JP4506723B2 - Surface inspection device - Google Patents

Surface inspection device Download PDF

Info

Publication number
JP4506723B2
JP4506723B2 JP2006141348A JP2006141348A JP4506723B2 JP 4506723 B2 JP4506723 B2 JP 4506723B2 JP 2006141348 A JP2006141348 A JP 2006141348A JP 2006141348 A JP2006141348 A JP 2006141348A JP 4506723 B2 JP4506723 B2 JP 4506723B2
Authority
JP
Japan
Prior art keywords
light
test substrate
repetitive pattern
angle
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006141348A
Other languages
Japanese (ja)
Other versions
JP2007309874A (en
Inventor
大作 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006141348A priority Critical patent/JP4506723B2/en
Publication of JP2007309874A publication Critical patent/JP2007309874A/en
Application granted granted Critical
Publication of JP4506723B2 publication Critical patent/JP4506723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被検基板の表面に形成された繰り返しパターンの欠陥検査を行う表面検査装置に関する。   The present invention relates to a surface inspection apparatus that performs defect inspection of a repetitive pattern formed on a surface of a substrate to be tested.

被検基板(例えば半導体ウエハや液晶基板など)の表面に形成された繰り返しパターンに検査用の照明光を照射し、このとき繰り返しパターンから発生する光に基づいて、繰り返しパターンの欠陥検査を行う装置が知られている。
また、検査用の照明光として直線偏光を用い、繰り返しパターンから発生する光のうち、繰り返しパターンでの偏光状態の変化に関わる成分を受光して、欠陥検査を行う装置も提案されている(例えば特許文献1を参照)。この装置では、高感度な欠陥検査を行うために、照明光の直線偏光の向きを繰り返しパターンの繰り返し方向に対して45度の方向に設定している。
国際公開2005/040776号パンフレット
An apparatus that irradiates a repetitive pattern formed on the surface of a substrate to be tested (for example, a semiconductor wafer or a liquid crystal substrate) with inspection illumination light, and then inspects the defect of the repetitive pattern based on the light generated from the repetitive pattern. It has been known.
There has also been proposed an apparatus that uses linearly polarized light as illumination light for inspection and receives a component related to a change in polarization state in the repetitive pattern out of light generated from the repetitive pattern, and performs defect inspection (for example, (See Patent Document 1). In this apparatus, in order to perform highly sensitive defect inspection, the direction of linearly polarized light of illumination light is set to a direction of 45 degrees with respect to the repeating direction of the repeating pattern.
International Publication No. 2005/040776 Pamphlet

しかし、上記の装置では、検査対象となる繰り返しパターンの方向が事前に分からなければ、照明光の直線偏光の向きを45度の方向に設定することができず、高感度な欠陥検査を行うことができなかった。
本発明の目的は、繰り返しパターンの方向が事前に分からなくても高感度な欠陥検査を行える表面検査装置を提供することにある。
However, in the above apparatus, if the direction of the repeated pattern to be inspected is not known in advance, the direction of the linearly polarized light of the illumination light cannot be set to a 45 degree direction, and a highly sensitive defect inspection is performed. I could not.
An object of the present invention is to provide a surface inspection apparatus that can perform a highly sensitive defect inspection even if the direction of a repetitive pattern is not known in advance.

本発明の表面検査装置は、被検基板の表面に形成された繰り返しパターンを直線偏光により照明する照明手段と、前記直線偏光の振動面の前記表面における方向と前記繰り返しパターンの繰り返し方向との成す角度を、前記被検基板の外形基準をもとに、複数の異なる角度に順次設定する設定手段と、順次前記角度に設定された各状態で、前記繰り返しパターンから発生した正反射光のうち前記直線偏光の振動面に直交する偏光成分を取り出し、取り出された前記偏光成分の光強度を測定する測定手段と、前記各状態で測定された前記光強度のうち最大値を用いて、前記繰り返しパターンの欠陥を検出する検出手段とを備えたものである。 The surface inspection apparatus of the present invention comprises an illuminating means for illuminating a repetitive pattern formed on the surface of a substrate to be tested with linearly polarized light, a direction of the vibration surface of the linearly polarized light on the surface, and a repetitive direction of the repetitive pattern. Setting means for sequentially setting the angle to a plurality of different angles based on the outer shape reference of the substrate to be tested , and among the specularly reflected light generated from the repetitive pattern in each state set to the angle sequentially, The repeating pattern is extracted by using a measuring means for taking out the polarization component orthogonal to the vibration plane of the linearly polarized light and measuring the light intensity of the extracted polarization component , and using the maximum value among the light intensities measured in the respective states. And detecting means for detecting the defect.

本発明の他の表面検査装置は、被検基板の表面に形成された繰り返しパターンを直線偏光により照明する照明手段と、前記直線偏光の振動面の前記表面における方向と前記繰り返しパターンの繰り返し方向との成す角度を、前記被検基板の外形基準をもとに、複数の異なる角度に順次設定する設定手段と、順次前記角度に設定された各状態で、前記繰り返しパターンから発生した正反射光のうち前記直線偏光の振動面に直交する偏光成分を取り出し、取り出された前記偏光成分を用いて前記被検基板の画像を取り込む処理手段と、前記各状態で取り込まれた前記画像のうち最も明るい画像の各画素値を用いて、前記繰り返しパターンの欠陥を検出する検出手段とを備えたものである。 Another surface inspection apparatus of the present invention includes an illumination unit that illuminates a repetitive pattern formed on the surface of a substrate to be tested with linearly polarized light, a direction of the linearly polarized vibration surface on the surface, and a repetitive direction of the repetitive pattern. The setting means for sequentially setting the angle formed by a plurality of different angles based on the outer shape reference of the substrate to be tested , and the specularly reflected light generated from the repetitive pattern in each state set to the angle sequentially Among these, the brightest image among the images captured in each state, and a processing means for extracting a polarization component orthogonal to the plane of vibration of the linearly polarized light and capturing the image of the test substrate using the extracted polarization component And detecting means for detecting a defect of the repetitive pattern using each pixel value.

本発明の表面検査装置によれば、繰り返しパターンの方向が事前に分からなくても高感度な欠陥検査を行うことができる。   According to the surface inspection apparatus of the present invention, a highly sensitive defect inspection can be performed even if the direction of the repeated pattern is not known in advance.

以下、図面を用いて本発明の実施形態を詳細に説明する。
本実施形態の表面検査装置10は、図1に示す通り、被検基板20を支持するステージ11と、アライメント系12と、照明系13と、受光系14と、画像処理部15とで構成される。本実施形態の表面検査装置10は、一括撮像型の装置である。
被検基板20は、例えば半導体ウエハや液晶ガラス基板などである。被検基板20の表面(レジスト層)の各点には、図2に示す通り、検査すべき繰り返しパターン22が形成されている。繰り返しパターン22は、配線パターンなどである。繰り返しパターン22のライン部の配列方向(X方向)を「繰り返しパターン22の繰り返し方向」という。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the surface inspection apparatus 10 according to the present embodiment includes a stage 11 that supports a test substrate 20, an alignment system 12, an illumination system 13, a light receiving system 14, and an image processing unit 15. The The surface inspection apparatus 10 of this embodiment is a batch imaging type apparatus.
The test substrate 20 is, for example, a semiconductor wafer or a liquid crystal glass substrate. As shown in FIG. 2, a repeated pattern 22 to be inspected is formed at each point on the surface (resist layer) of the test substrate 20. The repeating pattern 22 is a wiring pattern or the like. The arrangement direction (X direction) of the line portions of the repetitive pattern 22 is referred to as “repetitive direction of the repetitive pattern 22”.

本実施形態の表面検査装置10は、半導体回路素子や液晶表示素子の製造工程において、被検基板20の表面に形成された繰り返しパターン22の欠陥検査を自動で行う装置である。繰り返しパターン22の欠陥とは、被検基板20に対する露光時のデフォーカス欠陥やレジストの膜厚ムラや傷などの形状変化である。被検基板20は、表面(レジスト層)への露光・現像後、不図示の搬送系によってカセットまたは現像装置から運ばれ、ステージ11に吸着される。   The surface inspection apparatus 10 according to this embodiment is an apparatus that automatically performs a defect inspection of a repetitive pattern 22 formed on the surface of a substrate 20 to be tested in a manufacturing process of a semiconductor circuit element or a liquid crystal display element. The defect of the repetitive pattern 22 is a change in shape such as a defocus defect at the time of exposure on the test substrate 20, a resist film thickness unevenness, or a scratch. After exposure / development on the surface (resist layer), the test substrate 20 is conveyed from the cassette or the developing device by a conveyance system (not shown) and is attracted to the stage 11.

ステージ11は、被検基板20を上面に載置して例えば真空吸着により固定保持する。また、ステージ11には不図示の回転機構が設けられ、その回転軸は被検基板20を載置する上面に垂直である。回転機構によってステージ11を回転させ、その上面に載置された被検基板20を回転させることで、上記の繰り返しパターン22の繰り返し方向(図2のX方向)を、被検基板20の表面内で回転させることができる。   The stage 11 places the test substrate 20 on the upper surface and fixes and holds it, for example, by vacuum suction. The stage 11 is provided with a rotation mechanism (not shown), and the rotation axis is perpendicular to the upper surface on which the substrate 20 to be tested is placed. The stage 11 is rotated by the rotation mechanism, and the test substrate 20 placed on the upper surface of the stage 11 is rotated, so that the repetitive direction (X direction in FIG. 2) of the repetitive pattern 22 is changed within the surface of the test substrate 20. Can be rotated.

このような回転の最中に、アライメント系12は、被検基板20の外縁部を照明し、外縁部に設けられた不図示の外形基準(例えばノッチ)の回転方向の位置に基づいて、被検基板20の向きを検出する。そして、被検基板20が所望の方向になると、ステージ11の回転が停止される。
このとき、被検基板20の表面に形成された繰り返しパターン22の繰り返し方向(X方向)は、例えば図3(a)〜(c)に示す様々な方向の何れかとなり、何れであるかを常に把握できるとは限らない。これは、被検基板20の表面の各層(各工程)ごとに繰り返しパターン22の方向(X方向)が異なる場合があるからである。
During such rotation, the alignment system 12 illuminates the outer edge of the substrate 20 to be tested, and based on the position in the rotation direction of an external reference (notch) (not shown) provided on the outer edge. The direction of the test substrate 20 is detected. Then, when the test substrate 20 is in a desired direction, the rotation of the stage 11 is stopped.
At this time, the repetitive direction (X direction) of the repetitive pattern 22 formed on the surface of the test substrate 20 is any one of various directions shown in FIGS. 3A to 3C, for example. It is not always possible to grasp. This is because the direction (X direction) of the repeated pattern 22 may be different for each layer (each process) on the surface of the test substrate 20.

照明系13は、被検基板20の表面の繰り返しパターン22(図3(a)〜(c)参照)に対して検査用の照明光L1を照射する手段であって、光源31と、波長選択フィルタ32と、ライトガイドファイバ33と、偏光フィルタ34と、凹面反射鏡35とで構成されている(偏心光学系)。この照明系13は、被検基板20側に対してテレセントリックな光学系である。   The illumination system 13 is a means for irradiating the inspection illumination light L1 to the repetitive pattern 22 (see FIGS. 3A to 3C) on the surface of the substrate 20 to be tested. It comprises a filter 32, a light guide fiber 33, a polarizing filter 34, and a concave reflecting mirror 35 (decentered optical system). The illumination system 13 is an optical system telecentric with respect to the test substrate 20 side.

光源31は、ハロゲンランプやメタルハライドランプや水銀ランプなどの安価な放電光源である。例えば、光源31が水銀ランプの場合、光源31から出射される光の波長域は、240nm〜600nm程度であり、紫外域から可視域までの領域を含む。波長選択フィルタ32は、光源31から出射される光のうち所定波長の輝線スペクトル(狭帯域のスペクトル)を選択的に透過する。   The light source 31 is an inexpensive discharge light source such as a halogen lamp, a metal halide lamp, or a mercury lamp. For example, when the light source 31 is a mercury lamp, the wavelength range of the light emitted from the light source 31 is about 240 nm to 600 nm, and includes the region from the ultraviolet range to the visible range. The wavelength selection filter 32 selectively transmits an emission line spectrum (narrow band spectrum) of a predetermined wavelength in the light emitted from the light source 31.

ライトガイドファイバ33は、波長選択フィルタ32から出射される光を伝送し、発散光束の照明光L0(非偏光)を射出する。発散光束の照明光L0の広がり角度は、ライトガイドファイバ33の開口数に応じた角度である。
偏光フィルタ34は、ライトガイドファイバ33の射出端近傍に配置され、その透過軸が所定の方位に設定される。そして、ライトガイドファイバ33からの発散光束の照明光L0(非偏光)を、透過軸の方位に応じた偏光状態(つまり直線偏光)に変換する。このため、偏光フィルタ34から凹面反射鏡35には、発散光束の照明光L0(直線偏光)が導かれる。
The light guide fiber 33 transmits light emitted from the wavelength selection filter 32 and emits illumination light L0 (unpolarized light) of a divergent light beam. The spreading angle of the illumination light L0 of the divergent light beam is an angle corresponding to the numerical aperture of the light guide fiber 33.
The polarizing filter 34 is disposed in the vicinity of the exit end of the light guide fiber 33, and its transmission axis is set to a predetermined direction. Then, the illumination light L0 (non-polarized light) of the divergent light beam from the light guide fiber 33 is converted into a polarization state (that is, linearly polarized light) according to the direction of the transmission axis. For this reason, the diverging light beam L0 (linearly polarized light) is guided from the polarizing filter 34 to the concave reflecting mirror 35.

凹面反射鏡35は、球面の内側を反射面とした反射鏡であり、前側焦点がライトガイドファイバ33の射出端と略一致、後側焦点が被検基板20の表面と略一致するように配置される。このため、偏光フィルタ34からの発散光束の照明光L0(直線偏光)は、凹面反射鏡35によってコリメートされ、平行光束の検査用の照明光L1として被検基板20の表面の繰り返しパターン22に照射される(いわゆるテレセントリック照明)。   The concave reflecting mirror 35 is a reflecting mirror having a spherical inner surface as a reflecting surface, and is arranged so that the front focal point substantially coincides with the exit end of the light guide fiber 33 and the rear focal point substantially coincides with the surface of the substrate 20 to be tested. Is done. Therefore, the illumination light L0 (linearly polarized light) of the divergent light beam from the polarization filter 34 is collimated by the concave reflecting mirror 35, and is irradiated onto the repetitive pattern 22 on the surface of the substrate 20 to be examined as the illumination light L1 for inspection of the parallel light beam. (So-called telecentric lighting).

このとき、被検基板20の表面の比較的広い領域(例えば全域など)の各点に対して、斜め上方から略一定の角度条件で、検査用の照明光L1を入射させることができる。被検基板20の表面の全域を照明すれば、表面の全域で一括して繰り返しパターン22の欠陥を検出可能となり、高スループットでの欠陥検査が可能となる。
繰り返しパターン22の欠陥検査の際には、被検基板20を所望の方向に設定し(例えば図3(a)の状態)、その後、被検基板20をステップ的に回転させる。そして、図4(a)〜(c)に示す通り、被検基板20の表面における照明光L1の振動面の方向(V方向)と、繰り返しパターン22の繰り返し方向(X方向)との成す角度を、複数の異なる斜めの角度φ,φ+Δ,φ+2Δ,…に設定する。このような照明光L1と繰り返しパターン22との角度関係は、被検基板20の表面の全域において略均一である。
At this time, the illumination light L1 for inspection can be incident on each point of a relatively wide region (for example, the entire region) of the surface of the substrate 20 to be examined from an obliquely upward direction under a substantially constant angle condition. By illuminating the entire surface of the substrate 20 to be tested, it is possible to detect the defects of the pattern 22 all over the surface, and to perform defect inspection with high throughput.
In the defect inspection of the repeated pattern 22, the test substrate 20 is set in a desired direction (for example, the state shown in FIG. 3A), and then the test substrate 20 is rotated stepwise. Then, as shown in FIGS. 4A to 4C, an angle formed by the direction of the vibration surface (V direction) of the illumination light L1 on the surface of the test substrate 20 and the repeating direction (X direction) of the repeating pattern 22. Are set to a plurality of different oblique angles φ, φ + Δ, φ + 2Δ,. Such an angular relationship between the illumination light L1 and the repeated pattern 22 is substantially uniform over the entire surface of the test substrate 20.

そして、上記の照明光L1(直線偏光)を用いて繰り返しパターン22を照明すると、繰り返しパターン22の異方性に起因する構造性複屈折(form birefringence)によって直線偏光(照明光L1)の偏光状態が変化し、繰り返しパターン22から各点での入射面に沿って、楕円偏光の正反射光L2(図1)が発生する。
繰り返しパターン22の構造性複屈折による直線偏光の楕円化の詳細は、本出願人が既に出願した国際公開2005/040776号パンフレットに記載されているので、ここでは詳しい説明を省略する。
Then, when the repeated pattern 22 is illuminated using the illumination light L1 (linearly polarized light), the polarization state of the linearly polarized light (illuminated light L1) due to structural birefringence caused by the anisotropy of the repeated pattern 22 Changes, and the elliptically polarized specularly reflected light L2 (FIG. 1) is generated from the repeated pattern 22 along the incident surface at each point.
Details of the ellipticalization of linearly polarized light by the structural birefringence of the repetitive pattern 22 are described in the pamphlet of International Publication No. 2005/040776 already filed by the present applicant, and thus detailed description thereof is omitted here.

なお、本実施形態では、繰り返しパターン22のピッチ(例えば110nm)が照明光L1の波長(240nm〜600nm程度の波長域)と比較して十分小さいため、照明光L1が照射されたときに、繰り返しパターン22から回折光が発生することはない。
本実施形態の表面検査装置10は、直線偏光の照明光L1(図4)によって被検基板20の表面の繰り返しパターン22を照明し、このとき繰り返しパターン22から発生する楕円偏光の正反射光L2を受光系14に導き、その偏光状態(つまり楕円化の程度)に基づいて、繰り返しパターン22の欠陥検査を行うものである。
In the present embodiment, since the pitch (for example, 110 nm) of the repeated pattern 22 is sufficiently smaller than the wavelength of the illumination light L1 (wavelength range of about 240 nm to 600 nm), the repetition pattern 22 is repeated when the illumination light L1 is irradiated. Diffracted light is not generated from the pattern 22.
The surface inspection apparatus 10 of the present embodiment illuminates the repetitive pattern 22 on the surface of the test substrate 20 with linearly polarized illumination light L1 (FIG. 4), and at this time the elliptically polarized regular reflection light L2 generated from the repetitive pattern 22 Is guided to the light receiving system 14, and the defect inspection of the repeated pattern 22 is performed based on the polarization state (that is, the degree of ovalization).

受光系14(図1)は、繰り返しパターン22から発生した正反射光L2に基づいて受光信号を出力する手段であって、凹面反射鏡36と、偏光フィルタ37と、集光レンズ38と、撮像素子39とで構成される(偏心光学系)。受光系14も、照明系13と同様、被検基板20側に対してテレセントリックな光学系である。
凹面反射鏡36は、照明系13の凹面反射鏡35と同様の構成であり、被検基板20の表面の繰り返しパターン22から発生した正反射光L2を反射して集光光束(正反射光L3)に変換し、偏光フィルタ37の方に導く。そして、凹面反射鏡36からの光(L3)の一部(L4)は、偏光フィルタ37を透過した後、集光レンズ38を介して、撮像素子39の撮像面に入射する。
The light receiving system 14 (FIG. 1) is a means for outputting a light receiving signal based on the regular reflection light L2 generated from the repetitive pattern 22, and includes a concave reflecting mirror 36, a polarizing filter 37, a condensing lens 38, and an imaging. And an element 39 (decentered optical system). Similarly to the illumination system 13, the light receiving system 14 is also an optical system telecentric with respect to the test substrate 20 side.
The concave reflecting mirror 36 has the same configuration as the concave reflecting mirror 35 of the illumination system 13, and reflects the specularly reflected light L2 generated from the repetitive pattern 22 on the surface of the substrate 20 to be examined, thereby collecting the condensed light beam (specularly reflected light L3). ) And led to the polarizing filter 37. A part (L 4) of the light (L 3) from the concave reflecting mirror 36 passes through the polarizing filter 37 and then enters the imaging surface of the imaging device 39 through the condenser lens 38.

偏光フィルタ37は、集光レンズ38の近傍に配置され、その透過軸が所定の方位に設定される。偏光フィルタ37の透過軸の方位は、照明系13の偏光フィルタ34に対し、それぞれの透過軸が互いに直交するように配置される(クロスニコルの配置)。
このため、凹面反射鏡36からの光(L3)は、偏光フィルタ37を透過する際に、その透過軸の方位に応じた偏光成分L4(すなわち直線偏光の照明光L1の振動面に垂直な偏光成分)のみが抽出される。この偏光成分L4は、繰り返しパターン22から発生した楕円偏光の正反射光L2の偏光状態(つまり楕円化の程度)に応じた大きさを有する。
The polarizing filter 37 is disposed in the vicinity of the condenser lens 38, and its transmission axis is set to a predetermined orientation. The direction of the transmission axis of the polarizing filter 37 is arranged so that the respective transmission axes are orthogonal to the polarizing filter 34 of the illumination system 13 (crossed Nicol arrangement).
For this reason, when the light (L3) from the concave reflecting mirror 36 is transmitted through the polarizing filter 37, the polarized light component L4 corresponding to the direction of its transmission axis (that is, polarized light perpendicular to the vibrating surface of the linearly polarized illumination light L1). Only component) is extracted. This polarization component L4 has a magnitude corresponding to the polarization state of the elliptically polarized specularly reflected light L2 generated from the repeated pattern 22 (that is, the degree of ovalization).

なお、被検基板20の表面のうち繰り返しパターン22のない部分では、偏光成分L4の大きさがほぼ0になる(暗視野)。これに対し、繰り返しパターン22の部分では、構造性複屈折によって直線偏光(L1)が楕円偏光(L2)となり、偏光成分L4が有限の値を持つため、暗視野の中にパターン像が浮かび上がって見えることになる。
偏光フィルタ37からの偏光成分L4は、集光レンズ38を介して撮像素子39の撮像面に入射する。このとき、撮像素子39の撮像面には、上記の偏光成分L4によって、被検基板20の表面の反射像が形成される。撮像素子39は、凹面反射鏡36と集光レンズ38とを介して、被検基板20の表面と共役な位置に配置される。撮像素子39は、例えばCCD撮像素子などであり、撮像面に形成された被検基板20の表面の反射像を光電変換し、各画素ごとの受光信号を画像処理部15に出力する。
Note that, in the portion of the surface of the test substrate 20 where the repeated pattern 22 is not present, the size of the polarization component L4 becomes almost 0 (dark field). On the other hand, in the repetitive pattern 22, the linearly polarized light (L1) becomes elliptically polarized light (L2) due to structural birefringence, and the polarization component L4 has a finite value, so that the pattern image appears in the dark field. Will be seen.
The polarization component L4 from the polarization filter 37 is incident on the imaging surface of the imaging device 39 via the condenser lens 38. At this time, a reflection image of the surface of the test substrate 20 is formed on the imaging surface of the imaging device 39 by the polarization component L4. The imaging element 39 is disposed at a position conjugate with the surface of the substrate 20 to be tested via the concave reflecting mirror 36 and the condenser lens 38. The image pickup device 39 is, for example, a CCD image pickup device or the like, photoelectrically converts a reflection image of the surface of the test substrate 20 formed on the image pickup surface, and outputs a light reception signal for each pixel to the image processing unit 15.

画像処理部15は、撮像素子39から出力される受光信号に基づいて、被検基板20の反射画像を取り込む。この反射画像には、被検基板20の表面の各点(繰り返しパターン22)から発生した正反射光L2の偏光状態(つまり偏光成分L4の大きさ)に応じた明暗が現れる。
画像処理部15は、被検基板20の反射画像を取り込むと、その輝度情報と例えば良品サンプルの反射画像の輝度情報とを比較する。良品サンプルとは、理想的な形状で欠陥のない繰り返しパターン22を表面全域に形成したものである。
The image processing unit 15 captures a reflected image of the test substrate 20 based on the light reception signal output from the image sensor 39. In this reflected image, light and dark depending on the polarization state of the regular reflection light L2 (that is, the magnitude of the polarization component L4) generated from each point (repetitive pattern 22) on the surface of the test substrate 20 appears.
When the image processing unit 15 captures the reflection image of the test substrate 20, the image processing unit 15 compares the luminance information with the luminance information of the reflection image of the non-defective sample, for example. A non-defective sample is a sample in which a repetitive pattern 22 having an ideal shape and having no defects is formed on the entire surface.

画像処理部15は、良品サンプルの反射画像の輝度値を基準とし、被検基板20の反射画像の輝度値の変化量を測定する。得られた輝度値の変化量は、繰り返しパターン22の形状変化(露光時のデフォーカス欠陥やレジストの膜厚ムラなど)による正反射光L2の偏光状態(つまり偏光成分L4の大きさ)の変化を表している。
そして、画像処理部15は、被検基板20の反射画像における輝度値の変化量に基づいて、繰り返しパターン22の欠陥を検出する。例えば、輝度値の変化量が予め定めた閾値(許容値)より大きければ「欠陥」と判定し、閾値より小さければ「正常」と判定すればよい。また、良品サンプルを使わずに、被検基板20の反射画像の中での輝度値の変化量を所定の閾値と比較してもよい。
The image processing unit 15 measures the amount of change in the luminance value of the reflected image of the test substrate 20 with reference to the luminance value of the reflected image of the non-defective sample. The amount of change in the luminance value obtained is a change in the polarization state (that is, the magnitude of the polarization component L4) of the regular reflection light L2 due to the shape change of the repeated pattern 22 (defocus defect during exposure, film thickness unevenness of the resist, etc.). Represents.
Then, the image processing unit 15 detects a defect in the repetitive pattern 22 based on the amount of change in luminance value in the reflected image of the test substrate 20. For example, if the amount of change in luminance value is larger than a predetermined threshold (allowable value), it is determined as “defect”, and if it is smaller than the threshold, it is determined as “normal”. In addition, the amount of change in the luminance value in the reflected image of the test substrate 20 may be compared with a predetermined threshold without using a non-defective sample.

このように、直線偏光の照明光L1によって繰り返しパターン22を照明し、繰り返しパターン22から発生した正反射光L2の偏光状態(つまり偏光成分L4の大きさ)に応じて被検基板20の反射画像を取り込み、この反射画像の明暗に基づいて繰り返しパターン22の欠陥を検出する場合、高感度な欠陥検査を行うためには、照明光L1の振動面の方向(例えば図4のV方向)と繰り返しパターン22の繰り返し方向(X方向)との成す角度を45度に設定すればよいと言われている(図5の状態)。   In this way, the repetitive pattern 22 is illuminated by the linearly polarized illumination light L1, and the reflected image of the test substrate 20 according to the polarization state of the specularly reflected light L2 generated from the repetitive pattern 22 (that is, the magnitude of the polarization component L4). When the defect of the repeated pattern 22 is detected based on the brightness of the reflected image, the direction of the vibration surface of the illumination light L1 (for example, the V direction in FIG. 4) is repeated in order to perform a highly sensitive defect inspection. It is said that the angle formed with the repeating direction (X direction) of the pattern 22 may be set to 45 degrees (state shown in FIG. 5).

ここで、例えば図4(a)に示すように、照明光L1の振動面の方向(V方向)と繰り返しパターン22の繰り返し方向(X方向)との成す角度を、斜めの角度φとした場合(0度<φ<90度)、偏光成分L4の大きさ(光強度IL4)は、次の式(1)によって表される。
L4 = (EL4)2 = E2/4・(γX−γY)2・sin2(2φ) …(1)
式(1)において、EL4は偏光成分L4の振幅、Eは照明光L1の振幅、γXは繰り返しパターン22の繰り返し方向(X方向)の振幅反射率、γYは繰り返し方向(X方向)に垂直な方向(Y方向)の振幅反射率である。
Here, for example, as shown in FIG. 4A, the angle formed by the direction of the vibrating surface (V direction) of the illumination light L1 and the repeating direction of the repeating pattern 22 (X direction) is an oblique angle φ. (0 degree <φ <90 degrees), the magnitude of the polarization component L4 (light intensity I L4 ) is expressed by the following equation (1).
I L4 = (E L4) 2 = E 2/4 · (γ X -γ Y) 2 · sin 2 (2φ) ... (1)
In Equation (1), E L4 is the amplitude of the polarization component L4, E is the amplitude of the illumination light L1, γ X is the amplitude reflectivity in the repeating direction (X direction) of the repeating pattern 22, and γ Y is the repeating direction (X direction). Amplitude reflectivity in a direction perpendicular to (Y direction).

式(1)を導出するために、正反射光L2を繰り返しパターン22の繰り返し方向(X方向)に平行な成分と垂直な成分とに分けて考えると、平行な成分の振幅EX'と垂直な成分の振幅EY'は(図6(a))、各々、次の式(2),(3)によって表される。
X' = γX・Ecosφ …(2)
Y' = γY・Esinφ …(3)
そして、正反射光L2の各成分の振幅EX',EY'を受光系14の偏光フィルタ37の透過軸の方位に投影し(図6(b))、これらを次の式(4)にしたがって加算すると、偏光成分L4の振幅EL4が得られる。さらに、この振幅EL4を二乗すれば、式(1)の偏光成分L4の大きさ(光強度IL4)を求めることができる。
In order to derive the expression (1), when the specularly reflected light L2 is divided into a component parallel to the repeating direction (X direction) of the repeating pattern 22 and a component perpendicular to the repeating pattern 22, it is perpendicular to the amplitude E X ′ of the parallel component. The amplitude E Y ′ of each component (FIG. 6A) is expressed by the following equations (2) and (3), respectively.
E X '= γ X · Ecosφ (2)
E Y '= γ Y · Esinφ (3)
Then, the amplitudes E X ′ and E Y ′ of each component of the regular reflection light L2 are projected onto the direction of the transmission axis of the polarizing filter 37 of the light receiving system 14 (FIG. 6B), and these are expressed by the following equation (4). Is added, the amplitude E L4 of the polarization component L4 is obtained. Furthermore, if the amplitude E L4 is squared, the magnitude (light intensity I L4 ) of the polarization component L4 in the equation (1) can be obtained.

L4 = EX'sinφ−EY'cosφ = E/2・(γX−γY)・sin(2φ) …(4)
式(1)において、被検基板20の繰り返しパターン22では、一般に、構造性複屈折のために、振幅反射率γXYが異なった値となり、この差(γX−γY)が繰り返しパターン22のライン&スペースに固有の値となる。
振幅反射率の差(γX−γY)を最も効率よく検出するには、式(1)から、2φ=90度(すなわちφ=45度)であればよいことが分かる(図5の状態)。角度φを45度に設定すれば、最も構造性複屈折の影響を受けやすく、偏光成分L4が最大となる。このとき、偏光成分L4の大きさ(光強度IL4(45))は、式(5)のように表される。
E L4 = E X 'sinφ-E Y ' cosφ = E / 2 ・ (γ X −γ Y ) ・ sin (2φ) (4)
In the expression (1), in the repetitive pattern 22 of the substrate 20 to be tested, the amplitude reflectances γ X and γ Y generally have different values due to structural birefringence, and this difference (γ X −γ Y ) This value is unique to the line and space of the repeated pattern 22.
From the equation (1), it can be seen that 2φ = 90 degrees (ie, φ = 45 degrees) is sufficient to detect the difference in amplitude reflectivity (γ X −γ Y ) (the state of FIG. 5). ). If the angle φ is set to 45 degrees, it is most susceptible to structural birefringence and the polarization component L4 is maximized. At this time, the magnitude of the polarization component L4 (light intensity I L4 (45 degrees ) ) is expressed as in Expression (5).

L4(45)= E2/4・(γX−γY)2 …(5)
検査対象となる繰り返しパターン22の繰り返し方向(X方向)が事前に分かっていれば、この繰り返し方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を45度に設定することができ(図5の状態)、高感度な欠陥検査を行うことができる。しかし、繰り返しパターン22の方向(X方向)は常に把握できるとは限らず、事前に分からない可能性も十分に考えられる。
I L4 (45 °) = E 2/4 · ( γ X -γ Y) 2 ... (5)
If the repetitive direction (X direction) of the repetitive pattern 22 to be inspected is known in advance, the angle formed by this repetitive direction (X direction) and the direction of the vibration surface of the illumination light L1 (V direction) is 45 degrees. It can be set (state of FIG. 5), and a highly sensitive defect inspection can be performed. However, the direction (X direction) of the repetitive pattern 22 is not always grasped, and there is a possibility that it is not known in advance.

そこで、本実施形態の表面検査装置10では、繰り返しパターン22の方向(X方向)が分からなくても高感度な欠陥検査を行うために、図7のフローチャートの手順にしたがって欠陥検査の処理を行う。
ステップS1では、被検基板20を所望の方向に設定する(例えば図3(a)の状態)。このとき、照明光L1の振動面の方向(V方向)と繰り返しパターン22の繰り返し方向(X方向)との成す角度は、例えば、図4(a)に示すように、角度φ(0度≦φ≦90度)に設定される。
Therefore, in the surface inspection apparatus 10 of the present embodiment, in order to perform a highly sensitive defect inspection even if the direction (X direction) of the repeated pattern 22 is not known, a defect inspection process is performed according to the procedure of the flowchart of FIG. .
In step S1, the test substrate 20 is set in a desired direction (for example, the state shown in FIG. 3A). At this time, the angle formed by the direction of the vibration surface (V direction) of the illumination light L1 and the repeating direction (X direction) of the repeating pattern 22 is, for example, as shown in FIG. φ ≦ 90 degrees).

このとき、繰り返しパターン22から発生した正反射光L2のうち、撮像素子39の撮像面に入射する偏光成分L4は、その振幅EL4(図6)が上記の式(4)によって表され、光強度IL4が上記の式(1)によって表される。
次に(ステップS2)、ステップS1で設定した角度φの状態を保ち、被検基板20の反射画像を画像処理部15に取り込む。このとき取り込んだ反射画像の各画素値は、繰り返しパターン22から発生した正反射光L2の偏光状態(つまり式(1)によって表される偏光成分L4の光強度IL4)に比例している。
At this time, out of the regular reflection light L2 generated from the repetitive pattern 22, the polarization component L4 incident on the image pickup surface of the image pickup device 39 has its amplitude E L4 (FIG. 6) expressed by the above equation (4), and light The intensity I L4 is represented by the above formula (1).
Next (step S <b> 2), the state of the angle φ set in step S <b> 1 is maintained, and the reflected image of the test substrate 20 is taken into the image processing unit 15. Each pixel value of the reflected image captured at this time is proportional to the polarization state of the regular reflection light L2 generated from the repetitive pattern 22 (that is, the light intensity I L4 of the polarization component L4 expressed by the equation (1)).

次に(ステップS3)、画像処理部15は、上記の角度φで取り込んだ反射画像の明るさを検出する。反射画像の明るさとは、例えば、被検基板20の表面の所定点に対応する1画素の強度(偏光成分L4の光強度IL4)、または、複数の画素や全画素の強度の平均値である。
そして、今回のステップS2,S3の処理が1回目であれば(ステップS4がNo)、ステップS5の処理を行わずに、ステップS6の処理を行う。ステップS6では、ステージ11の現在の回転角(例えば0度)と反射画像の各画素値と明るさの各データをそれぞれ保存する。
Next (step S3), the image processing unit 15 detects the brightness of the reflected image captured at the angle φ. The brightness of the reflected image is, for example, the intensity of one pixel corresponding to a predetermined point on the surface of the test substrate 20 (the light intensity I L4 of the polarization component L4 ), or the average value of the intensity of a plurality of pixels or all pixels. is there.
If the processes in steps S2 and S3 are the first time (No in step S4), the process in step S6 is performed without performing the process in step S5. In step S6, the current rotation angle of the stage 11 (for example, 0 degree), each pixel value of the reflected image, and each brightness data are stored.

次に(ステップS7)、ステージ11を予め定めた角度Δ(例えば30度)だけ回転させ、図4(b)に示す通り、繰り返しパターン22の方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を、上記の角度φとは異なる角度(φ+Δ)に設定する。角度Δは、欠陥検査に必要とされる精度に応じて適宜選択(入力)すればよい。
このような回転処理(角度Δ)が終わると、ステップS2の処理に戻る。そして、角度(φ+Δ)の状態を保って被検基板20の反射画像を画像処理部15に取り込み(ステップS3)、その明るさ(例えば平均輝度)を検出する。その後、今回のステップS2,S3の処理は2回目であるため(ステップS4がYes)、ステップS5の処理に進む。
Next (step S7), the stage 11 is rotated by a predetermined angle Δ (for example, 30 degrees), and as shown in FIG. 4B, the direction of the repetitive pattern 22 (X direction) and the vibration surface of the illumination light L1. The angle formed with the direction (V direction) is set to an angle (φ + Δ) different from the angle φ. The angle Δ may be appropriately selected (input) according to the accuracy required for defect inspection.
When such a rotation process (angle Δ) ends, the process returns to step S2. Then, the reflection image of the test substrate 20 is taken into the image processing unit 15 while maintaining the state of the angle (φ + Δ) (step S3), and the brightness (for example, average luminance) is detected. Then, since the process of this step S2 and S3 is the 2nd time (step S4 is Yes), it progresses to the process of step S5.

ステップS5では、今回の反射画像の明るさと、前回の反射画像の明るさ(ステップS6で保存したデータ)との比較を行う。上記の式(1)から分かるように、反射画像の明るさ(偏光成分L4の光強度IL4)は、繰り返しパターン22の方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度に依存し、45度に近づくほど大きくなる。
このため、ステップS5の比較の結果、前回の反射画像の方が暗い(今回の反射画像の方が明るい)場合には、1回目の角度φより2回目の角度(φ+Δ)の方が45度に近づいたと考えられるため、ステップS6の処理に進む。ステップS6では、ステージ11の現在の回転角(角度Δ)と反射画像と明るさの各データをそれぞれ上書き保存する。
In step S5, the brightness of the current reflected image is compared with the brightness of the previous reflected image (data stored in step S6). As can be seen from the above equation (1), the brightness of the reflected image (the light intensity I L4 of the polarization component L4 ) is the direction of the repetitive pattern 22 (X direction) and the direction of the vibration surface of the illumination light L1 (V direction). Depends on the angle formed by and increases as it approaches 45 degrees.
Therefore, if the result of the comparison in step S5 is that the previous reflection image is darker (the current reflection image is brighter), the second angle (φ + Δ) is 45 degrees than the first angle φ. Therefore, the process proceeds to step S6. In step S6, the current rotation angle (angle Δ) of the stage 11, the reflected image, and the brightness data are overwritten and stored.

次に(ステップS7)、上記と同様、ステージ11をさらに予め定めた角度Δだけ回転させ、図4(c)に示す通り、繰り返しパターン22の方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を、上記の角度φや角度(φ+Δ)とは異なる角度(φ+2Δ)に設定する。
このようにしてステップS2〜S7の処理を繰り返し、ステップS5において、前回の反射画像の方が明るい(今回の方が暗い)と判定された場合には、今回の角度(φ+nΔ)より前回の角度(φ+(n−1)Δ)方が45度に近かったと考えられるため、今回のデータを保存せずにステップS8の処理に進む。
Next (step S7), similarly to the above, the stage 11 is further rotated by a predetermined angle Δ, and as shown in FIG. 4C, the direction of the repetitive pattern 22 (X direction) and the vibration surface of the illumination light L1. The angle formed with the direction (V direction) is set to an angle (φ + 2Δ) different from the angle φ and the angle (φ + Δ).
In this way, the processing of steps S2 to S7 is repeated, and if it is determined in step S5 that the previous reflection image is brighter (the current one is darker), the previous angle than the current angle (φ + nΔ). Since (φ + (n−1) Δ) is considered to be closer to 45 degrees, the process proceeds to step S8 without storing the current data.

この時点で保存されている最新のデータは、前回のデータであり、ステップS2〜S7の処理を繰り返す間に、複数の異なる角度φ,(φ+Δ),(φ+2Δ),…,(φ+nΔ)で取り込まれた各反射画像のうち、最も明るい反射画像のデータである。つまり、最新のデータは、複数の角度φ,(φ+Δ),(φ+2Δ),…,(φ+nΔ)のうち最も45度に近い角度で取り込まれた反射画像のデータである。   The latest data stored at this time is the previous data, and is captured at a plurality of different angles φ, (φ + Δ), (φ + 2Δ),..., (Φ + nΔ) while repeating the processing of steps S2 to S7. Among the reflected images, the brightest reflected image data. That is, the latest data is data of a reflection image captured at an angle closest to 45 degrees among a plurality of angles φ, (φ + Δ), (φ + 2Δ),..., (Φ + nΔ).

ステップS8では、この時点で保存されている最新のデータを読み出し、その反射画像の各画素値(つまり最も明るい反射画像の各画素値)に基づいて、繰り返しパターン22の欠陥を検出する。
上記のように、本実施形態では、繰り返しパターン22の方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を、複数の異なる角度φ,(φ+Δ),…,(φ+nΔ)に設定し、その各状態で被検基板20の反射画像を取り込み、各状態で取り込まれた画像のうち最も明るい画像の各画素値から欠陥を検出する。
In step S8, the latest data stored at this time is read, and the defect of the repeated pattern 22 is detected based on each pixel value of the reflected image (that is, each pixel value of the brightest reflected image).
As described above, in the present embodiment, the angle formed between the direction of the repeated pattern 22 (X direction) and the direction of the vibration surface of the illumination light L1 (V direction) is set to a plurality of different angles φ, (φ + Δ),. (φ + nΔ) is set, a reflected image of the test substrate 20 is captured in each state, and a defect is detected from each pixel value of the brightest image among the images captured in each state.

したがって、繰り返しパターン22の方向(X方向)が事前に分からなくても、繰り返しパターン22の方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を最適な45度の近傍に設定することができ、45度に設定した図5の場合と同等の高感度な欠陥検査を行うことができる。
繰り返しパターン22の方向(X方向)は、被検基板20の表面の各層(各工程)ごとに異なる場合があり、常に把握できるとは限らない。しかし、このような場合であっても、本実施形態の表面検査装置10を用いれば、全ての層(全工程)の繰り返しパターン22の欠陥検査を高感度に行うことができる。
Therefore, even if the direction (X direction) of the repetitive pattern 22 is not known in advance, the optimum angle formed by the direction of the repetitive pattern 22 (X direction) and the direction of the vibration surface of the illumination light L1 (V direction) is 45 degrees. The defect inspection can be performed with high sensitivity equivalent to the case of FIG. 5 set to 45 degrees.
The direction (X direction) of the repeated pattern 22 may be different for each layer (each process) on the surface of the substrate 20 to be tested, and cannot always be grasped. However, even in such a case, if the surface inspection apparatus 10 of this embodiment is used, the defect inspection of the repeated pattern 22 of all layers (all processes) can be performed with high sensitivity.

上記した図7のステップS2〜S7の処理の繰り返し回数(n+1)と、ステージ11の1回の回転角Δとを用いると、ステージ11の初期状態からの回転角の累計(スキャン範囲)はnΔとなる。そして、上記した図7の処理は、回転角の累計nΔが90度を初めて超えるまでに、必ず最適な45度を通過して、終了となる。例えば、Δ=30度の場合、3回以内の処理(S2〜S7)の繰り返しで終了する。   When the number of repetitions (n + 1) of the processes in steps S2 to S7 in FIG. 7 and the single rotation angle Δ of the stage 11 are used, the cumulative rotation angle (scan range) from the initial state of the stage 11 is nΔ. It becomes. Then, the above-described process of FIG. 7 always ends after passing through the optimum 45 degrees before the cumulative rotation angle nΔ exceeds 90 degrees for the first time. For example, when Δ = 30 degrees, the process is completed by repeating the process (S2 to S7) within three times.

また、Δ=30度の場合には、繰り返しパターン22の方向(X方向)が事前に分からなくても、最適な45度に対して±15度の範囲で画像を取り込み、この画像に基づいて欠陥検査を行うことができる。ステージ11の1回の回転角Δが小さいほど、最適な45度に近い条件での欠陥検査が可能となる。なお、Δ=30度の場合でも、最適な45度における光強度IL4(45)(式(5))の約70%以上の光強度を確保しつつ十分な感度で欠陥検査を行うことができる。 When Δ = 30 degrees, an image is captured in a range of ± 15 degrees with respect to the optimum 45 degrees, even if the direction (X direction) of the repetitive pattern 22 is not known in advance, and based on this image Defect inspection can be performed. As the one-time rotation angle Δ of the stage 11 is smaller, defect inspection under an optimum condition close to 45 degrees becomes possible. Even when Δ = 30 degrees, the defect inspection should be performed with sufficient sensitivity while ensuring a light intensity of about 70% or more of the optimum light intensity I L4 (45 degrees ) (Equation (5)) at 45 degrees. Can do.

さらに、本実施形態では、被検基板20の表面の比較的広い領域(例えば全域など)の反射画像を複数の異なる角度状態(例えば図4(a)〜(c))の各々で一括して取り込むため、最適な45度に最も近い角度を見積もる際、反射画像の全体的な明るさ(平均輝度)を指標として用いることができるため、その見積もり精度が向上する。また、被検基板20の表面の各部の欠陥検査を一括して効率よく高感度に行える。   Further, in the present embodiment, the reflected images of a relatively wide area (for example, the entire area) of the surface of the test substrate 20 are collectively displayed in each of a plurality of different angle states (for example, FIGS. 4A to 4C). Therefore, when estimating the angle closest to the optimum 45 degrees, since the overall brightness (average luminance) of the reflected image can be used as an index, the estimation accuracy is improved. In addition, the defect inspection of each part on the surface of the substrate 20 to be tested can be performed efficiently and with high sensitivity.

(変形例)
上記した実施形態では、ステージ11の回転によって繰り返しパターンの方向(X方向など)を回転させ、その繰り返し方向(X方向など)と照明光L1の振動面の方向(V方向)との成す角度を変化させたが、本発明はこれに限定されない。ステージ11を回転させる代わりに、照明系13と受光系14の偏光フィルタ34,37を例えば光軸中心で回転させて、照明光L1の振動面の方向(V方向)を回転させ、同様のスキャンを行ってもよい。また、ステージ11の回転と偏光フィルタ34,37の回転とを組み合わせてもよい。偏光フィルタ34,37を回転させる場合には、各透過軸の角度関係(例えばクロスニコルの状態)を一定にを保ちながら同期させて回転させることが好ましい。
(Modification)
In the above-described embodiment, the direction of the repetitive pattern (such as the X direction) is rotated by the rotation of the stage 11, and the angle formed between the repetitive direction (such as the X direction) and the direction of the vibration surface of the illumination light L1 (the V direction). Although changed, the present invention is not limited to this. Instead of rotating the stage 11, the polarization filters 34 and 37 of the illumination system 13 and the light receiving system 14 are rotated, for example, about the optical axis, and the direction of the vibration surface (V direction) of the illumination light L1 is rotated to perform similar scanning. May be performed. Further, the rotation of the stage 11 and the rotation of the polarizing filters 34 and 37 may be combined. When rotating the polarizing filters 34 and 37, it is preferable to rotate them in synchronization with each other while maintaining the angular relationship between the transmission axes (for example, the crossed Nicols state) constant.

また、上記した実施形態では、偏光フィルタ34,37の各透過軸を直交させてクロスニコルの配置としたが、本発明はこれに限定されない。偏光フィルタ34,37の各透過軸を直交以外の角度で交差させても構わない。ただし、欠陥検出の感度が最も高くなるのは、偏光フィルタ34,37をクロスニコルの配置にした場合である。
さらに、上記した実施形態では、被検基板20の反射画像を取り込んで欠陥検査を行う例で説明したが、本発明はこれに限定されない。被検基板20の反射画像を取り込まずに、被検基板20の表面の各部から発生した正反射光L2の偏光成分L4の光強度IL4を測定して、被検基板20の各部ごとに欠陥検査を行ってもよい。この場合、複数の異なる角度φ,(φ+Δ),…,(φ+nΔ)に設定した各状態で、正反射光L2の偏光成分L4の光強度IL4を測定し、得られた各状態での光強度IL4のうち最大値に基づいて、繰り返しパターン22の欠陥を検出すればよい。
In the above-described embodiment, the transmission axes of the polarizing filters 34 and 37 are orthogonal to each other to form a crossed Nicol arrangement, but the present invention is not limited to this. The transmission axes of the polarizing filters 34 and 37 may intersect at an angle other than orthogonal. However, the sensitivity of defect detection is highest when the polarizing filters 34 and 37 are arranged in a crossed Nicol arrangement.
Further, in the above-described embodiment, the example in which the reflection image of the test substrate 20 is captured and the defect inspection is performed has been described, but the present invention is not limited to this. Without capturing the reflection image of the test substrate 20, the light intensity I L4 of the polarization component L4 of the regular reflection light L2 generated from each part of the surface of the test substrate 20 is measured, and each part of the test substrate 20 is defective. An inspection may be performed. In this case, in each state set to a plurality of different angles φ, (φ + Δ),..., (Φ + nΔ), the light intensity I L4 of the polarization component L4 of the regular reflection light L2 is measured, and the obtained light in each state What is necessary is just to detect the defect of the repeating pattern 22 based on the maximum value among intensity | strength IL4 .

また、上記した実施形態では、ステージ11および/または偏光フィルタ34,37の回転によるスキャンの際、そのステップ角(上記の角度Δ)を一定としたが、本発明はこれに限定されない。ステップ角をスキャンの途中で変化させ、初めは粗いステップ角で広い範囲をスキャンして、最適な45度を含む狭い範囲に追い込んだ後、この狭い範囲を細かいステップ角でスキャンしてもよい。   Further, in the above-described embodiment, the step angle (the above-described angle Δ) is constant during scanning by rotating the stage 11 and / or the polarization filters 34 and 37, but the present invention is not limited to this. The step angle may be changed in the middle of scanning, and a wide range may be scanned with a rough step angle at first, and after pursuing a narrow range including an optimum 45 degrees, this narrow range may be scanned with a fine step angle.

さらに、上記した実施形態では、被検基板20の表面の全体に同一方向の繰り返しパターン22が形成されている前提で説明したが、本発明はこれに限定されない。被検基板20の表面に様々な繰り返し方向X1〜X3(例えば図8)が存在する場合にも、本発明を適用できる。この場合、各々の繰り返しパターンごとに個別に処理を行って最適な45度での欠陥検査を行ってもよいし、同じ繰り返し方向の繰り返しパターンごとに領域を分割して各領域ごとに処理を行って最適な45度での欠陥検査を行ってもよい。 Furthermore, although the above-described embodiment has been described on the assumption that the repeated pattern 22 in the same direction is formed on the entire surface of the substrate 20 to be tested, the present invention is not limited to this. The present invention can also be applied to the case where various repeating directions X 1 to X 3 (for example, FIG. 8) exist on the surface of the test substrate 20. In this case, processing may be performed individually for each repeated pattern to perform an optimal defect inspection at 45 degrees, or the region may be divided for each repeated pattern in the same repeating direction and processed for each region. In addition, an optimum defect inspection at 45 degrees may be performed.

表面検査装置10の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a surface inspection apparatus 10. 繰り返しパターン22の繰り返し方向(X方向)を説明する図である。It is a figure explaining the repeating direction (X direction) of the repeating pattern. 被検基板20を所望の方向に設定したときの繰り返しパターン22の繰り返し方向(X方向)を説明する図である。It is a figure explaining the repeating direction (X direction) of the repeating pattern 22 when setting the test substrate 20 to a desired direction. 繰り返し方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を複数の異なる角度φ,(φ+Δ),(φ+2Δ)に設定した状態を説明する図である。It is a figure explaining the state which set the angle which the repeat direction (X direction) and the direction (V direction) of the vibration surface of the illumination light L1 make to several different angle (phi), ((phi) + (DELTA)), ((phi) +2 (DELTA)). 繰り返し方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を最適な45度に設定した状態を説明する図である。It is a figure explaining the state which set the angle which the repetition direction (X direction) and the direction (V direction) of the vibration surface of the illumination light L1 make to the optimal 45 degree | times. 図4(a)の角度状態における正反射光L2の振幅EX',EY'と偏光成分L4の振幅EL4を説明する図である。FIGS. 4 (a) amplitude E X of the regular reflection light L2 in angular position of ', E Y' is a diagram illustrating the amplitude E L4 of the polarization component L4. 本実施形態の欠陥検査の手順を示すフローチャートである。It is a flowchart which shows the procedure of the defect inspection of this embodiment. 被検基板20の表面に形成された様々な繰り返し方向X1〜X3を説明する図であるIs a diagram illustrating the various iterations direction X 1 to X 3 formed on the surface of the test substrate 20

符号の説明Explanation of symbols

10 表面検査装置 ; 11 ステージ ; 12 アライメント系 ; 13 照明系 ;
14 受光系 ; 15 画像処理部 ; 20 被検基板 ; 22 繰り返しパターン ;
31 光源 ; 32 波長選択フィルタ ; 33 ライトガイドファイバ ;
34,37 偏光フィルタ ; 35,36 凹面反射鏡 ; 38 集光レンズ ; 39 撮像素子
10 surface inspection apparatus; 11 stage; 12 alignment system; 13 illumination system;
14 light receiving system; 15 image processing unit; 20 test substrate; 22 repetitive pattern;
31 light source; 32 wavelength selection filter; 33 light guide fiber;
34, 37 Polarizing filter; 35, 36 Concave reflector; 38 Condensing lens; 39 Image sensor

Claims (2)

被検基板の表面に形成された繰り返しパターンを直線偏光により照明する照明手段と、
前記直線偏光の振動面の前記表面における方向と前記繰り返しパターンの繰り返し方向との成す角度を、前記被検基板の外形基準をもとに、複数の異なる角度に順次設定する設定手段と、
順次前記角度に設定された各状態で、前記繰り返しパターンから発生した正反射光のうち前記直線偏光の振動面に直交する偏光成分を取り出し、取り出された前記偏光成分の光強度を測定する測定手段と、
前記各状態で測定された前記光強度のうち最大値を用いて、前記繰り返しパターンの欠陥を検出する検出手段とを備えた
ことを特徴とする表面検査装置。
Illuminating means for illuminating a repetitive pattern formed on the surface of the test substrate with linearly polarized light;
A setting means for sequentially setting an angle formed by the direction of the surface of the vibrating surface of the linearly polarized light and the repeating direction of the repeating pattern at a plurality of different angles based on the outer shape reference of the test substrate ;
Measuring means for taking out a polarization component orthogonal to the plane of vibration of the linearly polarized light from the specularly reflected light generated from the repetitive pattern in each state set to the angle sequentially and measuring the light intensity of the extracted polarization component When,
A surface inspection apparatus comprising: a detecting unit that detects a defect of the repetitive pattern using a maximum value among the light intensities measured in the respective states.
被検基板の表面に形成された繰り返しパターンを直線偏光により照明する照明手段と、
前記直線偏光の振動面の前記表面における方向と前記繰り返しパターンの繰り返し方向との成す角度を、前記被検基板の外形基準をもとに、複数の異なる角度に順次設定する設定手段と、
順次前記角度に設定された各状態で、前記繰り返しパターンから発生した正反射光のうち前記直線偏光の振動面に直交する偏光成分を取り出し、取り出された前記偏光成分を用いて前記被検基板の画像を取り込む処理手段と、
前記各状態で取り込まれた前記画像のうち最も明るい画像の各画素値を用いて、前記繰り返しパターンの欠陥を検出する検出手段とを備えた
ことを特徴とする表面検査装置。
Illuminating means for illuminating a repetitive pattern formed on the surface of the test substrate with linearly polarized light;
The angle formed by the repetition direction of the repeating pattern and direction in the surface plane of vibration of the linearly polarized light, based on the outer shape standards of the test substrate, and setting means for sequentially setting the plurality of different angles,
In each state set to the angle sequentially , out of the specularly reflected light generated from the repetitive pattern, a polarization component orthogonal to the vibration plane of the linearly polarized light is extracted, and the extracted polarization component is used for the test substrate. Processing means for capturing images;
A surface inspection apparatus comprising: a detection unit configured to detect a defect of the repetitive pattern using each pixel value of the brightest image among the images captured in each state.
JP2006141348A 2006-05-22 2006-05-22 Surface inspection device Active JP4506723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141348A JP4506723B2 (en) 2006-05-22 2006-05-22 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141348A JP4506723B2 (en) 2006-05-22 2006-05-22 Surface inspection device

Publications (2)

Publication Number Publication Date
JP2007309874A JP2007309874A (en) 2007-11-29
JP4506723B2 true JP4506723B2 (en) 2010-07-21

Family

ID=38842851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141348A Active JP4506723B2 (en) 2006-05-22 2006-05-22 Surface inspection device

Country Status (1)

Country Link
JP (1) JP4506723B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099142A1 (en) * 2008-02-06 2009-08-13 Nikon Corporation Surface inspecting apparatus and surface inspecting method
JP2009300216A (en) * 2008-06-12 2009-12-24 Nikon Corp Observation device
KR101787765B1 (en) 2008-11-10 2017-11-15 가부시키가이샤 니콘 Evaluation device and evaluation method
US9612212B1 (en) 2015-11-30 2017-04-04 Samsung Electronics Co., Ltd. Ellipsometer and method of inspecting pattern asymmetry using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128595A (en) * 1993-10-28 1995-05-19 Prometrix Corp Method and device for imaging minute line-width structure byusing optical microscope
JPH11201743A (en) * 1998-01-16 1999-07-30 Hitachi Ltd Method for inspecting foreign matter and defect, and its device
JP2000155099A (en) * 1998-09-18 2000-06-06 Hitachi Ltd Method and device for observation of sample surface, method and device for flaw inspection
WO2005040776A1 (en) * 2003-10-27 2005-05-06 Nikon Corporation Surface inspection device and surface inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128595A (en) * 1993-10-28 1995-05-19 Prometrix Corp Method and device for imaging minute line-width structure byusing optical microscope
JPH11201743A (en) * 1998-01-16 1999-07-30 Hitachi Ltd Method for inspecting foreign matter and defect, and its device
JP2000155099A (en) * 1998-09-18 2000-06-06 Hitachi Ltd Method and device for observation of sample surface, method and device for flaw inspection
WO2005040776A1 (en) * 2003-10-27 2005-05-06 Nikon Corporation Surface inspection device and surface inspection method

Also Published As

Publication number Publication date
JP2007309874A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4552859B2 (en) Surface inspection apparatus and surface inspection method
JP4548385B2 (en) Surface inspection device
JP5201350B2 (en) Surface inspection device
JP5585615B2 (en) Inspection apparatus and inspection method
US20090315988A1 (en) Observation device, inspection device and inspection method
JP4692892B2 (en) Surface inspection device
JP2009192520A (en) Surface inspection device
JP4462232B2 (en) Surface inspection device
JP4506723B2 (en) Surface inspection device
US20120069335A1 (en) Surface inspecting apparatus and surface inspecting method
JP4605089B2 (en) Surface inspection device
JP4696607B2 (en) Surface inspection device
JP2010096596A (en) Evaluation device
JP4622933B2 (en) Surface inspection method and surface inspection apparatus
JP4552202B2 (en) Surface inspection device
JP2008008777A (en) Surface inspection system
JP4635939B2 (en) Surface inspection device
JP4462222B2 (en) Surface inspection device
JP2006266817A (en) Surface inspection apparatus
JP5299764B2 (en) Evaluation apparatus and evaluation method
JP2001289793A (en) Surface inspection device
JP2009068892A (en) Inspection device
JP5201443B2 (en) Surface inspection apparatus and surface inspection method
JP2006250839A (en) Surface inspection apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4506723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250