JP4599487B2 - Water-cooled vertical electrolytic cell - Google Patents
Water-cooled vertical electrolytic cell Download PDFInfo
- Publication number
- JP4599487B2 JP4599487B2 JP2004244466A JP2004244466A JP4599487B2 JP 4599487 B2 JP4599487 B2 JP 4599487B2 JP 2004244466 A JP2004244466 A JP 2004244466A JP 2004244466 A JP2004244466 A JP 2004244466A JP 4599487 B2 JP4599487 B2 JP 4599487B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic cell
- rectangular parallelepiped
- water
- casing
- electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
本発明は塩素イオン溶液を電解酸化し殺菌用水を生成する電解槽に関する。より詳しくは、内部の液の流れを整え、反応生成物と原料の混合を最小にし、かつ水冷により発生熱を速やかに除去し電解酸化反応を効率よく継続させ、電極に対する影響を少なくする構造の電解槽に関する。The present invention relates to an electrolytic cell for electrolytically oxidizing a chlorine ion solution to produce water for sterilization. More specifically, it has a structure that regulates the flow of liquid inside, minimizes the mixing of reaction products and raw materials, removes generated heat quickly by water cooling, efficiently continues the electrolytic oxidation reaction, and reduces the influence on the electrode. It relates to an electrolytic cell.
塩素イオン溶液を電解酸化し殺菌用水を生成する技術は多数知られている。食塩溶液を隔膜式電解槽で電解し、陽極室から塩酸酸性の殺菌水を取り出す方式(特許文献1)や、食塩を無隔膜電解槽で電解し次亜塩素酸ソーダ溶液を生成する装置(特許文献2)や、希塩酸を無隔膜電解槽で電解し微酸性電解水を生成する装置(特許文献3)などが代表的なものである。これらの技術において、必須の要素である電解槽は、基本的に次のような問題を抱えている。殺菌水の大量使用に対応するために大規模装置を製作する場合、電解槽も大型になることにより、▲1▼電解槽内部で発生する熱の放出効率が悪くなることによって内部の温度が上昇し、電極寿命の短縮、電解効率の低下なとの問題が生じることと、▲2▼電解槽の大型化による耐圧性能が低下することである。大きな能力の電解槽を製作すると、当然、電解電流は大きくなり、体積も大きくなる。つまり発熱量は増加し、放熱効果も悪化するため、内部の温度上昇を重複促進することになるのである。これに対応するために本発明者等は以前、電解槽の周囲に冷却用のジャケットを設けた電解槽を発明した(特許文献4)。しかし、この方法は電解槽の外周面のみの冷却であるため、電解槽の体積が大きくなるに従って冷却効果が低下するという欠点があった。また耐圧に関する対策は無かった。一方、電解槽の筐体は、漏れ電流を避けるために絶縁体であることが必要であり、硝子、セラミック、プラスチックなどの単体や金属との複合材が使用される。しかし、製作の容易さや低価格であることなどからプラスチックが多用されている。しかし、プラスチックは、電解槽が大型化するほど物理強度が低下し、使用条件に対する制約が大きくなり問題になっていたのである。その問題に対応するために、電解槽自体の補強部品を付加したり、水圧を下げる弁を使ったり、水撃を避けるための対策を必要とした。さらに、電解槽の出口側にも圧をかけないために、配管構造に様々な制約があった。
本発明が解決しようとする課題は、塩素イオン溶液を電解槽で電解酸化し、電極酸化液を水で希釈して殺菌用水を生成する方法において使用する電解槽に関して、大能力でも温度上昇が少なく、耐圧性能の高い電解槽を提供することである。The problem to be solved by the present invention is that an electrolytic cell used in a method for producing a sterilizing water by electrolytically oxidizing a chlorine ion solution in an electrolytic cell and diluting an electrode oxidizing solution with water has a small temperature rise even at a large capacity. It is to provide an electrolytic cell with high pressure resistance.
本発明者は課題を解決するために、▲1▼電解槽を二重筺体構造とし、▲2▼外部の筺体は耐圧性能を受け持たせるために円筒状とし、▲3▼内部の筺体は電解性能と伝熱性能を考慮して直方体構造とした。また外筺体は耐圧に必要な構造として円筒の直径が180mmであれば可能であるが150mm以下とした。また外部の筺体と内部の筺体の間の空間に希釈用水を流下させ、内部筺体内で生成した電解酸化液を外部筺体内で、その希釈用水の中に排出させ、外部筺体内で稀釈混合を完結させる構造としたのである。さらに電解時の液体類の流れを整えるために電極板を縦長形状とし、長手/短手の比が2以上で可能であるが4以上とし、内部筺体および外部筺体をそれぞれ合わせて縦長形状とした。In order to solve the problems, the present inventor has (1) the electrolytic cell has a double casing structure, (2) the outer casing is cylindrical to provide pressure resistance, and (3) the inner casing is electrolyzed. Considering performance and heat transfer performance, a rectangular parallelepiped structure was adopted. The outer casing can be formed as a structure necessary for pressure resistance if the diameter of the cylinder is 180 mm, but is 150 mm or less . The dilution water is allowed to flow down into the space between the external enclosure and the internal enclosure, and the electrolytic oxidation solution generated in the internal enclosure is discharged into the dilution water in the external enclosure, and dilution mixing is performed in the external enclosure. The structure was completed. Furthermore, in order to adjust the flow of liquids during electrolysis, the electrode plate has a vertically long shape, and the ratio of long / short is possible to be 2 or more, but 4 or more , and the internal housing and the external housing are combined into a vertically long shape. .
このような構造としたことにより次のような利点が得られることとなった。▲1▼まず、電解槽を二重構造としたことにより、その隙間に稀釈水を流し、冷却効果を得ることができたことおよび、内部筐体内で生成した高濃度の電解酸化液が電極端子棒のシール部分から直接外部に漏れ出す恐れが無くなったことである。そのことにより、端子棒のシール構造が簡単になり、また高価なシール材を使用する必要がなくなったのである。さらに、耐圧性能と電解性能を別々の筐体に担持させることができるようになったことで、それぞれの機能に好都合な形状を選ぶことも可能になったのである。By adopting such a structure, the following advantages were obtained. (1) First, by making the electrolytic cell into a double structure, diluted water was allowed to flow through the gap to obtain a cooling effect, and the high-concentration electrolytic oxidation solution generated in the internal housing was the electrode terminal. There is no longer any risk of leaking directly from the seal part of the rod. This simplifies the terminal rod sealing structure and eliminates the need for expensive sealing materials. Furthermore, since the pressure resistance performance and the electrolysis performance can be carried on separate housings, it becomes possible to select a shape convenient for each function.
▲2▼それに伴い、外部筐体の形状として耐圧構造上有利な円筒形を選択することができた。JISによる既製の塩化ビニール管の耐圧は種類によりそれぞれ、25.5kg/cm2(VP)、20.4kg/cm2(VM)、15.3kg/cm2(VU)と、実用上十分な強度が決められている。従って、耐圧が問題になるのは筒部ではなく端面である。そこで、その端面処理が実用上の強度が得られる円筒の直径の上限を計算した。一般工業用硬質塩化ビニールの溶接部分の引っ張り強さ(σ)は式1で示される。
σ=σt×C×M×S=95(kg/cm2) (式1)
「但し、σtは一般工業用硬質塩化ビニールの引っ張り強度で570kg/cm2(20℃)、Cはクリープで1/2、Mは溶接効率で1/3、Sは安全係数で1とした」
次に、端面に円盤を円周溶接で接着した場合の耐圧は式2で計算される。
P=σ×t2/(α×D2)=507t2/D2 (kg/cm2)
「但し、tは板厚(cm)、αは円周固定等分布加重時の引っ張り強度係数(3/16)、Dは管内径(cm)」
板厚を2cmとし、通常利用されている水道や工業用水の水圧は2〜3kg/cm2あるので、瞬間的な圧力変動を考慮して安全率を2(6kg/cm2)又は3(9kg/cm2)として管径の上限を計算するとそれぞれ18cm、15cmとなる。これが実用的な耐圧のための管径の上限である。さらに、外部筐体に円筒を使用することにより、安価な既製部材を利用できるという利点も得られた。(2) Along with this, it was possible to select a cylindrical shape advantageous in terms of pressure resistance structure as the shape of the external casing. The pressure resistance of ready-made vinyl chloride pipes according to JIS is 25.5 kg / cm 2 (VP), 20.4 kg / cm 2 (VM), and 15.3 kg / cm 2 (VU), depending on the type. Is decided. Therefore, it is not the cylindrical part but the end face that has a problem with pressure resistance. Therefore, the upper limit of the diameter of the cylinder for which the end face treatment can obtain a practical strength was calculated. The tensile strength (σ) of the welded portion of general industrial hard vinyl chloride is expressed by Equation 1.
σ = σ t × C × M × S = 95 (kg / cm 2 ) (Formula 1)
“However, σ t is 570 kg / cm 2 (20 ° C.) as the tensile strength of hard vinyl chloride for general industrial use, C is 1/2 for creep, M is 1/3 for welding efficiency, and S is 1 for safety factor. "
Next, the pressure resistance when a disk is bonded to the end face by circumferential welding is calculated by Equation 2.
P = σ × t 2 / (α × D 2 ) = 507 t 2 / D 2 (kg / cm 2 )
“However, t is the plate thickness (cm), α is the tensile strength coefficient (3/16) at the time of constant weight distribution, D is the inner diameter of the tube (cm)”
The thickness and 2 cm, since the pressure of the water or industrial water, which is normally utilized is 2-3 kg / cm 2, a safety factor taking into account the instantaneous pressure variations 2 (6kg / cm 2) or 3 (9 kg / Cm 2 ), the upper limit of the tube diameter is calculated to be 18 cm and 15 cm, respectively. This is the upper limit of the tube diameter for practical pressure resistance. Further, by using a cylinder for the outer casing, there is an advantage that an inexpensive ready-made member can be used.
▲3▼内部筐体の形状は、等間隔に配置された長方形の電極板を無駄なスペースを作ることなく収納するのに最適の形状である直方体とした。内部筐体は耐圧の必要がないため、電解の効率のみを考慮して決めることができる。内部筐体は外面全てが稀釈水に接触し伝熱面となるので、比表面積の大きい直方体は有利である。また、電解液の自然な流れを促進するために上下に縦長構造とした。これにより電解で発生したガスや、電解で加温された電解液は上方向への流れが促進され、新しく供給された塩酸と電解の済んだ液との混合が防止され、入れ替わりがスムーズに行なわれる。それにより電解の効率が高く維持されるのである。(3) The shape of the inner casing is a rectangular parallelepiped that is optimal for storing rectangular electrode plates arranged at equal intervals without creating a useless space. Since the internal casing does not need to withstand pressure, it can be determined considering only the efficiency of electrolysis. A rectangular parallelepiped with a large specific surface area is advantageous because the entire inner surface of the inner casing comes into contact with the diluted water and becomes a heat transfer surface. Moreover, in order to promote the natural flow of the electrolyte, a vertically long structure was adopted. This facilitates the upward flow of the gas generated by electrolysis and the electrolyte heated by electrolysis, preventing mixing of newly supplied hydrochloric acid and the electrolyzed liquid, and switching is performed smoothly. It is. Thereby, the efficiency of electrolysis is kept high.
この電解槽で使用する塩素イオン溶液としては塩酸、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化アンモニウムなとが目的に応じて使用できる。As the chloride ion solution used in this electrolytic cell, hydrochloric acid, sodium chloride, potassium chloride, calcium chloride, ammonium chloride can be used according to the purpose.
本発明の効果は、塩素イオン溶液を電解槽で電解酸化し、電極酸化液を水で希釈して殺菌用水を生成する方法において使用する電解槽に関して、大能力でも温度上昇が少なく、耐圧性能の高い電解槽を提供したことである。本発明による電解槽の耐圧は、安全率2で設計すると6kg/cm2以上、安全率3で設計すると9kg/cm2であり、実用的な利用において十分な耐圧強度を持っている。従って、電解槽の前後の工程の仕様に対する制約がほとんど無く、圧力調整用の部品点数の削減や設備の自由度が大きくなる。
一方、本発明の構造では、電解槽内部の温度と稀釈水の温度差を10℃以下に設計することはきわめて容易であり、電解槽内の不要な温度上昇による、電極やプラスチック部材の消耗を抑えることが可能で、電解槽の長寿命化によるランニングコストの削減効果が得られる。
さらに、電解槽を縦長形状とし、原料溶液の供給口を下面に、電解物の排出口を上面にしたことにより、上下方向の物質移動が容易になり、電解により発生したガスのスムーズな排除、温度の上昇した電解液の上部への移動を容易にし、新しく供給された原料液と電解結果物質の無用な混合を避け、電解効率を高く維持できるという効果がある。The effect of the present invention is that the electrolytic cell used in the method of electrolytically oxidizing a chlorine ion solution in an electrolytic cell and diluting the electrode oxidizing solution with water to generate sterilizing water has a small temperature rise even with a large capacity, and has a pressure resistance performance. It is that a high electrolytic cell was provided. The pressure resistance of the electrolytic cell according to the present invention is 6 kg / cm 2 or more when designed with a safety factor of 2 and 9 kg / cm 2 when designed with a safety factor of 3, and has sufficient pressure strength for practical use. Therefore, there are almost no restrictions on the specifications of the process before and after the electrolytic cell, and the number of parts for pressure adjustment is reduced and the degree of freedom of equipment is increased.
On the other hand, in the structure of the present invention, it is extremely easy to design the difference between the temperature inside the electrolytic cell and the dilution water to be 10 ° C. or less, and consumption of electrodes and plastic members due to unnecessary temperature rise in the electrolytic cell is reduced. It is possible to suppress the running cost by extending the life of the electrolytic cell.
Furthermore, the electrolytic cell has a vertically long shape, the raw material solution supply port is on the bottom, and the electrolyte discharge port is on the top surface, making it easy to move the material in the vertical direction and smoothly removing the gas generated by the electrolysis. The effect is that the electrolytic solution whose temperature has risen can be easily moved to the upper part, unnecessary mixing of the newly supplied raw material solution and the electrolysis result substance can be avoided, and the electrolytic efficiency can be maintained high.
本発明実施の最良の形態は、縦/横の比が4以上の平板電極を平行に配置し構成した電極群を直方体の筐体に収納し、筐体の長手方向を上下方向に配置し、筐体の下面から塩素イオン溶液を供給し、筐体の上面から電解生成物を排出する構造とする。このように構成された直方体の筐体をさらに円筒形の筐体に収容する。円筒形の筐体の内径は実用的な耐圧を維持するために150mm以下とする。円筒形の筐体と直方体の筐体の隙間を稀釈水を通液させ、その稀釈水に、直方体の筐体上面から排出された電解生成物を、円筒形の筐体内で混合稀釈する構造とする。外部の円筒形の筐体には稀釈水の供給配管と電解生成物を混合稀釈した水の排出管を備えている。内部の直方体の筐体に収納された電極に電流を供給する電源コードは外部の円筒筐体を貫通し、直方体の筐体を貫通し電極に接合される。又、同じく塩素イオン溶液を供給する管路も外部の円筒筐体を貫通し、直方体筐体内に給液できるように接合される。電解物の排出口は内部の直方体筐体の上面に直接穿孔された細孔である。
この電解槽で電解する塩素イオン溶液は塩酸溶液または塩化ナトリウム溶液またはその混合物が最適である。電極の実際の寸法は電解能力によって決まる電流値をもとに、耐久性を考慮して適宜決定する。In the best mode of the present invention, an electrode group configured by arranging plate electrodes having a vertical / horizontal ratio of 4 or more in parallel is housed in a rectangular parallelepiped housing, and the longitudinal direction of the housing is disposed vertically. The structure is such that a chlorine ion solution is supplied from the lower surface of the housing and the electrolytic product is discharged from the upper surface of the housing. The rectangular parallelepiped housing thus configured is further accommodated in a cylindrical housing. The inner diameter of the cylindrical casing is 150 mm or less in order to maintain a practical pressure resistance. A structure in which dilution water is passed through the gap between the cylindrical casing and the rectangular parallelepiped casing, and the electrolytic product discharged from the upper surface of the rectangular casing is mixed and diluted in the diluted water in the cylindrical casing. To do. The external cylindrical housing is provided with a dilution water supply pipe and a discharge pipe for diluting water mixed with electrolytic products. A power cord for supplying a current to the electrode housed in the internal rectangular parallelepiped housing passes through the external cylindrical housing, penetrates the rectangular parallelepiped housing, and is joined to the electrode. Similarly, the pipe for supplying the chlorine ion solution also passes through the external cylindrical casing and is joined so that the liquid can be supplied into the rectangular parallelepiped casing. The discharge port for the electrolyte is a fine hole directly drilled in the upper surface of the internal rectangular parallelepiped housing.
The optimum chloride ion solution to be electrolyzed in this electrolytic cell is a hydrochloric acid solution, a sodium chloride solution or a mixture thereof. The actual dimensions of the electrodes are appropriately determined in consideration of durability based on the current value determined by the electrolytic capacity.
次に、本発明をさらに詳しく説明するために実施例を示すが、本発明の範囲をこの例に限定する趣旨ではなく、本発明の理解を深めるのが目的である。Next, examples will be shown to explain the present invention in more detail, but the purpose is not to limit the scope of the present invention to this example, but to deepen the understanding of the present invention.
図1に実施例の図面を示した。電極はチタン地板を白金で被覆したもの(田中貴金属社製)でサイズは厚さ1mm、幅70mm、長さ600mmを13枚、3mm間隔で13枚を配置し電極群10を構成した。両外側の各1枚には給電用の端子棒5を溶接したものを使った。その電極群を内部直方体筐体2に収納した。直方体筐体には塩酸の供給開口7と塩酸稀釈用水供給開口6、および電解物排出開口8を設けた。直方体筐体は厚さ10mmの硬質塩化ビニール板で構成した。直方体筐体はさらに円筒形筐体1に収納した。円筒形筐体は直径125mmの硬質塩化ビニール管で製作した。円筒形筐体は稀釈水の流入用開口3、電解物の混合稀釈液排出用開口4を備えており、さらに両端には前後の配管部材に接合する仕組11を備えている。原料塩酸は塩酸の供給開口7を通して直方体筐体内に供給され、同じく塩酸稀釈用水供給開口から供給された水で稀釈され電極群の中に供給される。そこで電解酸化された電解物は上面に設けられた電解物排出開口から排出される。一方稀釈水は下部の開口3から供給され直方体筐体と円筒形筐体の隙間9を通り、排出口4に至り、そこで直方体筐体から排出された電解物と混合され、排出される。
この電解槽を利用した電解装置を作成し性能の確認を行った。図2にそのフロー図を示した。原水取り入れ口16から、時間当たり5000Lの原水を取り入れ電解槽の内部直方体筐体と外部円筒形筐体の隙間に流下させた。原水の供給配管の途中から原水の一部を定量ポンプ15(イワキ社製EH−E35FC)で、時間当たり2500mlを抽出し直方体筺体内に供給した。塩酸タンク13からは21%塩酸を、定量ポンプ14(イワキ社製EH−B15VC)で時間当たり500ml直方体筺体に供給し、定量ポンプ15で供給された原水と混合し電極群に供給した。電極群に直流電源(TDK社製RAW12 図示せず)から12V、12Aの電力を供給し、供給された塩酸溶液を連続的に電解し、直方体上面から電解物を排出し、そこを流下している希釈水に混合希釈し排出部17から殺菌用水を排出した。この装置により1時間あたり5000Lの殺菌用水が連続的に得られた。FIG. 1 shows a drawing of the embodiment. The electrode was formed by coating a titanium base plate with platinum (manufactured by Tanaka Kikinzoku Co., Ltd.), and the electrode group 10 was constructed by arranging 13 sheets with a thickness of 1 mm, a width of 70 mm, and a length of 600 mm at intervals of 3 mm. Each of the outer sides used a welded terminal bar 5 for power feeding. The electrode group was housed in the inner rectangular parallelepiped housing 2. The rectangular parallelepiped housing is provided with a hydrochloric acid supply opening 7, a hydrochloric acid dilution water supply opening 6, and an electrolyte discharge opening 8. The rectangular parallelepiped housing was composed of a hard vinyl chloride plate having a thickness of 10 mm. The rectangular parallelepiped housing was further stored in the cylindrical housing 1. The cylindrical housing was made of a rigid vinyl chloride tube with a diameter of 125 mm. The cylindrical housing is provided with a diluting water inflow opening 3 and an electrolyte mixed diluting liquid discharge opening 4, and further provided with a mechanism 11 for joining the front and rear piping members at both ends. The raw hydrochloric acid is supplied into the rectangular parallelepiped housing through the hydrochloric acid supply opening 7, and is diluted with water supplied from the hydrochloric acid dilution water supply opening and supplied into the electrode group. Therefore, the electrolytically oxidized electrolyte is discharged from an electrolyte discharge opening provided on the upper surface. On the other hand, the diluted water is supplied from the lower opening 3, passes through the gap 9 between the rectangular parallelepiped casing and the cylindrical casing, reaches the discharge port 4, where it is mixed with the electrolyte discharged from the rectangular parallelepiped casing and discharged.
An electrolyzer using this electrolyzer was created and the performance was confirmed. FIG. 2 shows the flowchart. From the raw water intake port 16, 5000 L of raw water per hour was taken and allowed to flow down into the gap between the inner rectangular parallelepiped casing and the outer cylindrical casing of the electrolytic cell. A portion of the raw water was extracted from the middle of the raw water supply pipe with a metering pump 15 (EH-E35FC, manufactured by Iwaki Co., Ltd.), and supplied to the cuboid enclosure. From the hydrochloric acid tank 13, 21% hydrochloric acid was supplied to a 500 ml cuboid body per hour with a metering pump 14 (EH-B15VC manufactured by Iwaki Co., Ltd.), mixed with the raw water supplied with the metering pump 15, and supplied to the electrode group. 12V, 12A power is supplied to the electrode group from a DC power supply (RAW12 not shown by TDK), the supplied hydrochloric acid solution is continuously electrolyzed, the electrolyte is discharged from the top surface of the rectangular parallelepiped, and flows down there. The diluted water was mixed and diluted, and the sterilizing water was discharged from the discharge unit 17. With this apparatus, 5000 L of sterilizing water per hour was continuously obtained.
1 外部円筒形筺体
2 内部直方体筺体
3 稀釈水の流入用開口
4 混合稀釈液排出用開口
5 端子棒
6 塩酸稀釈用水供給開口
7 塩酸供給開口
8 電解物排出開口
9 直方体筐体と円筒形筐体の隙間
10 電極群
11 前後の配管部材に接合する仕組
12 電解槽
13 塩酸タンク
14 塩酸用定量ポンプ
15 塩酸希釈水定量ポンプ
16 原水取り入れ口
17 殺菌用水排出部
18 開閉弁(ホクエツ社製HG−A−WF50−100V)DESCRIPTION OF SYMBOLS 1 External cylindrical housing 2 Internal rectangular housing 3 Dilution water inflow opening 4 Mixed dilution liquid discharge opening 5 Terminal bar 6 Hydrochloric acid dilution water supply opening 7 Hydrochloric acid supply opening 8 Electrolyte discharge opening 9 Rectangular body housing and cylindrical housing 10 Electrode group 11 Structure joined to piping members before and after 12 Electrolyzer 13 Hydrochloric acid tank 14 Hydrochloric acid metering pump 15 Hydrochloric acid diluted water metering pump 16 Raw water intake 17 Disinfecting water outlet 18 Opening / closing valve (HG-A manufactured by Hokuetsu) -WF50-100V)
Claims (3)
▲1▼ 電極が厚みの均一な長方形平板状で、長手方向が上下方向に配置されていること、かつ、
▲2▼ 該平板が直方体の筺体に包摂されていること、かつ、
▲3▼ 該直方体の筺体内の液の流れが下方から上方方向であること、かつ、
▲4▼ 該直方体の筺体がさらに円筒形の外筺体に包摂されていること、かつ、
▲5▼ 直方体の筺体と円筒形の外筺体の隙間を希釈水が流通する構造であること、かつ、
▲6▼ 直方体の筺体内に供給された塩素イオン溶液が電解酸化を受け、該電解酸化液は直方体の上面から円筒形の外筺体内部に排出され、そこを流通している希釈水に混合希釈される構造であることを特徴とする電解槽The electrolytic cell used for the method of electrolytically oxidizing the chloride ion solution in the electrolytic bath and diluting the electrode oxidizing solution with water to generate sterilized water has the following items,
(1) The electrode is a rectangular flat plate having a uniform thickness, the longitudinal direction is arranged in the vertical direction, and
(2) The flat plate is included in a rectangular parallelepiped box, and
(3) The flow of liquid in the rectangular parallelepiped enclosure is from the bottom to the top, and
(4) The rectangular parallelepiped casing is further included in a cylindrical outer casing, and
(5) A structure in which dilution water flows through a gap between a rectangular parallelepiped casing and a cylindrical outer casing, and
(6) The chlorine ion solution supplied into the rectangular parallelepiped enclosure is subjected to electrolytic oxidation, and the electrolytic oxidation solution is discharged from the upper surface of the rectangular parallelepiped into the cylindrical outer casing, and mixed and diluted with dilution water flowing therethrough. Electrolyzer characterized by having a structure
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004244466A JP4599487B2 (en) | 2004-07-28 | 2004-07-28 | Water-cooled vertical electrolytic cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004244466A JP4599487B2 (en) | 2004-07-28 | 2004-07-28 | Water-cooled vertical electrolytic cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006035201A JP2006035201A (en) | 2006-02-09 |
JP4599487B2 true JP4599487B2 (en) | 2010-12-15 |
Family
ID=35900757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004244466A Expired - Fee Related JP4599487B2 (en) | 2004-07-28 | 2004-07-28 | Water-cooled vertical electrolytic cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4599487B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190026597A (en) | 2017-09-04 | 2019-03-13 | 가부시키가이샤 호쿠에츠 | Method and apparatus for producing highly concentrated slightly acidic electrolyzed water |
JP2019042726A (en) * | 2017-09-04 | 2019-03-22 | 株式会社ホクエツ | Method and device for producing high concentration slightly acidic electrolyzed water |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007301540A (en) * | 2006-05-09 | 2007-11-22 | Hokuetsu:Kk | Slightly acidic electrolyzed water generation apparatus |
JP4594357B2 (en) * | 2007-07-29 | 2010-12-08 | 株式会社微酸性電解水研究所 | Disinfectant manufacturing equipment |
HK1129527A2 (en) * | 2009-05-18 | 2009-11-27 | Kuan Yu Wen | The electrolytic apparatus for producing hclo solution |
US20130112571A1 (en) * | 2010-06-14 | 2013-05-09 | Hocl Inc. | Electrolytic apparatus and method for producing slightly acidic electrolyzed water |
JP5922418B2 (en) * | 2012-01-30 | 2016-05-24 | 株式会社イシダ | Electrolyzed water generator |
KR101803875B1 (en) * | 2016-08-01 | 2017-12-04 | 엘지전자 주식회사 | Sterilizing water generation apparatus |
KR102061454B1 (en) | 2019-07-15 | 2019-12-31 | 데솔 주식회사 | Check Valve and Electrolysis Device for Producing Acidic Hypochlorous Acid Water Having the Same |
KR102054624B1 (en) * | 2019-07-15 | 2019-12-12 | 데솔 주식회사 | Electrolysis Device for Producing Acidic Hypochlorous Acid Water |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003190953A (en) * | 2001-12-25 | 2003-07-08 | Morinaga Milk Ind Co Ltd | Electrolytic sterilized water producing apparatus |
JP2005200761A (en) * | 2004-01-15 | 2005-07-28 | Hokuetsu:Kk | Electrochemical reactor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3304492B2 (en) * | 1993-04-13 | 2002-07-22 | 三浦電子株式会社 | Method and apparatus for producing free chlorine water |
JP3389082B2 (en) * | 1997-11-21 | 2003-03-24 | 三菱重工業株式会社 | Vertical electrolytic cell |
-
2004
- 2004-07-28 JP JP2004244466A patent/JP4599487B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003190953A (en) * | 2001-12-25 | 2003-07-08 | Morinaga Milk Ind Co Ltd | Electrolytic sterilized water producing apparatus |
JP2005200761A (en) * | 2004-01-15 | 2005-07-28 | Hokuetsu:Kk | Electrochemical reactor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190026597A (en) | 2017-09-04 | 2019-03-13 | 가부시키가이샤 호쿠에츠 | Method and apparatus for producing highly concentrated slightly acidic electrolyzed water |
JP2019042726A (en) * | 2017-09-04 | 2019-03-22 | 株式会社ホクエツ | Method and device for producing high concentration slightly acidic electrolyzed water |
Also Published As
Publication number | Publication date |
---|---|
JP2006035201A (en) | 2006-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4129493A (en) | Swimming pool chlorinator system | |
US4422919A (en) | Electrolytic cell | |
JP5887385B2 (en) | Electrolyzer | |
KR100964878B1 (en) | Highly efficient sodium hypochlorite generator with water cooling heat exchanger | |
JP4599487B2 (en) | Water-cooled vertical electrolytic cell | |
JP2006043707A (en) | Apparatus for producing electrolytic water | |
US11174562B2 (en) | Method and electrolytic cell for the production of detergents and disinfectants liquids | |
JP5069292B2 (en) | Equipment for electrochemical water treatment | |
CN109423661A (en) | High concentration subacidity electrolysis water generation method and device | |
JP2007313489A (en) | Sterilizing water production apparatus | |
JP4302386B2 (en) | Electrolyzer | |
JP2007007632A (en) | Electrolytic water producing apparatus | |
JP3986820B2 (en) | Electrolyzed water production equipment | |
JP2007301540A (en) | Slightly acidic electrolyzed water generation apparatus | |
US5112464A (en) | Apparatus to control reverse current flow in membrane electrolytic cells | |
TW201319321A (en) | Electrolyzed water production apparatus | |
US10550485B2 (en) | Pipe-type electrolysis cell | |
JP3229266B2 (en) | Bipolar filter press type electrolytic cell | |
JP2001191079A (en) | Electrolytic water forming device | |
JP2006198562A (en) | Electrode device and electrolytic cell | |
JP2019042726A (en) | Method and device for producing high concentration slightly acidic electrolyzed water | |
KR102445892B1 (en) | Electrolyzer connected electrode plate joint with power supply terminal efficiently | |
JP2019119922A (en) | Electrolytic bath and alkali electrolytic water generator | |
CN110885986B (en) | Electrolytic tank device with variable current density | |
JP6121221B2 (en) | Electrolyzer for generation of hypochlorous acid water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070920 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100514 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100713 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100804 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |