle of 67.5 degrees. Next, at the set angle of 67.5 degrees, similarly to steps S101 and S102, the surface of the wafer 10 is irradiated with the linearly polarized light L, and the linearly polarized light L and the vibration direction of the regular reflected light from the wafer 10 are changed. Detects a substantially perpendicular polarization component. Then, the type of a certain defect is specified based on the light amount of the polarization component detected at the set angles of 45 degrees and 67.5 degrees.

本願の発明者は、図5に示すような、ライン部の伸長方向に対してウェハ10の表面内で一方に傾斜する傾斜依存性を有する欠陥を含んだ繰り返しパターン12′において、前述のような複数の設定角度で偏光成分を検出し、偏光成分の光量変化率(コントラスト)を算出すると、複数の設定角度でコントラスト差が生じることを発見した。例えば、図6(a)および(b)に示すように、検出した偏光成分の光量分布(光の強度分布)をコントラスト分布に変換すると、設定角度で67.5度の場合の方が45度の場合よりもコントラストが相対的に高くなることを発見した。なお、本実施形態において、光量変化率(コントラスト)は、光量の最大値、すなわち良品ウェハの場合の光量と検出した光量との光量差から、光量の最大値を除した値と定義する。また、図5に示すような繰り返しパターン12′の傾斜角度を非対称角αと定義する。   The inventor of the present application, as shown in FIG. 5, in the repetitive pattern 12 ′ including a defect having an inclination dependency inclined in one direction within the surface of the wafer 10 with respect to the extending direction of the line portion, It has been discovered that when a polarization component is detected at a plurality of setting angles and a light amount change rate (contrast) of the polarization component is calculated, a contrast difference occurs at a plurality of setting angles. For example, as shown in FIGS. 6A and 6B, when the detected light quantity distribution (light intensity distribution) of the polarization component is converted into a contrast distribution, the setting angle of 67.5 degrees is 45 degrees. It was found that the contrast is relatively higher than the case. In the present embodiment, the light amount change rate (contrast) is defined as a value obtained by dividing the maximum light amount, that is, the difference between the detected light amount and the light amount in the case of a non-defective wafer. Further, the inclination angle of the repetitive pattern 12 ′ as shown in FIG. 5 is defined as an asymmetric angle α.

そこで、画像処理部50は、45度および67.5度の設定角度で検出した偏光成分の光量から、前述した光量のコントラストを算出し、図6(b)に示すコントラスト差を利用して(具体的には、67.5度の設定角度におけるコントラストと、45度の設定角度におけるコントラストとのコントラスト差を算出し、算出したコントラスト差から図6(b)のグラフより非対称角αを逆算するようにして)傾斜依存性を有する欠陥を含んだ繰り返しパターン12′の傾斜角度(非対称角α)を算出する。これにより、ウェハ10の表面内で一方に傾斜する傾斜依存性を有する欠陥を含んだ繰り返しパターン12′の傾斜角度(非対称角α)を求めることができる。なお、コントラストの差が生じない場合、繰り返しパターンは他の種類の欠陥を有することになる。このように、本実施形態の表面検査装置1によれば、繰り返しパターンで検出される欠陥の種類を特定することが可能になる。   Therefore, the image processing unit 50 calculates the contrast of the light amount described above from the light amount of the polarization component detected at the setting angles of 45 degrees and 67.5 degrees, and uses the contrast difference shown in FIG. Specifically, the contrast difference between the contrast at the setting angle of 67.5 degrees and the contrast at the setting angle of 45 degrees is calculated, and the asymmetric angle α is calculated backward from the calculated contrast difference from the graph of FIG. Thus, the inclination angle (asymmetric angle α) of the repetitive pattern 12 ′ including defects having inclination dependency is calculated. As a result, the inclination angle (asymmetric angle α) of the repetitive pattern 12 ′ including a defect having an inclination dependency that inclines in one direction within the surface of the wafer 10 can be obtained. If no contrast difference occurs, the repetitive pattern has other types of defects. Thus, according to the surface inspection apparatus 1 of the present embodiment, it is possible to specify the type of defect detected by the repeated pattern.

またこのとき、前述したように、複数の設定角度毎に検出した光量変化率(コントラスト)に基づいて欠陥の種類を特定することで、比較的容易に欠陥の種類を特定することができる。   At this time, as described above, by specifying the defect type based on the light amount change rate (contrast) detected for each of the plurality of setting angles, the defect type can be specified relatively easily.

なお、特定する欠陥の種類は、前述したように、繰り返しパターン12の少なくとも一部がウェハ10の表面内で一方に傾斜する傾斜依存性を有する欠陥であり、本実施形態はこのような欠陥を特定するのに効果的である。   As described above, the type of the defect to be identified is a defect having an inclination dependency in which at least a part of the repetitive pattern 12 is inclined to one side within the surface of the wafer 10. It is effective to specify.

なお、図7(および図8)に示すように、繰り返しパターン12″(12′′′)が対称的に崩れている場合(すなわち、欠陥が傾斜依存性を有さない場合)、上述の実施形態で述べたコントラストの差は生じないことが知られている。   As shown in FIG. 7 (and FIG. 8), when the repetitive pattern 12 ″ (12 ′ ″) is broken symmetrically (that is, when the defect has no inclination dependency), the above-described implementation is performed. It is known that the contrast difference described in the form does not occur.

また、上述の実施形態において、45度および67.5度の設定角度で偏光成分を検出しているが、これに限られるものではなく、例えば、さらに22.5度の設定角度で偏光成分を検出するようにしてもよく、複数の任意の設定角度について偏光成分を検出するようにすればよい。   In the above-described embodiment, the polarization component is detected at the setting angles of 45 degrees and 67.5 degrees. However, the present invention is not limited to this. For example, the polarization component is further detected at the setting angle of 22.5 degrees. Detection may be performed, and the polarization component may be detected for a plurality of arbitrary set angles.

また、上述の実施形態において、直線偏光Lがp偏光である例を説明したが、これに限られるものではなく、例えば、p偏光ではなくs偏光にしてもよい。なおこのとき、撮像装置43で検出する偏光成分は、例えばp偏光の成分となる。   In the above-described embodiment, the example in which the linearly polarized light L is p-polarized light has been described. However, the present invention is not limited to this. For example, s-polarized light may be used instead of p-polarized light. At this time, the polarization component detected by the imaging device 43 is, for example, a p-polarized component.

また、上述の実施形態では、照明装置31からの照明光と第1の偏光板32を利用して、直線偏光Lを作り出すように構成されているが、これに限られるものではなく、直線偏光を供給するレーザーを光源として使用すれば第1の偏光板32は必要ない。   In the above-described embodiment, the linearly polarized light L is generated using the illumination light from the illumination device 31 and the first polarizing plate 32. However, the present invention is not limited to this. If the laser which supplies is used as a light source, the first polarizing plate 32 is not necessary.

本発明に係る表面検査装置の全体構成を示す図である。It is a figure showing the whole surface inspection device composition concerning the present invention. 繰り返しパターンの概略図である。It is the schematic of a repeating pattern. 直線偏光の入射面と繰り返しパターンの繰り返し方向との傾き状態を説明する図である。It is a figure explaining the inclination state of the entrance plane of a linearly polarized light and the repeating direction of a repeating pattern. 表面検査装置を用いた表面検査のフローチャートである。It is a flowchart of the surface inspection using a surface inspection apparatus. 傾斜依存性を有する欠陥を含んだ繰り返しパターンの概略図である。It is the schematic of the repeating pattern containing the defect which has inclination dependence. (a)は偏光成分の光量と非対称角との関係を示すグラフであり、(b)は光量のコントラストと非対称角との関係を示すグラフである。(A) is a graph which shows the relationship between the light quantity of a polarization component, and an asymmetric angle, (b) is a graph which shows the relationship between the contrast and the asymmetric angle of light quantity. 傾斜依存性を有さない欠陥を含んだ繰り返しパターンの概略図である。It is the schematic of the repeating pattern containing the defect which does not have inclination dependence. 傾斜依存性を有さない欠陥を含んだ繰り返しパターンの別例を示す概略図である。It is the schematic which shows another example of the repeating pattern containing the defect which does not have inclination dependence.

符号の説明Explanation of symbols

1 表面検査装置
10 ウェハ(被検基板) 12 繰り返しパターン
20 ステージ(角度設定部) 30 照明系(照明部)
40 受光系(検出部) 50 画像処理部(検査部)
L 直線偏光
DESCRIPTION OF SYMBOLS 1 Surface inspection apparatus 10 Wafer (substrate to be tested) 12 Repeat pattern 20 Stage (angle setting part) 30 Illumination system (illumination part)
40 Light receiving system (detection unit) 50 Image processing unit (inspection unit)
L Linearly polarized light

Claims (4)

所定の繰り返しパターンを有する被検基板の表面に直線偏光を照射する照明部と、
前記直線偏光が照射された前記被検基板の表面からの正反射光のうち前記直線偏光と振動方向が略直角な偏光成分を検出する検出部と、
前記検出部で検出された前記偏光成分に基づいて、前記繰り返しパターンにおける欠陥の有無を検査する検査部と、
前記繰り返しパターンの繰り返し方向と前記被検基板の表面における前記直線偏光の振動方向とのなす角度を所定の設定角度に設定可能な角度設定部とを備え、
前記角度設定部により設定された複数の前記設定角度において、前記照明部が前記被検基板の表面に前記直線偏光を照射するとともに、前記検出部が前記正反射光のうち前記直線偏光と振動方向が略直角な偏光成分を検出し、前記検出部により前記複数の前記設定角度毎に検出した前記偏光成分に基づいて前記検査部が前記欠陥の種類を特定するように構成されており、
前記検査部は、前記検出部により検出した前記偏光成分の光量変化率を前記複数の前記設定角度毎に算出し、前記複数の前記設定角度毎に算出した前記光量変化率に基づいて前記欠陥の種類を特定することを特徴とする表面検査装置。
An illumination unit that irradiates the surface of the test substrate having a predetermined repeating pattern with linearly polarized light;
A detection unit for detecting a polarization component whose vibration direction is substantially perpendicular to the linearly polarized light among specularly reflected light from the surface of the test substrate irradiated with the linearly polarized light;
Based on the polarization component detected by the detection unit, an inspection unit that inspects the presence or absence of defects in the repetitive pattern;
An angle setting unit capable of setting an angle formed by the repeating direction of the repeating pattern and the vibration direction of the linearly polarized light on the surface of the test substrate to a predetermined setting angle;
At the plurality of set angles set by the angle setting unit, the illumination unit irradiates the surface of the substrate with the linearly polarized light, and the detection unit includes the linearly polarized light and the vibration direction of the regular reflected light. Is configured such that the inspection unit identifies the type of the defect based on the polarization component detected for each of the plurality of setting angles by the detection unit .
The inspection unit calculates a light amount change rate of the polarization component detected by the detection unit for each of the plurality of set angles, and based on the light amount change rate calculated for each of the plurality of set angles, A surface inspection device characterized by identifying the type .
前記欠陥の種類は、前記繰り返しパターンの少なくとも一部が前記被検基板の表面内で一方に傾斜する傾斜依存性を有する欠陥であることを特徴とする請求項1に記載の表面検査装置。 The surface inspection apparatus according to claim 1 , wherein the type of the defect is a defect having an inclination dependency in which at least a part of the repetitive pattern is inclined in one direction within the surface of the test substrate. 所定の繰り返しパターンを有する被検基板の表面に直線偏光を照射する照明工程と、
前記直線偏光が照射された前記被検基板の表面からの正反射光のうち前記直線偏光と振動方向が略直角な偏光成分を検出する検出工程と、
前記検出工程で検出された前記偏光成分に基づいて、前記繰り返しパターンにおける欠陥の有無を検査する検査工程と、
前記繰り返しパターンの繰り返し方向と前記被検基板の表面における前記直線偏光の振動方向とのなす角度を所定の設定角度に設定する角度設定工程と、
前記角度設定工程により設定された複数の前記設定角度において、前記被検基板の表面に前記直線偏光を照射するとともに、前記正反射光のうち前記直線偏光と振動方向が略直角な偏光成分を検出し、前記複数の前記設定角度毎に検出した前記偏光成分に基づいて前記欠陥の種類を特定する特定工程とを有し、
前記特定工程では、前記検出工程により検出した前記偏光成分の光量変化率を前記複数の前記設定角度毎に算出し、前記複数の前記設定角度毎に算出した前記光量変化率に基づいて前記欠陥の種類を特定することを特徴とする表面検査方法。
An illumination step of irradiating the surface of the test substrate having a predetermined repeating pattern with linearly polarized light;
A detection step of detecting a polarization component whose vibration direction is substantially perpendicular to the linearly polarized light out of specularly reflected light from the surface of the test substrate irradiated with the linearly polarized light;
Based on the polarization component detected in the detection step, an inspection step for inspecting the presence or absence of defects in the repetitive pattern;
An angle setting step of setting an angle formed by the repeating direction of the repeating pattern and the vibration direction of the linearly polarized light on the surface of the test substrate to a predetermined setting angle;
At the plurality of set angles set by the angle setting step, the surface of the substrate to be tested is irradiated with the linearly polarized light, and the polarized light component whose vibration direction is substantially perpendicular to the linearly polarized light is detected from the regular reflected light. And a specifying step of specifying the type of the defect based on the polarization component detected for each of the plurality of the set angles ,
In the specifying step, a light amount change rate of the polarization component detected in the detection step is calculated for each of the plurality of set angles, and the defect is determined based on the light amount change rates calculated for the plurality of set angles. A surface inspection method characterized by identifying the type .
前記欠陥の種類は、前記繰り返しパターンの少なくとも一部が前記被検基板の表面内で一方に傾斜する傾斜依存性を有する欠陥であることを特徴とする請求項3に記載の表面検査方法。 The surface inspection method according to claim 3 , wherein the type of the defect is a defect having an inclination dependency in which at least a part of the repetitive pattern is inclined in one direction within the surface of the test substrate.
JP2007321152A 2007-12-12 2007-12-12 Surface inspection apparatus and surface inspection method Active JP5201443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321152A JP5201443B2 (en) 2007-12-12 2007-12-12 Surface inspection apparatus and surface inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007321152A JP5201443B2 (en) 2007-12-12 2007-12-12 Surface inspection apparatus and surface inspection method

Publications (2)

Publication Number Publication Date
JP2009145129A JP2009145129A (en) 2009-07-02
JP5201443B2 true JP5201443B2 (en) 2013-06-05

Family

ID=40915895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321152A Active JP5201443B2 (en) 2007-12-12 2007-12-12 Surface inspection apparatus and surface inspection method

Country Status (1)

Country Link
JP (1) JP5201443B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605089B2 (en) * 2006-05-10 2011-01-05 株式会社ニコン Surface inspection device
JP4548385B2 (en) * 2006-05-10 2010-09-22 株式会社ニコン Surface inspection device

Also Published As

Publication number Publication date
JP2009145129A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5201350B2 (en) Surface inspection device
JP4548385B2 (en) Surface inspection device
JP5585615B2 (en) Inspection apparatus and inspection method
KR20090127892A (en) Observation device, inspection device and inspection method
JP5434352B2 (en) Surface inspection apparatus and surface inspection method
TWI464390B (en) Surface inspection device and surface inspection method
JP4605089B2 (en) Surface inspection device
JP5212779B2 (en) Surface inspection apparatus and surface inspection method
JP4696607B2 (en) Surface inspection device
JP2009198396A (en) Device and method for inspecting surface
JP2006258472A (en) Defect inspection device
JP5201443B2 (en) Surface inspection apparatus and surface inspection method
JP2010271186A (en) Defect inspection apparatus
JP4462222B2 (en) Surface inspection device
JP2009300296A (en) Surface inspection device
JP2006266817A (en) Surface inspection apparatus
JP5299764B2 (en) Evaluation apparatus and evaluation method
JP5252286B2 (en) Surface inspection method, surface inspection apparatus and inspection method
JP2006250839A (en) Surface inspection apparatus
JP5354362B2 (en) Surface inspection device
JP2010002274A (en) Surface inspection device and control method for quantity-of-light of illumination light
JP2009068892A (en) Inspection device
JP2011141135A (en) Surface inspection apparatus
JP2010122121A (en) Surface inspection device
JP2010078565A (en) Surface inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130131

R150 Certificate of patent or registration of utility model

Ref document number: 5201443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250